JP6060946B2 - Temperature estimation method in degassing process - Google Patents

Temperature estimation method in degassing process Download PDF

Info

Publication number
JP6060946B2
JP6060946B2 JP2014153844A JP2014153844A JP6060946B2 JP 6060946 B2 JP6060946 B2 JP 6060946B2 JP 2014153844 A JP2014153844 A JP 2014153844A JP 2014153844 A JP2014153844 A JP 2014153844A JP 6060946 B2 JP6060946 B2 JP 6060946B2
Authority
JP
Japan
Prior art keywords
degassing
temperature drop
temperature
amount
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014153844A
Other languages
Japanese (ja)
Other versions
JP2016030851A (en
Inventor
卓也 須賀
卓也 須賀
川畑 涼
涼 川畑
直哉 澁田
直哉 澁田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014153844A priority Critical patent/JP6060946B2/en
Publication of JP2016030851A publication Critical patent/JP2016030851A/en
Application granted granted Critical
Publication of JP6060946B2 publication Critical patent/JP6060946B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

本発明は、溶鋼の脱ガス処理を行う際に、脱ガス処理に伴う溶鋼の温度降下量を推定する脱ガス処理における温度推定方法に関する。   The present invention relates to a temperature estimation method in a degassing process for estimating a temperature drop of molten steel associated with a degassing process when degassing the molten steel.

製鉄所の製鋼工程では、転炉や電気炉等で精錬処理された溶鋼を、成分や温度等を調整するために種々の方法で処理する二次精錬処理が行われる。特に、二次精錬処理では、高品質な製品に対応するため、RH脱ガス装置等の脱ガス処理設備等を用いた脱ガス処理が行われることが多い。脱ガス処理では、処理に伴って溶鋼の温度が低下するため、処理をする前に予め温度降下量を推定することが行われている。溶鋼の温度が低下する要因としては、例えば添加する合金鉄等の顕熱および潜熱による抜熱、溶鋼が収容される取鍋への抜熱、脱ガス処理設備への抜熱、処理時間に伴う温度降下等がある。
例えば特許文献1には、溶鋼の温度降下量を推定する方法として、製鋼工程において所定の工程の複数の操業因子を説明変数とする線形回帰モデルを用いることで、各処理工程での温度降下量を推定する方法が開示されている。
In the steelmaking process of steelworks, secondary refining treatment is performed in which molten steel refined in a converter, electric furnace, or the like is treated by various methods in order to adjust the components, temperature, and the like. In particular, in the secondary refining process, a degassing process using a degassing process facility such as an RH degassing apparatus is often performed in order to cope with a high-quality product. In the degassing process, since the temperature of the molten steel decreases with the process, the amount of temperature drop is estimated in advance before the process. Factors that lower the temperature of molten steel include, for example, heat removal by sensible heat and latent heat of the alloy iron to be added, heat removal to the ladle in which the molten steel is stored, heat removal to the degassing equipment, and processing time. There is a temperature drop.
For example, in Patent Document 1, as a method of estimating the temperature drop amount of molten steel, a temperature regression amount in each processing step is used by using a linear regression model having a plurality of operating factors of a predetermined step as explanatory variables in the steel making step. A method of estimating is disclosed.

特開2012−57195号公報JP 2012-57195 A

しかし、特許文献1のように、操業因子に対して線形回帰モデルで温度降下量を推定する方法では、脱ガス処理に適用した場合に、推定した温度降下量に対して実績の温度降下量が大きくずれることがあった。
そこで、本発明は、上記の課題に着目してなされたものであり、溶鋼の温度降下量の推定精度を向上させることができる脱ガス処理における温度推定方法を提供することを目的としている。
However, as in Patent Document 1, in the method of estimating the temperature drop amount with the linear regression model with respect to the operation factor, the actual temperature drop amount with respect to the estimated temperature drop amount is applied to the degassing process. There was a big shift.
Then, this invention is made paying attention to said subject, and it aims at providing the temperature estimation method in the degassing process which can improve the estimation precision of the temperature fall amount of molten steel.

上記目的を達成するために、本発明の一態様に係る脱ガス処理における温度推定方法は、脱ガス処理による溶鋼の温度降下量を推定する温度推定方法において、脱ガス処理を行う脱ガス処理設備への抜熱に伴う温度降下量を、脱ガス処理をしてから次に脱ガス処理を開始するまでの時間である処理間隔に対して非線形の算出式を用いて算出し、脱ガス処理設備への抜熱に伴う温度降下量を算出する際に、下記(2)式を用いて温度降下量を算出することを特徴とする。

Figure 0006060946
D:温度降下量[℃]
a,b:係数
:処理間隔[分]
また、本発明の一態様に係る脱ガス処理における温度推定方法は、脱ガス処理による溶鋼の温度降下量を推定する温度推定方法において、脱ガス処理を行う脱ガス処理設備への抜熱に伴う温度降下量を、脱ガス処理をしてから次に脱ガス処理を開始するまでの時間である処理間隔に対して閾値の前後で異なる2つの線形の算出式を用いて算出することを特徴とする。 In order to achieve the above object, a temperature estimation method in a degassing process according to an aspect of the present invention is a temperature estimation method for estimating a temperature drop amount of molten steel due to a degassing process, and a degassing processing facility that performs the degassing process. The amount of temperature drop due to heat removal to the heat is calculated using a non-linear calculation formula for the processing interval, which is the time from the degassing process to the start of the next degassing process. When calculating the amount of temperature drop due to heat removal to the head, the amount of temperature drop is calculated using the following equation (2).
Figure 0006060946
D: Temperature drop [° C]
a, b: coefficient
t 2 : Processing interval [minutes]
Moreover, the temperature estimation method in the degassing process according to one embodiment of the present invention is a temperature estimation method for estimating a temperature drop amount of molten steel due to the degassing process, and is associated with heat removal to a degassing processing facility that performs the degassing process. The temperature drop amount is calculated using two linear calculation formulas different before and after the threshold with respect to a processing interval which is a time from the degassing process to the next start of the degassing process, To do.

本発明に係る脱ガス処理における温度推定方法によれば、溶鋼の温度降下量の推定精度を向上させることができる。   According to the temperature estimation method in the degassing process according to the present invention, it is possible to improve the estimation accuracy of the temperature drop amount of the molten steel.

本発明の一実施形態のRH脱ガス処理装置を示す側面図である。It is a side view which shows the RH degassing processing apparatus of one Embodiment of this invention. 処理間隔と温度降下量との関係を示すグラフである。It is a graph which shows the relationship between a process interval and a temperature fall amount. 図2の破線部における浸漬管の吸熱および抜熱挙動を示す説明図である。It is explanatory drawing which shows the heat absorption and heat removal behavior of the dip tube in the broken-line part of FIG.

以下、本発明を実施するための形態(以下、実施形態という。)を、図面を参照しながら詳細に説明する。
<脱ガス処理>
まず、図1を参照して本発明の一実施形態における脱ガス処理について説明する。製鋼工程では、転炉や電気炉等の精錬炉を用いて、溶銑やスクラップ等を原料として精錬処理することで溶鋼が得られる。得られた溶鋼は、取鍋4に収容された後、脱ガス処理設備等の二次精錬設備において、成分調整や温度調整等の二次精錬処理が行われる。二次精錬処理された溶鋼は、連続鋳造機や造塊鋳型等の鋳造設備で鋳造されることで、スラブやインゴット等の半製品となる。
DESCRIPTION OF EMBODIMENTS Hereinafter, modes for carrying out the present invention (hereinafter referred to as embodiments) will be described in detail with reference to the drawings.
<Degassing treatment>
First, the degassing process in one embodiment of the present invention will be described with reference to FIG. In the steelmaking process, molten steel is obtained by refining using hot metal, scrap, or the like as a raw material using a refining furnace such as a converter or an electric furnace. The obtained molten steel is accommodated in the ladle 4 and then subjected to secondary refining treatment such as component adjustment and temperature adjustment in a secondary refining facility such as a degassing treatment facility. The molten steel subjected to the secondary refining treatment is cast into a semi-finished product such as a slab or ingot by casting with a casting machine such as a continuous casting machine or an ingot mold.

本実施形態では、二次精錬処理として、脱ガス処理設備であるRH脱ガス処理装置1を用いて脱ガス処理を行う。RH脱ガス処理装置1は、略円筒容器状の真空槽2と、略円筒状の1対の浸漬管3a,3b(3)とを有する。真空槽2は、略円筒容器状の本体21と、本体21の槽底から延びる一対の略円筒状の還流管22a,22b(22)とからなる。真空槽2の本体21および還流管22は、鉄皮と、鉄皮の内面を覆って設けられた耐火物とからなる。また、一対の還流管22a,22bの先端には、フランジがそれぞれ設けられる。浸漬管3は、略円筒状の鉄皮と、鉄皮を覆って設けられた耐火物とを有する。また、浸漬管3には、還流管22のフランジと連結するフランジが、真空槽2と対向する側の先端に設けられる。   In the present embodiment, as the secondary refining process, the degassing process is performed using the RH degassing apparatus 1 which is a degassing process facility. The RH degassing apparatus 1 includes a substantially cylindrical container-like vacuum chamber 2 and a pair of substantially cylindrical dip tubes 3a and 3b (3). The vacuum tank 2 includes a substantially cylindrical container-like main body 21 and a pair of substantially cylindrical reflux pipes 22 a and 22 b (22) extending from the bottom of the main body 21. The main body 21 and the reflux pipe 22 of the vacuum chamber 2 are composed of an iron skin and a refractory provided so as to cover the inner surface of the iron skin. Further, flanges are respectively provided at the ends of the pair of reflux pipes 22a and 22b. The dip tube 3 has a substantially cylindrical iron skin and a refractory provided so as to cover the iron skin. In addition, the dip tube 3 is provided with a flange connected to the flange of the reflux tube 22 at the tip on the side facing the vacuum chamber 2.

また、真空槽2の上部には、不図示の排気口と、副原料投入シュートと、ランスとが設けられる。排気口は、不図示の真空排気装置と接続され、真空排気装置によって真空槽2の内部気圧を低減可能に構成される。副原料投入シュートには、不図示の複数のホッパーから合金鉄等の各種副原料が送られることで、溶鋼に副原料が添加される。ランスは、真空槽2外に配された一端が酸素供給路に接続され、真空槽2内に配された他端から酸素供給路を介して送られる酸素ガスを噴射する。   Further, an exhaust port (not shown), an auxiliary material charging chute, and a lance are provided on the upper portion of the vacuum chamber 2. The exhaust port is connected to a vacuum exhaust device (not shown), and is configured so that the internal pressure of the vacuum chamber 2 can be reduced by the vacuum exhaust device. By sending various auxiliary materials such as alloy iron from a plurality of hoppers (not shown) to the auxiliary material charging chute, the auxiliary materials are added to the molten steel. The lance has one end arranged outside the vacuum chamber 2 connected to the oxygen supply path, and injects oxygen gas sent from the other end arranged in the vacuum chamber 2 through the oxygen supply path.

上記構成のRH脱ガス処理装置1を用いた脱ガス処理では、まず、図1に示す状態から、真空槽2を下降させ、取鍋4内に収容された溶鋼に浸漬管3a,3bを浸漬させる。次いで、真空槽2内の気圧を下げることで、真空槽2内の所定の高さまで溶鋼を吸い上げる。さらに、いずれか片方の浸漬管3a,3bの内面からArやN等のガスを吹き込むことにより、溶鋼を還流させて処理する。例えば、浸漬管3aの内面からガスを吹き込む場合、ガスが吹き込まれる浸漬管3aでは溶鋼が上昇し、浸漬管3bでは溶鋼が下降することで、溶鋼の循環流が生じる。
上記構成のRH脱ガス処理装置1では、溶鋼が真空槽2内を通過しながら還流することで、溶鋼中のガス成分や不純物等が浮上除去される。また、溶鋼を還流させた状態で、副原料投入シュートから副原料を真空槽2内の溶鋼に添加することにより、溶鋼成分の調整や溶鋼の昇熱が行われる。さらに、ランスから真空槽2内の溶鋼に向かって酸素ガスが噴射されることで、溶鋼の酸化精錬や昇熱が行われる。
In the degassing process using the RH degassing apparatus 1 having the above-described configuration, first, the vacuum chamber 2 is lowered from the state shown in FIG. 1, and the dip tubes 3a and 3b are immersed in the molten steel accommodated in the ladle 4. Let Next, the molten steel is sucked up to a predetermined height in the vacuum chamber 2 by lowering the atmospheric pressure in the vacuum chamber 2. Furthermore, the molten steel is refluxed and processed by blowing a gas such as Ar or N 2 from the inner surface of one of the dip tubes 3a and 3b. For example, when gas is blown from the inner surface of the dip tube 3a, the molten steel rises in the dip tube 3a into which the gas is blown, and the molten steel descends in the dip tube 3b, thereby causing a circulating flow of molten steel.
In the RH degassing apparatus 1 having the above-described configuration, the molten steel is refluxed while passing through the vacuum chamber 2, so that gas components, impurities, and the like in the molten steel are levitated and removed. In addition, the molten steel components are adjusted and the molten steel is heated by adding the auxiliary material to the molten steel in the vacuum chamber 2 from the auxiliary material charging chute while the molten steel is refluxed. Further, the oxygen gas is injected from the lance toward the molten steel in the vacuum chamber 2 so that the molten steel is oxidatively refined and heated.

<温度降下量の推定>
上記のような脱ガス処理では、処理に伴い溶鋼の温度が低下する。また、主に鋳造工程での品質上の理由から、脱ガス処理後の溶鋼の温度を目標温度に対して精度よく合わせる必要がある。このため、脱ガス処理の前に脱ガス処理に伴う溶鋼の温度降下量を精度よく推定する必要がある。
脱ガス処理に伴う溶鋼の温度降下の要因としては、脱ガス処理の処理時間に伴う抜熱、合金鉄等の副原料添加に伴う抜熱、処理中の取鍋4への抜熱、およびRH脱ガス処理装置1への抜熱等がある。脱ガス処理の処理時間に伴う抜熱では、大気等への放熱によって、処理時間に比例して溶鋼の温度が低下する。副原料添加に伴う抜熱では、添加する副原料の潜熱や顕熱によって、副原料の添加量に比例して溶鋼の温度が低下する。処理中の取鍋4への抜熱では、取鍋4への放熱によって、処理時間に比例して溶鋼の温度が低下する。RH脱ガス処理装置1への抜熱は、浸漬管3および真空槽2の耐火物への放熱挙動である。このため、浸漬管3および真空槽2の耐火物の温度に応じて溶鋼の温度が低下する。
<Estimation of temperature drop>
In the degassing process as described above, the temperature of the molten steel decreases with the process. Further, mainly for quality reasons in the casting process, it is necessary to accurately match the temperature of the molten steel after the degassing treatment with respect to the target temperature. For this reason, it is necessary to estimate accurately the amount of temperature drop of molten steel accompanying degassing before degassing.
Factors for the temperature drop of molten steel accompanying degassing treatment include heat removal associated with the degassing treatment time, heat removal associated with the addition of auxiliary materials such as alloy iron, heat removal to the ladle 4 during treatment, and RH There is heat removal to the degassing apparatus 1. In the heat removal accompanying the processing time of the degassing process, the temperature of the molten steel decreases in proportion to the processing time due to heat radiation to the atmosphere or the like. In the heat removal accompanying the addition of the auxiliary material, the temperature of the molten steel decreases in proportion to the added amount of the auxiliary material due to the latent heat or sensible heat of the added auxiliary material. In the heat removal to the ladle 4 during the process, the temperature of the molten steel decreases in proportion to the treatment time due to the heat radiation to the ladle 4. The heat removal to the RH degassing apparatus 1 is a heat dissipation behavior to the refractory in the dip tube 3 and the vacuum chamber 2. For this reason, the temperature of molten steel falls according to the temperature of the refractory material of the dip tube 3 and the vacuum chamber 2.

以上の要因を考慮し、本実施形態では、下記(1)式を用いて脱ガス処理に伴う溶鋼の温度降下量を推定する。(1)式において、第1項は脱ガス処理の処理時間に伴う抜熱、第2項は合金鉄等の副原料添加に伴う抜熱、第3項は処理中の取鍋4への抜熱、第4項はRH脱ガス処理装置1への抜熱による温度降下量をそれぞれ示す。また、(1)式において、ΔTは脱ガス処理に伴う温度降下量[℃]、A,Cは取鍋4やRH脱ガス処理装置1の大きさ等の設備仕様に応じた係数、tは脱ガス処理の予定の処理時間(分)、Bは副原料の種類に応じた係数、mは各副原料の予定の添加量[kg/t]、Dは下記(2)式で算出される温度降下量[℃]をそれぞれ示す。なお、(1)式ではn種類の副原料を用いる場合を示す。(2)式は、RH脱ガス処理装置1への抜熱に伴う温度降下量の算出式を示す。また、(2)式において、a,bは係数、tは脱ガス処理装置1の予定の処理間隔[分]をそれぞれ示す。脱ガス処理装置1の処理間隔は、脱ガス処理装置1が脱ガス処理をしてから次に脱ガス処理を開始するまでの時間であり、温度降下量を推定する対象溶鋼の前に行われる処理における脱ガス処理終了から対象溶鋼の脱ガス処理開始までの時間である。 Considering the above factors, in the present embodiment, the temperature drop amount of the molten steel accompanying the degassing process is estimated using the following equation (1). In the formula (1), the first term is the heat removal associated with the processing time of the degassing treatment, the second term is the heat removal associated with the addition of the auxiliary raw materials such as iron alloy, and the third term is the heat removal to the ladle 4 being treated. The heat and the fourth term show the amount of temperature drop due to heat removal to the RH degassing apparatus 1, respectively. In the equation (1), ΔT is a temperature drop [° C.] accompanying degassing treatment, A i and C are coefficients corresponding to equipment specifications such as the size of the ladle 4 and the RH degassing treatment device 1, and t 1 is the scheduled processing time (minutes) of degassing treatment, B i is a coefficient corresponding to the type of the auxiliary material, mi is the scheduled addition amount [kg / t] of each auxiliary material, and D is the following equation (2) The temperature drop amount [° C.] calculated in the above is shown. In addition, (1) Formula shows the case where n types of auxiliary materials are used. Equation (2) represents a calculation formula for the temperature drop amount associated with heat removal to the RH degassing apparatus 1. In the equation (2), a and b are coefficients, and t 2 is a scheduled processing interval [minutes] of the degassing apparatus 1. The processing interval of the degassing apparatus 1 is the time from when the degassing apparatus 1 performs the degassing process until the next degassing process is started, and is performed before the target molten steel for estimating the temperature drop amount. It is the time from the end of the degassing process to the start of the degassing process of the target molten steel.

Figure 0006060946
Figure 0006060946

Figure 0006060946
Figure 0006060946

ここで、図2および図3を参照して、(2)式で算出される浸漬管3および真空槽2の耐火物への抜熱に伴う温度降下量について詳細に説明する。本発明に先立ち、本発明者らは、工場や脱ガス処理設備の違いから溶鋼の温度降下量の推定精度に違いがあることに注目し、各脱ガス処理設備の操業条件や設備仕様等の違いから、処理間隔に対して耐火物への抜熱に伴う温度降下量の変化が線形に変化しないことを知見した。
図2は、本発明者らによる異なる処理間隔毎に温度降下量を調査した結果を示すグラフである。図2に示すように、処理間隔が11分から95分程度までの長い期間で、溶鋼の温度降下量の変化をみた場合、処理間隔に対する温度降下量の変化は線形にならないことがわかった。特に、処理間隔が11分から45分までの区間Dと処理間隔が45分から100分までの区間Dとでは、処理間隔に対する温度降下量の変化量が大きく異なる。
Here, with reference to FIG. 2 and FIG. 3, the temperature drop amount accompanying the heat removal to the refractory material of the dip tube 3 and the vacuum chamber 2 calculated by Formula (2) is demonstrated in detail. Prior to the present invention, the inventors noticed that there is a difference in the estimation accuracy of the temperature drop of molten steel due to differences in factories and degassing treatment equipment, such as operating conditions and equipment specifications of each degassing treatment equipment. From the difference, it was found that the change in temperature drop due to heat removal to the refractory did not change linearly with the treatment interval.
FIG. 2 is a graph showing the results of investigating the temperature drop at different processing intervals by the present inventors. As shown in FIG. 2, when the change in the temperature drop of the molten steel was observed over a long period from 11 minutes to 95 minutes, it was found that the change in the temperature drop with respect to the treatment interval was not linear. In particular, in a section D 2 of up to 45 minutes to 100 minutes interval D 1 and the processing interval to 45 minutes minutes processing interval is 11, the amount of change in the amount of temperature drop for the processing interval is different largely.

ここで、本発明者らは、このような関係が耐火物の放熱の律速段階が異なることに起因したものであることを見出した。つまり、図3に示すように、まず、脱ガス処理中には、浸漬管3の鉄皮31の表面に設けられた耐火物32が溶鋼5と接触し、溶鋼5から耐火物への熱移動が起こる。次に、脱ガス処理が終了した後、耐火物32の表面から大気への熱拡散が律速段階となる放熱が起こる(自然対流律速段階)。自然対流律速段階の後、耐火物32の表面の温度がある程度まで低下すると、耐火物内での熱移動が律速段階となる放熱が起こる(耐火物内熱移動律速段階)。自然対流律速段階と耐火物内熱移動律速段階とでは放熱速度が異なり、耐火物内熱移動律速段階の放熱速度の方が低くなる。図2における区間Dと区間Dとの処理間隔に対する温度降下量の変化量の違いは、区間Dが自然対流律速段階となり、区間Dが耐火物内熱移動律速段階となることで生じる。 Here, the present inventors have found that such a relationship is caused by a difference in the rate-determining step of heat dissipation of the refractory. That is, as shown in FIG. 3, first, during the degassing process, the refractory 32 provided on the surface of the iron shell 31 of the dip tube 3 comes into contact with the molten steel 5 and heat transfer from the molten steel 5 to the refractory is performed. Happens. Next, after the degassing process is completed, heat dissipation occurs where thermal diffusion from the surface of the refractory 32 to the atmosphere becomes a rate-limiting step (natural convection rate-limiting step). When the temperature of the surface of the refractory 32 is reduced to a certain level after the natural convection rate-limiting step, heat release in the refractory becomes a rate-limiting step (heat transfer rate limiting step in the refractory). The heat release rate is different between the natural convection rate-limiting step and the heat transfer rate limiting step in the refractory, and the heat release rate in the heat transfer rate limiting step in the refractory is lower. Differences in the amount of temperature drop of variation for the processing interval between sections D 1 and the section D 2 in FIG. 2, section becomes D 1 is a natural convection rate-section D 2 that is refractory in the heat transfer rate-determining step Arise.

このような関係は、耐火物32と溶鋼5とが接触する際における耐火物の熱移動の場合であっても同様となる。すなわち、溶鋼5から耐火物32への熱移動では、自然対流律速段階を経た後、耐火物内熱移動律速段階となるため、耐火物32の溶鋼5との接触時間が長くなるに伴って吸熱速度は低下する。このとき、耐火物32の吸熱量Eは、下記(3)で示す曲線で近似することができる。(3)式において、c,dは係数、tは溶鋼5と耐火物との接触時間[分]をそれぞれ示す。 Such a relationship is the same even in the case of heat transfer of the refractory when the refractory 32 and the molten steel 5 are in contact with each other. That is, in the heat transfer from the molten steel 5 to the refractory 32, after passing through the natural convection rate-limiting step, the refractory-internal heat transfer rate-determining step is performed, so that the heat absorption as the contact time of the refractory 32 with the molten steel 5 becomes longer. The speed is reduced. At this time, the endothermic amount E of the refractory 32 can be approximated by a curve represented by the following (3). (3) In the formula, c, d are coefficients, t 3 represents the molten steel 5 and the refractory and the contact time [min], respectively.

Figure 0006060946
Figure 0006060946

ここで、耐火物32が溶鋼5と接触した後に大気へ放熱する際における処理間隔tに対する熱量は、(3)式に示す曲線と同様な曲線で表すことができる。さらに、温度降下量は、この処理間隔tに対する曲線式から算出される熱量に比例する。このため、本発明者らは、(2)式に示す近似曲線式を用いることで処理間隔と温度降下量との関係を精度よく推定することを知見した。なお、(2)式における係数a,bは、各脱ガス処理装置での処理間隔に対する温度降下量の関係の実績を曲線近似することで算出される。 Here, the amount of heat for the process interval t 2 at the time when the refractory 32 is dissipated to the atmosphere after contact with molten steel 5 can be represented by the same curve and the curve shown in (3) below. Furthermore, the amount of temperature drop is proportional to the amount of heat that is calculated from the curve equation for the processing interval t 2. For this reason, the present inventors have found that the relationship between the processing interval and the temperature drop amount can be accurately estimated by using the approximate curve equation shown in Equation (2). The coefficients a and b in the equation (2) are calculated by approximating the results of the relationship between the temperature drop amount with respect to the processing interval in each degassing processing apparatus by curve approximation.

これに対して、従来の推定方法では、実績の処理間隔と温度降下量との関係から線形近似して算出される線形回帰式を用いて温度降下量が推定されていた。このような推定方法は、処理間隔が短い期間となる自然対流律速段階においては、温度降下量を精度よく推定することができるが、処理間隔が長い期間となる耐火物内熱移動律速段階においては、温度降下量を精度よく推定することができなかった。一方、本発明によれば、(2)式のように耐火物32の放熱挙動に応じた非線形の推定式を用いるため、温度降下量の推定精度を高めることができる。   On the other hand, in the conventional estimation method, the temperature drop amount is estimated using a linear regression equation calculated by linear approximation from the relationship between the actual processing interval and the temperature drop amount. Such an estimation method can accurately estimate the amount of temperature drop in the natural convection rate-limiting step where the processing interval is short, but in the refractory heat transfer rate-limiting step where the processing interval is long. The temperature drop could not be estimated accurately. On the other hand, according to the present invention, since a non-linear estimation equation corresponding to the heat dissipation behavior of the refractory 32 is used as in equation (2), the estimation accuracy of the temperature drop amount can be increased.

<変形例>
以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
<Modification>
The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.

例えば、上記実施形態では、RH脱ガス処理装置1への抜熱に伴う温度降下量Dを(2)式を用いて算出したが、本発明はかかる例に限定されない。処理間隔に対する温度降下量の変化は、自然対流律速段階および耐火物内熱移動律速段階の各律速段階においては、それぞれ線形近似することでも精度よく推定することができる。このため、例えば、下記(4),(5)式を用いて温度降下量Dが算出されてもよい。このとき、律速段階が変化する処理間隔を閾値として、処理間隔が閾値未満の場合は(4)式、処理間隔が閾値以上の場合は(5)を用いて温度降下量が算出される。閾値は耐火物32の厚み等の設備仕様によって適宜設定される。例えば、図2に図示した例の場合、律速段階が変化する処理間隔が45分であるため、処理間隔45分を閾値とする。なお、(4),(5)式において、e,fは係数、gは定数をそれぞれ示す。また、係数e,fおよび定数gは、各脱ガス処理装置での処理間隔に対する温度降下量の関係の実績を、閾値を境に(4),(5)式でそれぞれ直線近似することで算出される。   For example, in the above embodiment, the temperature drop amount D accompanying heat removal to the RH degassing apparatus 1 is calculated using the equation (2), but the present invention is not limited to such an example. The change in the temperature drop with respect to the processing interval can be accurately estimated by linear approximation in each of the rate limiting steps of the natural convection rate limiting step and the refractory heat transfer rate limiting step. Therefore, for example, the temperature drop amount D may be calculated using the following formulas (4) and (5). At this time, using the processing interval at which the rate-determining step changes as a threshold, the amount of temperature drop is calculated using equation (4) when the processing interval is less than the threshold, and using (5) when the processing interval is greater than or equal to the threshold. The threshold value is appropriately set according to equipment specifications such as the thickness of the refractory 32. For example, in the example shown in FIG. 2, the processing interval at which the rate-limiting step changes is 45 minutes, so the processing interval of 45 minutes is set as the threshold value. In equations (4) and (5), e and f are coefficients, and g is a constant. Also, the coefficients e and f and the constant g are calculated by linearly approximating the results of the relationship between the temperature drop amount and the processing interval in each degassing processing apparatus using the equations (4) and (5), respectively, with the threshold as a boundary. Is done.

Figure 0006060946
Figure 0006060946

Figure 0006060946
Figure 0006060946

また、上記実施形態では、脱ガス処理設備としてRH脱ガス処理装置1を用いたが、本発明はかかる例に限定されない。例えば、脱ガス処理設備として、DH法等の他の方式を用いた脱ガス処理設備が用いられてもよい。   Moreover, in the said embodiment, although RH degassing processing apparatus 1 was used as a degassing processing equipment, this invention is not limited to this example. For example, as a degassing processing facility, a degassing processing facility using another method such as a DH method may be used.

<実施形態の効果>
(A)本発明の一実施形態に係る脱ガス処理における温度推定方法は、脱ガス処理による溶鋼の温度降下量を推定する温度推定方法において、脱ガス処理を行う脱ガス処理設備1への抜熱に伴う温度降下量を、脱ガス処理をしてから次に脱ガス処理を開始するまでの時間である処理間隔tに対して非線形の算出式である(2)式を用いて算出する。
上記構成によれば、耐火物の放熱挙動に基づいて溶鋼の温度降下量を推定するため、処理間隔に対して線形の算出式を用いる方法に比べ、推定精度を高めることができる。特に、処理間隔が長くなり耐火物内熱移動律速段階となる場合においては、処理間隔に対して線形の算出式を用いる方法よりも推定精度を大幅に向上させることができる。脱ガス処理における温度降下量の推定精度が向上することにより、温度調整のための余分な昇熱処理や冷却処理が減る。これにより、副原料の削減等による製造コストの低廉化や、脱ガス処理時間の短縮による生産能率の拡大を図ることができる。
<Effect of embodiment>
(A) The temperature estimation method in the degassing process according to an embodiment of the present invention is a temperature estimation method for estimating the temperature drop of molten steel due to the degassing process. the temperature drop due to thermal, calculated using a calculation formula of the non-linear equation (2) to the processing interval t 2 is the time from when the degassing process until the next start the degassing process .
According to the said structure, since the temperature fall amount of molten steel is estimated based on the heat dissipation behavior of a refractory, estimation accuracy can be improved compared with the method of using a linear calculation formula with respect to a process interval. In particular, in the case where the processing interval is long and the refractory heat transfer rate is determined, the estimation accuracy can be significantly improved as compared with the method using a linear calculation formula for the processing interval. By improving the estimation accuracy of the temperature drop amount in the degassing process, extra heating and cooling processes for temperature adjustment are reduced. As a result, the production cost can be reduced by reducing the amount of auxiliary materials, and the production efficiency can be increased by shortening the degassing time.

(B)上記(A)において、脱ガス処理設備への抜熱に伴う温度降下量を算出する際に、(2)式を用いて温度降下量を算出する。
(C)本発明の他の実施形態に係る脱ガス処理における温度推定方法は、脱ガス処理による溶鋼の温度降下量を推定する温度推定方法において、脱ガス処理を行う脱ガス処理設備1への抜熱に伴う温度降下量を、脱ガス処理をしてから次に脱ガス処理を開始するまでの時間である処理間隔に対して閾値の前後で異なる2つの線形の算出式である(4),(5)式を用いて算出する。
(B) In (A) above, when calculating the amount of temperature drop accompanying heat removal to the degassing equipment, the amount of temperature drop is calculated using equation (2).
(C) The temperature estimation method in the degassing process according to another embodiment of the present invention is a temperature estimation method for estimating the temperature drop of molten steel due to the degassing process. The temperature drop due to heat removal is two linear calculation formulas different before and after the threshold with respect to the processing interval, which is the time from the degassing process to the start of the next degassing process (4) , (5) is used for calculation.

上記構成によれば、処理間隔に対して1つの線形の算出式を用いる場合と比べ、上記(A)と同様に推定精度を向上させることができる。また、上記(A)の構成に比べて、算出方法が簡便であるため、温度降下量を容易に推定することができる。
(D)上記(C)において、脱ガス処理設備への抜熱に伴う温度降下量を算出する際に、(4)式および(5)式を用いて温度降下量を算出する。
According to the said structure, compared with the case where one linear calculation formula is used with respect to a process interval, estimation accuracy can be improved similarly to said (A). Moreover, since the calculation method is simpler than the configuration of (A) above, the amount of temperature drop can be easily estimated.
(D) In (C) above, when calculating the amount of temperature drop due to heat removal to the degassing facility, the amount of temperature drop is calculated using Equations (4) and (5).

次に本発明者らが行った実施例について説明する。
本発明者らは、(1),(4),(5)式を用いて、溶鋼の温度降下量の推定を行い、異なる溶鋼について脱ガス処理を計10回行った。なお、(4),(5)式の係数は、図3に示す処理時間に対する温度降下量の実績を用いて区間D,Dについてそれぞれ線形近似することで算出した。また、閾値は45分とした。さらに、比較例として、実施例と同様な鋼種について本発明の温度降下量の推定方法を用いずに行った脱ガス処理を異なる溶鋼について計10回行った。
Next, examples performed by the present inventors will be described.
The present inventors estimated the temperature drop of molten steel using the equations (1), (4), and (5), and degassed different molten steels a total of 10 times. Note that the coefficients of the equations (4) and (5) were calculated by linearly approximating the sections D 1 and D 2 using the actual temperature drop with respect to the processing time shown in FIG. The threshold was 45 minutes. Furthermore, as a comparative example, the degassing treatment performed on the same steel types as in the examples without using the temperature drop estimation method of the present invention was performed 10 times for different molten steels.

効果の確認のため、実施例と比較例とについて、酸素ガスを噴射処理した比率(KTB処理比率)および冷却材添加量を調査した。酸素ガスを噴射するKTB処理は、溶鋼を昇熱する際や鋼中のCを除去する際等に用いられる処理である。このため、同様な鋼種で比較した場合、KTB処理比率が低いほど、温度降下量の推定精度が高いことを示す。また、冷却材添加量は、低いほど温度降下量の推定精度が高いことを示す。   In order to confirm the effect, the ratio of the oxygen gas injection treatment (KTB treatment ratio) and the coolant addition amount were investigated for the examples and comparative examples. The KTB process in which oxygen gas is injected is a process used when the molten steel is heated or when C in the steel is removed. For this reason, when comparing with similar steel types, the lower the KTB treatment ratio, the higher the estimation accuracy of the temperature drop. Further, the lower the coolant addition amount, the higher the estimation accuracy of the temperature drop amount.

調査の結果、KTB処理比率は、比較例が55%であったのに対して、実施例が45%と10%低減することを確認できた。また、冷却材添加量は、比較例が2.2kg/tであったのに対して、実施例が2.0kg/tと9%低減することを確認できた。
以上の結果から、本発明に温度推定方法を用いることにより、溶鋼の温度降下量の推定精度を向上させることができることが確認できた。
As a result of the investigation, it was confirmed that the KTB treatment ratio was reduced by 10% to 45% compared to 55% in the comparative example. Further, it was confirmed that the amount of the coolant added was 9%, which was 2.0 kg / t, compared with 2.2 kg / t in the comparative example.
From the above results, it was confirmed that the estimation accuracy of the temperature drop amount of the molten steel can be improved by using the temperature estimation method in the present invention.

1 :RH脱ガス処理装置
2 :真空槽
3,3a,3b :浸漬管
31 :鉄皮
32 :耐火物
4 :取鍋
5 :溶鋼
1: RH degassing apparatus 2: Vacuum tank 3, 3a, 3b: Dip tube 31: Iron skin 32: Refractory 4: Ladle 5: Molten steel

Claims (3)

脱ガス処理による溶鋼の温度降下量を推定する温度推定方法において、
脱ガス処理を行う脱ガス処理設備への抜熱に伴う温度降下量を、脱ガス処理をしてから次に脱ガス処理を開始するまでの時間である処理間隔に対して非線形の算出式を用いて算出し、
前記脱ガス処理設備への抜熱に伴う温度降下量を算出する際に、下記(2)式を用いて温度降下量を算出することを特徴とする脱ガス処理における温度推定方法。
Figure 0006060946
D:温度降下量[℃]
a,b:係数
:処理間隔[分]
In the temperature estimation method for estimating the temperature drop of molten steel due to degassing treatment,
A non-linear calculation formula for the amount of temperature drop due to heat removal to the degassing treatment facility that performs degassing treatment with respect to the processing interval, which is the time from degassing treatment to the start of the next degassing treatment using calculated,
A temperature estimation method in a degassing process, wherein the temperature drop amount is calculated using the following equation (2) when calculating the temperature drop amount due to heat removal to the degassing treatment facility.
Figure 0006060946
D: Temperature drop [° C]
a, b: coefficients
t 2 : Processing interval [minutes]
脱ガス処理による溶鋼の温度降下量を推定する温度推定方法において、
脱ガス処理を行う脱ガス処理設備への抜熱に伴う温度降下量を、脱ガス処理をしてから次に脱ガス処理を開始するまでの時間である処理間隔に対して閾値の前後で異なる2つの線形の算出式を用いて算出することを特徴とする脱ガス処理における温度推定方法。
In the temperature estimation method for estimating the temperature drop of molten steel due to degassing treatment,
The amount of temperature drop due to heat removal to the degassing processing facility that performs the degassing processing differs before and after the threshold with respect to the processing interval, which is the time from the degassing processing to the start of the next degassing processing. A temperature estimation method in a degassing process, wherein the temperature is calculated using two linear calculation formulas.
前記脱ガス処理設備への抜熱に伴う温度降下量を算出する際に、前記処理間隔が前記閾値未満の場合には下記(4)式、前記処理間隔が前記閾値以上の場合には(5)式を用いて温度降下量を算出することを特徴とする請求項に記載の脱ガス処理における温度推定方法。
Figure 0006060946
Figure 0006060946
D:温度降下量[℃]
e,f:係数
g:定数
:処理間隔[分]
When calculating the amount of temperature drop due to heat removal to the degassing treatment facility, if the processing interval is less than the threshold, the following equation (4), and if the processing interval is greater than the threshold (5) The temperature estimation method in the degassing process according to claim 2 , wherein the temperature drop amount is calculated using an equation.
Figure 0006060946
Figure 0006060946
D: Temperature drop [° C]
e, f: coefficient g: constant t 2 : processing interval [minutes]
JP2014153844A 2014-07-29 2014-07-29 Temperature estimation method in degassing process Active JP6060946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014153844A JP6060946B2 (en) 2014-07-29 2014-07-29 Temperature estimation method in degassing process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014153844A JP6060946B2 (en) 2014-07-29 2014-07-29 Temperature estimation method in degassing process

Publications (2)

Publication Number Publication Date
JP2016030851A JP2016030851A (en) 2016-03-07
JP6060946B2 true JP6060946B2 (en) 2017-01-18

Family

ID=55441421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014153844A Active JP6060946B2 (en) 2014-07-29 2014-07-29 Temperature estimation method in degassing process

Country Status (1)

Country Link
JP (1) JP6060946B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2973890B2 (en) * 1995-09-20 1999-11-08 住友金属工業株式会社 How to control molten steel temperature
JP5482615B2 (en) * 2010-10-18 2014-05-07 新日鐵住金株式会社 Blowing control method in converter

Also Published As

Publication number Publication date
JP2016030851A (en) 2016-03-07

Similar Documents

Publication Publication Date Title
JP5482615B2 (en) Blowing control method in converter
JP5999294B2 (en) Steel continuous casting method
JP6060946B2 (en) Temperature estimation method in degassing process
JP6252532B2 (en) Apparatus and method for setting target molten steel temperature at the end of converter blowing
JP5716376B2 (en) Method for determining surface cracks in slabs in continuous casting
JP2015193040A (en) COOLING METHOD OF CASTING PIECE OF HIGH Si SPRING STEEL
JP4806964B2 (en) Method for determining end temperature of vacuum degassing process
JP2020028906A (en) Method of casting steel
JP6435988B2 (en) Breakout prediction method, breakout prevention method, solidified shell thickness measurement method, breakout prediction device and breakout prevention device in continuous casting
KR101388066B1 (en) Forecasting of temperature of molten steel
JP2973890B2 (en) How to control molten steel temperature
WO2021106441A1 (en) Operation method of ladle refining process
KR101412564B1 (en) Method for predicting charging ladle of mold level height
JP2013078796A (en) Method for designing mold for continuously casting beam blank cast slab
JP2018003079A (en) Device for setting target molten steel temperature at converter blowing completion, method for setting target molten steel temperature at converter blowing completion, converter blowing method and converter operation method
JP5942399B2 (en) Converter end point temperature setting method
KR101676203B1 (en) Heat treatment method of stainless steel slab
JP5328306B2 (en) Ladle refining method
JP6642085B2 (en) RH tank bottom refractory thickness estimation method
JP5239147B2 (en) Method of melting high cleanliness steel
JP2021050415A (en) Method for estimating hydrogen concentration in molten steel and method for vacuum degassing and refining molten steel
JP4261602B2 (en) Manufacturing method of high cleanliness steel
JP5885515B2 (en) End point determination method for RH vacuum degasser
JP5169390B2 (en) Thermal insulation method for molten steel
JP2016211045A (en) Device and method for setting target molten steel temperature at the end of converter blowing, and converter operation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161128

R150 Certificate of patent or registration of utility model

Ref document number: 6060946

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250