JP6066785B2 - Measuring method for outer shape of iron skin of chaotic car furnace body - Google Patents

Measuring method for outer shape of iron skin of chaotic car furnace body Download PDF

Info

Publication number
JP6066785B2
JP6066785B2 JP2013049300A JP2013049300A JP6066785B2 JP 6066785 B2 JP6066785 B2 JP 6066785B2 JP 2013049300 A JP2013049300 A JP 2013049300A JP 2013049300 A JP2013049300 A JP 2013049300A JP 6066785 B2 JP6066785 B2 JP 6066785B2
Authority
JP
Japan
Prior art keywords
skin
reference points
iron
dimensional
furnace body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013049300A
Other languages
Japanese (ja)
Other versions
JP2014174104A (en
Inventor
了 大竹
了 大竹
宏思 岸
宏思 岸
俊哉 小里
俊哉 小里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2013049300A priority Critical patent/JP6066785B2/en
Publication of JP2014174104A publication Critical patent/JP2014174104A/en
Application granted granted Critical
Publication of JP6066785B2 publication Critical patent/JP6066785B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、混銑車炉体の鉄皮外面形状の測定方法に関するものである。   The present invention relates to a method for measuring the outer shape of an iron skin of a chaotic car furnace body.

混銑車は、「トーピードカー」とも呼ばれており、製鉄所において高炉から出銑された溶銑を溶銑予備処理設備や転炉工場へ運搬する役割を担うものである。混銑車は、溶銑を貯留する容器である炉体、炉体内の溶銑を払い出す際に炉体を回転させるための傾動装置、及び、炉体や傾動装置を支える台車などから構成されており、機関車の牽引により軌道上を走行する。   The chaotic car is also called a “torpedo car” and plays a role of transporting hot metal discharged from a blast furnace to a hot metal pretreatment facility or a converter factory at a steelworks. The kneading vehicle is composed of a furnace body that is a container for storing hot metal, a tilting device for rotating the furnace body when discharging hot metal in the furnace body, and a carriage that supports the furnace body and the tilting device, etc. Drive on the track by towing the locomotive.

図1に示すように、混銑車の炉体1は、その外形がいわゆる魚雷の形をしており、鋼板を溶接して魚雷の形にしてなる鉄皮2の内面に耐火物3(図7参照)を内張りした構造となっている。炉体1の鉄皮2は、円筒形の直胴部2aと、直胴部2aの両端それぞれに連なる円錐台形状のコニカル部2bとからなっている。直胴部2aには、溶銑の出入り口となる炉口4が設けられるとともに、エプロン5が設けられている。鉄皮2は、例えば、軸方向の長さLが、11000〜12500mm程度であり、直胴部2aの外径が、4200〜4400mm程度の大きさのものである。   As shown in FIG. 1, the furnace body 1 of the chaotic vehicle has a so-called torpedo shape, and the refractory 3 (FIG. 7) is formed on the inner surface of the iron skin 2 formed by welding a steel plate into a torpedo shape. Reference) is lined. The iron shell 2 of the furnace body 1 includes a cylindrical straight body portion 2a and a truncated cone-shaped conical portion 2b connected to both ends of the straight body portion 2a. The straight body portion 2a is provided with a furnace port 4 serving as a hot metal entrance and exit, and an apron 5 is provided. For example, the length 2 in the axial direction of the iron skin 2 is about 11000 to 12500 mm, and the outer diameter of the straight body portion 2a is about 4200 to 4400 mm.

このように、混銑車の炉体は、鉄皮とその鉄皮内面に内張りされた耐火物とで構成されており、操業に伴って耐火物が損傷・溶損してその厚みが減少するため、耐火物の厚みを測定して耐火物の厚みが一定厚み以下になった場合には、その部分の耐火物の補修を行う必要がある。この場合、耐火物の厚みを測定するためには、その測定箇所において耐火物の厚みの基準となる鉄皮外面の外径寸法を測定することが必要となる。また、鉄皮の経年劣化に伴う変形による事故や故障を防止するために、鉄皮外面の形状を測定する必要がある。   In this way, the furnace body of the kneading car is composed of an iron skin and a refractory lined on the inner surface of the iron skin, and the refractory is damaged and melted with operation, and its thickness decreases. When the thickness of the refractory is measured and the thickness of the refractory is less than a certain thickness, it is necessary to repair the refractory in that portion. In this case, in order to measure the thickness of the refractory, it is necessary to measure the outer diameter of the outer surface of the iron skin that serves as a reference for the thickness of the refractory at the measurement location. In addition, in order to prevent accidents and failures due to deformation caused by aging of the iron skin, it is necessary to measure the shape of the outer surface of the iron skin.

混銑車炉体の鉄皮外面の形状の測定について、従来、例えば、特許文献1、特許文献2に開示された技術が知られている。   Conventionally, for example, techniques disclosed in Patent Document 1 and Patent Document 2 are known for measuring the shape of the outer surface of the iron shell of the chaotic car furnace body.

特許文献1には、混銑車(トーピードカー)が走行する線路の両側に該線路を挟むようにして2台の超音波センサーを対向させて設置しておき、運行途中の混銑車が所定位置にきたことを検知し、前記2台の超音波センサーにより炉体胴部表面までの距離を連続的に、かつ自動的に測定することにより、炉体胴部の直径寸法と炉体胴部表面形状を測定するようにした技術が開示されている。この技術では、前記2台の超音波センサーの間隔をX、一方の超音波センサーの測定値をa、他方の超音波センサーの測定値をbとすると、T=X−(a+b)の計算式により、炉体胴部の直径Tを求めるようにしている。   In Patent Document 1, two ultrasonic sensors are placed opposite to each other on both sides of a track on which a chaotic vehicle (torpedo car) travels, and the chaotic vehicle in operation has come to a predetermined position. By detecting and continuously and automatically measuring the distance to the furnace body surface by the two ultrasonic sensors, the diameter of the furnace body and the surface shape of the furnace body are measured. Such a technique is disclosed. In this technique, when the interval between the two ultrasonic sensors is X, the measurement value of one ultrasonic sensor is a, and the measurement value of the other ultrasonic sensor is b, the calculation formula of T = X− (a + b) Thus, the diameter T of the furnace body is obtained.

また、特許文献2には、混銑車運用時に炉体の炉底に生じる湯当り部の溶損状況を精度良く測定することを目的として、混銑車炉体の外部に配置した第1のレーザー距離計により、溶銑を排出した後において炉体を90°傾転させた状態で炉体の受銑口(炉口)を通して、炉体内炉底部のライニング煉瓦形状を測定し、一方、前記第1のレーザー距離計と相対する既知の位置に、炉体の炉底部を挟み込んで測定可能な第2のレーザー距離計を設置し、この第2のレーザー距離計により、炉体の炉底部における鉄皮外面形状を測定し、この鉄皮外面形状データと、前記ライニング煉瓦形状データとから炉体内の炉底部のライニング煉瓦厚みを測定するようにした技術が開示されている。   Patent Document 2 discloses a first laser distance arranged outside the kneading vehicle furnace body for the purpose of accurately measuring the molten state of the hot water contact portion generated at the furnace bottom of the furnace body during the operation of the kneading vehicle. After the hot metal was discharged, the shape of the lining brick at the bottom of the furnace body was measured through the receiving port (furnace port) of the furnace body with the furnace body tilted 90 °, while the first A second laser distance meter that can be measured by sandwiching the furnace bottom of the furnace body is installed at a known position opposite to the laser distance meter, and the outer surface of the iron skin at the furnace bottom of the furnace body is installed by this second laser distance meter. A technique is disclosed in which the shape is measured and the thickness of the lining brick at the bottom of the furnace inside the furnace body is measured from the outer skin shape data and the lining brick shape data.

特開平7−260463号公報JP-A-7-260463 特開2005−337922号公報JP 2005-337922 A

前述した特許文献1、2に開示された技術では、混銑車炉体の直胴部についての鉄皮外面形状しか測定することができず、直胴部及びコニカル部を含む鉄皮外面全体の形状を測定することができなかった。   In the techniques disclosed in Patent Documents 1 and 2, the shape of the entire outer surface of the iron skin including the straight body portion and the conical portion can be measured only for the outer surface shape of the straight body portion of the chaotic car furnace body. Could not be measured.

そこで、本願発明の課題は、混銑車に備えられた炉体の鉄皮外面全体の形状を精度良く短時間で測定することができる、混銑車炉体の鉄皮外面形状の測定方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for measuring the outer shape of the iron skin of a kneading car furnace body, which can accurately and quickly measure the shape of the entire outer skin surface of the furnace body provided in the kneading car. There is.

前記の課題を解決するため、本願発明では、次の技術的手段を講じている。   In order to solve the above problems, the present invention takes the following technical means.

請求項1の発明は、混銑車に備えられた炉体の鉄皮外面の形状を測定する混銑車炉体の鉄皮外面形状の測定方法であって、
(イ) 周方向360°の鉄皮外面を少なくとも3つの領域に区切ることで、区切られた各領域を設定し、前記区切られた各領域に、少なくとも3つの基準点を設置すること、
(ロ) 前記基準点の設置に際し、前記区切られた各領域において基準点同士における鉄皮軸方向での最大距離をΔL、鉄皮周方向での最大角度をΔθとしたとき、下記式(1)の関係を満たす少なくとも1組の基準点と、下記式(2)の関係を満たす少なくとも1組の基準点とが、それぞれ存在するように前記基準点を設置すること、
ΔL>(3σ/n1/2)×L/R ……(1)
Δθ>(3σ/n1/2)×(360/2π)/R ……(2)
ここで、Lは鉄皮の軸方向の長さ(mm)、σは基準点の測定値の標準偏差(mm)、nは前記区切られた各領域に設置される基準点の数、Rは基準点間の距離が最大距離 ΔLのときの測定誤差(3σ/n 1/2 )が、ΔLが鉄皮の軸方向長さ(鉄皮全長)Lに拡大されたときの鉄皮外面形状の測定誤差の許容値(mm)、である。
(ハ) 1台の3次元レーザースキャナを炉体外方の固定された一箇所に設置し、炉体を鉄皮周方向に所定角度ピッチで回転して該所定角度ピッチごとに、前記3次元レーザースキャナにより、鉄皮外面を測定し、前記区切られた領域の数の、前記区切られた領域における隣り合う2つの領域が該各領域の前記基準点とともに測定された3次元鉄皮外面部分画像を取得すること、
(ニ) 前記3次元鉄皮外面部分画像での前記基準点の3次元位置情報を用いて、前記区切られた領域の数の前記3次元鉄皮外面部分画像を1つに統合して3次元鉄皮外面全体画像を取得すること、
を特徴とする混銑車炉体の鉄皮外面形状の測定方法である。
The invention of claim 1 is a method for measuring the outer skin shape of a kneading car furnace body for measuring the outer skin shape of the furnace body provided in the kneading vehicle,
(B) Setting each divided area by dividing the outer surface of the outer skin of 360 ° in the circumferential direction into at least three areas, and setting at least three reference points in each divided area ;
(B) When setting the reference point, when the maximum distance in the core axis direction between the reference points in each of the divided areas is ΔL and the maximum angle in the peripheral direction is Δθ, the following formula (1 ) Installing the reference points such that there are at least one set of reference points satisfying the relationship of (2) and at least one set of reference points satisfying the relationship of the following formula (2):
ΔL> (3σ / n 1/2 ) × L / R (1)
Δθ> (3σ / n 1/2 ) × (360 / 2π) / R (2)
Here, L is the axial length (mm) of the iron skin, σ is the standard deviation (mm) of the measurement value of the reference point, n is the number of reference points installed in each of the divided areas , and R is The measurement error (3σ / n 1/2 ) when the distance between the reference points is the maximum distance ΔL is the shape of the outer surface of the iron skin when ΔL is expanded to the axial length L of the iron skin (full length of the iron skin) L The tolerance of measurement error (mm).
(C) A single three-dimensional laser scanner is installed at a fixed location outside the furnace body, and the furnace body is rotated at a predetermined angular pitch in the circumferential direction of the iron shell, and the three-dimensional laser is rotated at each predetermined angular pitch. the scanner, the steel shell outer surface is measured, the separated number of the regions, the three-dimensional steel shell outer surface portion which is measured together with the reference point of the two regions respective adjacent regions in the divided respective regions Acquiring images,
(D) using 3-dimensional position information of the reference points in the three-dimensional steel shell outer surface portion image, by integrating the three-dimensional steel shell outer surface portion image of the number of the divided respective regions into one 3 Acquiring a whole image of the outer surface of the three-dimensional iron skin,
This is a method for measuring the outer skin shape of a chaotic car furnace body.

請求項2の発明は、請求項1記載の混銑車炉体の鉄皮外面形状の測定方法において、前記(イ)において、周方向360°の鉄皮外面を90°ピッチで区切り、0°以上90°未満、90°以上180°未満、180°以上270°未満、270°以上360°未満、の4つの領域に、それぞれ、少なくとも3つの基準点を設置すること、を特徴とするものである。   The invention of claim 2 is the method for measuring the outer surface of the chaotic car furnace body according to claim 1, wherein in (a), the outer surface of the outer skin in the circumferential direction 360 ° is divided at a 90 ° pitch, and 0 ° or more. It is characterized in that at least three reference points are respectively installed in four regions of less than 90 °, 90 ° or more and less than 180 °, 180 ° or more and less than 270 °, and 270 ° or more and less than 360 °. .

本願発明による混銑車炉体の鉄皮外面形状の測定方法は、鉄皮周方向に鉄皮外面を少なくとも3つの領域に区切り、1台の3次元レーザースキャナを炉体外方の固定された1箇所に設置し、炉体を鉄皮周方向に所定角度ピッチで回転して該所定角度ピッチごとに、前記3次元レーザースキャナにより鉄皮外面を測定して前記区切られた数の3次元鉄皮外面部分画像を取得し、得られたこれらの3次元鉄皮外面部分画像を1つに統合して3次元鉄皮外面全体画像を得るようにしたので、炉体の鉄皮外面について直胴部だけでなく魚雷の形をした鉄皮外面全体の形状を測定することができ、しかも短時間で測定することができる。
また、形状測定に際し、鉄皮外面の前記区切られた各領域のそれぞれに、少なくとも3つの基準点(位置基準点)を鉄皮外面形状の測定誤差が許容値以内に収まるように設置し、これらの基準点の位置情報を用いて、前記3次元鉄皮外面部分画像を1つに統合して前記3次元鉄皮外面全体画像を得るようにしたので、鉄皮外面全体の形状を精度良く測定することができる。
よって、本願発明による鉄皮外面形状の測定方法によれば、得られた鉄皮外面全体の3次元形状測定データを用いて、鉄皮内面に内張りされた耐火物の厚みを炉体全体にわたって精度良く知ることができ、操業に伴う溶損した耐火物の適切かつ正確な補修を行うことができる。
According to the present invention, the method of measuring the outer surface shape of a chaotic car furnace body is divided into at least three regions in the circumferential direction of the iron skin, and one three-dimensional laser scanner is fixed at one location outside the furnace body. The furnace body is rotated at a predetermined angle pitch in the circumferential direction of the iron shell, and the outer surface of the iron skin is measured by the three-dimensional laser scanner at each predetermined angle pitch, and the divided number of three-dimensional iron skin outer surfaces Since the partial images were acquired and these three-dimensional outer surface partial images obtained were integrated into one to obtain the entire three-dimensional outer surface image, only the straight body portion of the outer surface of the furnace shell was obtained. In addition, the shape of the entire outer surface of the iron skin in the shape of a torpedo can be measured, and it can be measured in a short time.
In the shape measurement, at least three reference points (position reference points) are set in each of the divided areas of the outer surface of the iron skin so that the measurement error of the outer surface shape of the iron skin falls within an allowable value. Since the three-dimensional iron skin outer surface partial image is integrated into one by using the position information of the reference point, the entire three-dimensional iron skin outer surface image is obtained, so the shape of the whole iron skin outer surface is measured with high accuracy. can do.
Therefore, according to the method of measuring the outer surface shape of the iron skin according to the present invention, the thickness of the refractory lined on the inner surface of the iron shell is accurately measured over the entire furnace body using the obtained three-dimensional shape measurement data of the entire outer surface of the iron skin. It is possible to know well and to perform appropriate and accurate repair of the refractory that has been melted and lost during operation.

混銑車炉体の鉄皮を概略的に示す側面図である。It is a side view which shows roughly the iron skin of a chaos car furnace body. 本発明において鉄皮外面の区切られた各領域における基準点間の最大距離ΔLと最大角度Δθとを説明するための図である。It is a figure for demonstrating the maximum distance (DELTA) L and the maximum angle (DELTA) (theta) between the reference points in each area | region where the outer-coating outer surface was divided | segmented in this invention. 本発明において基準点の設置条件を説明するための図ある。It is a figure for demonstrating the installation conditions of a reference point in this invention. 本発明の実施形態において鉄皮外面の区切られた4つの領域と各領域に設置された基準点とを説明するための展開図である。It is an expanded view for demonstrating four area | regions and the reference | standard point installed in each area | region where the iron skin outer surface was divided | segmented in embodiment of this invention. 本発明の実施形態において鉄皮外面の形状測定の様子を説明するための模式図である。It is a schematic diagram for demonstrating the mode of the shape measurement of an iron skin outer surface in embodiment of this invention. 本発明の実施形態において鉄皮外面の形状測定結果の一例を示す図である。It is a figure which shows an example of the shape measurement result of an iron-skin outer surface in embodiment of this invention. 本発明の実施形態において鉄皮外面の形状測定結果の精度を確認するために実施した耐火物の抜き彫りによる鉄皮内径測定を説明するための断面図である。It is sectional drawing for demonstrating the iron-sheath inner diameter measurement by the excavation of the refractory implemented in order to confirm the precision of the shape measurement result of an iron-skin outer surface in embodiment of this invention.

以下、本発明についてその実施形態とともに説明する。   Hereinafter, the present invention will be described together with embodiments thereof.

本発明による鉄皮外面形状の測定方法では、1台の3次元レーザースキャナを炉体外方の固定された1箇所に設置し、炉体を鉄皮周方向に所定角度ピッチで回転して該所定角度ピッチごとに、前記3次元レーザースキャナにより鉄皮外面を測定して3次元鉄皮外面部分画像を取得し、得られたこれらの3次元鉄皮外面部分画像を1つに統合して鉄皮外面全体をとらえた3次元鉄皮外面全体画像を得るようにしている。   In the method for measuring the outer shape of the iron skin according to the present invention, one three-dimensional laser scanner is installed at one fixed position outside the furnace body, and the furnace body is rotated at a predetermined angular pitch in the circumferential direction of the iron skin. For each angle pitch, the outer surface of the iron skin is measured by the three-dimensional laser scanner to obtain a three-dimensional outer surface partial image, and the obtained three-dimensional outer surface partial images are integrated into one. A whole three-dimensional iron skin outer surface image that captures the entire outer surface is obtained.

このため、本発明による測定方法では、周方向360°の鉄皮外面を鉄皮周方向において少なくとも3つの領域に区切る必要がある。これにより、3次元レーザースキャナによる測定により、鉄皮周方向における隣り合う3次元鉄皮外面部分画像同士が互いに共通する鉄皮外面測定部分を有する少なくとも3つの3次元鉄皮外面部分画像が得られ、これらの3次元鉄皮外面部分画像を前記共通する鉄皮外面測定部分に設置した基準点(位置基準点)の3次元位置情報を利用して1つに統合して、3次元鉄皮外面全体画像を得ることができる。   For this reason, in the measuring method according to the present invention, it is necessary to divide the outer surface of the steel skin in the circumferential direction 360 ° into at least three regions in the circumferential direction of the iron skin. Accordingly, at least three three-dimensional iron outer surface partial images having iron outer surface measuring portions in which adjacent three-dimensional iron outer surface partial images in the peripheral direction of the iron shell are common to each other are obtained by measurement with a three-dimensional laser scanner. These three-dimensional skin outer surface partial images are integrated into one using the three-dimensional position information of the reference point (position reference point) installed in the common skin outer surface measurement part, and the three-dimensional skin outer surface is integrated. A whole image can be obtained.

そして、互いに共通する鉄皮外面測定部分を有する2つの3次元鉄皮外面部分画像を、前記共通する鉄皮外面測定部分に設置した基準点の3次元位置情報を利用して座標(座標値)の変換により繋ぎ合わせるためには、前記の区切られた各領域に、詳しくは、前記の区切られた各領域における前記共通する鉄皮外面測定部分に、それぞれ、少なくとも3つの基準点を設置する必要がある。3次元レーザースキャナによって得られる3次元鉄皮外面部分画像を構成する測定データ(点群データ)には、3次元空間における3つの自由度があることから、前記座標変換には少なくとも3つの基準点が必要となる。なお、基準点の数が3つを超えても原理的に前記座標変換は可能であり、基準点の数を増やすことで、基準点の測定値の誤差に伴う座標変換後の測定データの誤差を小さくすることができる。   Then, coordinates (coordinate values) of two three-dimensional skin outer surface portion images having a common outer skin surface measurement portion using the three-dimensional position information of a reference point installed in the common outer skin surface measurement portion. In order to connect them by conversion, it is necessary to install at least three reference points in each of the divided areas, specifically, in each of the common outer surface measurement portions of the divided areas. There is. Since the measurement data (point cloud data) constituting the three-dimensional iron skin outer surface partial image obtained by the three-dimensional laser scanner has three degrees of freedom in a three-dimensional space, at least three reference points are used for the coordinate conversion. Is required. Note that even if the number of reference points exceeds three, the coordinate conversion is theoretically possible, and by increasing the number of reference points, the error in the measurement data after coordinate conversion accompanying the error in the measurement value of the reference point Can be reduced.

図2は、本発明において鉄皮外面の区切られた各領域での基準点同士における最大距離ΔLと最大角度Δθとを説明するための図である。   FIG. 2 is a diagram for explaining the maximum distance ΔL and the maximum angle Δθ between the reference points in each region where the outer surface of the iron skin is divided in the present invention.

鉄皮外面の区切られた各領域に、それぞれ、3つの基準点A,B,Cが設置されている場合、図2に示すように、この例では、基準点A,C間の鉄皮軸方向における距離が、基準点A,B,C同士における鉄皮軸方向での最大距離ΔLとなる。また、基準点A,B間の鉄皮周方向における角度が、基準点A,B,C同士における鉄皮周方向での最大角度Δθとなる。   In the case where three reference points A, B, and C are installed in each of the regions separated from the outer surface of the iron skin, as shown in FIG. 2, in this example, the iron core between the reference points A and C is used. The distance in the direction is the maximum distance ΔL in the core axis direction between the reference points A, B, and C. Further, the angle between the reference points A and B in the peripheral direction of the iron skin is the maximum angle Δθ in the peripheral direction between the reference points A, B and C.

そして、本発明による測定方法では、鉄皮外面の区切られた各領域に、それぞれ、少なくとも3つの基準点を設置するに際し、これらの基準点同士における鉄皮軸方向での最大距離ΔLが下記式(1)の関係を満たす少なくとも1組の基準点(例えば図2の基準点A,C)と、炉体周方向での最大角度Δθが下記式(2)の関係を満たす少なくとも1組の基準点(例えば図2の基準点A,B)とが、別々に存在するように基準点を設置することが必要である(基準点設置要件)。
ΔL>(3σ/n1/2)×L/R ……(1)
Δθ>(3σ/n1/2)×(360/2π)/R ……(2)
ここで、Lは鉄皮の軸方向の長さ(mm)、σは基準点の測定値の標準偏差(mm)、nは各領域に設置される基準点の数、Rは鉄皮外面形状の測定誤差の許容値(mm)、である。
In the measurement method according to the present invention, when installing at least three reference points in each of the divided areas on the outer surface of the iron skin, the maximum distance ΔL in the iron core direction between these reference points is expressed by the following equation: At least one set of reference points satisfying the relationship of (1) (for example, reference points A and C in FIG. 2) and at least one set of reference satisfying the relationship of the following formula (2) in which the maximum angle Δθ in the circumferential direction of the furnace body It is necessary to install the reference points so that the points (for example, the reference points A and B in FIG. 2) exist separately (reference point installation requirement).
ΔL> (3σ / n 1/2 ) × L / R (1)
Δθ> (3σ / n 1/2 ) × (360 / 2π) / R (2)
Here, L is the axial length (mm) of the iron skin, σ is the standard deviation (mm) of the measurement value of the reference point, n is the number of reference points installed in each region, and R is the shape of the outer surface of the iron skin The allowable value (mm) of the measurement error.

前記の式(1)、式(2)について説明する。図3に示すように、基準点間の距離が最大距離ΔLのときの測定誤差(3σ/n1/2)が、ΔLが鉄皮の軸方向長さ(鉄皮全長)Lに拡大されたときに、鉄皮外面形状の測定誤差の許容値R内に収まるようにするには、[((3σ/n1/2)/ΔL)×L]<R という条件を満たすように、基準点を設置する必要がある。この条件から前記式(1)が導かれる。なお、前記(3σ/n1/2)は、n個の基準点の測定値の平均誤差を示すものといえる。
鉄皮周方向についても、同様の考え方により、[((3σ/n1/2)/Δθ)×(360/2π)]<R という条件から、前記式(2)が導かれる。
The above formulas (1) and (2) will be described. As shown in FIG. 3, the measurement error (3σ / n 1/2 ) when the distance between the reference points is the maximum distance ΔL is expanded to the axial length L of the iron skin (full length of the iron skin) L. Sometimes, in order to be within the tolerance R of the measurement error of the outer shape of the iron skin, the reference point is set so as to satisfy the condition [((3σ / n 1/2 ) / ΔL) × L] <R. Need to be installed. From this condition, the formula (1) is derived. Note that the above (3σ / n 1/2 ) can be said to indicate the average error of the measured values of n reference points.
Regarding the peripheral direction of the iron skin, the above formula (2) is derived from the condition [((3σ / n 1/2 ) / Δθ) × (360 / 2π)] <R based on the same concept.

図4は、本発明の実施形態において鉄皮外面の区切られた4つの領域と各領域に設置された基準点とを説明するための展開図である。この図は、鉄皮(炉体)を軸方向に沿って半割りして180°折り返した図となっている。なお、本実施形態では、溶銑積載量270トンの炉体を測定対象とした。   FIG. 4 is a development view for explaining four divided areas of the outer surface of the skin and reference points installed in each area in the embodiment of the present invention. In this figure, the iron skin (furnace body) is divided in half along the axial direction and turned 180 °. In the present embodiment, a furnace body with a hot metal load of 270 tons is set as a measurement target.

図4に示すように、周方向360°の鉄皮外面が90°ピッチで区切られ、0°以上90°未満の第1領域10、90°以上180°未満の第2領域20、180°以上270°未満の第3領域30、270°以上360°未満の第4領域40、の4つの領域に、それぞれ、3つの基準点が設置されている。   As shown in FIG. 4, the outer surface of the outer periphery in the circumferential direction of 360 ° is divided by 90 ° pitch, the first region 10 of 0 ° or more and less than 90 °, the second region 20 of 90 ° or more and less than 180 °, 180 ° or more. Three reference points are provided in each of the four regions, that is, the third region 30 of less than 270 ° and the fourth region 40 of 270 ° or more and less than 360 °.

すなわち、前記第1領域10には、第1基準点11(10°,+2700mm)、第2基準点12(27°,−2980mm)、及び第3基準点13(37°,+2730mm)の3つの基準点が設置されている。また、前記第2領域20には、第4基準点21(105°,−2900mm)、第5基準点22(135°,+2120mm)、及び第6基準点23(165°,−2300mm)の3つの基準点が設定されている。   That is, the first region 10 includes three reference points 11 (10 °, +2700 mm), a second reference point 12 (27 °, −2980 mm), and a third reference point 13 (37 °, +2730 mm). A reference point is in place. The second region 20 includes three reference points 21 (105 °, −2900 mm), a fifth reference point 22 (135 °, +2120 mm), and a sixth reference point 23 (165 °, −2300 mm). Two reference points are set.

また、前記第3領域30には、第7基準点31(195°,+2800mm)、第8基準点32(225°,−2900mm)、及び第9基準点33(255°,+2800mm)の3つの基準点が設定されている。また、前記第4領域40には、第10基準点41(285°,−2600mm)、第11基準点42(315°,+2900mm)、及び第12基準点43(345°,−2800mm)の3つの基準点が設定されている。   The third region 30 includes three reference points: a seventh reference point 31 (195 °, +2800 mm), an eighth reference point 32 (225 °, −2900 mm), and a ninth reference point 33 (255 °, +2800 mm). A reference point is set. The fourth region 40 includes three reference points 41 (285 °, −2600 mm), an eleventh reference point 42 (315 °, +2900 mm), and a twelfth reference point 43 (345 °, −2800 mm). Two reference points are set.

前記各基準点の位置は、鉄皮周方向については、図4に示すように、炉口4のある頂部を周方向0°として、この0°の位置からの角度で示している。また、鉄皮軸方向については、側面視において炉口4の中心を通る鉄皮軸方向中心線CLからの距離で示している(中心線に対し図4における左側半分部分ではプラス符号、右側半分部分ではマイナス符号を付している。)。   As shown in FIG. 4, the position of each reference point is indicated by an angle from this 0 ° position, with the top portion of the furnace port 4 being 0 ° in the circumferential direction as shown in FIG. 4. Further, the iron axis direction is indicated by a distance from the iron axis direction center line CL passing through the center of the furnace port 4 in a side view (a plus sign in the left half portion in FIG. The part has a minus sign.)

なお、この実施形態では、前記第1〜第12の基準点として、直径140mmのプラスチック製の球体を使用し、この球体をマグネットで着脱自在に鉄皮2の外面に設置するようにしている。   In this embodiment, a plastic sphere having a diameter of 140 mm is used as the first to twelfth reference points, and the sphere is detachably installed on the outer surface of the iron skin 2 with a magnet.

そして、前記4つの領域の前記各3つの基準点は、本発明で規定する前述した基準点設置要件を満たすように設置されている。この点について説明すると、この実施形態では、前記式(1),(2)において、鉄皮軸方向の長さ(鉄皮全長)Lは、L=12310mmである。また、基準点の測定値の標準偏差σは、σ=0.6mmである。この値は、使用する3次元レーザースキャナの仕様から、10m離れた位置における基準点(反射率90%)の測定値の標準偏差の値を用いた。   Each of the three reference points in the four areas is installed so as to satisfy the above-described reference point installation requirement defined in the present invention. This point will be described. In this embodiment, in the above formulas (1) and (2), the length in the iron-skin axial direction (full iron-sheath length) L is L = 112310 mm. The standard deviation σ of the measured value at the reference point is σ = 0.6 mm. For this value, the standard deviation value of the measured value of the reference point (reflectance 90%) at a position 10 m away from the specification of the three-dimensional laser scanner to be used was used.

また、鉄皮外面形状の測定誤差の許容値Rは、R=10mmである。これは、鉄皮外面形状の測定結果を利用して、鉄皮内面に内張りされている耐火物の厚みを測定する場合を想定すると、溶銑と接する耐火物稼動面におけるスラグ浸潤層(最大約10mm)が剥離してしまうことを考慮して、鉄皮外面形状は10mm以内の誤差での測定が必要となるためである。また、基準点の数nは、n=3である。   In addition, the allowable value R of the measurement error of the outer shape of the iron skin is R = 10 mm. Assuming that the thickness of the refractory lined on the inner surface of the iron skin is measured using the measurement result of the outer shape of the iron skin, the slag infiltrating layer (up to about 10 mm at the refractory working surface in contact with the hot metal This is because the outer surface shape of the iron skin needs to be measured with an error of 10 mm or less in view of the fact that it is peeled off. The number n of reference points is n = 3.

これらにより、前記式(1)から、最大距離ΔL>1280mm、最大角度Δθ>6.0°となる。そして、鉄皮外面の前記第1領域10では、第2基準点12と第3基準点13とによる最大距離ΔL=5710mm、第1基準点11と第3基準点13とによる最大角度Δθ=27°、となり、式(1)を満たす1組の基準点12,13と、式(2)を満たす1組の基準点11,13とが別々に存在するように、3つの基準点11〜13が設置されている。
また、前記第2領域20では、第4基準点21と第5基準点22とによる最大距離ΔL=5020mm、第4基準点21と第6基準点23とによる最大角度Δθ=60°、となり、式(1)を満たす1組の基準点21,22と、式(2)を満たす1組の基準点21,23とが別々に存在するように、3つの基準点21〜23が設置されている。
Accordingly, from the above equation (1), the maximum distance ΔL> 1280 mm and the maximum angle Δθ> 6.0 °. In the first region 10 on the outer surface of the iron skin, the maximum distance ΔL = 5710 mm between the second reference point 12 and the third reference point 13 and the maximum angle Δθ = 27 between the first reference point 11 and the third reference point 13. The three reference points 11 to 13 so that there is a set of reference points 12 and 13 satisfying the expression (1) and a set of reference points 11 and 13 satisfying the expression (2) separately. Is installed.
In the second region 20, the maximum distance ΔL = 5020 mm between the fourth reference point 21 and the fifth reference point 22, and the maximum angle Δθ = 60 ° between the fourth reference point 21 and the sixth reference point 23, Three reference points 21 to 23 are installed such that one set of reference points 21 and 22 satisfying equation (1) and one set of reference points 21 and 23 satisfying equation (2) exist separately. Yes.

また、前記第3領域30では、第8基準点32と第9基準点33とによる最大距離ΔL=5700mm、第7基準点31と第9基準点33とによる最大角度Δθ=60°、となり、式(1)を満たす1組の基準点32,33と、式(2)を満たす1組の基準点31,33とが別々に存在するように、3つの基準点31〜33が設置されている。
また、前記第4領域40では、第11基準点42と第12基準点43とによる最大距離ΔL=5700mm、第10基準点41と第12基準点43とによる最大角度Δθ=60°、となり、式(1)を満たす1組の基準点42,43と、式(2)を満たす1組の基準点41,43とが別々に存在するように、3つの基準点41〜43が設置されている。
In the third region 30, the maximum distance ΔL = 5700 mm between the eighth reference point 32 and the ninth reference point 33, and the maximum angle Δθ = 60 ° between the seventh reference point 31 and the ninth reference point 33, Three reference points 31 to 33 are installed so that one set of reference points 32 and 33 satisfying equation (1) and one set of reference points 31 and 33 satisfying equation (2) exist separately. Yes.
In the fourth region 40, the maximum distance ΔL = 5700 mm between the eleventh reference point 42 and the twelfth reference point 43, and the maximum angle Δθ = 60 ° between the tenth reference point 41 and the twelfth reference point 43, Three reference points 41 to 43 are installed so that one set of reference points 42 and 43 satisfying equation (1) and one set of reference points 41 and 43 satisfying equation (2) exist separately. Yes.

このように、形状測定に際し、鉄皮2の外面の前記区切られた4つの各領域10〜40のそれぞれに、3つの基準点を、鉄皮外面形状の測定誤差が許容値R以内に収まるように設置したので、鉄皮外面全体の形状を精度良く測定することができる。   As described above, in the shape measurement, three reference points are set in each of the four divided regions 10 to 40 on the outer surface of the iron skin 2 so that the measurement error of the iron outer surface shape is within the allowable value R. Therefore, it is possible to accurately measure the shape of the entire outer surface of the iron skin.

図5は、本発明の実施形態において鉄皮外面の形状測定の様子を説明するための模式図である。   FIG. 5 is a schematic view for explaining a state of shape measurement of the outer surface of the iron skin in the embodiment of the present invention.

図5において、6は、公知の3次元レーザースキャナである。この3次元レーザースキャナ6は、レーザービームが測定対象物(鉄皮外面)で反射して帰ってくるまでの時間から距離を算出し、また、レーザービームの発射方向角度から角度を算出し、この距離・角度情報から測定対象点の三次元位置情報を取得するものである。   In FIG. 5, 6 is a known three-dimensional laser scanner. This three-dimensional laser scanner 6 calculates the distance from the time it takes for the laser beam to return after being reflected by the object to be measured (iron skin outer surface), and calculates the angle from the laser beam launch direction angle. The three-dimensional position information of the measurement target point is acquired from the distance / angle information.

図5に示すように、1台の3次元レーザースキャナ6を炉体外方の固定された1箇所に設置し、炉体1を図示しない傾動装置によって鉄皮周方向に90°ピッチで回転して該90°ピッチごとに、3次元レーザースキャナ6により、鉄皮外面を測定し、4つの、前記区切られた4つの領域10〜40における隣り合う2つの領域が該各領域の前記基準点とともに測定された3次元鉄皮外面部分画像を取得する。この実施形態では、3次元レーザースキャナ6として、市販されているFARO社製の「3次元レーザースキャナLaser Scanner Focus 3D」を用いた。3次元レーザースキャナ6は、混銑車の軌道中心から鉄皮直胴部側面の外方へ8m離れた位置に設置した。   As shown in FIG. 5, one three-dimensional laser scanner 6 is installed at one fixed position outside the furnace body, and the furnace body 1 is rotated at a 90 ° pitch in the circumferential direction by a tilting device (not shown). At each 90 ° pitch, the outer surface of the iron skin is measured by the three-dimensional laser scanner 6, and two adjacent regions in the four divided regions 10 to 40 are measured together with the reference point of each region. The obtained 3D iron skin outer surface partial image is acquired. In this embodiment, a commercially available “3D laser scanner Laser Scanner Focus 3D” manufactured by FARO was used as the 3D laser scanner 6. The three-dimensional laser scanner 6 was installed at a position 8 m away from the center of the track of the chaotic vehicle and outward of the side surface of the iron skin.

すなわち、炉体1を回転させ、3次元レーザースキャナ6に対して鉄皮直胴部2aの鉄皮周方向0°位置がほぼ正面になるように炉体1を位置させて、3次元レーザースキャナ6によるレーザービームのスキャニングを行うことにより、鉄皮2の外面の前記第4領域40と前記第1領域10とを形状測定する。この測定により、隣り合う第4領域40と第1領域10とが各領域40,10の前記基準点41〜43,11〜13とともに、鉄皮周方向のほぼ全域、かつ鉄皮軸方向の全域にわたって測定された点群データからなる第1の3次元鉄皮外面部分画像を得た。   That is, the furnace body 1 is rotated and the furnace body 1 is positioned so that the position of the iron shell body 2a in the circumferential direction of the iron shell 2a is almost in front of the three-dimensional laser scanner 6 to thereby move the three-dimensional laser scanner. The shape of the fourth region 40 and the first region 10 on the outer surface of the iron skin 2 is measured by scanning the laser beam according to 6. As a result of this measurement, the adjacent fourth region 40 and the first region 10 together with the reference points 41 to 43 and 11 to 13 of the regions 40 and 10, almost the entire region in the iron skin circumferential direction and the entire region in the iron skin axis direction. A first three-dimensional outer skin partial image composed of point cloud data measured over a wide range was obtained.

次いで、炉体1をさらに90°回転させて停止し、3次元レーザースキャナ6に対して鉄皮直胴部2aの鉄皮周方向90°位置がほぼ正面になるように炉体1を位置させて、3次元レーザースキャナ6によるレーザービームのスキャニングを行うことにより、鉄皮の外面の前記第1領域10と前記第2領域20とを形状測定する。この測定により、隣り合う第1領域10と第2領域20とが各領域10,20の前記基準点11〜13,21〜23とともに、鉄皮周方向のほぼ全域、かつ鉄皮軸方向の全域にわたって測定された点群データからなる第2の3次元鉄皮外面部分画像を得た。   Next, the furnace body 1 is further rotated by 90 ° and stopped, and the furnace body 1 is positioned so that the 90 ° position in the circumferential direction of the iron shell straight body portion 2a is substantially in front of the three-dimensional laser scanner 6. Then, the shape of the first region 10 and the second region 20 on the outer surface of the iron skin is measured by scanning the laser beam with the three-dimensional laser scanner 6. By this measurement, the adjacent first region 10 and the second region 20 together with the reference points 11 to 13 and 21 to 23 of the regions 10 and 20, almost the entire region in the iron skin circumferential direction, and the entire region in the iron skin axis direction. A second three-dimensional outer skin partial image consisting of point cloud data measured over a wide range was obtained.

次いで、炉体1をさらに90°回転させて停止し、3次元レーザースキャナ6に対して鉄皮直胴部2aの鉄皮周方向180°位置がほぼ正面になるように炉体1を位置させて、3次元レーザースキャナ6によるレーザービームのスキャニングを行うことにより、鉄皮2の外面の前記第2領域20と前記第3領域30とを形状測定する。この測定により、隣り合う第2領域20と第3領域30とが各領域20,30の前記基準点21〜23,31〜33とともに、鉄皮周方向のほぼ全域、かつ鉄皮軸方向の全域にわたって測定された点群データからなる第3の3次元鉄皮外面部分画像を得た。   Next, the furnace body 1 is further rotated by 90 ° and stopped, and the furnace body 1 is positioned so that the position of the 180 ° circumferential direction of the iron shell straight body portion 2a is substantially in front of the three-dimensional laser scanner 6. Then, the shape of the second region 20 and the third region 30 on the outer surface of the iron skin 2 is measured by scanning the laser beam with the three-dimensional laser scanner 6. By this measurement, the adjacent second region 20 and third region 30 together with the reference points 21 to 23 and 31 to 33 of each region 20, 30, almost the entire region in the iron skin circumferential direction, and the entire region in the iron skin axis direction. A third three-dimensional skin outer surface partial image consisting of point cloud data measured over a wide range was obtained.

次いで、炉体1をさらに90°回転させて停止し、3次元レーザースキャナ6に対して鉄皮直胴部2aの鉄皮周方向270°位置がほぼ正面になるように炉体1を位置させて、3次元レーザースキャナ6によるレーザービームのスキャニングを行うことにより、鉄皮2の外面の前記第3領域30と前記第4領域40とを形状測定する。この測定により、隣り合う第3領域30と第4領域40とが各領域30,40の前記基準点31〜33,41〜43とともに、鉄皮周方向のほぼ全域、かつ鉄皮軸方向の全域にわたって測定された点群データからなる第4の3次元鉄皮外面部分画像を得た。   Next, the furnace body 1 is further rotated by 90 ° and stopped, and the furnace body 1 is positioned so that the 270 ° position in the iron shell circumferential direction 2a of the three-dimensional laser scanner 6 is almost in front. Then, the shape of the third region 30 and the fourth region 40 on the outer surface of the iron skin 2 is measured by scanning the laser beam with the three-dimensional laser scanner 6. By this measurement, the adjacent third region 30 and the fourth region 40 together with the reference points 31 to 33 and 41 to 43 of each region 30 and 40, almost the entire region in the iron skin circumferential direction, and the entire region in the iron core direction. A fourth three-dimensional outer skin partial image consisting of point cloud data measured over a wide range was obtained.

このようにして、3次元レーザースキャナ6によって前記の第1から第4の4つの3次元鉄皮外面部分画像を得た。そして、これらの3次元鉄皮外面部分画像を3次元レーザースキャナ6からパソコンに取り込み、前記4つの3次元鉄皮外面部分画像を1つに統合して、スキャナ設置位置を原点とする測定器座標系での3次元鉄皮外面全体画像を取得し、この3次元鉄皮外面全体画像から鉄皮座標系(測定物座標系)での鉄皮外面全体の3次元形状測定データを得た。これらの処理には、この実施形態では、市販されているInnovMetric社製の3D編集ソフト「Polyworks」を使用した。   In this way, the first to fourth three-dimensional iron skin outer surface partial images were obtained by the three-dimensional laser scanner 6. Then, these three-dimensional skin outer surface partial images are taken into the personal computer from the three-dimensional laser scanner 6, and the four three-dimensional iron outer surface partial images are integrated into one, and the measuring device coordinates with the scanner installation position as the origin A three-dimensional whole skin outer surface image in the system was acquired, and three-dimensional shape measurement data of the whole iron outer surface in the iron coordinate system (measurement coordinate system) was obtained from this three-dimensional whole iron outer surface image. In this embodiment, commercially available 3D editing software “Polyworks” manufactured by InnovMetric was used for these processes.

前記の第1から第4の4つの3次元鉄皮外面部分画像を1つに統合して、3次元鉄皮外面全体画像を得るに際し、前記第1の3次元鉄皮外面部分画像と前記第2の3次元鉄皮外面部分画像とにおいて共通する3つの基準点11〜13が存在し、両画像におけるこれらの基準点11〜13の基準点間距離(計算値)は変わらない。
また、前記第2の3次元鉄皮外面部分画像と前記第3の3次元鉄皮外面部分画像とにおいて共通する3つの基準点21〜23が存在し、両画像におけるこれらの基準点21〜23の基準点間距離は変わらない。
また、前記第3の3次元鉄皮外面部分画像と前記第4の3次元鉄皮外面部分画像とにおいて共通する3つの基準点31〜33が存在し、両画像におけるこれらの基準点31〜33の基準点間距離は変わらない。
また、前記第4の3次元鉄皮外面部分画像と前記第1の3次元鉄皮外面部分画像とにおいて共通する3つの基準点41〜43が存在し、両画像におけるこれらの基準点41〜43の基準点間距離は変わらない。
このように、両画像における共通する3つの基準点の基準点間距離が変わらないことを利用して、座標の変換を行うことにより、前記の第1から第4の4つの3次元鉄皮外面部分画像を順次繋ぎ合わせて1つに統合して、3次元鉄皮外面全体画像を得ることができる。
When the first to fourth four-dimensional three-dimensional skin outer surface partial images are integrated into one to obtain a whole three-dimensional iron skin outer surface image, the first three-dimensional skin outer surface partial image and the first There are three reference points 11 to 13 that are common to the two three-dimensional iron skin outer surface partial images, and the distances (calculated values) between these reference points 11 to 13 in both images do not change.
In addition, there are three reference points 21 to 23 that are common to the second three-dimensional skin outer surface partial image and the third three-dimensional skin outer surface partial image, and these reference points 21 to 23 in both images. The distance between the reference points does not change.
Further, there are three reference points 31 to 33 that are common to the third three-dimensional outer skin partial image and the fourth three-dimensional outer skin partial image, and these reference points 31 to 33 in both images. The distance between the reference points does not change.
In addition, there are three reference points 41 to 43 that are common to the fourth three-dimensional skin outer surface partial image and the first three-dimensional skin outer surface partial image, and these reference points 41 to 43 in both images. The distance between the reference points does not change.
In this way, by using the fact that the distance between the reference points of the three reference points that are common in both images does not change, by performing coordinate conversion, the first to fourth three-dimensional iron skin outer surfaces described above. The partial images can be sequentially connected and integrated into one to obtain a whole image of the three-dimensional iron skin outer surface.

図6は、本発明の実施形態において鉄皮外面の形状測定結果の一例を示す図である。   FIG. 6 is a diagram showing an example of the shape measurement result of the outer surface of the iron skin in the embodiment of the present invention.

図6は、鉄皮外面の形状の測定結果を、鉄皮軸方向中心とこの中心からの距離500mmごとに輪切りの輪郭線にして示したものである(図4における鉄皮軸方向中心線CLより左側半分部分)。図6では、炉心を通る上下方向における鉄皮外径寸法と左右方向における鉄皮外径寸法を示してある。なお、鉄皮外面は、図6では左右方向に比べて上下方向が長く図示されているが、これは画像処理の際のアスペクト比の変更によるためであり、実際は、図6に示す外径寸法通り、左右方向の外径が上下方向の外径よりも長くなっている。   FIG. 6 shows the measurement result of the shape of the outer surface of the iron skin as a contour line of a ring cut for each distance of 500 mm from the center of the iron skin axis direction (the core axis direction center line CL in FIG. 4). The left half part). FIG. 6 shows the outer diameter of the outer skin in the vertical direction passing through the core and the outer diameter of the outer skin in the left-right direction. In FIG. 6, the outer surface of the iron skin is longer in the vertical direction than in the left-right direction, but this is due to the change in the aspect ratio during image processing. In practice, the outer diameter dimension shown in FIG. As shown, the outer diameter in the left-right direction is longer than the outer diameter in the up-down direction.

図7は、本発明の実施形態において鉄皮外面の形状測定結果の精度を確認するために実施した耐火物の抜き彫りによる鉄皮内径の実測を説明するための断面図である。   FIG. 7 is a cross-sectional view for explaining an actual measurement of the inner diameter of the iron skin by excavation of a refractory performed in order to confirm the accuracy of the shape measurement result of the outer surface of the iron skin in the embodiment of the present invention.

図7に示すように、試験として実際に炉体1の耐火物3を鉄皮軸方向の6箇所で抜き彫りして、物差し7を用いて鉄皮2の内径を実測した。そして、鉄皮2の厚みは32mmであるので、(鉄皮厚み32mm+鉄皮内径実測値+鉄皮厚み32mm)にて鉄皮内径実測値に基づく鉄皮外径推定値を計算により求め、この鉄皮外径推定値と本実施形態による鉄皮外径測定値とを比較した。その結果を表1に示す。   As shown in FIG. 7, as a test, the refractory 3 of the furnace body 1 was actually cut out at six locations in the axial direction of the iron skin, and the inner diameter of the iron skin 2 was measured using a ruler 7. Since the thickness of the iron skin 2 is 32 mm, an estimated value of the outer diameter of the iron skin based on the actual measured value of the inner diameter of the iron skin is obtained by calculation using (the thickness of the iron skin 32 mm + the measured value of the inner diameter of the iron shell + 32 mm). The estimated outer skin diameter was compared with the measured outer skin diameter according to the present embodiment. The results are shown in Table 1.

Figure 0006066785
Figure 0006066785

表1に示すように、本実施形態による鉄皮外径測定値と鉄皮内径実測値に基づく鉄皮外径推定値との差異は、10mm以内であり、本実施形態による鉄皮外面形状の測定方法では、鉄皮外面全体の形状を精度良く測定することができた。   As shown in Table 1, the difference between the outer skin outer diameter measurement value according to the present embodiment and the outer skin outer diameter estimation value based on the actual iron core inner diameter measurement value is within 10 mm. In the measurement method, the shape of the entire outer surface of the iron skin could be measured with high accuracy.

このように、この実施形態による鉄皮外面形状の測定方法は、鉄皮周方向に鉄皮2の外面を4つの領域10,20,30,40に区切り、1台の3次元レーザースキャナ6を炉体外方の固定された1箇所に設置し、炉体1を鉄皮周方向90°ピッチで回転して該90°ピッチごとに、3次元レーザースキャナ6により鉄皮外面を測定し、4つの、前記4つの領域における隣り合う2つの領域が該各領域の3つの基準点とともに測定された3次元鉄皮外面部分画像を取得し、得られた4つの3次元鉄皮外面部分画像を1つに統合して3次元鉄皮外面全体画像を得るようにしたので、鉄皮2の外面について直胴部2aだけでなく魚雷の形をした鉄皮外面全体の形状を測定することができ、しかも、スケールを使用しての人手による測定などに比べてはるかに短時間で測定することができる。   As described above, in the method for measuring the outer shape of the iron skin according to this embodiment, the outer surface of the iron skin 2 is divided into four regions 10, 20, 30, 40 in the circumferential direction of the iron skin, and one three-dimensional laser scanner 6 is divided. It is installed at one fixed location outside the furnace body, the furnace body 1 is rotated at a 90 ° pitch in the circumferential direction of the iron shell, and the outer surface of the iron skin is measured by the three-dimensional laser scanner 6 every 90 ° pitch. The two adjacent regions in the four regions acquire a three-dimensional iron skin outer surface partial image measured together with three reference points of each region, and one of the four three-dimensional iron skin outer surface image obtained is obtained. In order to obtain an image of the entire outer surface of the three-dimensional skin, it is possible to measure not only the straight body 2a but also the shape of the entire outer surface of the torpedo on the outer surface of the iron skin 2, and Compared to manual measurement using a scale It can be measured in a much shorter time.

また、形状測定に際し、鉄皮外面の前記区切られた4つの各領域10,20,30,40に、それぞれ、3つの基準点11〜13,21〜23,31〜33,41〜43を鉄皮外面形状の測定誤差が許容値以内に収まるように設置し、これらの基準点11〜13,21〜23,31〜33,41〜43の位置情報を用いて、前記4つの3次元鉄皮外面部分画像を1つに統合して前記3次元鉄皮外面全体画像を得るようにしたので、鉄皮外面全体の形状を精度良く測定することができる。   In measuring the shape, three reference points 11 to 13, 21 to 23, 31 to 33, and 41 to 43 are placed on the four divided regions 10, 20, 30, and 40 on the outer surface of the iron skin. It is installed so that the measurement error of the skin outer surface shape is within an allowable value, and using the positional information of these reference points 11 to 13, 21 to 23, 31 to 33, 41 to 43, the four three-dimensional iron skins Since the outer surface partial images are integrated into one to obtain the entire image of the three-dimensional outer skin, the shape of the entire outer skin can be accurately measured.

よって、この実施形態による鉄皮外面形状の測定方法によれば、得られた鉄皮外面全体の3次元形状測定データを用いて、鉄皮内面に内張りされた耐火物2の厚みを炉体1全体にわたって精度良く知ることができ、操業に伴う溶損した耐火物2の適切かつ正確な補修を行うことができる。   Therefore, according to the method for measuring the outer surface shape of the iron shell according to this embodiment, the thickness of the refractory 2 lined on the inner surface of the iron shell is determined using the three-dimensional shape measurement data of the entire outer surface of the iron shell 1. It can be known with high accuracy throughout, and appropriate and accurate repair of the refractory 2 that has melted and lost during operation can be performed.

1…炉体 2…鉄皮 2a…直胴部 2b…コニカル部 3…耐火物
4…炉口 5…エプロン 6…3次元レーザースキャナ 7…物差し
10…第1領域 11…第1基準点 12…第2基準点 13…第3基準点
20…第2領域 21…第4基準点 22…第5基準点 23…第6基準点
30…第3領域 31…第7基準点 32…第8基準点 33…第9基準点
40…第4領域 41…第10基準点 42…第11基準点
43…第12基準点
DESCRIPTION OF SYMBOLS 1 ... Furnace body 2 ... Iron skin 2a ... Straight body part 2b ... Conical part 3 ... Refractory material 4 ... Furnace port 5 ... Apron 6 ... Three-dimensional laser scanner 7 ... Scale 10 ... 1st area | region 11 ... 1st reference point 12 ... Second reference point 13 ... Third reference point 20 ... Second region 21 ... Fourth reference point 22 ... Fifth reference point 23 ... Sixth reference point 30 ... Third region 31 ... Seventh reference point 32 ... Eighth reference point 33 ... 9th reference point 40 ... 4th region 41 ... 10th reference point 42 ... 11th reference point 43 ... 12th reference point

Claims (2)

混銑車に備えられた炉体の鉄皮外面の形状を測定する混銑車炉体の鉄皮外面形状の測定方法であって、
(イ) 周方向360°の鉄皮外面を少なくとも3つの領域に区切ることで、区切られた各領域を設定し、前記区切られた各領域に、少なくとも3つの基準点を設置すること、
(ロ) 前記基準点の設置に際し、前記区切られた各領域において基準点同士における鉄皮軸方向での最大距離をΔL、鉄皮周方向での最大角度をΔθとしたとき、下記式(1)の関係を満たす少なくとも1組の基準点と、下記式(2)の関係を満たす少なくとも1組の基準点とが、それぞれ存在するように前記基準点を設置すること、
ΔL>(3σ/n1/2)×L/R ……(1)
Δθ>(3σ/n1/2)×(360/2π)/R ……(2)
ここで、Lは鉄皮の軸方向の長さ(mm)、σは基準点の測定値の標準偏差(mm)、nは前記区切られた各領域に設置される基準点の数、Rは基準点間の距離が最大距離 ΔLのときの測定誤差(3σ/n 1/2 )が、ΔLが鉄皮の軸方向長さ(鉄皮全長)Lに拡大されたときの鉄皮外面形状の測定誤差の許容値(mm)、である。
(ハ) 1台の3次元レーザースキャナを炉体外方の固定された一箇所に設置し、炉体を鉄皮周方向に所定角度ピッチで回転して該所定角度ピッチごとに、前記3次元レーザースキャナにより、鉄皮外面を測定し、前記区切られた領域の数の、前記区切られた領域における隣り合う2つの領域が該各領域の前記基準点とともに測定された3次元鉄皮外面部分画像を取得すること、
(ニ) 前記3次元鉄皮外面部分画像での前記基準点の3次元位置情報を用いて、前記区切られた領域の数の前記3次元鉄皮外面部分画像を1つに統合して3次元鉄皮外面全体画像を取得すること、
を特徴とする混銑車炉体の鉄皮外面形状の測定方法。
A method for measuring an outer skin shape of a chaotic car furnace body for measuring a shape of an outer skin surface of a furnace body provided in a chaotic vehicle,
(B) Setting each divided area by dividing the outer surface of the outer skin of 360 ° in the circumferential direction into at least three areas, and setting at least three reference points in each divided area ;
(B) When setting the reference point, when the maximum distance in the core axis direction between the reference points in each of the divided areas is ΔL and the maximum angle in the peripheral direction is Δθ, the following formula (1 ) Installing the reference points such that there are at least one set of reference points satisfying the relationship of (2) and at least one set of reference points satisfying the relationship of the following formula (2):
ΔL> (3σ / n 1/2 ) × L / R (1)
Δθ> (3σ / n 1/2 ) × (360 / 2π) / R (2)
Here, L is the axial length (mm) of the iron skin, σ is the standard deviation (mm) of the measurement value of the reference point, n is the number of reference points installed in each of the divided areas , and R is The measurement error (3σ / n 1/2 ) when the distance between the reference points is the maximum distance ΔL is the shape of the outer surface of the iron skin when ΔL is expanded to the axial length L of the iron skin (full length of the iron skin) L The tolerance of measurement error (mm).
(C) A single three-dimensional laser scanner is installed at a fixed location outside the furnace body, and the furnace body is rotated at a predetermined angular pitch in the circumferential direction of the iron shell, and the three-dimensional laser is rotated at each predetermined angular pitch. the scanner, the steel shell outer surface is measured, the separated number of the regions, the three-dimensional steel shell outer surface portion which is measured together with the reference point of the two regions respective adjacent regions in the divided respective regions Acquiring images,
(D) using 3-dimensional position information of the reference points in the three-dimensional steel shell outer surface portion image, by integrating the three-dimensional steel shell outer surface portion image of the number of the divided respective regions into one 3 Acquiring a whole image of the outer surface of the three-dimensional iron skin,
A method for measuring the outer shape of the iron skin of a chaos car furnace body.
前記(イ)において、周方向360°の鉄皮外面を90°ピッチで区切り、0°以上90°未満、90°以上180°未満、180°以上270°未満、270°以上360°未満、の4つの領域に、それぞれ、少なくとも3つの基準点を設置すること、
を特徴とする請求項1記載の混銑車炉体の鉄皮外面形状の測定方法。
In (a) above, the outer surface of the iron skin in the circumferential direction 360 ° is divided at a 90 ° pitch, and is 0 ° or more and less than 90 °, 90 ° or more and less than 180 °, 180 ° or more and less than 270 °, 270 ° or more and less than 360 °. Installing at least three reference points in each of the four areas;
The method for measuring the outer skin shape of a chaotic car furnace body according to claim 1.
JP2013049300A 2013-03-12 2013-03-12 Measuring method for outer shape of iron skin of chaotic car furnace body Active JP6066785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013049300A JP6066785B2 (en) 2013-03-12 2013-03-12 Measuring method for outer shape of iron skin of chaotic car furnace body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013049300A JP6066785B2 (en) 2013-03-12 2013-03-12 Measuring method for outer shape of iron skin of chaotic car furnace body

Publications (2)

Publication Number Publication Date
JP2014174104A JP2014174104A (en) 2014-09-22
JP6066785B2 true JP6066785B2 (en) 2017-01-25

Family

ID=51695434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013049300A Active JP6066785B2 (en) 2013-03-12 2013-03-12 Measuring method for outer shape of iron skin of chaotic car furnace body

Country Status (1)

Country Link
JP (1) JP6066785B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115786909B (en) * 2023-01-09 2023-05-02 西安国盛激光科技有限公司 Guide laser cladding repairing method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3310379B2 (en) * 1993-04-23 2002-08-05 新日本製鐵株式会社 Apparatus and method for measuring thickness of lining of mixed iron wheel
FI94907C (en) * 1993-12-29 1995-11-10 Rautaruukki Oy Method for positioning a measuring device transmitting and receiving optical radiation in the wear measurement of a tank liner
FI98958C (en) * 1995-04-13 1997-09-10 Spectra Physics Visiontech Oy A method for locating a container in a wear measurement of a container liner
JP3530380B2 (en) * 1998-04-17 2004-05-24 新日本製鐵株式会社 Apparatus and method for measuring inner surface shape of molten metal container
JP4877891B2 (en) * 2001-08-03 2012-02-15 株式会社トプコン Calibration subject
JP5078296B2 (en) * 2006-08-07 2012-11-21 倉敷紡績株式会社 Photogrammetry apparatus and photogrammetry system
JP4837502B2 (en) * 2006-09-06 2011-12-14 シャープ株式会社 Misalignment measuring method, optical device adjusting method, and misalignment measuring apparatus

Also Published As

Publication number Publication date
JP2014174104A (en) 2014-09-22

Similar Documents

Publication Publication Date Title
Cuypers et al. Optical measurement techniques for mobile and large-scale dimensional metrology
JP6540882B2 (en) Crankshaft shape inspection device, system and method
CN100580370C (en) Double surface drone based flow type tri-dimensional visual measurement splicing method
CN101957176B (en) Robot and camera combined calibration based method for detecting high-precision car door
US10465821B2 (en) Apparatus and method for detecting piping alignment using image information and laser sensor
EP2634530B1 (en) Shape measuring device, shape measuring method, and structure manufacturing method
JP2018514757A (en) Evaluation of fireproof lining of metal containers using an autonomous scanner
CN104457719B (en) The attitude measuring of class rectangular shield construction and measuring method
CA2682635A1 (en) Method for measuring the roundness of round profiles
CN106969734B (en) Positioning system and method for a component
US20200378746A1 (en) Coordinate Measuring Machine and Method for Controlling a Coordinate Measuring Machine
WO2011118476A1 (en) Three dimensional distance measuring device and method
JP2010036202A (en) Cutting apparatus and cutting method
JP6066785B2 (en) Measuring method for outer shape of iron skin of chaotic car furnace body
Tian et al. Dimension measurement of hot large forgings with a novel time-of-flight system
EP3170584A1 (en) Gate position detection system, casting device, gate position detection method, and method for manufacturing cast product
JP2008121105A (en) Method for measuring spraying thickness and rebound quantity of cement on furnace body in blast furnace
JP2011208965A (en) Dimension measuring device for cylindrical workpiece, and dimension acquisition method for cylindrical workpiece
JP2010256277A (en) Method and apparatus for measuring outer shape of workpiece
CN116972754A (en) Method and system for detecting welding seam of steel bar
CN110607412A (en) Method and device for measuring erosion state of hearth
JP5884179B2 (en) Inspection apparatus and inspection method for molten metal container
CN103119394B (en) Steel ladle residual refractory material measurement method and device
JP6650379B2 (en) Surface inspection device, surface inspection method and database
CN113295099B (en) System, method and device for detecting material layer thickness of annular cooler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160607

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161220

R150 Certificate of patent or registration of utility model

Ref document number: 6066785

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150