JP6057978B2 - Automatic transmission oil deterioration judgment device - Google Patents

Automatic transmission oil deterioration judgment device Download PDF

Info

Publication number
JP6057978B2
JP6057978B2 JP2014253225A JP2014253225A JP6057978B2 JP 6057978 B2 JP6057978 B2 JP 6057978B2 JP 2014253225 A JP2014253225 A JP 2014253225A JP 2014253225 A JP2014253225 A JP 2014253225A JP 6057978 B2 JP6057978 B2 JP 6057978B2
Authority
JP
Japan
Prior art keywords
automatic transmission
oil
deterioration
oil temperature
threshold value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014253225A
Other languages
Japanese (ja)
Other versions
JP2016114471A (en
Inventor
山下 徹
徹 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2014253225A priority Critical patent/JP6057978B2/en
Priority to CN201510683923.6A priority patent/CN105697747B/en
Priority to US14/945,432 priority patent/US10024837B2/en
Publication of JP2016114471A publication Critical patent/JP2016114471A/en
Application granted granted Critical
Publication of JP6057978B2 publication Critical patent/JP6057978B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0405Monitoring quality of lubricant or hydraulic fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2888Lubricating oil characteristics, e.g. deterioration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/30Oils, i.e. hydrocarbon liquids for lubricating properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Food Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)
  • Vehicle Cleaning, Maintenance, Repair, Refitting, And Outriggers (AREA)

Description

この発明は自動変速機油の劣化判定装置に関する。   The present invention relates to an automatic transmission oil deterioration determination device.

自動変速機油(Automatic Transmission Fluid。トランスミッションオイル)の劣化を判定する技術としては、例えば特許文献1記載の技術が知られている。   As a technique for determining the deterioration of automatic transmission fluid (transmission oil), for example, a technique described in Patent Document 1 is known.

特許文献1記載の技術にあっては、車両の走行に応じて発生して自動変速機油の劣化を進め得る多様な劣化要因に関連した複数の劣化要素を取得することで車両の使われ方をモニタリングし、取得された複数の劣化要素に基づいて算出されたオイル劣化推定値に従って当該車両に搭載された変速機の自動変速機油の使用態様の厳しさの度合いを判定し、それに応じて自動変速機油の交換タイミングを決定して通知するように構成している。   In the technique described in Patent Document 1, how a vehicle is used by acquiring a plurality of deterioration factors related to various deterioration factors that are generated in accordance with traveling of the vehicle and can promote deterioration of an automatic transmission oil. Monitoring and determining the degree of severity of usage of the automatic transmission oil of the transmission mounted on the vehicle according to the estimated oil deterioration value calculated based on the plurality of acquired deterioration factors, and automatic shifting is accordingly performed The machine oil replacement timing is determined and notified.

特開2011−214932号公報JP 2011-214932 A

このように特許文献1記載の技術にあっては、車両の走行に応じて発生して自動変速機油の劣化を進め得る多様な劣化要因に関連した複数の劣化要素を取得することで自動変速機油の劣化を判定するため、構成が複雑となっていた。   As described above, in the technique described in Patent Document 1, the automatic transmission fluid is obtained by acquiring a plurality of deterioration factors related to various deterioration factors that are generated in accordance with the traveling of the vehicle and can promote the deterioration of the automatic transmission fluid. Therefore, the configuration is complicated.

従って、この発明の目的は上記した不都合を解消し、簡易な構成でありながら、変速機ケース内に回転自在に支持される自動変速機の作動・潤滑用の自動変速機油の劣化を精度良く判定するようにした自動変速機油の劣化判定装置を提供することにある。   Therefore, the object of the present invention is to eliminate the above-mentioned inconveniences and accurately determine deterioration of automatic transmission oil for operation and lubrication of the automatic transmission that is rotatably supported in the transmission case, while having a simple configuration. An object of the present invention is to provide an automatic transmission oil deterioration judging device.

上記した課題を解決するために、請求項1にあっては、車両に搭載されて駆動源の回転を変速して駆動輪に伝達すると共に、変速機ケース内に回転自在に支持される自動変速機の作動・潤滑用の自動変速機油の劣化判定装置において、前記自動変速機油の油温を検出する油温検出手段と、前記油温検出手段によって検出された油温の上昇率を算出する油温上昇率算出手段と、前記車両の走行状態に基づいて前記自動変速機油の消泡性能の低下を推定させる閾値を算出する閾値算出手段と、所定の条件が成立したと判断されるとき、前記算出された油温上昇率を閾値と比較し、前記算出された油温上昇率が閾値以上のとき、前記自動変速機油が劣化したと判定する劣化判定手段と、前記劣化判定手段によって前記自動変速機油が劣化したと判定されるとき、ユーザに前記自動変速機油の交換を促す交換督促手段とを備える如く構成した。   In order to solve the above-described problem, according to a first aspect of the present invention, an automatic transmission that is mounted on a vehicle, shifts the rotation of a drive source and transmits it to a drive wheel, and is rotatably supported in a transmission case. In an automatic transmission oil deterioration judging device for machine operation and lubrication, oil temperature detecting means for detecting the oil temperature of the automatic transmission oil, and oil for calculating an increase rate of the oil temperature detected by the oil temperature detecting means When it is determined that a predetermined condition is satisfied, a temperature increase rate calculating means, a threshold calculating means for calculating a threshold for estimating a decrease in the defoaming performance of the automatic transmission oil based on a running state of the vehicle, The calculated oil temperature increase rate is compared with a threshold value, and when the calculated oil temperature increase rate is equal to or greater than the threshold value, a deterioration determining means for determining that the automatic transmission oil has deteriorated, and the automatic shift by the deterioration determining means. Judged that machine oil has deteriorated The time was as constituting and a replacement demand means for prompting the replacement of the user automatic transmission fluid.

請求項2に係る自動変速機油の劣化判定装置にあっては、前記劣化判定手段は、前記検出された自動変速機油の油温が所定温度以上で、かつ前記自動変速機の回転要素の回転数が閾値以上の状態が既定時間以上継続したとき、前記所定の条件が成立したと判断する如く構成した。   In the automatic transmission oil deterioration determination device according to claim 2, the deterioration determination means is configured such that the detected oil temperature of the automatic transmission oil is equal to or higher than a predetermined temperature, and the rotation speed of the rotation element of the automatic transmission is determined. Is configured so that it is determined that the predetermined condition is satisfied when a state where the value is equal to or greater than the threshold value continues for a predetermined time or longer.

請求項3に係る自動変速機油の劣化判定装置にあっては、前記閾値算出手段は、前記車両の走行速度と変速比とに基づいて前記閾値を算出する如く構成した。   In the automatic transmission oil deterioration determining apparatus according to a third aspect, the threshold value calculation means is configured to calculate the threshold value based on a traveling speed and a gear ratio of the vehicle.

請求項1に係る自動変速機油の劣化判定装置にあっては、自動変速機油の油温を検出し、検出された油温の上昇率を算出し、車両の走行状態に基づいて自動変速機油の消泡性能の低下を推定させる閾値を算出し、所定の条件が成立したと判断されるとき、算出された油温上昇率を閾値と比較し、算出された油温上昇率が閾値以上のとき、自動変速機油が劣化したと判定すると共に、自動変速機油が劣化したと判定されるとき、ユーザに自動変速機油の交換を促す如く構成したので、簡易な構成でありながら自動変速機油の劣化を精度良く判定することができる。   In the automatic transmission oil deterioration judging device according to claim 1, the oil temperature of the automatic transmission oil is detected, the rate of increase of the detected oil temperature is calculated, and the automatic transmission oil is detected based on the running state of the vehicle. When a threshold value for estimating a decrease in defoaming performance is calculated and it is determined that a predetermined condition is satisfied, the calculated oil temperature increase rate is compared with the threshold value, and the calculated oil temperature increase rate is equal to or greater than the threshold value Since it is determined that the automatic transmission fluid has deteriorated and the automatic transmission fluid has been determined to have deteriorated, the user is prompted to replace the automatic transmission fluid. It can be determined with high accuracy.

即ち、油温の上昇率が大きくなると、自動変速機油の消泡性能が悪化して自動変速機油が劣化するという知見に基づき、車両の走行状態に基づいて消泡性能の低下(換言すれば自動変速機油の劣化)を推定させる閾値を算出し、所定の条件が成立したと判断されるとき、算出された油温の上昇率と比較して劣化を判定するようにしたので、自動変速機の劣化を簡易に判定することができる。また、多様な劣化要因に関連した複数の劣化要素を取得する工数が不要となるので、装置のコストを低くすることができる。また、ユーザも遅滞なく自動変速機を交換することができる。   That is, based on the knowledge that the defoaming performance of the automatic transmission fluid deteriorates and the automatic transmission fluid deteriorates as the rate of increase in the oil temperature increases, the defoaming performance decreases (in other words, automatic (Deterioration of transmission oil) is calculated, and when it is determined that the predetermined condition is satisfied, the deterioration is determined by comparing with the calculated rate of increase in the oil temperature. Deterioration can be easily determined. In addition, since the man-hours for acquiring a plurality of deterioration factors related to various deterioration factors are not required, the cost of the apparatus can be reduced. Also, the user can replace the automatic transmission without delay.

請求項2に係る自動変速機油の劣化判定装置にあっては、検出された自動変速機油の油温が所定温度以上で、かつ自動変速機の回転要素の回転数(要素回転数)が閾値以上の状態が既定時間以上継続したとき、所定の条件が成立したと判断する如く構成したので、自動変速機の劣化を精度良く判定することができる。   In the automatic transmission oil deterioration determination device according to claim 2, the detected oil temperature of the automatic transmission oil is equal to or higher than a predetermined temperature, and the rotation speed (element rotation speed) of the rotation element of the automatic transmission is equal to or higher than a threshold value. Since the configuration is such that it is determined that the predetermined condition is satisfied when the state continues for a predetermined time or more, the deterioration of the automatic transmission can be accurately determined.

即ち、油温の上昇率から劣化を判定するに際し、劣化が進行すると、変速機ケース内の自動変速機油の動油面(自動変速機の動作中の泡立つ油面)が高くなるという知見に基づき、油温と回転数と継続時間とから動油面が高くなる状況を所定の条件、換言すれば劣化判定が可能な状況と見做し、そのときに油温の上昇率と閾値とを比較して劣化を判定するようにしたので、劣化を精度良く判定することができる。   That is, when judging the deterioration from the rate of increase in the oil temperature, if the deterioration progresses, the dynamic oil level of the automatic transmission oil in the transmission case (the oil level that bubbles during operation of the automatic transmission) increases. The situation in which the oil level rises from the oil temperature, the number of revolutions and the duration is considered to be a predetermined condition, in other words, a situation where deterioration can be judged, and at that time, the rate of increase in oil temperature is compared with a threshold value. Therefore, the deterioration can be determined with high accuracy.

請求項3に係る自動変速機油の劣化判定装置にあっては、車両の走行速度と変速比とに基づいて閾値を算出する如く構成したので、閾値の算出に車両の走行状況を反映させることができ、よって自動変速機油の劣化を一層精度良く判定することができる。   In the automatic transmission oil deterioration determination device according to the third aspect of the present invention, the threshold value is calculated based on the traveling speed and the gear ratio of the vehicle. Therefore, the traveling condition of the vehicle can be reflected in the calculation of the threshold value. Therefore, the deterioration of the automatic transmission oil can be determined with higher accuracy.

この発明の実施形態に係る自動変速機油の劣化判定装置を全体的に示す概略図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing an overall automatic transmission oil deterioration determination device according to an embodiment of the present invention. 図1に示す装置の動作を説明するフロー・チャートである。It is a flowchart explaining operation | movement of the apparatus shown in FIG. 図2の劣化判断特定モードにあるか否かの判断処理を示すサブ・ルーチン・フロー・チャートである。FIG. 3 is a sub-routine flow chart showing processing for determining whether or not the deterioration determination specific mode of FIG. 2 is in effect. FIG. 図3の要素回転数の算出で使用される特性の説明図である。It is explanatory drawing of the characteristic used by calculation of the element rotation speed of FIG. 同様に、図3の要素回転数の算出で使用される特性の説明図である。Similarly, it is explanatory drawing of the characteristic used by calculation of the element rotation speed of FIG. 図2の油温の上昇率の算出処理を示すサブ・ルーチン・フロー・チャートである。FIG. 3 is a sub-routine flow chart showing a process for calculating an oil temperature increase rate in FIG. 2. FIG. 図2の閾値の算出処理を示すサブ・ルーチン・フロー・チャートである。FIG. 3 is a sub-routine flow chart showing threshold value calculation processing of FIG. 2. FIG. 図7の閾値の算出で使用される閾値の特性の説明図である。It is explanatory drawing of the characteristic of the threshold value used by calculation of the threshold value of FIG. 図1に示す自動変速機油の走行距離に対する消泡性能の特性を示す説明図である。It is explanatory drawing which shows the characteristic of the defoaming performance with respect to the travel distance of the automatic transmission oil shown in FIG. 図9に示す消泡性能に対する油温の上昇率の特性を示す説明図である。It is explanatory drawing which shows the characteristic of the raise rate of the oil temperature with respect to the defoaming performance shown in FIG. 図1に示す自動変速機油の劣化に対する動油面の特性を示す説明図である。It is explanatory drawing which shows the characteristic of the dynamic oil surface with respect to deterioration of the automatic transmission oil shown in FIG. 図1の自動変速機の要素回転数に対する自動変速機油のフリクションの特性を示す説明図である。FIG. 2 is an explanatory diagram showing friction characteristics of automatic transmission oil with respect to element rotational speed of the automatic transmission of FIG. 1. 図3の要素回転数の算出で使用される特性の変形例を示す説明図である。It is explanatory drawing which shows the modification of the characteristic used by calculation of the element rotation speed of FIG.

以下、添付図面に即してこの発明に係る自動変速機油の劣化判定装置を実施するための形態について説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, an embodiment for carrying out an automatic transmission oil deterioration determination device according to the present invention will be described with reference to the accompanying drawings.

(実施形態)
図1はこの発明の実施形態に係る自動変速機油の劣化判定装置を全体的に示す概略図である。
(Embodiment)
FIG. 1 is a schematic diagram showing an overall automatic transmission oil deterioration determining apparatus according to an embodiment of the present invention.

図1において符号10は自動変速機(以下、単に「変速機」という)を示す。変速機10は車両(図示せず)に搭載され、駆動源、より具体的には内燃機関(以下「エンジン」という。図1で図示せず)の出力を変速して左右の駆動輪(図示せず)に伝達する。   In FIG. 1, reference numeral 10 denotes an automatic transmission (hereinafter simply referred to as “transmission”). The transmission 10 is mounted on a vehicle (not shown) and shifts the output of a drive source, more specifically, an internal combustion engine (hereinafter referred to as “engine”; not shown in FIG. 1) to drive left and right drive wheels (see FIG. (Not shown).

図示の如く、変速機10は、互いに平行に設けられた入力軸(回転軸)12とDR(ドライブ)プーリ軸(回転軸)14とDN(ドリブン)プーリ軸(回転軸)16とアイドル軸18を備え、エンジンの出力はロックアップクラッチ20aを有するトルクコンバータ20を介して入力軸12から入力される。   As shown in the figure, the transmission 10 includes an input shaft (rotary shaft) 12, a DR (drive) pulley shaft (rotary shaft) 14, a DN (driven) pulley shaft (rotary shaft) 16, and an idle shaft 18 provided in parallel with each other. The output of the engine is input from the input shaft 12 via the torque converter 20 having the lock-up clutch 20a.

DRプーリ軸14とDNプーリ軸16の間には、無段変速機構(Continuously Variable Transmission。以下「CVT機構」という)26が設けられる。   A continuously variable transmission mechanism (hereinafter referred to as “CVT mechanism”) 26 is provided between the DR pulley shaft 14 and the DN pulley shaft 16.

CVT機構26は、DRプーリ軸14に配設されたDRプーリ30とDNプーリ軸16に配設されたDNプーリ32と、その間に巻き掛けられた無端可撓性部材(例えば金属製のVベルト)34からなる。   The CVT mechanism 26 includes a DR pulley 30 disposed on the DR pulley shaft 14, a DN pulley 32 disposed on the DN pulley shaft 16, and an endless flexible member (for example, a metal V belt) ) 34.

DRプーリ30は、DRプーリ軸14に相対回転不能で軸方向移動不能に設けられた固定DRプーリ半体30aと、DRプーリ軸14に相対回転不能で固定DRプーリ半体30aに対して軸方向移動自在に設けられた可動DRプーリ半体30bからなる。   The DR pulley 30 is fixed to the DR pulley shaft 14 so as not to rotate relative to the DR pulley shaft 14 and cannot move in the axial direction. The DR pulley 30 cannot move relative to the DR pulley shaft 14 and axially relative to the fixed DR pulley half 30a. The movable DR pulley half 30b is movably provided.

DNプーリ32は、DNプーリ軸16に相対回転不能で軸方向移動不能に設けられた固定DNプーリ半体32aと、DNプーリ軸16に相対回転不能で固定DNプーリ半体32aに対して軸方向移動自在に設けられた可動DNプーリ半体32bからなる。   The DN pulley 32 is fixed to the DN pulley shaft 16 so as not to rotate relative to the DN pulley shaft 16 and cannot move in the axial direction. The DN pulley 32 cannot move relative to the DN pulley shaft 16 and axially relative to the stationary DN pulley half 32a. The movable DN pulley half 32b is provided so as to be movable.

可動DRプーリ半体30bと可動DNプーリ半体32bにはピストン室(油圧作動室)30b1,32b1が設けられ、可動DR,DNプーリ半体30b,32bはピストン室30b1,32b1に供給された作動油の油圧(側圧)に応じて固定DR,DNプーリ半体30a,32aに接近あるいは離間する。   The movable DR pulley half 30b and the movable DN pulley half 32b are provided with piston chambers (hydraulic working chambers) 30b1 and 32b1, and the movable DR and DN pulley halves 30b and 32b are supplied to the piston chambers 30b1 and 32b1. The fixed DR and DN pulley halves 30a and 32a approach or separate from each other according to the oil pressure (side pressure).

入力軸12上には車両の進行方向を切り換える前後進切換機構36が設けられる。前後進切換機構36は前進(FWD)走行ギア38と前進(FWD)クラッチ40、および後進(RVS)走行ギア42と後進(RVS)クラッチ44からなる。   A forward / reverse switching mechanism 36 that switches the traveling direction of the vehicle is provided on the input shaft 12. The forward / reverse switching mechanism 36 includes a forward (FWD) travel gear 38 and a forward (FWD) clutch 40, and a reverse (RVS) travel gear 42 and a reverse (RVS) clutch 44.

入力軸12からトルクコンバータ20を介して入力されるエンジンの出力は、前進走行ギア38または後進走行ギア42を介してDRプーリ軸14に伝えられ、DRプーリ軸14を車両前進方向または後進方向に回転させる。   The engine output input from the input shaft 12 via the torque converter 20 is transmitted to the DR pulley shaft 14 via the forward travel gear 38 or the reverse travel gear 42, and the DR pulley shaft 14 is moved forward or backward in the vehicle. Rotate.

DNプーリ軸16にはディファレンシャル機構46が接続される。ディファレンシャル機構46には左右の車軸48が固定されると共に、その端部には駆動輪(図示せず)が取り付けられる。   A differential mechanism 46 is connected to the DN pulley shaft 16. The left and right axles 48 are fixed to the differential mechanism 46, and driving wheels (not shown) are attached to the ends thereof.

CVT機構26にあっては、DRプーリ30とDNプーリ32の両プーリ側圧を増減させてプーリ幅を変化させ、無端可撓性部材34の両プーリ30,32に対する巻き掛け半径を変化させて巻き掛け半径の比(プーリ比)に応じた所望の変速比(レシオ)を無段階で得ることができる。   In the CVT mechanism 26, the pulley side pressure of both the DR pulley 30 and the DN pulley 32 is increased / decreased to change the pulley width, and the winding radius of the endless flexible member 34 to both the pulleys 30, 32 is changed to perform winding. A desired gear ratio (ratio) corresponding to the ratio of the multiplying radii (pulley ratio) can be obtained steplessly.

図示の如く、変速機10はケース50に収容される。より具体的には、ケース50は、変速機10などの本体部分を収容するミッションケース(変速機ケース)52と、トルクコンバータ20などを収容するトルコンケース54とからなる。   As illustrated, the transmission 10 is housed in a case 50. More specifically, the case 50 includes a transmission case (transmission case) 52 that houses a main body portion such as the transmission 10 and a torque converter case 54 that houses the torque converter 20 and the like.

また、変速機ケース52内部にはエンジンによって駆動される油圧(オイル)ポンプ56が設けられ、下部のオイルパン(リザーバ)から汲み上げたATF(自動変速機油)60をDR,DNプーリ30,32のピストン室30b1,32b1に圧送する。   In addition, a hydraulic (oil) pump 56 driven by the engine is provided inside the transmission case 52, and the ATF (automatic transmission fluid) 60 pumped from the lower oil pan (reservoir) is supplied to the DR and DN pulleys 30 and 32. Pumped to the piston chambers 30b1 and 32b1.

DR,DNプーリ軸14,16は中空形状を呈し、DR,DNプーリ軸14,16内部の軸方向にそれぞれ各ピストン室30b1,32b1と連通する油路14a,16aが形成されると共に、変速機ケース52の壁内にも油路52aが形成され、油圧ポンプ56がオイルパンより汲み上げたATF60は、変速機ケース52の油路52a及びDR,DNプーリ軸14,16の油路14a,16aを介してDR,DNプーリ30,32のピストン室30b1,32b1に圧送(供給)されると共に、図示しない油圧制御バルブや前進、後進クラッチ40,44のピストン室などにも圧送される。   The DR and DN pulley shafts 14 and 16 have a hollow shape, and oil passages 14a and 16a communicating with the respective piston chambers 30b1 and 32b1 are formed in the axial direction inside the DR and DN pulley shafts 14 and 16, respectively. An oil passage 52a is also formed in the wall of the case 52, and the ATF 60 pumped up from the oil pan by the hydraulic pump 56 passes through the oil passage 52a of the transmission case 52 and the oil passages 14a and 16a of the DR and DN pulley shafts 14 and 16. The pressure is fed (supplied) to the piston chambers 30b1 and 32b1 of the DR and DN pulleys 30 and 32, and is also pressure-fed to a hydraulic control valve (not shown) and the piston chambers of the forward and reverse clutches 40 and 44.

車両の適宜位置にはECU(Electronic Control Unit。電子制御ユニット)62が設けられる。   An ECU (Electronic Control Unit) 62 is provided at an appropriate position of the vehicle.

変速機ケース52の下部のオイルパンの付近に油温センサ64が設けられてATF60の油温を示す信号を出力すると共に、車軸48の付近には回転数センサ66が設けられ、車軸48の所定の回転角度ごとにパルス信号を出力する。   An oil temperature sensor 64 is provided in the vicinity of the oil pan below the transmission case 52 to output a signal indicating the oil temperature of the ATF 60, and a rotation speed sensor 66 is provided in the vicinity of the axle 48, so A pulse signal is output at each rotation angle.

油温センサ64と回転数センサ66の出力はECU62に送られる。ECU62は回転数センサ66の出力信号の時間間隔を測定して車速(車両の走行速度)を検出する。   Outputs of the oil temperature sensor 64 and the rotation speed sensor 66 are sent to the ECU 62. The ECU 62 detects the vehicle speed (vehicle traveling speed) by measuring the time interval of the output signal of the rotation speed sensor 66.

図示は省略するが、上記した油温センサ64と回転数センサ66以外にも多くのセンサが設けられ、それらセンサの出力もECU62に送られる。さらに、ECU62はエンジンの動作を制御するエンジンECU(図示せず)とも通信自在に構成され、エンジンECUを通じてエンジン回転数など多くのエンジン運転パラメータを取得する。   Although illustration is omitted, many sensors are provided in addition to the oil temperature sensor 64 and the rotational speed sensor 66 described above, and outputs of these sensors are also sent to the ECU 62. Further, the ECU 62 is configured to be able to communicate with an engine ECU (not shown) that controls the operation of the engine, and acquires many engine operation parameters such as the engine speed through the engine ECU.

ECU62は、入力されたセンサ出力とエンジンECUを通じて取得したエンジン運転パラメータとに基づき、上記したトルクコンバータ20のロックアップクラッチ20aの係合量、DRプーリ30などのプーリ幅、前進クラッチ40あるいは後進クラッチ44の係合・非係合などを、それらの背圧室やピストン室などに供給される油圧を調整することで制御する。   The ECU 62 determines the engagement amount of the lockup clutch 20a of the torque converter 20 described above, the width of the pulley such as the DR pulley 30, the forward clutch 40 or the reverse clutch based on the input sensor output and the engine operating parameter acquired through the engine ECU. The engagement / disengagement of 44 is controlled by adjusting the hydraulic pressure supplied to the back pressure chamber, the piston chamber, and the like.

さらに、ECU62は、ATF60の劣化を判定する。以下、ECU62のATF60の劣化判定動作(処理)について説明する。   Further, the ECU 62 determines the deterioration of the ATF 60. Hereinafter, the deterioration determination operation (process) of the ATF 60 of the ECU 62 will be described.

図2はその動作を説明するフロー・チャートである。   FIG. 2 is a flowchart for explaining the operation.

先ずS10において劣化判断特定モードにあるか否か判断する(S:処理ステップ)。劣化判断特定モードは、ATF60の劣化判定を可能とする(許可する)モード所定の条件が成立したことを意味する。   First, in S10, it is determined whether or not the deterioration determination specific mode is set (S: processing step). The deterioration determination specific mode means that a predetermined condition for enabling (permitting) deterioration determination of the ATF 60 is satisfied.

図3は劣化判断特定モードにあるか否かの判断処理を示すサブ・ルーチン・フロー・チャートである。   FIG. 3 is a sub-routine flow chart showing a determination process of whether or not the deterioration determination specific mode is set.

最初にS100において回転数センサ66によって検出された車速と、CVT機構26で設定されている現在の変速比(レシオ)と、油温センサ64によって検出されたATF60の油温とを取得する(読み込む)。   First, the vehicle speed detected by the rotation speed sensor 66 in S100, the current gear ratio (ratio) set by the CVT mechanism 26, and the oil temperature of the ATF 60 detected by the oil temperature sensor 64 are acquired (read). ).

次いでS102に進み、検出された油温が所定温度以上か否か判断し、否定されるときはS104に進み、通常モードにあり、劣化判断特定モードにはないと判断する。   Next, the process proceeds to S102, in which it is determined whether or not the detected oil temperature is equal to or higher than a predetermined temperature. If the determination is negative, the process proceeds to S104, where it is determined that the normal mode is set and the deterioration determination specific mode is not set.

一方、S102で肯定されるときはS106に進み、車速と変速比とから所定の特性を検索して要素回転数を算出する。   On the other hand, when the result in S102 is affirmative, the program proceeds to S106, in which a predetermined characteristic is searched from the vehicle speed and the gear ratio to calculate the element rotational speed.

図4と図5はその特性を説明する説明図である。図4と図5において、要素回転数は変速機10の種々の要素(部位)の回転数、具体的にはCVT機構26のDRプーリ30とDNプーリ32とディファレンシャル機構(「デフ」と図示)46(より詳しくはそのリングギア)を意味する。   4 and 5 are explanatory diagrams for explaining the characteristics. 4 and 5, the element rotational speed is the rotational speed of various elements (parts) of the transmission 10, specifically, the DR pulley 30, the DN pulley 32, and the differential mechanism (shown as “differential”) of the CVT mechanism 26. 46 (more specifically, the ring gear).

図4はCVT機構26の変速比(レシオ)がLOW端にあるとき、図5はそれがOD端にあるときの特性である。変速比がLOW端にあるときは要素1がDRプーリ30、要素2がDNプーリ32となり、OD端にあるときはその逆となる。   FIG. 4 shows the characteristics when the gear ratio (ratio) of the CVT mechanism 26 is at the LOW end, and FIG. 5 shows the characteristics when it is at the OD end. When the gear ratio is at the LOW end, element 1 is the DR pulley 30, and element 2 is the DN pulley 32, and vice versa when at the OD end.

S106では回転数センサ66から検出される車速(横軸)と、その時点で設定されているCVT機構26の変速比に基づき、変速比がLOW端あるいはOD端にあるときは図4あるいは図5の特性に従って要素回転数を算出する一方、変速比がその間にあるときは、破線で示す如く、図4と図5の特性の間に設定される特性に従って要素回転数を算出する。より具体的には、要素1,2,3の3種の特性との交点を求め、それらの交点に対応する縦軸の値を読み取ることで、要素回転数を算出する。   In S106, based on the vehicle speed (horizontal axis) detected from the rotation speed sensor 66 and the gear ratio of the CVT mechanism 26 set at that time, when the gear ratio is at the LOW end or the OD end, FIG. 4 or FIG. On the other hand, when the gear ratio is between them, the element speed is calculated according to the characteristic set between the characteristics shown in FIGS. More specifically, the number of rotations of the element is calculated by obtaining intersections with the three characteristics of the elements 1, 2, and 3 and reading the values on the vertical axis corresponding to these intersections.

このように、この実施形態に係る劣化判定では要素回転数なる概念を導入すると共に、S106の処理ではその要素回転数を算出する。これについては後述する。   As described above, the concept of the element rotational speed is introduced in the deterioration determination according to this embodiment, and the element rotational speed is calculated in the process of S106. This will be described later.

図3フロー・チャートにあっては次いでS108に進み、算出された要素回転数(変速機10の回転要素(CVT機構26のDRプーリ30とDNプーリ32とディファレンシャル機構46)の回転数)が閾値(図4と図5に示す)以上か否か判断し、否定されるときはS104に進む一方、肯定されるときはS110に進み、S102で検出された自動変速機油の油温が所定温度以上と判断されると共に、S108で要素回転数が閾値以上と判断された状態の継続時間を計測する。   In the flowchart of FIG. 3, the process then proceeds to S108, where the calculated element rotational speed (the rotational speed of the rotational element of the transmission 10 (the rotational speed of the DR pulley 30, the DN pulley 32, and the differential mechanism 46 of the CVT mechanism 26)) is the threshold value. (If it is negative, the process proceeds to S104. If the determination is positive, the process proceeds to S110, and the oil temperature of the automatic transmission oil detected in S102 is equal to or higher than a predetermined temperature.) And the duration of the state in which the element rotational speed is determined to be greater than or equal to the threshold in S108 is measured.

次いでS112に進み、S110で計測された継続時間が適宜設定する既定時間以上か否か判断し、否定されるときはS104に進む一方、肯定されるときはS114に進み、劣化判断特定モードにあると判断(判定)する。   Next, the process proceeds to S112, in which it is determined whether or not the duration time measured in S110 is equal to or longer than a predetermined time to be set as appropriate. When the determination is negative, the process proceeds to S104. Judge (determine).

このように、S102で検出された自動変速機油の油温が所定温度以上と判断され、かつS108で要素回転数が閾値以上と判断され、S112でその状態が適宜設定する既定時間以上継続したと判断されるとき、劣化判断特定モードにあると判定、換言すれば所定の条件が成立したと判断する。   As described above, it is determined that the oil temperature of the automatic transmission fluid detected in S102 is equal to or higher than a predetermined temperature, and in S108, it is determined that the element rotational speed is equal to or higher than the threshold value. When the determination is made, it is determined that the deterioration determination specific mode is in effect, that is, it is determined that a predetermined condition is satisfied.

その結果、図2フロー・チャートにおいては、S10の判断は肯定されてS12に進み、油温の上昇率を算出する。   As a result, in the flowchart of FIG. 2, the determination in S10 is affirmed and the process proceeds to S12, and the rate of increase in the oil temperature is calculated.

図6はその処理を示すサブ・ルーチン・フロー・チャートである。   FIG. 6 is a sub-routine flowchart showing the processing.

以下説明すると、S200において油温センサ64によって検出されたATF60の油温を再び取得し(読み込み)、S202に進み、前回値(例えば1minから5min前の値)との差分値(あるいは微分値)を求めて油温の上昇率を算出し、S204に進み、算出した値を次回の演算用に前回値として記憶する。   Explaining below, the oil temperature of the ATF 60 detected by the oil temperature sensor 64 in S200 is acquired (read) again, and the process proceeds to S202, where the difference value (or differential value) from the previous value (for example, a value from 1 min to 5 min before). The oil temperature increase rate is calculated, and the process proceeds to S204, where the calculated value is stored as the previous value for the next calculation.

図2フロー・チャートに戻ると、次いでS14に進み、油温の上昇率を比較するための閾値(消泡性能の低下を推定させる閾値)を算出する。   Returning to the flowchart of FIG. 2, the process then proceeds to S <b> 14 to calculate a threshold value (threshold value for estimating a decrease in the defoaming performance) for comparing the rate of increase in the oil temperature.

図7はその処理を示すサブ・ルーチン・フロー・チャートである。   FIG. 7 is a sub-routine flowchart showing the processing.

以下説明すると、S300において車速と変速比(レシオ)を再び取得し(読み込み)、S302に進み、取得された車速と変速比から図8に示す特性を検索して閾値を算出する。   In the following, the vehicle speed and the gear ratio (ratio) are acquired (read) again in S300, and the process proceeds to S302, where the characteristics shown in FIG. 8 are searched from the acquired vehicle speed and gear ratio to calculate the threshold value.

図8に示す如く、閾値は変速比ごとに設定されると共に、車速が増加するほど増加するように設定される。これは、車速が増加するほど、変速機ケース52においてATF60の攪拌度合いが増加してフリクションが増加し、よって消泡性能が低下したと推定されるからである。同図に記載される上下3本の線は、下から上に向かうにつれて変速比が高くなるように設定される。   As shown in FIG. 8, the threshold value is set for each gear ratio, and is set to increase as the vehicle speed increases. This is because it is estimated that as the vehicle speed increases, the degree of agitation of the ATF 60 increases in the transmission case 52 and the friction increases, thereby deteriorating the defoaming performance. The upper and lower three lines shown in the figure are set so that the gear ratio increases from the bottom to the top.

図2フロー・チャートに戻ると、次いでS16に進み、S12で算出された油温の上昇率がS14で算出された閾値以上か否か判断し、否定されるときは以降の処理をスキップする一方、肯定されるときはS18に進み、ATF60が劣化したと判定し、ATF交換警告灯を点灯してユーザにATF60の交換を促す。   Returning to the flow chart of FIG. 2, the process then proceeds to S16, where it is determined whether or not the rate of increase in the oil temperature calculated in S12 is equal to or greater than the threshold value calculated in S14. If the result is affirmative, the process proceeds to S18, where it is determined that the ATF 60 has deteriorated, and the ATF replacement warning lamp is turned on to prompt the user to replace the ATF 60.

尚、S18においてはATF交換警告灯の点灯に代え、オーディオ装置を利用した音声あるいはナビゲーション装置の画面を利用した映像(さらには音声と映像)などで交換を促すように構成しても良い。   In S18, instead of turning on the ATF replacement warning lamp, the replacement may be urged by voice using the audio device or video (or voice and video) using the screen of the navigation device.

上記した劣化判定について図9以降を参照して説明すると、図9に示す如く、走行距離が増加するにつれてATF60の消泡性能が悪化し、図10に示す如く、それに伴ってATF60の油温の上昇率が増加することは、良く知見されるところである。   9 will be described with reference to FIG. 9 and subsequent figures. As shown in FIG. 9, the defoaming performance of the ATF 60 deteriorates as the mileage increases. As shown in FIG. It is well known that the rate of increase increases.

しかしながら、AFT60の油温の上昇率を単純に閾値と比較するだけでは劣化と即断することはできない。   However, it is not possible to immediately determine deterioration by simply comparing the increase rate of the oil temperature of the AFT 60 with a threshold value.

そこで、発明者はさらに知見を重ねた結果、車両の走行状態に基づいて消泡性能の低下(換言すればATF60の劣化)を推定させるに足る閾値を算出し、所定の条件の成立を判断することで劣化判定の可否を判断し、劣化判定が可能と判断されるとき、算出された油温の上昇率と比較するように構成すれば、ATF60の劣化を精度良く判定できることを見出してこの発明をなしたものである。   Therefore, as a result of further insight, the inventor calculates a threshold value sufficient to estimate a decrease in defoaming performance (in other words, deterioration of ATF 60) based on the running state of the vehicle, and determines whether a predetermined condition is satisfied. The present invention finds that the deterioration of the ATF 60 can be determined with high accuracy if it is configured to compare with the calculated rate of increase in the oil temperature when it is determined whether the deterioration determination is possible. It was made.

より詳しくは、ATF60の劣化が進むと、図11に示す如く、動油面(変速機ケース52内の変速機10の動作中のATF60の泡立ち油面)が高くなるという知見に基づき、動油面そのものは直接把握できないため、それに代え、図12に示すように要素回転数という概念を導入し、それが高くなる状態では攪拌抵抗が増加すると予想されることから、その要素回転数をトリガとして劣化の判定が可能か否か判断するようにした。   More specifically, as the deterioration of the ATF 60 progresses, as shown in FIG. 11, the dynamic oil surface (the bubbling oil surface of the ATF 60 during the operation of the transmission 10 in the transmission case 52) increases. Since the surface itself cannot be grasped directly, instead of introducing the concept of element rotation speed as shown in FIG. 12, it is expected that the stirring resistance will increase when it becomes high, so that element rotation speed is used as a trigger. Judgment was made as to whether or not deterioration could be determined.

即ち、油温が比較的高く、算出される要素回転数が閾値以上となる状態が適宜設定する既定時間以上継続するような状況を劣化判定が可能とする劣化判断特定モードとし、そのモードにあるとき、ATF60の劣化を判定するようにした。これによってATF60の劣化を精度良く判定することができる。   In other words, the deterioration determination specific mode in which deterioration determination is possible is a state in which the oil temperature is relatively high and the state where the calculated element rotational speed is equal to or greater than a threshold value continues for a predetermined time or more, and is in that mode. At this time, the deterioration of the ATF 60 was determined. This makes it possible to accurately determine the deterioration of the ATF 60.

尚、上記において、要素回転数の算出用に図4と図5に示す特性を例示したが、特性はそれらに限られるものではなく、要素を例えばATF60の攪拌(掻き上げ)度合い(換言すればATF60のフリクション)が大きいディファレンシャル機構46(より詳しくはそのリングギア)とし、図13に示す如く、要素1は、CVT機構26の変速比(レシオ)が小さいとき(LOW)の、要素2は中位のプーリ比が1のときの、要素3は大きいとき(OD)のディファレンシャル機構46の回転数を意味するように設定しても良い。   In the above, the characteristics shown in FIG. 4 and FIG. 5 are illustrated for calculating the element rotational speed. However, the characteristics are not limited to these, and the elements are, for example, the degree of stirring (scraping) of ATF 60 (in other words, The differential mechanism 46 (more specifically, its ring gear) has a large friction of the ATF 60, and as shown in FIG. 13, the element 1 has a medium transmission ratio (ratio) of the CVT mechanism 26 (LOW) and the element 2 has a medium When the pulley ratio is 1, the element 3 may be set to mean the rotational speed of the differential mechanism 46 when it is large (OD).

上記した如く、この実施形態にあっては、車両に搭載されて駆動源(エンジン)の回転を変速して駆動輪に伝達すると共に、変速機ケース52内に回転自在に支持される自動変速機10の作動・潤滑用の自動変速機油(ATF)60の劣化判定装置において、前記自動変速機油の油温を検出する油温検出手段(油温センサ64,ECU62,S12,S200)と、前記油温検出手段によって検出された油温の上昇率を算出する油温上昇率算出手段(ECU62,S12,S202)と、前記車両の走行状態に基づいて前記自動変速機油の消泡性能の低下を推定させる閾値を算出する閾値算出手段(ECU62,S14,S300,S302)と、所定の条件が成立したと判断されるとき(S100,S102,S106からS114)、前記算出された油温上昇率を閾値と比較し、前記算出された油温上昇率が閾値以上のとき、前記自動変速機油が劣化したと判定する劣化判定手段(ECU62,S16,S18)と、前記劣化判定手段によって前記自動変速機油が劣化したと判定されるとき、ユーザに前記自動変速機油の交換を促す交換督促手段(ECU62,S18)とを備える如く構成したので、簡易な構成でありながらATF(自動変速機油)60の劣化を精度良く判定することができる。   As described above, in this embodiment, an automatic transmission that is mounted on a vehicle, shifts the rotation of a drive source (engine), transmits the rotation to drive wheels, and is rotatably supported in a transmission case 52. 10, an oil temperature detection means (oil temperature sensor 64, ECU 62, S 12, S 200) for detecting the oil temperature of the automatic transmission oil, and the oil An oil temperature increase rate calculating means (ECU 62, S12, S202) for calculating an increase rate of the oil temperature detected by the temperature detecting means, and a decrease in the defoaming performance of the automatic transmission oil is estimated based on the running state of the vehicle. Threshold calculation means (ECU 62, S14, S300, S302) for calculating the threshold to be used, and when it is determined that a predetermined condition is satisfied (S100, S102, S106 to S114) Degradation determining means (ECU 62, S16, S18) for comparing the calculated oil temperature increase rate with a threshold value and determining that the automatic transmission oil has deteriorated when the calculated oil temperature increase rate is equal to or greater than the threshold value; When the deterioration determining means determines that the automatic transmission oil has deteriorated, the ATF is provided with an exchange prompting means (ECU 62, S18) that prompts the user to replace the automatic transmission oil. (Automatic transmission oil) The deterioration of 60 can be accurately determined.

即ち、油温の上昇率が大きくなると、ATF60の消泡性能が悪化して劣化するという知見に基づき、車両の走行状態に基づいて消泡性能の低下を推定させる閾値を算出し、所定の条件が成立したと判断されるとき、算出された油温の上昇率と比較して劣化を判定するようにしたので、自動変速機油の劣化を簡易に判定することができる。また、多様な劣化要因に関連した複数の劣化要素を取得する工数が不要となるので、装置のコストを低くすることができる。また、これによってユーザも遅滞なくATF60を交換することができる。   That is, based on the knowledge that the defoaming performance of the ATF 60 deteriorates and deteriorates when the rate of increase in the oil temperature increases, a threshold value for estimating a decrease in the defoaming performance based on the running state of the vehicle is calculated. When it is determined that is satisfied, the deterioration is determined by comparing with the calculated rate of increase in the oil temperature, so that it is possible to easily determine the deterioration of the automatic transmission oil. In addition, since the man-hours for acquiring a plurality of deterioration factors related to various deterioration factors are not required, the cost of the apparatus can be reduced. This also allows the user to exchange the ATF 60 without delay.

また、前記劣化判定手段は、前記検出された自動変速機油の油温が所定温度以上で、かつ前記自動変速機の回転要素の回転数(要素回転数)が閾値以上の状態が既定時間以上継続したとき、前記所定の条件が成立したと判断する(ECU62,S10,S102,S106からS114)如く構成したので、自動変速機油の劣化を精度良く判定することができる。   Further, the deterioration determining means continues a state in which the detected oil temperature of the automatic transmission oil is equal to or higher than a predetermined temperature and the rotation speed (element rotation speed) of the rotation element of the automatic transmission is equal to or greater than a predetermined time. In this case, since it is determined that the predetermined condition is satisfied (ECU 62, S10, S102, S106 to S114), it is possible to accurately determine the deterioration of the automatic transmission oil.

即ち、油温の上昇率から劣化を判定するに際し、劣化が進行すると、変速機ケース52の動油面が高くなるという知見に基づき、油温と回転数と継続時間とから動油面が高くなる状況を所定の条件、換言すれば劣化判定が可能となる状況と見做し、そのときに油温の上昇率と閾値とを比較して劣化を判定するようにしたので、自動変速機油の劣化を精度良く判定することができる。   That is, when determining deterioration from the rate of increase in the oil temperature, based on the knowledge that as the deterioration progresses, the moving oil surface of the transmission case 52 becomes higher, the moving oil surface becomes higher from the oil temperature, the rotational speed, and the duration. Therefore, the deterioration is judged by comparing the rate of increase in the oil temperature with a threshold value. Degradation can be accurately determined.

また、前記閾値算出手段は、前記車両の走行速度と変速比とに基づいて前記閾値を算出する(ECU62,S14,S300,S302)如く構成したので、自動変速機油(ATF)60の消泡性能の低下を推定させる閾値の算出に車両の走行状況を反映させることができ、よって自動変速機油(ATF)60の劣化を一層精度良く判定することができる。   Further, since the threshold value calculation means is configured to calculate the threshold value based on the traveling speed and speed ratio of the vehicle (ECU 62, S14, S300, S302), the defoaming performance of the automatic transmission fluid (ATF) 60 It is possible to reflect the traveling state of the vehicle in the calculation of the threshold value for estimating the decrease in the engine speed, and therefore it is possible to determine the deterioration of the automatic transmission fluid (ATF) 60 with higher accuracy.

尚、上記において自動変速機として無段変速機(CVT)を開示したが、それに止まるものではなく、自動変速機は有段変速機でもよく、あるいはツインクラッチ型の変速機であっても良い。   In the above description, a continuously variable transmission (CVT) is disclosed as an automatic transmission. However, the automatic transmission is not limited to this, and the automatic transmission may be a stepped transmission or a twin clutch type transmission.

10 自動変速機、12 入力軸(回転軸)、14 DRプーリ軸(回転軸)、14a油路、16 DNプーリ軸(回転軸)、16a 油路、20 トルクコンバータ、26 CVT機構、30 DRプーリ、30b1 ピストン室(油圧作動室)、32 DNプーリ、32b1 ピストン室(油圧作動室)、36 前後進切換機構、52 変速機ケース、52a 油路、56 油圧ポンプ、60 自動変速機油(ATF)、62 ECU、64 油温センサ、66 回転数センサ
10 automatic transmission, 12 input shaft (rotary shaft), 14 DR pulley shaft (rotary shaft), 14a oil passage, 16 DN pulley shaft (rotary shaft), 16a oil passage, 20 torque converter, 26 CVT mechanism, 30 DR pulley 30b1 piston chamber (hydraulic working chamber), 32 DN pulley, 32b1 piston chamber (hydraulic working chamber), 36 forward / reverse switching mechanism, 52 transmission case, 52a oil passage, 56 hydraulic pump, 60 automatic transmission oil (ATF), 62 ECU, 64 Oil temperature sensor, 66 Speed sensor

Claims (3)

車両に搭載されて駆動源の回転を変速して駆動輪に伝達すると共に、変速機ケース内に回転自在に支持される自動変速機の作動・潤滑用の自動変速機油の劣化判定装置において、前記自動変速機油の油温を検出する油温検出手段と、前記油温検出手段によって検出された油温の上昇率を算出する油温上昇率算出手段と、前記車両の走行状態に基づいて前記自動変速機油の消泡性能の低下を推定させる閾値を算出する閾値算出手段と、所定の条件が成立したと判断されるとき、前記算出された油温上昇率を閾値と比較し、前記算出された油温上昇率が閾値以上のとき、前記自動変速機油が劣化したと判定する劣化判定手段と、前記劣化判定手段によって前記自動変速機油が劣化したと判定されるとき、ユーザに前記自動変速機油の交換を促す交換督促手段とを備えたことを特徴とする自動変速機油の劣化判定装置。   In an automatic transmission oil deterioration determination device mounted on a vehicle for transmitting and transmitting rotation of a drive source to a drive wheel and operating and lubricating an automatic transmission rotatably supported in a transmission case. An oil temperature detecting means for detecting an oil temperature of the automatic transmission oil, an oil temperature increase rate calculating means for calculating an increase rate of the oil temperature detected by the oil temperature detecting means, and the automatic operation based on the running state of the vehicle. Threshold calculating means for calculating a threshold for estimating a reduction in defoaming performance of transmission oil, and when it is determined that a predetermined condition is satisfied, the calculated oil temperature increase rate is compared with a threshold, and the calculated When the rate of increase in oil temperature is equal to or greater than a threshold value, a deterioration determining means for determining that the automatic transmission oil has deteriorated, and when the deterioration determining means determines that the automatic transmission oil has deteriorated, Exchange to encourage exchange Deterioration determination device for an automatic transmission oil, characterized in that a dunning means. 前記劣化判定手段は、前記検出された自動変速機油の油温が所定温度以上で、かつ前記自動変速機の回転要素の回転数が閾値以上の状態が既定時間以上継続したとき、前記所定の条件が成立したと判断することを特徴とする請求項1記載の自動変速機油の劣化判定装置。   The deterioration determining means is configured to detect the predetermined condition when the detected oil temperature of the automatic transmission oil is equal to or higher than a predetermined temperature and the rotational speed of the rotation element of the automatic transmission is equal to or higher than a threshold value for a predetermined time or longer. 2. The automatic transmission oil deterioration determination device according to claim 1, wherein the determination is made as follows. 前記閾値算出手段は、前記車両の走行速度と変速比とに基づいて前記閾値を算出することを特徴とする請求項1または2記載の自動変速機油の劣化判定装置。
3. The automatic transmission oil deterioration determination device according to claim 1, wherein the threshold value calculation means calculates the threshold value based on a traveling speed and a gear ratio of the vehicle.
JP2014253225A 2014-12-15 2014-12-15 Automatic transmission oil deterioration judgment device Expired - Fee Related JP6057978B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014253225A JP6057978B2 (en) 2014-12-15 2014-12-15 Automatic transmission oil deterioration judgment device
CN201510683923.6A CN105697747B (en) 2014-12-15 2015-10-20 The deterioration judging device of automatic transmission fluid
US14/945,432 US10024837B2 (en) 2014-12-15 2015-11-19 Deterioration determination apparatus and deterioration determination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014253225A JP6057978B2 (en) 2014-12-15 2014-12-15 Automatic transmission oil deterioration judgment device

Publications (2)

Publication Number Publication Date
JP2016114471A JP2016114471A (en) 2016-06-23
JP6057978B2 true JP6057978B2 (en) 2017-01-11

Family

ID=56110916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014253225A Expired - Fee Related JP6057978B2 (en) 2014-12-15 2014-12-15 Automatic transmission oil deterioration judgment device

Country Status (3)

Country Link
US (1) US10024837B2 (en)
JP (1) JP6057978B2 (en)
CN (1) CN105697747B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6601266B2 (en) * 2016-03-01 2019-11-06 いすゞ自動車株式会社 Clutch deterioration detection device
US20180328481A1 (en) * 2017-05-12 2018-11-15 GM Global Technology Operations LLC Continuously variable transmission variator control performance diagnostic
JP7310699B2 (en) * 2020-05-01 2023-07-19 トヨタ自動車株式会社 Oil state estimation device, vehicle control device, vehicle control system, and data analysis device
JP7363692B2 (en) 2020-07-17 2023-10-18 トヨタ自動車株式会社 Deterioration estimation device, deterioration estimation method, and deterioration estimation program
CN111959454B (en) * 2020-09-03 2021-10-08 安徽锐途物联科技有限公司 Operating system of intelligent cleaning, oil changing and maintaining equipment of automobile lubricating system
CN112557900A (en) * 2020-11-27 2021-03-26 苏州英特模汽车科技有限公司 Test system of oil-cooled motor stator
CN115264053B (en) * 2022-07-26 2024-05-03 东风汽车有限公司东风日产乘用车公司 Method for identifying failure of gearbox, vehicle and storage medium

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4677847A (en) * 1985-09-30 1987-07-07 Aisin Seiki Kabushiki Kaisha Automotive engine oil monitoring system
JPS6361951A (en) * 1986-09-02 1988-03-18 Nissan Motor Co Ltd Vehicle lubricating oil change warning device
DE10026223A1 (en) * 1999-06-16 2001-01-25 Luk Lamellen & Kupplungsbau Determining operating life of fluid, especially gearbox oil, involves using algorithm relating variation in useful life to temperature in inverse proportion to rate of change in reaction rate
US6677282B2 (en) * 2001-06-21 2004-01-13 The Lubrizol Corporation Dispersant-viscosity improvers for lubricating oil and fuels
US7581434B1 (en) * 2003-09-25 2009-09-01 Rockwell Automation Technologies, Inc. Intelligent fluid sensor for machinery diagnostics, prognostics, and control
JP4409927B2 (en) * 2003-12-09 2010-02-03 本田技研工業株式会社 Hydraulic oil change display for automatic transmission
US7662881B2 (en) * 2004-03-17 2010-02-16 Dow Global Technologies Inc. Viscosity index improver for lubricant compositions
DE102005001547B4 (en) * 2005-01-13 2011-02-10 Zf Friedrichshafen Ag Method for determining an oil property
US8105992B2 (en) * 2006-06-30 2012-01-31 Exxonmobil Chemical Patents Inc. Viscosity index modifiers and lubricant compositions containing such viscosity index modifiers
US7946154B2 (en) * 2008-05-09 2011-05-24 GM Global Technology Operations LLC Hydraulic fluid determination system and method
JP2010065637A (en) * 2008-09-12 2010-03-25 Mitsubishi Heavy Ind Ltd Method and device for diagnosing degradation of lubricating oil in industrial vehicle
JP5339861B2 (en) * 2008-11-13 2013-11-13 Jx日鉱日石エネルギー株式会社 Lubricating oil composition having excellent defoaming property and method for defoaming lubricating oil
JP2011214932A (en) 2010-03-31 2011-10-27 Honda Motor Co Ltd Hydraulic oil evaluation system of vehicle
US9046172B2 (en) * 2010-12-27 2015-06-02 Mazda Motor Corporation Automatic transmission control apparatus
US8880276B2 (en) * 2011-05-26 2014-11-04 Continental Automotive Systems, Inc. Engine friction based oil viscosity monitor
US8190394B2 (en) * 2011-05-31 2012-05-29 General Electric Company System and methods for monitoring oil conditions of a wind turbine gearbox
JP5824737B2 (en) * 2012-01-24 2015-11-25 ジヤトコ株式会社 Hybrid vehicle engine start control device
JP5860739B2 (en) * 2012-03-19 2016-02-16 ナブテスコ株式会社 Speed reducer breakage state notification device, mechanical system with speed reducer breakage state notification function, and speed reducer breakage state notification program
WO2014169019A2 (en) * 2013-04-12 2014-10-16 Dana Limited Monitoring and prognostic system and method for determining a remaining useful life of lubricant in wet clutch transmissions

Also Published As

Publication number Publication date
US20160169859A1 (en) 2016-06-16
CN105697747A (en) 2016-06-22
US10024837B2 (en) 2018-07-17
JP2016114471A (en) 2016-06-23
CN105697747B (en) 2018-12-18

Similar Documents

Publication Publication Date Title
JP6057978B2 (en) Automatic transmission oil deterioration judgment device
JP2009243630A (en) Clutch control device and mu correction factor calculating method
JP2009203916A (en) Apparatus for determining degradation of oil
JP5047088B2 (en) Clutch control device
KR101876871B1 (en) Clutch friction coefficient studying control device and methods of multi-stage automatic transmission
JP5429361B2 (en) Control device for continuously variable transmission
JP2007177943A (en) Control device for vehicle
US20150025760A1 (en) Control apparatus of vehicle
JP5783055B2 (en) Transmission abnormality determination device
JP2010156428A (en) Control device of flow rate control valve
CN106523685A (en) TCU and gear shifting control method thereof
JP4782755B2 (en) Vehicle control device
JP2004044757A (en) Control device for vehicle driving mechanism
JP2004045344A (en) Rotation speed prediction system
JP5568498B2 (en) Vehicle fluid temperature estimation device and fluid temperature estimation method thereof
JP2021110387A (en) Diagnostic device for vehicle
KR101771202B1 (en) System and method for detecting slip of continuous variable teansmission
JP4389462B2 (en) Slip detection device for continuously variable transmission
JP6088473B2 (en) Automatic transmission and abnormality detection device for automatic transmission
CN112628391B (en) Hydraulic control device and hydraulic control method for continuously variable transmission
JP5568499B2 (en) Vehicle fluid temperature estimation device and fluid temperature estimation method thereof
JP4161657B2 (en) Slip detection device for power transmission mechanism
JP5934034B2 (en) Control device for continuously variable transmission mechanism
JP6106485B2 (en) Control device for continuously variable transmission
JP5934035B2 (en) Control device for continuously variable transmission mechanism

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161206

R150 Certificate of patent or registration of utility model

Ref document number: 6057978

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees