JP6063303B2 - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
JP6063303B2
JP6063303B2 JP2013041917A JP2013041917A JP6063303B2 JP 6063303 B2 JP6063303 B2 JP 6063303B2 JP 2013041917 A JP2013041917 A JP 2013041917A JP 2013041917 A JP2013041917 A JP 2013041917A JP 6063303 B2 JP6063303 B2 JP 6063303B2
Authority
JP
Japan
Prior art keywords
fluid
separator
elastic member
communication hole
convex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013041917A
Other languages
Japanese (ja)
Other versions
JP2014170670A (en
Inventor
牛尾 健
健 牛尾
佐藤 修二
修二 佐藤
優 小田
優 小田
浅野 裕次
裕次 浅野
浩司 盛山
浩司 盛山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2013041917A priority Critical patent/JP6063303B2/en
Priority to US14/191,428 priority patent/US9673458B2/en
Publication of JP2014170670A publication Critical patent/JP2014170670A/en
Application granted granted Critical
Publication of JP6063303B2 publication Critical patent/JP6063303B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0276Sealing means characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/242Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes comprising framed electrodes or intermediary frame-like gaskets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

本発明は、電解質膜の両面に電極が設けられる電解質膜・電極構造体と、セパレータとが積層されるとともに、少なくとも燃料ガス、酸化剤ガス又は冷却媒体である流体を前記セパレータの面方向に沿って流通させる流体流路と、前記流体を前記セパレータの積層方向に流通させる流体連通孔と、前記流体流路及び前記流体連通孔を接続する連結流路とを備える燃料電池に関する。   In the present invention, an electrolyte membrane / electrode structure in which electrodes are provided on both surfaces of an electrolyte membrane and a separator are laminated, and at least a fluid that is a fuel gas, an oxidant gas, or a cooling medium is provided along the surface direction of the separator. The present invention relates to a fuel cell comprising: a fluid channel that circulates in a fluidized manner; a fluid communication hole that circulates the fluid in the stacking direction of the separator; and a connection channel that connects the fluid channel and the fluid communication hole.

例えば、固体高分子型燃料電池は、高分子イオン交換膜からなる固体高分子電解質膜の一方の面側にアノード電極が、他方の面側にカソード電極が、それぞれ設けられた電解質膜・電極構造体(MEA)を、一対のセパレータによって挟持した発電セルを構成している。燃料電池は、通常、複数の発電セルが積層されるとともに、例えば、燃料電池車両に組み込まれることにより、車載用燃料電池システムとして使用されている。   For example, a polymer electrolyte fuel cell has an electrolyte membrane / electrode structure in which an anode electrode is provided on one side of a solid polymer electrolyte membrane made of a polymer ion exchange membrane, and a cathode electrode is provided on the other side. A power generation cell in which the body (MEA) is sandwiched between a pair of separators is formed. A fuel cell is usually used as an in-vehicle fuel cell system by stacking a plurality of power generation cells and incorporating the fuel cell into a fuel cell vehicle, for example.

上記の燃料電池には、セパレータの面内に、アノード電極に対向して燃料ガス(流体)を流すための燃料ガス流路(流体流路)と、カソード電極に対向して酸化剤ガス(流体)を流すための酸化剤ガス流路(流体流路)とが設けられている。   In the fuel cell, a fuel gas channel (fluid channel) for flowing a fuel gas (fluid) facing the anode electrode and an oxidant gas (fluid) facing the cathode electrode in the plane of the separator ) And an oxidant gas flow path (fluid flow path).

さらに、セパレータの周縁部には、該セパレータの積層方向に貫通して、燃料ガス流路に連通する流体連通孔である燃料ガス入口連通孔及び燃料ガス出口連通孔と、酸化剤ガス流路に連通する流体連通孔である酸化剤ガス入口連通孔及び酸化剤ガス出口連通孔とが形成されている。また、セパレータ間には、電解質膜・電極構造体を冷却するための冷却媒体流路(流体流路)が設けられるとともに、積層方向に貫通して前記冷却媒体流路に連通する流体連通孔である冷却媒体入口連通孔及び冷却媒体出口連通孔が形成されている。   Further, a fuel gas inlet communication hole and a fuel gas outlet communication hole that are fluid communication holes that penetrate the separator in the stacking direction and communicate with the fuel gas flow path, and an oxidant gas flow path An oxidant gas inlet communication hole and an oxidant gas outlet communication hole, which are fluid communication holes communicating with each other, are formed. A cooling medium flow path (fluid flow path) for cooling the electrolyte membrane / electrode structure is provided between the separators, and a fluid communication hole that penetrates in the stacking direction and communicates with the cooling medium flow path. A cooling medium inlet communication hole and a cooling medium outlet communication hole are formed.

この場合、流体流路と流体連通孔とは、流体を円滑且つ均等に流すために平行溝部等を有する連結流路を介して連通している。例えば、特許文献1に開示されている燃料電池では、電解質膜・電極構造体を挟持する一対のセパレータ間には、反応ガス連通孔から反応ガス流路に至るブリッジ部が設けられるとともに、前記ブリッジ部は、一方のセパレータの面内に設けられる平坦状シールと、他方のセパレータの面内に設けられ、前記平坦状シールに当接する複数の凸状シールとを備えている。そして、平坦状シールと複数の凸状シールとの間には、反応ガス連通孔と反応ガス流路とを連通する反応ガス連結流路が形成されている。   In this case, the fluid channel and the fluid communication hole communicate with each other via a connection channel having parallel grooves or the like in order to allow fluid to flow smoothly and evenly. For example, in the fuel cell disclosed in Patent Document 1, a bridge portion from a reaction gas communication hole to a reaction gas flow path is provided between a pair of separators sandwiching the electrolyte membrane / electrode structure, and the bridge The portion includes a flat seal provided in the surface of one separator and a plurality of convex seals provided in the surface of the other separator and in contact with the flat seal. A reaction gas connection channel that communicates the reaction gas communication hole and the reaction gas channel is formed between the flat seal and the plurality of convex seals.

このため、燃料電池の組立工程が大幅に簡素化されるとともに、経済的且つ簡単な構成で、所望のシール性を確保することが可能になる。しかも、平坦状シールと複数の凸状シールとの間には、反応ガス連結流路が形成され、この反応ガス連結流路を介して反応ガス連通孔と反応ガス流路とを確実に連通させることができる。   For this reason, the assembly process of the fuel cell is greatly simplified, and a desired sealing property can be secured with an economical and simple configuration. In addition, a reaction gas connection channel is formed between the flat seal and the plurality of convex seals, and the reaction gas communication hole and the reaction gas channel are reliably communicated with each other via the reaction gas connection channel. be able to.

特許第4214027号公報Japanese Patent No. 4214027

ところで、上記の燃料電池では、積層方向から見て凸状シールと交差する方向に延在するシール部材が設けられる場合がある。反応ガスや冷却媒体の漏れを防止するとともに、凸状シールと積層方向に重なって該凸状シールの裏受け(荷重受け)を行うためである。その際、凸状シールは、流体流れ方向に延在しているため、部位により圧縮荷重特性が異なっている。   By the way, in the fuel cell described above, there may be provided a seal member extending in a direction intersecting with the convex seal as viewed from the stacking direction. This is to prevent leakage of the reaction gas and the cooling medium and to perform backing (load receiving) of the convex seal so as to overlap with the convex seal in the stacking direction. At that time, since the convex seal extends in the fluid flow direction, the compressive load characteristic differs depending on the part.

従って、凸状シールとシール部材とが積層方向に重なり合う領域では、部位によって反力が異なり易い。これにより、セパレータの変形、シール部材の面圧の不均一、あるいは、凸状シールの流路幅の変動等が発生するおそれがある。   Accordingly, in the region where the convex seal and the seal member overlap in the stacking direction, the reaction force tends to vary depending on the part. As a result, the deformation of the separator, the nonuniformity of the surface pressure of the seal member, or the fluctuation of the flow path width of the convex seal may occur.

本発明は、この種の問題を解決するものであり、簡単な構成で、シール部材の面圧のばらつきやセパレータの変形を確実に抑制することが可能な燃料電池を提供することを目的とする。   The present invention solves this type of problem, and an object of the present invention is to provide a fuel cell that can reliably suppress variations in surface pressure of a seal member and deformation of a separator with a simple configuration. .

本発明は、電解質膜の両面に電極が設けられる電解質膜・電極構造体と、セパレータとが積層されるとともに、少なくとも燃料ガス、酸化剤ガス又は冷却媒体である流体を前記セパレータの面方向に沿って流通させる流体流路と、前記流体を前記セパレータの積層方向に流通させる流体連通孔と、前記セパレータの前記流体流路と前記流体連通孔との間に設けられ前記積層方向に荷重が付与される複数の凸状弾性部材間に形成され、前記流体流路及び前記流体連通孔を接続する連結流路とを備える燃料電池に関するものである。 In the present invention, an electrolyte membrane / electrode structure in which electrodes are provided on both surfaces of an electrolyte membrane and a separator are laminated, and at least a fluid that is a fuel gas, an oxidant gas, or a cooling medium is provided along the surface direction of the separator. Provided between the fluid flow path for circulating the fluid in the stacking direction of the separator, the fluid flow path of the separator and the fluid communication hole, and applying a load in the stacking direction. And a connecting channel that connects the fluid channel and the fluid communication hole.

この燃料電池では、複数の凸状弾性部材と積層方向に隣接し、連結流路の延在方向に交差する方向に延在し、前記流体の漏れを防止するための複数本のシール部材が設けられるとともに、前記複数の凸状弾性部材は、前記積層方向から見て前記シール部材と重なる重なり領域を有し、前記重なり領域が前記延在方向に沿って分割形成されている。分割された前記凸状弾性部材同士の間には、該凸状弾性部材よりも高さの低い弾性部材が設けられる。 In this fuel cell, adjacent to the stacking direction and a plurality of convex elastic member, and extending in a direction intersecting the extending direction of the connecting channel, a plurality of sealing members for preventing leakage of said fluid provided In addition, each of the plurality of convex elastic members has an overlapping region that overlaps with the seal member when viewed from the stacking direction, and the overlapping region is divided and formed along the extending direction. An elastic member having a height lower than that of the convex elastic member is provided between the divided convex elastic members.

また、本発明は、電解質膜の両面に電極が設けられる電解質膜・電極構造体と、セパレータとが積層されるとともに、少なくとも燃料ガス、酸化剤ガス又は冷却媒体である流体を前記セパレータの面方向に沿って流通させる流体流路と、前記流体を前記セパレータの積層方向に流通させる流体連通孔と、前記セパレータの前記流体流路と前記流体連通孔との間に設けられ前記積層方向に荷重が付与される複数の凸状弾性部材間に形成され、前記流体流路及び前記流体連通孔を接続する連結流路とを備える燃料電池であって、前記複数の凸状弾性部材と前記積層方向に隣接し、前記連結流路の延在方向に交差する方向に延在し、前記流体の漏れを防止するための複数本のシール部材が設けられるとともに、前記複数の凸状弾性部材は、前記積層方向から見て前記シール部材と重なる重なり領域を有し、前記重なり領域が前記延在方向に沿って分割形成され、分割された前記凸状弾性部材同士の間には、該凸状弾性部材よりも前記延在方向に交差する幅寸法の小さな弾性部材が設けられる。また、この燃料電池では、凸状弾性部材は、シール部材の本数と同数に分割されることが好ましい。 In addition, the present invention provides an electrolyte membrane / electrode structure in which electrodes are provided on both surfaces of an electrolyte membrane, and a separator, and at least a fuel gas, an oxidant gas, or a fluid that is a cooling medium as a surface direction of the separator. A fluid flow path that circulates along the fluid passage, a fluid communication hole that circulates the fluid in the stacking direction of the separator, and a load that is provided between the fluid flow path and the fluid communication hole of the separator. A fuel cell that is formed between a plurality of convex elastic members to be applied and that connects the fluid flow channel and the fluid communication hole, the fuel cell including the plurality of convex elastic members in the stacking direction. Adjacent and extending in a direction intersecting with the extending direction of the connecting flow path, a plurality of seal members for preventing leakage of the fluid are provided, and the plurality of convex elastic members are formed of the stacked layers. Viewed from direction have overlapping region overlapping with the sealing member, wherein the overlapping region is divided form along the extending direction, between the adjacent divided the convex elastic member, from the convex elastic member Also, an elastic member having a small width dimension intersecting the extending direction is provided. In this fuel cell, the convex elastic member is preferably divided into the same number as the number of seal members.

また、この燃料電池では、流体連通孔に近接して複数の凸状弾性部材間に開口する貫通孔が形成されるとともに、前記貫通孔の一端側は、流体流路側で連結流路に連通する一方、前記貫通孔の他端側は、前記流体流路とは反対側で前記流体連通孔に連通することが好ましい。   Further, in this fuel cell, a through hole that opens between the plurality of convex elastic members is formed in the vicinity of the fluid communication hole, and one end side of the through hole communicates with the connection channel on the fluid channel side. On the other hand, it is preferable that the other end side of the through hole communicates with the fluid communication hole on the side opposite to the fluid flow path.

本発明では、凸状弾性部材は、積層方向にシール部材と重なる重なり領域を有し、前記重なり領域が流れ方向に沿って分割形成されている。このため、凸状弾性部材の圧縮荷重特性は、部位によって異なることがない。従って、簡単な構成で、シール部材の面圧のばらつきやセパレータの変形を確実に抑制することが可能になる。   In the present invention, the convex elastic member has an overlapping region overlapping with the seal member in the stacking direction, and the overlapping region is divided and formed along the flow direction. For this reason, the compressive load characteristic of a convex elastic member does not change with parts. Accordingly, it is possible to reliably suppress variations in the surface pressure of the seal member and deformation of the separator with a simple configuration.

本発明の第1の実施形態に係る燃料電池を構成する発電セルの分解斜視説明図である。It is a disassembled perspective explanatory drawing of the electric power generation cell which comprises the fuel cell which concerns on the 1st Embodiment of this invention. 前記発電セルの、図1中、II−II線断面図である。It is the II-II sectional view taken on the line of the said electric power generation cell in FIG. 前記発電セルの、図1中、III−III線断面図である。It is the III-III sectional view taken on the line of FIG. 1 of the said electric power generation cell. 前記発電セルを構成する第1金属セパレータの正面説明図である。It is front explanatory drawing of the 1st metal separator which comprises the said electric power generation cell. 前記発電セルを構成する第2金属セパレータの正面説明図である。It is front explanatory drawing of the 2nd metal separator which comprises the said electric power generation cell. 前記第1金属セパレータの要部斜視説明図である。It is principal part perspective explanatory drawing of the said 1st metal separator. 本発明の第2の実施形態に係る燃料電池を構成する第1金属セパレータの要部斜視説明図である。It is principal part perspective explanatory drawing of the 1st metal separator which comprises the fuel cell which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る燃料電池を構成する第1金属セパレータの要部斜視説明図である。It is principal part perspective explanatory drawing of the 1st metal separator which comprises the fuel cell which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る燃料電池を構成する第1金属セパレータの要部正面説明図である。It is principal part front explanatory drawing of the 1st metal separator which comprises the fuel cell which concerns on the 4th Embodiment of this invention. 本発明の第5の実施形態に係る燃料電池を構成する第1金属セパレータの要部斜視説明図である。It is principal part perspective explanatory drawing of the 1st metal separator which comprises the fuel cell which concerns on the 5th Embodiment of this invention.

図1〜図3に示すように、本発明の第1の実施形態に係る燃料電池10は、複数の発電セル12が、例えば、立位姿勢で水平方向(矢印A方向)に積層される。なお、発電セル12は、重力方向に積層されてもよい。   As shown in FIGS. 1 to 3, in the fuel cell 10 according to the first embodiment of the present invention, a plurality of power generation cells 12 are stacked in the horizontal direction (arrow A direction) in a standing posture, for example. The power generation cells 12 may be stacked in the direction of gravity.

発電セル12は、横長形状を有するとともに、電解質膜・電極構造体(MEA)16と、前記電解質膜・電極構造体16を挟持する第1金属セパレータ18及び第2金属セパレータ20とを備える。第1金属セパレータ18及び第2金属セパレータ20は、薄板状の金属プレートを、それぞれ波形状にプレス加工することにより、断面凹凸形状を有する。   The power generation cell 12 has a horizontally long shape, and includes an electrolyte membrane / electrode structure (MEA) 16, and a first metal separator 18 and a second metal separator 20 that sandwich the electrolyte membrane / electrode structure 16. The first metal separator 18 and the second metal separator 20 have a concavo-convex shape by pressing a thin metal plate into a wave shape.

第1金属セパレータ18及び第2金属セパレータ20は、例えば、アルミニウム板、ステンレス鋼板、チタン板又はニオブ板等で形成される。なお、第1金属セパレータ18及び第2金属セパレータ20に代えて、カーボンセパレータを採用してもよい。   The first metal separator 18 and the second metal separator 20 are formed of, for example, an aluminum plate, a stainless steel plate, a titanium plate, or a niobium plate. In place of the first metal separator 18 and the second metal separator 20, a carbon separator may be adopted.

発電セル12の長辺方向(図1中、矢印B方向)の一端縁部には、矢印A方向に互いに連通して、酸化剤ガス、例えば、酸素含有ガスを供給するための酸化剤ガス供給連通孔(流体連通孔)26a、冷却媒体を供給するための冷却媒体供給連通孔(流体連通孔)28a、及び燃料ガス、例えば、水素含有ガスを排出するための燃料ガス排出連通孔(流体連通孔)30bが設けられる。   An oxidant gas supply for supplying an oxidant gas, for example, an oxygen-containing gas, to one end edge of the power generation cell 12 in the long side direction (the arrow B direction in FIG. 1) in communication with the arrow A direction. A communication hole (fluid communication hole) 26a, a cooling medium supply communication hole (fluid communication hole) 28a for supplying a cooling medium, and a fuel gas discharge communication hole (fluid communication) for discharging a fuel gas, for example, a hydrogen-containing gas Hole) 30b is provided.

発電セル12の長辺方向の他端縁部には、矢印A方向に互いに連通して、燃料ガスを供給するための燃料ガス供給連通孔(流体連通孔)30a、冷却媒体を排出するための冷却媒体排出連通孔(流体連通孔)28b、及び酸化剤ガスを排出するための酸化剤ガス排出連通孔(流体連通孔)26bが設けられる。   A fuel gas supply communication hole (fluid communication hole) 30a for supplying fuel gas is connected to the other end edge in the long side direction of the power generation cell 12 in the direction of arrow A, and the cooling medium is discharged. A cooling medium discharge communication hole (fluid communication hole) 28b and an oxidant gas discharge communication hole (fluid communication hole) 26b for discharging the oxidant gas are provided.

図1及び図4に示すように、第1金属セパレータ18の電解質膜・電極構造体16に向かう面18aには、酸化剤ガス供給連通孔26aと酸化剤ガス排出連通孔26bとを連通する酸化剤ガス流路(流体流路)38が形成される。酸化剤ガス流路38は、矢印B方向に延在する凸部40aと凹部40bとが、矢印C方向に交互に形成されることにより、各凹部40bに沿って形成される複数本の酸化剤ガス流路溝38aを有する。凸部40aは、電解質膜・電極構造体16に接する一方、凹部40bは、前記電解質膜・電極構造体16から離間する。   As shown in FIGS. 1 and 4, the surface 18a of the first metal separator 18 facing the electrolyte membrane / electrode structure 16 is oxidized through the oxidant gas supply communication hole 26a and the oxidant gas discharge communication hole 26b. An agent gas flow path (fluid flow path) 38 is formed. The oxidant gas flow path 38 has a plurality of oxidizers formed along the respective recesses 40b by alternately forming the protrusions 40a and the recesses 40b extending in the arrow B direction in the arrow C direction. A gas flow path groove 38a is provided. The convex portion 40 a is in contact with the electrolyte membrane / electrode structure 16, while the concave portion 40 b is separated from the electrolyte membrane / electrode structure 16.

酸化剤ガス流路38の入口側には、電解質膜・電極構造体16側に突出する複数のエンボス41aeを有する入口バッファ部41aが設けられる。酸化剤ガス流路38の出口側には、電解質膜・電極構造体16側に突出する複数のエンボス41beを有する出口バッファ部41bが設けられる。   On the inlet side of the oxidant gas flow path 38, an inlet buffer portion 41a having a plurality of embosses 41ae protruding toward the electrolyte membrane / electrode structure 16 side is provided. On the outlet side of the oxidant gas flow path 38, an outlet buffer portion 41b having a plurality of embosses 41be protruding toward the electrolyte membrane / electrode structure 16 side is provided.

図5に示すように、第2金属セパレータ20の電解質膜・電極構造体16に向かう面20aには、燃料ガス供給連通孔30aと燃料ガス排出連通孔30bとを連通する燃料ガス流路(流体流路)42が形成される。燃料ガス流路42は、矢印B方向に延在する凸部44aと凹部44bとが、矢印C方向に交互に形成されることにより、各凹部44bに沿って形成される複数本の燃料ガス流路溝42aを有する。凸部44aは、電解質膜・電極構造体16に接する一方、凹部44bは、前記電解質膜・電極構造体16から離間する。   As shown in FIG. 5, a fuel gas flow path (fluid) that connects the fuel gas supply communication hole 30 a and the fuel gas discharge communication hole 30 b to the surface 20 a of the second metal separator 20 facing the electrolyte membrane / electrode structure 16. Channel) 42 is formed. The fuel gas flow path 42 has a plurality of fuel gas flows formed along the respective concave portions 44b by alternately forming convex portions 44a and concave portions 44b extending in the arrow B direction in the arrow C direction. It has a road groove 42a. The convex portion 44 a is in contact with the electrolyte membrane / electrode structure 16, while the concave portion 44 b is separated from the electrolyte membrane / electrode structure 16.

燃料ガス流路42の入口側には、電解質膜・電極構造体16側に突出する複数のエンボス45aeを有する入口バッファ部45aが設けられる。燃料ガス流路42の出口側には、電解質膜・電極構造体16側に突出する複数のエンボス45beを有する出口バッファ部45bが設けられる。   An inlet buffer portion 45 a having a plurality of embosses 45 a projecting toward the electrolyte membrane / electrode structure 16 is provided on the inlet side of the fuel gas channel 42. On the outlet side of the fuel gas passage 42, an outlet buffer portion 45b having a plurality of embosses 45be protruding toward the electrolyte membrane / electrode structure 16 side is provided.

図1に示すように、互いに隣接する第1金属セパレータ18の面18bと第2金属セパレータ20の面20bとの間には、冷却媒体供給連通孔28aと冷却媒体排出連通孔28bとを連通する冷却媒体流路(流体流路)46が一体的に形成される。冷却媒体流路46は、酸化剤ガス流路38及び燃料ガス流路42の裏面形状を重ね合わせて構成される。   As shown in FIG. 1, a cooling medium supply communication hole 28a and a cooling medium discharge communication hole 28b communicate with each other between the surface 18b of the first metal separator 18 and the surface 20b of the second metal separator 20 which are adjacent to each other. A cooling medium flow path (fluid flow path) 46 is integrally formed. The cooling medium flow path 46 is configured by overlapping the back surface shapes of the oxidant gas flow path 38 and the fuel gas flow path 42.

第1金属セパレータ18の一方の面18a及び他方の面18bには、この第1金属セパレータ18の外周端部を周回して第1シール部材48が一体成形される。第2金属セパレータ20の一方の面20a及び他方の面20bには、この第2金属セパレータ20の外周端部を周回して第2シール部材50が一体成形される。   A first seal member 48 is integrally formed on one surface 18 a and the other surface 18 b of the first metal separator 18 so as to go around the outer peripheral end of the first metal separator 18. A second seal member 50 is integrally formed on one surface 20 a and the other surface 20 b of the second metal separator 20 so as to go around the outer peripheral end of the second metal separator 20.

第1シール部材48及び第2シール部材50は、例えば、EPDM、NBR、フッ素ゴム、シリコーンゴム、フロロシリコーンゴム、ブチルゴム、天然ゴム、スチレンゴム、クロロプレーン、又はアクリルゴム等のシール材、クッション材、あるいはパッキン材等の弾性を有するシール部材を使用する。   The first seal member 48 and the second seal member 50 are, for example, EPDM, NBR, fluororubber, silicone rubber, fluorosilicone rubber, butyl rubber, natural rubber, styrene rubber, chloroplane, or acrylic rubber, or a cushion material. Alternatively, an elastic seal member such as a packing material is used.

第1シール部材48は、図1及び図4に示すように、面18a、18b上に均一な厚さを有して成形される平面シール部48aを有する。第1シール部材48は、面18a側で平面シール部48aから突出し、酸化剤ガス供給連通孔26a及び酸化剤ガス排出連通孔26bと酸化剤ガス流路38とを連通させる凸状シール部48bを有する(図4参照)。   As shown in FIGS. 1 and 4, the first seal member 48 has a flat seal portion 48 a formed with a uniform thickness on the surfaces 18 a and 18 b. The first seal member 48 protrudes from the flat seal portion 48a on the surface 18a side, and has a convex seal portion 48b that communicates the oxidant gas supply communication hole 26a, the oxidant gas discharge communication hole 26b, and the oxidant gas flow path 38. (See FIG. 4).

第1シール部材48は、面18b側で平面シール部48aから突出し、冷却媒体供給連通孔28a及び冷却媒体排出連通孔28bと冷却媒体流路46とを連通させる凸状シール部48cを有する(図1参照)。   The first seal member 48 has a convex seal portion 48c that protrudes from the flat seal portion 48a on the surface 18b side and communicates the cooling medium supply communication hole 28a, the cooling medium discharge communication hole 28b, and the cooling medium flow path 46 (see FIG. 1).

第2シール部材50は、面20a、20b上に均一な厚さを有して形成される平面シール部50aを有する。第2シール部材50は、面20a側で平面シール部50aから突出し、燃料ガス供給連通孔30a及び燃料ガス排出連通孔30bを燃料ガス流路42に連通する凸状シール部50bを有する(図1及び図5参照)。   The second seal member 50 has a flat seal part 50a formed with a uniform thickness on the surfaces 20a and 20b. The second seal member 50 has a convex seal portion 50b that protrudes from the flat seal portion 50a on the surface 20a side and communicates the fuel gas supply communication hole 30a and the fuel gas discharge communication hole 30b with the fuel gas flow path 42 (FIG. 1). And FIG. 5).

図1及び図4に示すように、第1金属セパレータ18の面18aには、酸化剤ガス供給連通孔26aと入口バッファ部41aとを接続する入口連結流路52aと、酸化剤ガス排出連通孔26bと出口バッファ部41bとを接続する出口連結流路52bとが設けられる。   As shown in FIGS. 1 and 4, the surface 18 a of the first metal separator 18 has an inlet connection channel 52 a that connects the oxidant gas supply communication hole 26 a and the inlet buffer 41 a, and an oxidant gas discharge communication hole. 26b and an outlet connection channel 52b that connects the outlet buffer portion 41b.

入口連結流路52aは、第1シール部材48と一体に(又は別体を第1シール部材48に接合して)成形される複数の凸状弾性部材(所謂、ゴムブリッジ)54a間に矢印B方向に沿って形成される。入口連結流路52aは、酸化剤ガス供給連通孔26aから入口バッファ部41aに向かって延在する。凸状弾性部材54aは、第1シール部材48と同一の材料で構成してもよく、又は、異なるゴム部材により構成してもよい。   The inlet connection flow path 52a has an arrow B between a plurality of convex elastic members (so-called rubber bridges) 54a formed integrally with the first seal member 48 (or joined separately to the first seal member 48). It is formed along the direction. The inlet connection channel 52a extends from the oxidant gas supply communication hole 26a toward the inlet buffer portion 41a. The convex elastic member 54a may be made of the same material as the first seal member 48, or may be made of a different rubber member.

凸状弾性部材54aは、積層方向(矢印A方向)から見て、第1金属セパレータ18の表裏で第1シール部材48の凸状シール部48cと重なる重なり領域、具体的には、前記凸状弾性部材54aと積層方向に隣接し、入口連結流路52aの酸化剤ガス流れ方向(矢印B方向)に交差する方向(矢印C方向)に延在するシール部分48cs1、48cs2との重なり領域54al1、54al2を有し、前記重なり領域54al1、54al2が前記酸化剤ガス流れ方向に沿って分割して形成される。   The convex elastic member 54a is an overlapping region that overlaps the convex seal portion 48c of the first seal member 48 on the front and back of the first metal separator 18 when viewed from the stacking direction (arrow A direction), specifically, the convex shape An overlapping region 54al1, which is adjacent to the elastic member 54a in the stacking direction, and overlaps with seal portions 48cs1, 48cs2 extending in a direction (arrow C direction) intersecting the oxidant gas flow direction (arrow B direction) of the inlet connection channel 52a, 54al2 and the overlapping regions 54al1 and 54al2 are divided and formed along the flow direction of the oxidant gas.

すなわち、凸状弾性部材54aは、シール部分48cs1、48cs2間に対応して切欠き部54akが設けられることにより、前記シール部分48cs1、48cs2の本数と同数である2個に分割される(図4及び図6参照)。凸状弾性部材54aの分割個数は、裏面側に設けられる裏面シールの本数(複数本)と同数、例えば、3本又は4本に設定される。以下に説明する冷却媒体側及び燃料ガス側も同様である。   That is, the convex elastic member 54a is divided into two, which is the same as the number of the seal portions 48cs1, 48cs2, by providing the notches 54ak correspondingly between the seal portions 48cs1, 48cs2 (FIG. 4). And FIG. 6). The number of divisions of the convex elastic member 54a is set to the same number (for example, three or four) as the number (a plurality) of back surface seals provided on the back surface side. The same applies to the cooling medium side and the fuel gas side described below.

シール部分48cs1の幅方向(矢印B方向)の中央Oは、凸状弾性部材54aの長さ方向(矢印B方向)の中央と一致する。すなわち、中央Oから凸状弾性部材54aの長さ方向一方の端部までの距離t1と、前記中央Oから長さ方向他方の端部までの距離t2とは、同一寸法に設定される(t1=t2)。以下に説明する他のシール部分と他の凸状弾性部材とにおいても、同様である。   The center O in the width direction (arrow B direction) of the seal portion 48cs1 coincides with the center in the length direction (arrow B direction) of the convex elastic member 54a. That is, the distance t1 from the center O to one end in the length direction of the convex elastic member 54a and the distance t2 from the center O to the other end in the length direction are set to the same dimension (t1). = T2). The same applies to other seal portions and other convex elastic members described below.

出口連結流路52bは、上記の入口連結流路52aと同様に構成され、前記入口連結流路52aと同一の構成要素には、同一の参照数字に符号aに代えてbを付し、その詳細な説明は省略する。   The outlet connection channel 52b is configured in the same manner as the above-described inlet connection channel 52a, and the same components as the inlet connection channel 52a are denoted by the same reference numeral b instead of the symbol a, Detailed description is omitted.

図1に示すように、第1金属セパレータ18の面18bには、冷却媒体供給連通孔28aと冷却媒体流路46とを接続する入口連結流路56aと、冷却媒体排出連通孔28bと前記冷却媒体流路46とを接続する出口連結流路56bとが設けられる。   As shown in FIG. 1, the surface 18 b of the first metal separator 18 has an inlet connection flow path 56 a that connects the cooling medium supply communication hole 28 a and the cooling medium flow path 46, a cooling medium discharge communication hole 28 b, and the cooling medium. An outlet connection channel 56 b that connects the medium channel 46 is provided.

入口連結流路56aは、第1シール部材48と一体に(又は別体を第1シール部材48に接合して)成形される複数の凸状弾性部材(所謂、ゴムブリッジ)58a間に矢印B方向に沿って形成される。入口連結流路56aは、冷却媒体供給連通孔28aから入口バッファ部(入口バッファ部41aの裏面形状)に向かって延在する。   The inlet connection channel 56a is formed by an arrow B between a plurality of convex elastic members (so-called rubber bridges) 58a formed integrally with the first seal member 48 (or joined separately to the first seal member 48). It is formed along the direction. The inlet connection flow path 56a extends from the cooling medium supply communication hole 28a toward the inlet buffer portion (the shape of the back surface of the inlet buffer portion 41a).

凸状弾性部材58aは、積層方向(矢印A方向)から見て、第1金属セパレータ18の表裏で第1シール部材48の凸状シール部48bと重なる重なり領域、具体的には、前記凸状弾性部材58aと積層方向に隣接し、入口連結流路56aの冷却媒体流れ方向(矢印B方向)に交差する方向(矢印C方向)に延在するシール部分48bs1、48bs2(図4参照)との重なり領域58al1、58al2を有し、前記重なり領域58al1、58al2が前記冷却媒体流れ方向に沿って分割形成される。   The convex elastic member 58a is an overlapping region that overlaps the convex seal portion 48b of the first seal member 48 on the front and back of the first metal separator 18 when viewed from the stacking direction (arrow A direction), specifically, the convex shape Seal portions 48bs1 and 48bs2 (see FIG. 4) that are adjacent to the elastic member 58a in the stacking direction and extend in a direction (arrow C direction) that intersects the coolant flow direction (arrow B direction) of the inlet connection flow path 56a. Overlapping regions 58al1 and 58al2 are provided, and the overlapping regions 58al1 and 58al2 are divided and formed along the cooling medium flow direction.

すなわち、凸状弾性部材58aは、シール部分48bs1、48bs2間に対応して切欠き部58akが設けられることにより、前記シール部分48bs1、48bs2の本数と同数である2個に分割される。   That is, the convex elastic member 58a is divided into two, which is the same as the number of the seal portions 48bs1, 48bs2, by providing the notch portions 58ak correspondingly between the seal portions 48bs1, 48bs2.

出口連結流路56bは、上記の入口連結流路56aと同様に構成され、前記入口連結流路56aと同一の構成要素には、同一の参照数字に符号aに代えてbを付し、その詳細な説明は省略する。   The outlet connection channel 56b is configured in the same manner as the above-described inlet connection channel 56a, and the same components as the inlet connection channel 56a are denoted by the same reference numeral b instead of the symbol a. Detailed description is omitted.

図1及び図5に示すように、第2金属セパレータ20の面20aには、燃料ガス供給連通孔30aと入口バッファ部45aとを接続する入口連結流路60aと、燃料ガス排出連通孔30bと出口バッファ部45bとを接続する出口連結流路60bとが設けられる。   As shown in FIGS. 1 and 5, the surface 20a of the second metal separator 20 has an inlet connection channel 60a for connecting the fuel gas supply communication hole 30a and the inlet buffer 45a, and a fuel gas discharge communication hole 30b. An outlet connection channel 60b that connects the outlet buffer unit 45b is provided.

入口連結流路60aは、第2シール部材50と一体に(又は別体を第2シール部材50に接合して)成形される複数の凸状弾性部材(所謂、ゴムブリッジ)62a間に矢印B方向に沿って形成される。入口連結流路60aは、燃料ガス供給連通孔30aから入口バッファ部45aに向かって延在する。凸状弾性部材62aは、第2シール部材50と同一の材料で構成してもよく、又は、異なるゴム部材により構成してもよい。   The inlet connection flow path 60a has an arrow B between a plurality of convex elastic members (so-called rubber bridges) 62a formed integrally with the second seal member 50 (or joined separately to the second seal member 50). It is formed along the direction. The inlet connection channel 60a extends from the fuel gas supply communication hole 30a toward the inlet buffer portion 45a. The convex elastic member 62a may be made of the same material as the second seal member 50, or may be made of a different rubber member.

凸状弾性部材62aは、積層方向(矢印A方向)から見て第1金属セパレータ18を構成する第1シール部材48の凸状シール部48cと重なる重なり領域、具体的には、前記凸状弾性部材62aと積層方向に隣接し、入口連結流路60aの燃料ガス流れ方向(矢印B方向)に交差する方向(矢印C方向)に延在するシール部分48cs1、48cs2との重なり領域62al1、62al2を有し、前記重なり領域62al1、62al2が前記燃料ガス流れ方向に沿って分割形成される。   The convex elastic member 62a overlaps with the convex seal portion 48c of the first seal member 48 constituting the first metal separator 18 when viewed from the stacking direction (arrow A direction), specifically, the convex elastic member. Overlapping regions 62al1, 62al2 with seal portions 48cs1, 48cs2 that are adjacent to the member 62a in the stacking direction and extend in the direction (arrow C direction) intersecting the fuel gas flow direction (arrow B direction) of the inlet connection flow path 60a. The overlapping regions 62al1 and 62al2 are divided and formed along the fuel gas flow direction.

すなわち、凸状弾性部材62aは、シール部分48cs1、48cs2間に対応して切欠き部62akが設けられることにより、前記シール部分48cs1、48cs2の本数と同数である2個に分割される。   That is, the convex elastic member 62a is divided into two, which is the same as the number of the seal portions 48cs1, 48cs2, by providing the notch portions 62ak correspondingly between the seal portions 48cs1, 48cs2.

出口連結流路60bは、上記の入口連結流路60aと同様に構成され、前記入口連結流路60aと同一の構成要素には、同一の参照数字に符号aに代えてbを付し、その詳細な説明は省略する。   The outlet connection channel 60b is configured in the same manner as the above-described inlet connection channel 60a, and the same components as those of the inlet connection channel 60a are denoted by the same reference numerals with “b” instead of “a”. Detailed description is omitted.

電解質膜・電極構造体16は、例えば、パーフルオロスルホン酸の薄膜に水が含浸された固体高分子電解質膜64と、前記固体高分子電解質膜64を挟持するカソード電極66及びアノード電極68とを備える。固体高分子電解質膜64は、カソード電極66及びアノード電極68と同等、若しくはこれらよりも大きな平面寸法に設定され、外周縁部が前記カソード電極66及び前記アノード電極68の外周端部から外方に突出する。なお、カソード電極66又はアノード電極68のいずれか一方のみが、固体高分子電解質膜64と同等の平面寸法に設定されてもよい。   The electrolyte membrane / electrode structure 16 includes, for example, a solid polymer electrolyte membrane 64 in which a perfluorosulfonic acid thin film is impregnated with water, and a cathode electrode 66 and an anode electrode 68 sandwiching the solid polymer electrolyte membrane 64. Prepare. The solid polymer electrolyte membrane 64 is set to have a planar dimension that is equal to or larger than that of the cathode electrode 66 and the anode electrode 68, and the outer peripheral edge portion is outward from the outer peripheral end portions of the cathode electrode 66 and the anode electrode 68. Protruding. Note that only one of the cathode electrode 66 and the anode electrode 68 may be set to have a planar dimension equivalent to that of the solid polymer electrolyte membrane 64.

図2及び図3に示すように、カソード電極66及びアノード電極68は、カーボンペーパ等からなるカソード側ガス拡散層66a及びアノード側ガス拡散層68aと、白金合金が表面に担持された多孔質カーボン粒子が前記カソード側ガス拡散層66a及びアノード側ガス拡散層68aの表面に一様に塗布されたカソード側電極触媒層66b及びアノード側電極触媒層68bとを有する。   As shown in FIGS. 2 and 3, the cathode electrode 66 and the anode electrode 68 include a cathode-side gas diffusion layer 66a and an anode-side gas diffusion layer 68a made of carbon paper or the like, and a porous carbon having a platinum alloy supported on its surface. The particles have a cathode side electrode catalyst layer 66b and an anode side electrode catalyst layer 68b uniformly coated on the surfaces of the cathode side gas diffusion layer 66a and the anode side gas diffusion layer 68a.

このように構成される燃料電池10の動作について、以下に説明する。   The operation of the fuel cell 10 configured as described above will be described below.

図1に示すように、燃料電池10内では、酸化剤ガス供給連通孔26aに酸素含有ガス等の酸化剤ガスが供給されるとともに、燃料ガス供給連通孔30aに水素含有ガス等の燃料ガスが供給される。さらに、冷却媒体供給連通孔28aに純水やエチレングリコール等の冷却媒体が供給される。このため、各発電セル12では、酸化剤ガス、燃料ガス及び冷却媒体が、それぞれ矢印A方向に供給される。   As shown in FIG. 1, in the fuel cell 10, an oxidant gas such as an oxygen-containing gas is supplied to the oxidant gas supply communication hole 26a, and a fuel gas such as a hydrogen-containing gas is supplied to the fuel gas supply communication hole 30a. Supplied. Further, a coolant such as pure water or ethylene glycol is supplied to the coolant supply passage 28a. For this reason, in each power generation cell 12, the oxidant gas, the fuel gas, and the cooling medium are respectively supplied in the direction of arrow A.

酸化剤ガスは、図1及び図4に示すように、酸化剤ガス供給連通孔26aから第1金属セパレータ18の酸化剤ガス流路38に導入され、電解質膜・電極構造体16のカソード電極66に沿って移動する。一方、燃料ガスは、図1及び図5に示すように、燃料ガス供給連通孔30aから第2金属セパレータ20の燃料ガス流路42に導入され、電解質膜・電極構造体16のアノード電極68に沿って移動する。   As shown in FIGS. 1 and 4, the oxidant gas is introduced into the oxidant gas flow path 38 of the first metal separator 18 through the oxidant gas supply communication hole 26 a, and the cathode electrode 66 of the electrolyte membrane / electrode structure 16. Move along. On the other hand, as shown in FIGS. 1 and 5, the fuel gas is introduced into the fuel gas passage 42 of the second metal separator 20 through the fuel gas supply communication hole 30 a, and is supplied to the anode electrode 68 of the electrolyte membrane / electrode structure 16. Move along.

従って、各電解質膜・電極構造体16では、カソード電極66に供給される酸化剤ガスと、アノード電極68に供給される燃料ガスとが、カソード側電極触媒層66b及びアノード側電極触媒層68b内で電気化学反応により消費され、発電が行われる。   Therefore, in each electrolyte membrane / electrode structure 16, the oxidant gas supplied to the cathode electrode 66 and the fuel gas supplied to the anode electrode 68 are contained in the cathode side electrode catalyst layer 66b and the anode side electrode catalyst layer 68b. In this way, it is consumed by an electrochemical reaction to generate electricity.

次いで、カソード電極66に供給されて消費された酸化剤ガスは、酸化剤ガス排出連通孔26bに排出されて、矢印A方向に流動する。同様に、アノード電極68に供給されて消費された燃料ガスは、燃料ガス排出連通孔30bに排出されて、矢印A方向に流動する。   Next, the oxidant gas consumed by being supplied to the cathode electrode 66 is discharged to the oxidant gas discharge communication hole 26b and flows in the direction of arrow A. Similarly, the fuel gas consumed by being supplied to the anode electrode 68 is discharged to the fuel gas discharge communication hole 30b and flows in the direction of arrow A.

また、冷却媒体は、冷却媒体供給連通孔28aから第1金属セパレータ18及び第2金属セパレータ20間の冷却媒体流路46に導入された後、矢印B方向に沿って流動する。この冷却媒体は、電解質膜・電極構造体16を冷却した後、冷却媒体排出連通孔28bを移動して燃料電池10から排出される。   The cooling medium flows in the direction of arrow B after being introduced into the cooling medium flow path 46 between the first metal separator 18 and the second metal separator 20 from the cooling medium supply communication hole 28a. The cooling medium cools the electrolyte membrane / electrode structure 16, and then moves through the cooling medium discharge communication hole 28 b and is discharged from the fuel cell 10.

この場合、第1の実施形態では、例えば、図1及び図5に示すように、第2金属セパレータ20の面20aには、燃料ガス供給連通孔30aと燃料ガス流路42(実質的には、入口バッファ部45a)とを接続する入口連結流路60aが設けられている。入口連結流路60aは、第2シール部材50と一体に成形される複数の凸状弾性部材62a間に矢印B方向に沿って形成されている。   In this case, in the first embodiment, for example, as shown in FIGS. 1 and 5, the surface 20a of the second metal separator 20 is provided with the fuel gas supply communication hole 30a and the fuel gas flow path 42 (substantially). , An inlet connection channel 60a for connecting the inlet buffer part 45a) is provided. The inlet connection channel 60 a is formed along the arrow B direction between the plurality of convex elastic members 62 a that are formed integrally with the second seal member 50.

そして、凸状弾性部材62aは、積層方向から見て第1金属セパレータ18を構成する第1シール部材48の凸状シール部48cと重なる重なり領域62al1、62al2を有し、前記重なり領域62al1、62al2が燃料ガス流れ方向に沿って分割形成されている。すなわち、凸状弾性部材62aは、シール部分48cs1、48cs2間(及びシール部分48bs1、48bs2間)に対応して2個に分割されている。   The convex elastic member 62a has overlapping regions 62al1 and 62al2 that overlap with the convex seal portion 48c of the first seal member 48 constituting the first metal separator 18 when viewed from the stacking direction, and the overlapping regions 62al1 and 62al2 Are divided along the fuel gas flow direction. That is, the convex elastic member 62a is divided into two parts corresponding to the space between the seal portions 48cs1 and 48cs2 (and between the seal portions 48bs1 and 48bs2).

このため、図3に示すように、凸状弾性部材62aの圧縮荷重特性は、部位によって異なることがない。従って、シール部分48cs1、48cs2(及びシール部分48bs1、48bs2)に不均一な反力が発生することがなく、シール面圧が均一化される。これにより、第1金属セパレータ18(及び第2金属セパレータ20)に変形が惹起したり、シール面圧の不均一や入口連結流路60aの流路幅の不均一が発生することを、良好に抑制することができるという効果が得られる。   For this reason, as shown in FIG. 3, the compressive load characteristic of the convex elastic member 62a does not vary depending on the part. Therefore, non-uniform reaction force does not occur in the seal portions 48cs1, 48cs2 (and the seal portions 48bs1, 48bs2), and the seal surface pressure is made uniform. As a result, it is favorable that the first metal separator 18 (and the second metal separator 20) is deformed, the seal surface pressure is not uniform, and the inlet connection channel 60a is not uniform. The effect that it can suppress is acquired.

また、第1金属セパレータ18の面18aには、酸化剤ガス供給連通孔26aと入口バッファ部41aとを接続する入口連結流路52aが設けられている。入口連結流路52aは、第1シール部材48と一体に成形される複数の凸状弾性部材54a間に矢印B方向に沿って形成されている。凸状弾性部材54aは、シール部分48cs1、48cs2間に対応して2個に分割形成されている。   Further, the surface 18a of the first metal separator 18 is provided with an inlet connection channel 52a that connects the oxidant gas supply communication hole 26a and the inlet buffer portion 41a. The inlet connection flow path 52 a is formed along the arrow B direction between the plurality of convex elastic members 54 a formed integrally with the first seal member 48. The convex elastic member 54a is divided into two parts corresponding to the space between the seal portions 48cs1 and 48cs2.

このため、図2に示すように、凸状弾性部材54aの圧縮荷重特性は、部位によって異なることがない。従って、簡単な構成で、シール部分48cs1、48cs2の面圧のばらつきや第1金属セパレータ18(及び第2金属セパレータ20)の変形を確実に抑制することが可能になる。   For this reason, as shown in FIG. 2, the compressive load characteristic of the convex elastic member 54a does not vary depending on the part. Accordingly, it is possible to reliably suppress variations in the surface pressure of the seal portions 48cs1 and 48cs2 and deformation of the first metal separator 18 (and the second metal separator 20) with a simple configuration.

さらにまた、第1金属セパレータ18の面18bには、冷却媒体供給連通孔28aと冷却媒体流路46とを接続する入口連結流路56aが設けられている。入口連結流路56aは、第1シール部材48と一体に成形される複数の凸状弾性部材58a間に形成されるとともに、前記凸状弾性部材58aは、シール部分48bs1、48bs2間に対応して2個に分割形成されている。   Furthermore, an inlet connection channel 56 a that connects the cooling medium supply communication hole 28 a and the cooling medium channel 46 is provided on the surface 18 b of the first metal separator 18. The inlet connection channel 56a is formed between a plurality of convex elastic members 58a formed integrally with the first seal member 48, and the convex elastic member 58a corresponds to between the seal portions 48bs1 and 48bs2. It is divided into two pieces.

これにより、簡単な構成で、シール部分48bs1、48bs2の面圧のばらつきや第1金属セパレータ18(及び第2金属セパレータ20)の変形を確実に抑制することが可能になる。   Accordingly, it is possible to reliably suppress variations in the surface pressure of the seal portions 48bs1 and 48bs2 and deformation of the first metal separator 18 (and the second metal separator 20) with a simple configuration.

一方、出口連結流路52b、56b及び60bは、上記の入口連結流路52a、56a及び60aと同様に構成されている。このため、上記と同様の効果が得られる。なお、第1の実施形態では、入口バッファ部41a、45a及び出口バッファ部41b、45bが設けられているが、これらを用いない構成にも適用可能である。   On the other hand, the outlet connection channels 52b, 56b and 60b are configured in the same manner as the inlet connection channels 52a, 56a and 60a. For this reason, the effect similar to the above is acquired. In the first embodiment, the inlet buffer portions 41a and 45a and the outlet buffer portions 41b and 45b are provided. However, the present invention is also applicable to a configuration that does not use these.

図7は、本発明の第2の実施形態に係る燃料電池80を構成する第1金属セパレータ82の要部斜視説明図である。   FIG. 7 is an explanatory perspective view of a main part of the first metal separator 82 constituting the fuel cell 80 according to the second embodiment of the present invention.

なお、第1の実施形態に係る燃料電池10を構成する第1金属セパレータ18と同一の構成要素には同一の参照符号を付して、その詳細な説明は省略する。また、以下に説明する第3以降の実施形態においても、その詳細な説明は省略する。   In addition, the same referential mark is attached | subjected to the component same as the 1st metal separator 18 which comprises the fuel cell 10 which concerns on 1st Embodiment, and the detailed description is abbreviate | omitted. In the third and subsequent embodiments described below, detailed description thereof is omitted.

第2の実施形態では、第1の実施形態の入口連結流路52aに対応する入口連結流路84のみについて説明する。他の入口連結流路56a及び60aと出口連結流路52b、56b及び60bに対応する構成は、入口連結流路84と同様である。   In the second embodiment, only the inlet connection channel 84 corresponding to the inlet connection channel 52a of the first embodiment will be described. The configurations corresponding to the other inlet connection channels 56a and 60a and the outlet connection channels 52b, 56b, and 60b are the same as those of the inlet connection channel 84.

入口連結流路84は、第1シール部材48と一体に成形される複数の凸状弾性部材(所謂、ゴムブリッジ)86間に矢印B方向に沿って形成される。凸状弾性部材86は、積層方向(矢印A方向)から見て第1シール部材48のシール部分48cs1、48cs2間で分割形成される。   The inlet connection channel 84 is formed along the arrow B direction between a plurality of convex elastic members (so-called rubber bridges) 86 that are formed integrally with the first seal member 48. The convex elastic member 86 is divided and formed between the seal portions 48cs1 and 48cs2 of the first seal member 48 when viewed from the stacking direction (arrow A direction).

分割された凸状弾性部材86同士の間には、該凸状弾性部材86よりも高さの低い弾性部材88が設けられる。弾性部材88の幅寸法(矢印C方向の寸法)は、凸状弾性部材86の幅寸法と同一である。弾性部材88の高さは、積層荷重が付与されて凸状弾性部材86が圧縮変形した際、隣り合う他の金属セパレータから荷重を受けることがなく、且つ、酸化剤ガスの漏れが殆ど発生しない程度の隙間に設定される。好ましくは、隙間88sは、少なくとも流路高さの1/2以下に設定される。弾性部材88は、凸状弾性部材86と同一の材料で一体成形されているが、同一材料又は異なる材料で形成された別部材を固着してもよい。   An elastic member 88 having a height lower than that of the convex elastic member 86 is provided between the divided convex elastic members 86. The width dimension of the elastic member 88 (the dimension in the direction of arrow C) is the same as the width dimension of the convex elastic member 86. The height of the elastic member 88 is such that when a lamination load is applied and the convex elastic member 86 is compressed and deformed, it does not receive a load from another adjacent metal separator, and almost no leakage of oxidant gas occurs. It is set to about a gap. Preferably, the gap 88s is set to at least half of the flow path height. The elastic member 88 is integrally formed of the same material as the convex elastic member 86, but another member formed of the same material or a different material may be fixed.

このように構成される第2の実施形態では、凸状弾性部材86が分割されるため、簡単な構成で、シール面圧のばらつきや第1金属セパレータ82の変形等を確実に抑制することが可能になる等、上記の第1の実施形態と同様の効果が得られる。   In the second embodiment configured as described above, since the convex elastic member 86 is divided, it is possible to reliably suppress variations in seal surface pressure, deformation of the first metal separator 82, and the like with a simple configuration. For example, the same effects as those of the first embodiment can be obtained.

さらに、分割された凸状弾性部材86同士の間には、該凸状弾性部材86よりも高さの低い弾性部材88が設けられている。従って、酸化剤ガスは、入口連結流路84の各流路溝に沿って、すなわち、凸状弾性部材86の延在方向に沿って確実に流通し、隣り合う流路溝の間で移動することがない。これにより、特に流路溝に液滴が発生した際、隣り合う流路溝との間の隙間88Sに生成水が滞留することがなく、前記流路溝を流通する酸化剤ガスによって確実に排水することが可能になる。   Further, an elastic member 88 having a height lower than that of the convex elastic member 86 is provided between the divided convex elastic members 86. Therefore, the oxidant gas surely flows along each flow channel of the inlet connection flow channel 84, that is, along the extending direction of the convex elastic member 86, and moves between adjacent flow channels. There is nothing. Thereby, especially when droplets are generated in the channel groove, the generated water does not stay in the gap 88S between the adjacent channel grooves, and the drainage is surely performed by the oxidant gas flowing through the channel groove. It becomes possible to do.

図8は、本発明の第3の実施形態に係る燃料電池90を構成する第1金属セパレータ92の要部斜視説明図である。   FIG. 8 is an explanatory perspective view of a main part of the first metal separator 92 constituting the fuel cell 90 according to the third embodiment of the present invention.

第1金属セパレータ92には、第1の実施形態の入口連結流路52aに対応する入口連結流路94が設けられる。入口連結流路94は、第1シール部材48と一体に成形される複数の凸状弾性部材(所謂、ゴムブリッジ)96間に矢印B方向に沿って形成される。凸状弾性部材96は、積層方向(矢印A方向)から見て第1シール部材48のシール部分48cs1、48cs2間で分割形成される。   The first metal separator 92 is provided with an inlet connection channel 94 corresponding to the inlet connection channel 52a of the first embodiment. The inlet connection flow path 94 is formed along the arrow B direction between a plurality of convex elastic members (so-called rubber bridges) 96 formed integrally with the first seal member 48. The convex elastic member 96 is divided and formed between the seal portions 48cs1 and 48cs2 of the first seal member 48 when viewed from the stacking direction (arrow A direction).

分割された凸状弾性部材96同士の間には、該凸状弾性部材96よりも酸化剤ガス流れ方向に交差(矢印C方向)する幅寸法の小さな弾性部材98が設けられる。凸状弾性部材96及び弾性部材98は、幅中心に対して対称形状が好ましく、前記凸状弾性部材96の幅中心と前記弾性部材98の幅中心とは、一致する。凸状弾性部材96の高さと弾性部材98の高さは、同一である。好ましくは、弾性部材98は、少なくとも凸状弾性部材96の幅寸法の1/2以下に設定される。弾性部材98は、凸状弾性部材96と同一の材料で一体成形されているが、同一材料又は異なる材料で形成された別部材を固着してもよい。   Between the divided convex elastic members 96, there is provided an elastic member 98 having a smaller width than the convex elastic member 96, which intersects the oxidant gas flow direction (arrow C direction). The convex elastic member 96 and the elastic member 98 are preferably symmetrical with respect to the width center, and the width center of the convex elastic member 96 and the width center of the elastic member 98 coincide. The height of the convex elastic member 96 and the height of the elastic member 98 are the same. Preferably, the elastic member 98 is set to at least half or less of the width dimension of the convex elastic member 96. The elastic member 98 is integrally formed of the same material as the convex elastic member 96, but another member formed of the same material or a different material may be fixed.

このように構成される第3の実施形態では、凸状弾性部材96が分割されるとともに、分割された凸状弾性部材96同士の間には、該凸状弾性部材96よりも幅寸法の小さな弾性部材98が設けられている。このため、上記の第1及び第2の実施形態と同様の効果が得られる。   In the third embodiment configured as described above, the convex elastic member 96 is divided, and between the divided convex elastic members 96, the width dimension is smaller than that of the convex elastic member 96. An elastic member 98 is provided. For this reason, the effect similar to said 1st and 2nd embodiment is acquired.

図9は、本発明の第4の実施形態に係る燃料電池100を構成する金属セパレータ102の要部正面説明図である。   FIG. 9 is a front view of an essential part of a metal separator 102 constituting a fuel cell 100 according to the fourth embodiment of the present invention.

金属セパレータ102には、第1の実施形態の燃料ガス側の入口連結流路60aに対応する入口連結流路104が設けられる。入口連結流路104は、金属セパレータ102を燃料ガス供給連通孔30aの近傍で貫通する複数の供給貫通孔106を有する。燃料ガス流路42の面側には、供給貫通孔106と前記燃料ガス流路42の入口側とを繋ぐ複数本の連結流路溝108が設けられる。燃料ガス流路42とは反対の面側には、供給貫通孔106と燃料ガス供給連通孔30aとを繋ぐ複数本の連結流路溝110が設けられる。   The metal separator 102 is provided with an inlet connection channel 104 corresponding to the fuel gas side inlet connection channel 60a of the first embodiment. The inlet connection flow path 104 has a plurality of supply through holes 106 that pass through the metal separator 102 in the vicinity of the fuel gas supply communication hole 30a. On the surface side of the fuel gas passage 42, a plurality of connection passage grooves 108 that connect the supply through hole 106 and the inlet side of the fuel gas passage 42 are provided. On the side opposite to the fuel gas passage 42, a plurality of connection passage grooves 110 that connect the supply through hole 106 and the fuel gas supply communication hole 30a are provided.

各連結流路溝108は、第1シール部材48と一体に成形される複数の凸状弾性部材(所謂、ゴムブリッジ)112間に矢印B方向に沿って形成される。凸状弾性部材112は、積層方向(矢印A方向)から見て裏面側のシール部材(図示せず)と重なる重なり領域を有し、前記重なり領域が燃料ガス流れ方向に沿って分割形成される。なお、凸状弾性部材112は、上記の第1の実施形態〜第3の実施形態のいずれの構成を採用してもよい。   Each connection channel groove 108 is formed along the arrow B direction between a plurality of convex elastic members (so-called rubber bridges) 112 that are formed integrally with the first seal member 48. The convex elastic member 112 has an overlapping region that overlaps with a seal member (not shown) on the back surface side when viewed from the stacking direction (arrow A direction), and the overlapping region is divided and formed along the fuel gas flow direction. . The convex elastic member 112 may employ any of the configurations of the first to third embodiments described above.

従って、第4の実施形態では、上記の第1〜第3の実施形態と同様の効果を得ることができる。   Therefore, in the fourth embodiment, the same effects as those in the first to third embodiments can be obtained.

図10は、本発明の第5の実施形態に係る燃料電池120を構成する第1金属セパレータ122の要部斜視説明図である。なお、第1の実施形態に係る燃料電池10を構成する第1金属セパレータ18と同一の構成要素には、同一の参照符号を付して、その詳細な説明は省略する。   FIG. 10 is a perspective explanatory view of a main part of the first metal separator 122 constituting the fuel cell 120 according to the fifth embodiment of the present invention. Note that the same components as those of the first metal separator 18 constituting the fuel cell 10 according to the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

第1金属セパレータ122は、入口連結流路52aを構成する凸状弾性部材54aが、金属板122m上に直接設けられる。このため、第5の実施形態では、上記の第1の実施形態と同様の効果が得られる。また、上記の第2の実施形態に係る第1金属セパレータ82や第3の実施形態に係る第1金属セパレータ92においても、同様に構成することができる。   As for the 1st metal separator 122, the convex elastic member 54a which comprises the inlet connection flow path 52a is directly provided on the metal plate 122m. For this reason, in the fifth embodiment, the same effect as in the first embodiment can be obtained. The first metal separator 82 according to the second embodiment and the first metal separator 92 according to the third embodiment can be configured in the same manner.

10、80、90、100、120…燃料電池
12…発電セル 16…電解質膜・電極構造体
18、20、82、92、102、122…金属セパレータ
26a…酸化剤ガス供給連通孔 26b…酸化剤ガス排出連通孔
28a…冷却媒体供給連通孔 28b…冷却媒体排出連通孔
30a…燃料ガス供給連通孔 30b…燃料ガス排出連通孔
38…酸化剤ガス流路 42…燃料ガス流路
46…冷却媒体流路 48、50…シール部材
52a、56a、60a、84、94、104…入口連結流路
52b、56b、60b…出口連結流路
54a、58a、62a、86、96、112…凸状弾性部材
64…固体高分子電解質膜 66…カソード電極
68…アノード電極 88、98…弾性部材
106…供給貫通孔 108、110…連結流路溝
DESCRIPTION OF SYMBOLS 10, 80, 90, 100, 120 ... Fuel cell 12 ... Power generation cell 16 ... Electrolyte membrane electrode structure 18, 20, 82, 92, 102, 122 ... Metal separator 26a ... Oxidant gas supply communication hole 26b ... Oxidant Gas discharge communication hole 28a ... Cooling medium supply communication hole 28b ... Cooling medium discharge communication hole 30a ... Fuel gas supply communication hole 30b ... Fuel gas discharge communication hole 38 ... Oxidant gas flow path 42 ... Fuel gas flow path 46 ... Cooling medium flow Channels 48, 50... Seal members 52a, 56a, 60a, 84, 94, 104 ... Inlet connection channels 52b, 56b, 60b ... Outlet link channels 54a, 58a, 62a, 86, 96, 112 ... Convex elastic member 64 ... Solid polymer electrolyte membrane 66 ... Cathode electrode 68 ... Anode electrode 88, 98 ... Elastic member 106 ... Supply through hole 108, 110 ... Connection flow channel groove

Claims (4)

電解質膜の両面に電極が設けられる電解質膜・電極構造体と、セパレータとが積層されるとともに、少なくとも燃料ガス、酸化剤ガス又は冷却媒体である流体を前記セパレータの面方向に沿って流通させる流体流路と、前記流体を前記セパレータの積層方向に流通させる流体連通孔と、前記セパレータの前記流体流路と前記流体連通孔との間に設けられ前記積層方向に荷重が付与される複数の凸状弾性部材間に形成され、前記流体流路及び前記流体連通孔を接続する連結流路とを備える燃料電池であって、
前記複数の凸状弾性部材と前記積層方向に隣接し、前記連結流路の延在方向に交差する方向に延在し、前記流体の漏れを防止するための複数本のシール部材が設けられるとともに、
前記複数の凸状弾性部材は、前記積層方向から見て前記シール部材と重なる重なり領域を有し、前記重なり領域が前記延在方向に沿って分割形成され
分割された前記凸状弾性部材同士の間には、該凸状弾性部材よりも高さの低い弾性部材が設けられることを特徴とする燃料電池。
A fluid in which an electrolyte membrane / electrode structure in which electrodes are provided on both surfaces of an electrolyte membrane and a separator are laminated, and at least a fluid that is a fuel gas, an oxidant gas, or a cooling medium flows along the surface direction of the separator A plurality of protrusions that are provided between the flow path , the fluid communication holes that allow the fluid to flow in the stacking direction of the separator, and the fluid flow holes and the fluid communication holes of the separator that are applied with a load in the stacking direction. A fuel cell comprising a fluid passage formed between the elastic members and connecting the fluid passage and the fluid communication hole;
Adjacent to the stacking direction and the plurality of convex elastic member, and extending in a direction intersecting the extending direction of the connecting channel, with a plurality of sealing members for preventing leakage of the fluid is provided ,
The plurality of convex elastic members have an overlapping region that overlaps with the seal member when viewed from the stacking direction, and the overlapping region is divided and formed along the extending direction ,
Between the adjacent divided the convex elastic member, a fuel cell, wherein Rukoto low elastic member height is provided than the convex elastic member.
電解質膜の両面に電極が設けられる電解質膜・電極構造体と、セパレータとが積層されるとともに、少なくとも燃料ガス、酸化剤ガス又は冷却媒体である流体を前記セパレータの面方向に沿って流通させる流体流路と、前記流体を前記セパレータの積層方向に流通させる流体連通孔と、前記セパレータの前記流体流路と前記流体連通孔との間に設けられ前記積層方向に荷重が付与される複数の凸状弾性部材間に形成され、前記流体流路及び前記流体連通孔を接続する連結流路とを備える燃料電池であって、
前記複数の凸状弾性部材と前記積層方向に隣接し、前記連結流路の延在方向に交差する方向に延在し、前記流体の漏れを防止するための複数本のシール部材が設けられるとともに、
前記複数の凸状弾性部材は、前記積層方向から見て前記シール部材と重なる重なり領域を有し、前記重なり領域が前記延在方向に沿って分割形成され、
分割された前記凸状弾性部材同士の間には、該凸状弾性部材よりも前記延在方向に交差する幅寸法の小さな弾性部材が設けられることを特徴とする燃料電池。
A fluid in which an electrolyte membrane / electrode structure in which electrodes are provided on both surfaces of an electrolyte membrane and a separator are laminated, and at least a fluid that is a fuel gas, an oxidant gas, or a cooling medium flows along the surface direction of the separator A plurality of protrusions that are provided between the flow path, the fluid communication holes that allow the fluid to flow in the stacking direction of the separator, and the fluid flow holes and the fluid communication holes of the separator that are applied with a load in the stacking direction. A fuel cell comprising a fluid passage formed between the elastic members and connecting the fluid passage and the fluid communication hole;
A plurality of seal members are provided adjacent to the plurality of convex elastic members in the stacking direction, extending in a direction intersecting with the extending direction of the connection flow path, and preventing leakage of the fluid. ,
The plurality of convex elastic members have an overlapping region that overlaps with the seal member when viewed from the stacking direction, and the overlapping region is divided and formed along the extending direction,
An elastic member having a smaller width dimension that intersects the extending direction than the convex elastic member is provided between the divided convex elastic members.
請求項1又は2記載の燃料電池において、前記凸状弾性部材は、前記シール部材の本数と同数に分割されることを特徴とする燃料電池。 3. The fuel cell according to claim 1, wherein the convex elastic member is divided into the same number as the number of the sealing members. 請求項1〜のいずれか1項に記載の燃料電池において、前記流体連通孔に近接して前記複数の凸状弾性部材間に開口し、前記流体を流通させる貫通孔が形成されるとともに、
前記貫通孔の一端側は、前記セパレータの前記流体流路が設けられた面側で前記連結流路に連通する一方、前記貫通孔の他端側は、前記セパレータの前記流体流路が設けられた前記面側とは反対側で前記流体連通孔に連通することを特徴とする燃料電池。
The fuel cell according to any one of claims 1 to 3 , wherein a through-hole is formed between the plurality of convex elastic members in the vicinity of the fluid communication hole to allow the fluid to flow therethrough.
One end of the through hole, while communicating with the connection channel in the side where the fluid passage is provided of the separator, the other end of the through hole, the fluid flow path of the separator is provided The fuel cell is characterized in that it communicates with the fluid communication hole on the side opposite to the surface side.
JP2013041917A 2013-03-04 2013-03-04 Fuel cell Expired - Fee Related JP6063303B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013041917A JP6063303B2 (en) 2013-03-04 2013-03-04 Fuel cell
US14/191,428 US9673458B2 (en) 2013-03-04 2014-02-27 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013041917A JP6063303B2 (en) 2013-03-04 2013-03-04 Fuel cell

Publications (2)

Publication Number Publication Date
JP2014170670A JP2014170670A (en) 2014-09-18
JP6063303B2 true JP6063303B2 (en) 2017-01-18

Family

ID=51421085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013041917A Expired - Fee Related JP6063303B2 (en) 2013-03-04 2013-03-04 Fuel cell

Country Status (2)

Country Link
US (1) US9673458B2 (en)
JP (1) JP6063303B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6050158B2 (en) * 2013-03-12 2016-12-21 株式会社日本自動車部品総合研究所 Fuel cell
JP6065859B2 (en) * 2014-03-05 2017-01-25 ブラザー工業株式会社 Separator and fuel cell having the same
JP6258839B2 (en) * 2014-11-13 2018-01-10 トヨタ自動車株式会社 Fuel cell separator, fuel cell current collector, fuel cell, and fuel cell stack
CN105702968B (en) * 2014-11-28 2018-07-24 中国科学院大连化学物理研究所 A kind of metal stamping bipolar plates of simple structure
CN109216723A (en) * 2017-07-03 2019-01-15 松下知识产权经营株式会社 Fuel cell
GB201713141D0 (en) * 2017-08-16 2017-09-27 Ceres Ip Co Ltd Fuel cell unit
JP2021114355A (en) * 2018-04-10 2021-08-05 パナソニックIpマネジメント株式会社 Fuel battery cell and fuel battery stack
DE102021102194A1 (en) 2021-02-01 2022-08-04 Schaeffler Technologies AG & Co. KG Seal assembly for a fuel cell and method of manufacturing a seal assembly
DE102022207186A1 (en) 2022-07-14 2024-01-25 Robert Bosch Gesellschaft mit beschränkter Haftung Distributor plate for an electrochemical cell

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7704625B2 (en) 2003-05-01 2010-04-27 Honda Motor Co., Ltd. Fuel cell
JP4727910B2 (en) * 2003-05-01 2011-07-20 本田技研工業株式会社 Fuel cell
JP4214027B2 (en) 2003-09-29 2009-01-28 本田技研工業株式会社 Fuel cell
TWI241046B (en) * 2003-12-12 2005-10-01 Asia Pacific Fuel Cell Tech Sealing structure of modulized proton-exchange-membrane fuel battery
JP4562501B2 (en) 2004-11-25 2010-10-13 本田技研工業株式会社 Fuel cell
JP4426429B2 (en) 2004-12-15 2010-03-03 株式会社日立製作所 Fuel cell separator and fuel cell
US7758991B2 (en) 2006-11-09 2010-07-20 Honda Motor Co., Ltd. Fuel cell
JP5216240B2 (en) * 2007-05-24 2013-06-19 本田技研工業株式会社 Fuel cell
JP5112004B2 (en) 2007-10-25 2013-01-09 本田技研工業株式会社 Fuel cell
JP2010153175A (en) 2008-12-25 2010-07-08 Honda Motor Co Ltd Fuel battery
JP5349184B2 (en) 2009-07-23 2013-11-20 本田技研工業株式会社 Fuel cell stack
WO2011033745A1 (en) * 2009-09-16 2011-03-24 パナソニック株式会社 Solid polymer fuel cell

Also Published As

Publication number Publication date
JP2014170670A (en) 2014-09-18
US20140248549A1 (en) 2014-09-04
US9673458B2 (en) 2017-06-06

Similar Documents

Publication Publication Date Title
JP6063303B2 (en) Fuel cell
JP5349184B2 (en) Fuel cell stack
JP5334469B2 (en) Fuel cell stack
JP5226431B2 (en) Fuel cell stack
EP2525429B1 (en) Fuel cell
JP2007294248A (en) Fuel cell and its separator
JP2005235555A (en) Fuel cell
JP5372627B2 (en) Fuel cell
JP4473519B2 (en) Fuel cell
JP5060169B2 (en) Fuel cell
JP4214027B2 (en) Fuel cell
JP5584731B2 (en) Fuel cell
JP5148246B2 (en) Fuel cell
JP6063291B2 (en) Fuel cell stack
JP5643726B2 (en) Fuel cell unit
JP6666665B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP6170868B2 (en) Fuel cell
JP2004335179A (en) Fuel cell
JP6559980B2 (en) Fuel cell
JP2014186858A (en) Fuel cell and operation method thereof
JP5439212B2 (en) Fuel cell
JP2017016758A (en) Fuel cell
JP6204309B2 (en) Fuel cell
JP2009043492A (en) Fuel cell
JP6132819B2 (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161216

R150 Certificate of patent or registration of utility model

Ref document number: 6063303

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees