JP6051898B2 - Image forming apparatus and process cartridge - Google Patents

Image forming apparatus and process cartridge Download PDF

Info

Publication number
JP6051898B2
JP6051898B2 JP2013019573A JP2013019573A JP6051898B2 JP 6051898 B2 JP6051898 B2 JP 6051898B2 JP 2013019573 A JP2013019573 A JP 2013019573A JP 2013019573 A JP2013019573 A JP 2013019573A JP 6051898 B2 JP6051898 B2 JP 6051898B2
Authority
JP
Japan
Prior art keywords
integer
less
group
general formula
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013019573A
Other languages
Japanese (ja)
Other versions
JP2014149501A (en
Inventor
次郎 是永
次郎 是永
博史 中村
博史 中村
林 義之
義之 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd, Fujifilm Business Innovation Corp filed Critical Fuji Xerox Co Ltd
Priority to JP2013019573A priority Critical patent/JP6051898B2/en
Publication of JP2014149501A publication Critical patent/JP2014149501A/en
Application granted granted Critical
Publication of JP6051898B2 publication Critical patent/JP6051898B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Developing Agents For Electrophotography (AREA)

Description

本発明は、画像形成装置、およびプロセスカートリッジに関する。   The present invention relates to an image forming apparatus and a process cartridge.

電子写真方式の画像形成装置は高速でかつ高印字の品質が得られ、複写機およびレーザービームプリンター等の画像形成装置において利用されている。画像形成装置において用いられる感光体としては、有機の光導電性材料を用いた有機感光体が主流となっている。有機感光体を製造する場合、例えば、アルミニウム基材の上に下引層(中間層と呼ばれる場合もある)を形成し、その後、感光層、特に電荷発生層および電荷輸送層からなる感光層を形成する場合が多い。   An electrophotographic image forming apparatus has high speed and high printing quality, and is used in image forming apparatuses such as copying machines and laser beam printers. As a photoreceptor used in an image forming apparatus, an organic photoreceptor using an organic photoconductive material has become the mainstream. When producing an organic photoreceptor, for example, an undercoat layer (sometimes referred to as an intermediate layer) is formed on an aluminum substrate, and then a photosensitive layer, in particular, a photosensitive layer comprising a charge generation layer and a charge transport layer is formed. Often formed.

例えば、特許文献1には、導電性支持体上に中間層を介して感光層を有する電子写真感光体において、該中間層が特定のポリアミド樹脂を含有することを特徴とする電子写真感光体が開示されている。   For example, Patent Document 1 discloses an electrophotographic photosensitive member having a photosensitive layer through an intermediate layer on a conductive support, wherein the intermediate layer contains a specific polyamide resin. It is disclosed.

特許文献2には、感光体に形成されたトナー像を記録媒体に転写して画像を形成する画像形成装置において、前記感光体は、導電性基材と、前記導電性基材の周囲に形成された中間層と、前記中間層の周囲に形成された感光層と、を有し、前記中間層は、平均粒径が100nm以下の金属酸化物粒子を結着樹脂中に含有することを特徴とする画像形成装置が開示されている。   In Patent Document 2, in an image forming apparatus that forms an image by transferring a toner image formed on a photoconductor to a recording medium, the photoconductor is formed around a conductive base material and the conductive base material. The intermediate layer and a photosensitive layer formed around the intermediate layer, wherein the intermediate layer contains metal oxide particles having an average particle size of 100 nm or less in the binder resin. An image forming apparatus is disclosed.

特許文献3には、導電性基材上に光導電層を設けた電子写真感光体において、導電性基材と光導電層との間に白色顔料と結着剤樹脂を主成分とし、かつ白色顔料と結着剤樹脂の使用割合が容量比で1/1乃至3/1の範囲にある中間層を設けると共に、導電性基材と該中間層との間に結着剤樹脂による下引層を設けたことを特徴とする電子写真感光体が開示されている。   In Patent Document 3, in an electrophotographic photosensitive member in which a photoconductive layer is provided on a conductive substrate, a white pigment and a binder resin are the main components between the conductive substrate and the photoconductive layer, and white An intermediate layer in which the usage ratio of the pigment and the binder resin is within a range of 1/1 to 3/1 by volume ratio is provided, and the undercoat layer made of the binder resin is provided between the conductive substrate and the intermediate layer. There is disclosed an electrophotographic photosensitive member characterized by comprising:

特許文献4には、導電性基材と、該基体上に形成された中間層と、該中間層上に形成された感光層とを備える電子写真感光体であって、前記中間層が、金属酸化物粒子および結着樹脂を含有し、28℃、85%RHで106V/mの電場を印加したときの体積抵抗が108〜1013Ω・cmであり、且つ15℃、15%RHで106V/mの電場を印加したときの体積抵抗が28℃、85%RHで106V/mの電場を印可したときの体積抵抗の500倍以下であることを特徴とする電子写真感光体が開示されている。 Patent Document 4 discloses an electrophotographic photoreceptor comprising a conductive substrate, an intermediate layer formed on the substrate, and a photosensitive layer formed on the intermediate layer, wherein the intermediate layer is a metal It contains oxide particles and a binder resin, has a volume resistance of 10 8 to 10 13 Ω · cm when an electric field of 10 6 V / m is applied at 28 ° C. and 85% RH, and 15 ° C. and 15% volume resistivity 28 ℃ upon application of an electric field of 10 6 V / m at RH, electrons equal to or less than 500 times the volume resistivity when the applied electric field of 10 6 V / m at 85% RH A photographic photoreceptor is disclosed.

特許文献5には、電子写真感光体、帯電手段、露光手段、現像手段および転写手段を備え、前記電子写真感光体の外周面を定められた方向に移動させながら帯電、露光、現像および転写を行う画像形成装置であって、帯電から現像までに要する時間が可変となるように、前記電子写真感光体の外周面の移動速度を制御する制御手段を更に備え、前記電子写真感光体が少なくとも下引層と感光層を有し、前記下引層が少なくとも金属酸化物粒子と該金属酸化物粒子と反応し得る基を有するアクセプター性化合物とを含有することを特徴とする画像形成装置が開示されている。   Patent Document 5 includes an electrophotographic photosensitive member, a charging unit, an exposure unit, a developing unit, and a transfer unit, and performs charging, exposure, development, and transfer while moving the outer peripheral surface of the electrophotographic photosensitive member in a predetermined direction. The image forming apparatus is further provided with control means for controlling the moving speed of the outer peripheral surface of the electrophotographic photosensitive member so that the time required from charging to development is variable, and the electrophotographic photosensitive member is at least lower Disclosed is an image forming apparatus comprising an undercoat layer and a photosensitive layer, wherein the undercoat layer contains at least metal oxide particles and an acceptor compound having a group capable of reacting with the metal oxide particles. ing.

特開平5−11483号公報Japanese Patent Laid-Open No. 5-11483 特開2002−123028号公報JP 2002-123028 A 特開平5−80572号公報Japanese Patent Laid-Open No. 5-80572 特開2003−186219号公報JP 2003-186219 A 特開2006−30698号公報JP 2006-30698 A

本発明の課題は、階調性に優れた画像形成装置を提供することである。   An object of the present invention is to provide an image forming apparatus excellent in gradation.

上記課題は、以下の手段により解決される。即ち、
請求項1に係る発明は、
導電性基材と、金属酸化物粒子および該金属酸化物粒子に配位する下記一般式(1)または一般式(2)で示されるアントラキノン誘導体を含有し、層中における前記金属酸化物粒子の含有量が30質量%以上60質量%以下である下引層と、感光層と、反応性基として水酸基を有する第1の反応性電荷輸送材料および反応性基としてアルコキシ基を有する第2の反応性電荷輸送材料の少なくとも2種の反応性電荷輸送材料重合体を含有する表面保護層と、をこの順に具備する電子写真感光体と、
電子写真感光体の表面を帯電する帯電装置と、
帯電された前記電子写真感光体の表面を露光して、静電潜像を形成する露光装置と、
体積平均粒径4.0μm以下のトナーを含む現像剤を収容し、且つ前記現像剤を表面に保持する現像剤保持体を有し、前記現像剤保持体の表面に保持した前記現像剤により、前記電子写真感光体の表面に形成された静電潜像を現像してトナー像を形成する現像装置と、
前記電子写真感光体の表面に形成されたトナー像を記録媒体に転写する転写装置と、
を備える画像形成装置である。
The above problem is solved by the following means. That is,
The invention according to claim 1
A conductive substrate, metal oxide particles, and an anthraquinone derivative represented by the following general formula (1) or general formula (2) coordinated to the metal oxide particles, A subbing layer having a content of 30% by mass to 60% by mass , a photosensitive layer, a first reactive charge transport material having a hydroxyl group as a reactive group, and a second reaction having an alkoxy group as a reactive group A surface protective layer containing a polymer of at least two types of reactive charge transport materials of the conductive charge transport material , and an electrophotographic photoreceptor comprising in this order,
A charging device for charging the surface of the electrophotographic photosensitive member;
An exposure device that exposes a surface of the charged electrophotographic photosensitive member to form an electrostatic latent image; and
A developer holding body that contains a developer containing a toner having a volume average particle size of 4.0 μm or less and that holds the developer on the surface, and the developer held on the surface of the developer holding body, A developing device that develops an electrostatic latent image formed on the surface of the electrophotographic photosensitive member to form a toner image;
A transfer device for transferring a toner image formed on the surface of the electrophotographic photosensitive member to a recording medium;
An image forming apparatus.


(一般式(1)中、n1およびn2は、各々独立に0以上3以下の整数を表す。但し、n1およびn2の少なくとも一方は、1以上3以下の整数を表す(つまり、n1およびn2が同時に0を表さない)。m1およびm2は、各々独立に0または1の整数を表す。RおよびRは、各々独立に炭素数1以上10以下のアルキル基、または炭素数1以上10以下のアルコキシ基を表す。) (In general formula (1), n1 and n2 each independently represent an integer of 0 or more and 3 or less, provided that at least one of n1 and n2 represents an integer of 1 or more and 3 or less (that is, n1 and n2 are M1 and m2 each independently represent an integer of 0 or 1. R 1 and R 2 each independently represents an alkyl group having 1 to 10 carbon atoms, or 1 to 10 carbon atoms. Represents the following alkoxy group.)


(一般式(2)中、n1、n2、n3、およびn4は、各々独立に0以上3以下の整数を表す。但し、n1およびn2の少なくとも一方は、1以上3以下の整数を表す(つまり、n1およびn2が同時に0を表さない)。また、n3およびn4の少なくとも一方は、1以上3以下の整数を表す(つまり、n3およびn4が同時に0を表さない)。m1およびm2は、各々独立に0または1の整数を表す。RおよびRは、各々独立に炭素数1以上10以下のアルキル基、または炭素数1以上10以下のアルコキシ基を表す。rは、1以上10以上の整数を表す。) (In general formula (2), n1, n2, n3, and n4 each independently represents an integer of 0 or more and 3 or less, provided that at least one of n1 and n2 represents an integer of 1 or more and 3 or less (that is, N1 and n2 do not represent 0 at the same time, and at least one of n3 and n4 represents an integer of 1 or more and 3 or less (that is, n3 and n4 do not represent 0 at the same time). Each independently represents an integer of 0 or 1. R 1 and R 2 each independently represent an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms, r is 1 or more. Represents an integer of 10 or more.)

請求項2に係る発明は、
導電性基材と、金属酸化物粒子および該金属酸化物粒子に配位する下記一般式(1)または一般式(2)で示されるアントラキノン誘導体を含有し、層中における前記金属酸化物粒子の含有量が30質量%以上60質量%以下である下引層と、感光層と、反応性基として水酸基を有する第1の反応性電荷輸送材料および反応性基としてアルコキシ基を有する第2の反応性電荷輸送材料の少なくとも2種の反応性電荷輸送材料重合体を含有する表面保護層と、をこの順に具備する電子写真感光体と、
体積平均粒径4.0μm以下のトナーを含む現像剤を収容し、且つ前記現像剤を表面に保持する現像剤保持体を有し、前記電子写真感光体の表面に静電潜像が形成された後、前記現像剤保持体の表面に保持した前記現像剤により該静電潜像を現像してトナー像を形成する現像装置と、を備え、
画像形成装置に着脱されるプロセスカートリッジである。
The invention according to claim 2
A conductive substrate, metal oxide particles, and an anthraquinone derivative represented by the following general formula (1) or general formula (2) coordinated to the metal oxide particles, A subbing layer having a content of 30% by mass to 60% by mass , a photosensitive layer, a first reactive charge transport material having a hydroxyl group as a reactive group, and a second reaction having an alkoxy group as a reactive group A surface protective layer containing a polymer of at least two types of reactive charge transport materials of the conductive charge transport material , and an electrophotographic photoreceptor comprising in this order,
A developer holding body that contains a developer containing a toner having a volume average particle size of 4.0 μm or less and that holds the developer on the surface is formed, and an electrostatic latent image is formed on the surface of the electrophotographic photosensitive member. A developing device that develops the electrostatic latent image with the developer held on the surface of the developer holder to form a toner image;
It is a process cartridge that can be attached to and detached from the image forming apparatus.


(一般式(1)中、n1およびn2は、各々独立に0以上3以下の整数を表す。但し、n1およびn2の少なくとも一方は、1以上3以下の整数を表す(つまり、n1およびn2が同時に0を表さない)。m1およびm2は、各々独立に0または1の整数を表す。RおよびRは、各々独立に炭素数1以上10以下のアルキル基、または炭素数1以上10以下のアルコキシ基を表す。) (In general formula (1), n1 and n2 each independently represent an integer of 0 or more and 3 or less, provided that at least one of n1 and n2 represents an integer of 1 or more and 3 or less (that is, n1 and n2 are M1 and m2 each independently represent an integer of 0 or 1. R 1 and R 2 each independently represents an alkyl group having 1 to 10 carbon atoms, or 1 to 10 carbon atoms. Represents the following alkoxy group.)


(一般式(2)中、n1、n2、n3、およびn4は、各々独立に0以上3以下の整数を表す。但し、n1およびn2の少なくとも一方は、1以上3以下の整数を表す(つまり、n1およびn2が同時に0を表さない)。また、n3およびn4の少なくとも一方は、1以上3以下の整数を表す(つまり、n3およびn4が同時に0を表さない)。m1およびm2は、各々独立に0または1の整数を表す。RおよびRは、各々独立に炭素数1以上10以下のアルキル基、または炭素数1以上10以下のアルコキシ基を表す。rは、1以上10以上の整数を表す。) (In general formula (2), n1, n2, n3, and n4 each independently represents an integer of 0 or more and 3 or less, provided that at least one of n1 and n2 represents an integer of 1 or more and 3 or less (that is, N1 and n2 do not represent 0 at the same time, and at least one of n3 and n4 represents an integer of 1 or more and 3 or less (that is, n3 and n4 do not represent 0 at the same time). Each independently represents an integer of 0 or 1. R 1 and R 2 each independently represent an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms, r is 1 or more. Represents an integer of 10 or more.)

請求項1に係る発明によれば、金属酸化物粒子および該金属酸化物粒子に配位する下記一般式(1)または一般式(2)で示されるアントラキノン誘導体を含有する下引層、並びに反応性基として水酸基を有する第1の反応性電荷輸送材料および反応性基としてアルコキシ基を有する第2の反応性電荷輸送材料の少なくとも2種の反応性電荷輸送材料が重合された重合体を含有する表面保護層を具備する電子写真感光体と、体積平均粒径4.0μm以下のトナーを含む現像剤を収容する現像装置と、の一方でも有しない場合に比べ、階調性に優れた画像を形成し得る画像形成装置が提供される。   According to the first aspect of the present invention, the metal oxide particles, the undercoat layer containing the anthraquinone derivative represented by the following general formula (1) or general formula (2) coordinated with the metal oxide particles, and the reaction A polymer obtained by polymerizing at least two types of reactive charge transport materials, a first reactive charge transport material having a hydroxyl group as a reactive group and a second reactive charge transport material having an alkoxy group as a reactive group; Compared with an electrophotographic photosensitive member having a surface protective layer and a developing device containing a developer containing a toner having a volume average particle size of 4.0 μm or less, an image excellent in gradation is obtained. An image forming apparatus that can be formed is provided.

請求項2に係る発明によれば、金属酸化物粒子および該金属酸化物粒子に配位する下記一般式(1)または一般式(2)で示されるアントラキノン誘導体を含有する下引層、並びに反応性基として水酸基を有する第1の反応性電荷輸送材料および反応性基としてアルコキシ基を有する第2の反応性電荷輸送材料の少なくとも2種の反応性電荷輸送材料が重合された重合体を含有する表面保護層を具備する電子写真感光体と、体積平均粒径4.0μm以下のトナーを含む現像剤を収容する現像装置と、の一方でも有しない場合に比べ、階調性に優れた画像を形成し得るプロセスカートリッジが提供される。   According to the invention of claim 2, the metal oxide particles, the undercoat layer containing the anthraquinone derivative represented by the following general formula (1) or general formula (2) coordinated to the metal oxide particles, and the reaction A polymer obtained by polymerizing at least two types of reactive charge transport materials, a first reactive charge transport material having a hydroxyl group as a reactive group and a second reactive charge transport material having an alkoxy group as a reactive group; Compared with an electrophotographic photosensitive member having a surface protective layer and a developing device containing a developer containing a toner having a volume average particle size of 4.0 μm or less, an image excellent in gradation is obtained. A process cartridge that can be formed is provided.

本実施形態に係る画像形成装置を示す概略構成図である。1 is a schematic configuration diagram illustrating an image forming apparatus according to an exemplary embodiment. 本実施形態における電子写真感光体の層構成の一例を示す概略図である。It is the schematic which shows an example of the layer structure of the electrophotographic photoreceptor in this embodiment. 本実施形態における電子写真感光体の層構成の他の例を示す概略図である。It is the schematic which shows the other example of the layer structure of the electrophotographic photoreceptor in this embodiment. 実施例にて出力した画像パターンを示す図である。It is a figure which shows the image pattern output in the Example.

以下、本発明の一例である実施形態について説明する。   Embodiments that are examples of the present invention will be described below.

本実施形態に係る画像形成装置は、電子写真感光体と、電子写真感光体の表面を帯電する帯電装置と、帯電された前記電子写真感光体の表面を露光して、静電潜像を形成する露光装置と、現像装置と、前記電子写真感光体の表面に形成されたトナー像を記録媒体に転写する転写装置と、を備える。
尚、電子写真感光体は、導電性基材と下引層と感光層と表面保護層とをこの順に具備し、下引層には、金属酸化物粒子および該金属酸化物粒子に配位する下記一般式(1)または一般式(2)で示されるアントラキノン誘導体を含有する。また、表面保護層には、反応性基として水酸基を有する第1の反応性電荷輸送材料および反応性基としてアルコキシ基を有する第2の反応性電荷輸送材料の少なくとも2種の反応性電荷輸送材料が重合された重合体を含有する。
更に、現像装置は、体積平均粒径4.0μm以下のトナーを含む現像剤を収容し、且つ前記現像剤を表面に保持する現像剤保持体を有し、前記現像剤保持体の表面に保持した前記現像剤により、前記電子写真感光体の表面に形成された静電潜像を現像してトナー像を形成する
The image forming apparatus according to this embodiment forms an electrostatic latent image by exposing an electrophotographic photosensitive member, a charging device that charges the surface of the electrophotographic photosensitive member, and the charged surface of the electrophotographic photosensitive member. An exposure device for developing, a developing device, and a transfer device for transferring a toner image formed on the surface of the electrophotographic photosensitive member to a recording medium.
The electrophotographic photoreceptor includes a conductive substrate, an undercoat layer, a photosensitive layer, and a surface protective layer in this order, and the undercoat layer coordinates to the metal oxide particles and the metal oxide particles. It contains an anthraquinone derivative represented by the following general formula (1) or general formula (2). In addition, the surface protective layer has at least two types of reactive charge transport materials: a first reactive charge transport material having a hydroxyl group as a reactive group and a second reactive charge transport material having an alkoxy group as a reactive group. Contains a polymerized polymer.
Further, the developing device has a developer holding body that contains a developer containing toner having a volume average particle size of 4.0 μm or less and holds the developer on the surface, and is held on the surface of the developer holding body. The electrostatic latent image formed on the surface of the electrophotographic photosensitive member is developed with the developed developer to form a toner image.

また、本実施形態に係るプロセスカートリッジは、前記電子写真感光体と前記現像装置とを備え、画像形成装置に着脱される。   The process cartridge according to this embodiment includes the electrophotographic photosensitive member and the developing device, and is attached to and detached from the image forming apparatus.

本実施形態では、金属酸化物粒子および該金属酸化物粒子に配位する下記一般式(1)または一般式(2)で示されるアントラキノン誘導体を含有する下引層、並びに前記2種の反応性電荷輸送材料が重合された重合体を含有する表面保護層を具備する電子写真感光体と、体積平均粒径4.0μm以下のトナーを含む現像剤を収容する現像装置と、を組合わせることで、階調性に優れた画像を形成し得るとの効果が奏される。   In the present embodiment, a metal oxide particle, an undercoat layer containing an anthraquinone derivative represented by the following general formula (1) or general formula (2) coordinated to the metal oxide particle, and the two types of reactivity A combination of an electrophotographic photosensitive member having a surface protective layer containing a polymer obtained by polymerizing a charge transport material and a developing device containing a developer containing a toner having a volume average particle size of 4.0 μm or less; In addition, an effect that an image having excellent gradation can be formed is exhibited.

通常、粒径が4.0μm以下の小粒径なトナーを用いる際はその現像性の低さから、帯電電位を上げ、現像電界を大きくする。しかしながら、画像形成の際に電子写真感光体(以下単に「感光体」とも称す)の残留電位が上昇すると帯電電位を上げても露光後電位が上昇し、結局現像電界が小さくなり、階調性が悪化していた。これに対し、前記構成の下引層と前記構成の表面保護層とを組み合わせることで飛躍的に残留電位抑制の能力が向上することを見出した。
この相乗効果が奏されるメカニズムについては必ずしも明確ではないものの、以下のように推察される。
まず、前記構成の下引層による残留電位抑制のメカニズムは、電子輸送能力の高さ、および使用によるアルミニウム基材等の導電性基材の酸化を抑制しているためと考えられる。一方、前記構成の表面保護層による残留電位抑制のメカニズムは、水酸基よりもアルコキシ基の方が反応性が低く、先に水酸基を有する電荷輸送材料の硬化が始まり、その後それらの隙間を埋めるようにアルコキシ基を有する電荷輸送材料が遅れて硬化してゆくことにより、電荷輸送材料分子を硬化により歪める作用が弱まり電荷輸送能が上がるためと考えられる。
しかしながら、前記構成の表面保護層を有する一方で前記構成の下引層を有しない感光体を使用した場合、アルミニウム基材等の導電性基材の酸化が進み、感光体中の電場は酸化された導電性基材に集中し、表面保護層の内部電場が著しく低下するものと推察される。それにより表面保護層の電荷輸送能力が見かけ上低下し、結局のところ残留電位が上昇する。これに対し、前記構成の下引層と前記構成の表面保護層とを組み合わせて用いることで、飛躍的に残留電位抑制能力が発揮され、階調性に優れた画像を形成し得ると考えられる。
Usually, when using a toner having a small particle diameter of 4.0 μm or less, the charging potential is increased and the developing electric field is increased due to its low developability. However, when the residual potential of the electrophotographic photosensitive member (hereinafter also simply referred to as “photosensitive member”) increases during image formation, the post-exposure potential increases even when the charging potential is increased, and the development electric field is decreased, resulting in gradation characteristics. Was getting worse. On the other hand, it has been found that the ability to suppress the residual potential is drastically improved by combining the undercoat layer with the above structure and the surface protective layer with the above structure.
Although the mechanism of this synergistic effect is not necessarily clear, it is presumed as follows.
First, the mechanism of the residual potential suppression by the undercoat layer having the above-described configuration is considered to be due to the high electron transport capability and the suppression of the oxidation of the conductive substrate such as the aluminum substrate due to use. On the other hand, the mechanism for suppressing the residual potential by the surface protective layer having the above-described structure is such that the alkoxy group is less reactive than the hydroxyl group, the curing of the charge transport material having the hydroxyl group first, and then filling those gaps. It is considered that the charge transporting material having an alkoxy group is delayed and cured, whereby the action of distorting the charge transporting material molecule by curing is weakened and the charge transporting ability is increased.
However, when a photoreceptor having the surface protective layer having the above structure and not having the undercoat layer having the above structure is used, the oxidation of the conductive substrate such as an aluminum substrate proceeds, and the electric field in the photoreceptor is oxidized. It is presumed that the internal electric field of the surface protective layer is significantly reduced due to concentration on the conductive base material. As a result, the charge transport capability of the surface protective layer is apparently reduced, and eventually the residual potential is increased. On the other hand, it is considered that by using the undercoat layer having the above-described configuration and the surface protective layer having the above-described configuration in combination, the residual potential suppressing ability can be dramatically exhibited and an image having excellent gradation can be formed. .

以下、図面を参照しつつ、本実施形態に係る画像形成装置について詳細に説明する。
図1は本実施形態の画像形成装置の一例を示す概略構成図である。
Hereinafter, the image forming apparatus according to the present embodiment will be described in detail with reference to the drawings.
FIG. 1 is a schematic configuration diagram illustrating an example of an image forming apparatus according to the present exemplary embodiment.

本実施形態に係る画像形成装置101は、例えば、図1に示すように、回転自在に設けられた本実施形態のドラム状(円筒状)の電子写真感光体7を備えている。電子写真感光体7の周囲には、例えば、電子写真感光体7の外周面の移動方向に沿って、帯電装置8、露光装置10、現像装置11、転写装置12、クリーニング装置13および除電装置(イレーズ装置)14がこの順で配置されている。なお、クリーニング装置13および除電装置(イレーズ装置)14は、配置しなくてもよい。   For example, as shown in FIG. 1, the image forming apparatus 101 according to the present embodiment includes a drum-shaped (cylindrical) electrophotographic photosensitive member 7 of the present embodiment that is rotatably provided. Around the electrophotographic photoreceptor 7, for example, along the movement direction of the outer peripheral surface of the electrophotographic photoreceptor 7, a charging device 8, an exposure device 10, a developing device 11, a transfer device 12, a cleaning device 13, and a charge eliminating device ( (Erase device) 14 is arranged in this order. Note that the cleaning device 13 and the charge removal device (erase device) 14 need not be arranged.

−電子写真感光体−
図2および図3は、本実施形態に係る感光体の層構成の例を示す概略図である。図2に示す感光体は、導電性基材1と、導電性基材1の上に形成された下引層2と、下引層2の上に形成された感光層3と、感光層3の上に形成された表面保護層5と、から構成されている。また、図3に示すごとく、感光層3は電荷発生層31と電荷輸送層32との2層構造でもよい。
-Electrophotographic photoreceptor-
2 and 3 are schematic views showing examples of the layer structure of the photoreceptor according to the present embodiment. 2 includes a conductive substrate 1, an undercoat layer 2 formed on the conductive substrate 1, a photosensitive layer 3 formed on the undercoat layer 2, and a photosensitive layer 3. And a surface protective layer 5 formed on the substrate. Further, as shown in FIG. 3, the photosensitive layer 3 may have a two-layer structure of a charge generation layer 31 and a charge transport layer 32.

尚、下引層2と感光層3との間、または下引層2と電荷発生層31との間に別途中間層を設けてもよい。更に、中間層は、導電性基材1と下引層2との間に設けてもよいし、無論、中間層を設けない態様であってもよい。   A separate intermediate layer may be provided between the undercoat layer 2 and the photosensitive layer 3 or between the undercoat layer 2 and the charge generation layer 31. Furthermore, the intermediate layer may be provided between the conductive substrate 1 and the undercoat layer 2, or of course, an embodiment in which the intermediate layer is not provided may be employed.

次に、電子写真感光体の各要素について説明する。なお、符号は省略して説明する。   Next, each element of the electrophotographic photoreceptor will be described. Note that the reference numerals are omitted.

(導電性基材)
導電性基材としては、従来から使用されているものであれば、如何なるものを使用してもよい。例えば、薄膜(例えばアルミニウム、ニッケル、クロム、ステンレス鋼等の金属類、およびアルミニウム、チタニウム、ニッケル、クロム、ステンレス鋼、金、バナジウム、酸化錫、酸化インジウム、酸化錫インジウム(ITO)等の膜)を設けたプラスチックフィルム等、導電性付与剤を塗布または含浸させた紙、導電性付与剤を塗布または含浸させたプラスチックフィルム等が挙げられる。基材の形状は円筒状に限られず、シート状、プレート状としてもよい。
(Conductive substrate)
Any conductive substrate may be used as long as it is conventionally used. For example, thin films (eg, metals such as aluminum, nickel, chromium, and stainless steel, and films such as aluminum, titanium, nickel, chromium, stainless steel, gold, vanadium, tin oxide, indium oxide, and indium tin oxide (ITO)) And a plastic film coated or impregnated with a conductivity imparting agent, a plastic film coated or impregnated with a conductivity imparting agent, and the like. The shape of the substrate is not limited to a cylindrical shape, and may be a sheet shape or a plate shape.

導電性基材として金属パイプを用いる場合、表面は素管のままであってもよいし、予め鏡面切削、エッチング、陽極酸化、粗切削、センタレス研削、サンドブラスト、ウエットホーニングなどの処理が行われていてもよい。   When a metal pipe is used as the conductive base material, the surface may remain as it is, or a process such as mirror cutting, etching, anodizing, rough cutting, centerless grinding, sand blasting, wet honing, etc. is performed in advance. May be.

(下引層)
−構成−
下引層は、金属酸化物粒子と、前記一般式(1)または一般式(2)で示されるアントラキノン誘導体と、を含んで構成される。更に、結着樹脂等を含んでもよい。
(Undercoat layer)
−Configuration−
The undercoat layer includes metal oxide particles and an anthraquinone derivative represented by the general formula (1) or the general formula (2). Furthermore, a binder resin or the like may be included.

・金属酸化物粒子
金属酸化物粒子としては、酸化アンチモン、酸化インジウム、酸化錫、酸化チタン、酸化亜鉛等の粒子が挙げられる。
これらの中でも、金属酸化物粒子としては、細線再現性、残留電圧の上昇抑制の観点から、酸化錫、酸化チタン、酸化亜鉛の粒子がよい。
Metal oxide particles Examples of the metal oxide particles include antimony oxide, indium oxide, tin oxide, titanium oxide, and zinc oxide.
Among these, as the metal oxide particles, tin oxide, titanium oxide, and zinc oxide particles are preferable from the viewpoint of fine line reproducibility and suppression of increase in residual voltage.

金属酸化物粒子としては、望ましくは粒径が100nm以下、特に10nm以上100nm以下の導電粉が望ましく用いられる。ここでいう粒径とは、平均1次粒径を意味する。金属酸化物粒子の平均1次粒径は、SEM(走査型電子顕微鏡)により観察し測定される値である。
金属酸化物粒子の粒径が10nm以上であることにより、金属酸化物粒子の表面積が大きくなり過ぎず、分散液におけるムラの発生が抑制される。一方、金属酸化物粒子の粒径が100nm以下であることにより、2次粒子、またはそれ以上の高次粒子が1μm程度の粒径になることが効果的に抑制され、下引層内で金属酸化物粒子の存在する部分と存在しない部分、いわゆる海島構造となることが抑制され、ハーフトーン濃度のムラなどの画質欠陥の発生が抑制される。
As the metal oxide particles, a conductive powder having a particle size of 100 nm or less, particularly 10 nm or more and 100 nm or less is preferably used. The particle size here means an average primary particle size. The average primary particle size of the metal oxide particles is a value observed and measured by SEM (scanning electron microscope).
When the particle diameter of the metal oxide particles is 10 nm or more, the surface area of the metal oxide particles does not become too large, and the occurrence of unevenness in the dispersion is suppressed. On the other hand, when the particle size of the metal oxide particles is 100 nm or less, secondary particles or higher order particles are effectively suppressed from having a particle size of about 1 μm. A portion where oxide particles are present and a portion where oxide particles are not present, that is, a so-called sea-island structure, is suppressed, and generation of image quality defects such as uneven halftone density is suppressed.

金属酸化物粒子としては10Ω・cm以上1010Ω・cm以下の粉体抵抗とすることが望ましい。これにより、下引層は、電子写真プロセス速度に対応した周波数で適切なインピーダンスを得ることが実現され易くなる。 The metal oxide particles preferably have a powder resistance of 10 4 Ω · cm to 10 10 Ω · cm. As a result, it becomes easy for the undercoat layer to obtain an appropriate impedance at a frequency corresponding to the electrophotographic process speed.

金属酸化物粒子は、分散性等の諸特性の改善の目的で、少なくとも1種のカップリング剤で表面処理されていることがよい。
カップリング剤としては、シランカップリング剤、チタネート系カップリング剤、およびアルミネート系カップリング剤から選ばれる少なくとも1種であることがよい。
具体的なカップリング剤の例としては、ビニルトリメトキシシラン、γ−メタクリルオキシプロピル−トリス(β−メトキシエトキシ)シラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルメチルジメトキシシラン、N,N−ビス(β−ヒドロキシエチル)−γ−アミノプロピルトリエトキシシラン、γ−クロルプロピルトリメトキシシランなどのシランカップリング剤、アセトアルコキシアルミニウムジイソプロピレート等のアルミネート系カップリング剤、イソプロピルトリイソステアロイルチタネート、ビス(ジオクチルピロホスフェート)、イソプロピルトリ(N―アミノエチルーアミノエチル)チタネート等のチタネート系カップリング剤等が挙げられるが、これらに限定されるものではない。また、これらのカップリング剤は2種以上を混合して使用してもよい。
The metal oxide particles are preferably surface-treated with at least one coupling agent for the purpose of improving various properties such as dispersibility.
The coupling agent may be at least one selected from silane coupling agents, titanate coupling agents, and aluminate coupling agents.
Specific examples of coupling agents include vinyltrimethoxysilane, γ-methacryloxypropyl-tris (β-methoxyethoxy) silane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycid. Xylpropyltrimethoxysilane, vinyltriacetoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, N-β- (amino Silane coupling agents such as ethyl) -γ-aminopropylmethyldimethoxysilane, N, N-bis (β-hydroxyethyl) -γ-aminopropyltriethoxysilane, γ-chloropropyltrimethoxysilane, acetoalkoxyaluminum diisopropyl Aluminum such as rate Titanate coupling agents, isopropyl triisostearoyl titanate, titanate coupling agents such as bis (dioctyl pyrophosphate), isopropyl tri (N-aminoethyl-aminoethyl) titanate, and the like, but are not limited thereto. It is not a thing. Moreover, you may use these coupling agents in mixture of 2 or more types.

カップリング剤の処理量は、金属酸化物粒子に対して、0.1質量%以上3質量%以下であることがよく、望ましくは0.3質量%以上2.0質量%以下、より望ましくは0.5質量%以上1.5質量%以下である。   The treatment amount of the coupling agent is preferably 0.1% by mass or more and 3% by mass or less, more preferably 0.3% by mass or more and 2.0% by mass or less, more preferably, based on the metal oxide particles. It is 0.5 mass% or more and 1.5 mass% or less.

なお、カップリング剤の処理量は、次のように測定する。
FT−IR法、29Si固体NMR法、熱分析、XPSなどの分析法があるが、FT−IR法が最も簡便である。FT−IR法では通常のKBr錠剤法でも、ATR法でもよい。少量の処理済金属酸化物粒子をKBrと混合し、FT−IRを測定することで、カップリング剤の処理量を測定する。
In addition, the processing amount of a coupling agent is measured as follows.
There are analysis methods such as FT-IR method, 29Si solid state NMR method, thermal analysis, XPS, etc., but FT-IR method is the simplest. In the FT-IR method, the normal KBr tablet method or the ATR method may be used. A small amount of the treated metal oxide particles are mixed with KBr and the FT-IR is measured to measure the throughput of the coupling agent.

金属酸化物粒子は、上記カップリング剤で表面処理後、抵抗値の環境依存性等の改善のために熱処理を行ってもよい。熱処理温度は、例えば、150℃以上300℃以下、処理時間は30分以上5時間以下がよい。   The metal oxide particles may be subjected to heat treatment after the surface treatment with the above-mentioned coupling agent in order to improve the environmental dependency of the resistance value. The heat treatment temperature is preferably 150 ° C. or more and 300 ° C. or less, and the treatment time is preferably 30 minutes or more and 5 hours or less.

金属酸化物粒子の含有量は、電気特性維持の観点から、30質量%以上60質量%以下が望ましく、35質量%以上55質量%以下がより望ましい。   The content of the metal oxide particles is desirably 30% by mass or more and 60% by mass or less, and more desirably 35% by mass or more and 55% by mass or less from the viewpoint of maintaining electric characteristics.

・アントラキノン誘導体
本実施形態では、下引層に下記一般式(1)または一般式(2)で示されるアントラキノン誘導体を含有する。アントラキノン誘導体は、下引層に含有される金属酸化物粒子の表面と化学反応する材料、または金属酸化物粒子の表面に吸着する材料であり、金属酸化物粒子の表面に選択的に存在し得る。一般式(1)または一般式(2)で示されるアントラキノン誘導体は、材料の安全性、入手性、電子輸送能力の点で優れる。
-Anthraquinone derivative In this embodiment, the undercoat layer contains an anthraquinone derivative represented by the following general formula (1) or general formula (2). An anthraquinone derivative is a material that chemically reacts with the surface of the metal oxide particles contained in the undercoat layer, or a material that adsorbs to the surface of the metal oxide particles, and may be selectively present on the surface of the metal oxide particles. . The anthraquinone derivative represented by the general formula (1) or the general formula (2) is excellent in terms of material safety, availability, and electron transport capability.


一般式(1)中、n1およびn2は、各々独立に0以上3以下の整数を表す。但し、n1およびn2の少なくとも一方は、1以上3以下の整数を表す(つまり、n1およびn2が同時に0を表さない)。m1およびm2は、各々独立に0または1の整数を表す。RおよびRは、各々独立に炭素数1以上10以下のアルキル基、または炭素数1以上10以下のアルコキシ基を表す。 In general formula (1), n1 and n2 each independently represent an integer of 0 or more and 3 or less. However, at least one of n1 and n2 represents an integer of 1 or more and 3 or less (that is, n1 and n2 do not simultaneously represent 0). m1 and m2 each independently represents an integer of 0 or 1. R 1 and R 2 each independently represents an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms.


一般式(2)中、n1、n2、n3、およびn4は、各々独立に0以上3以下の整数を表す。但し、n1およびn2の少なくとも一方は、1以上3以下の整数を表す(つまり、n1およびn2が同時に0を表さない)。また、n3およびn4の少なくとも一方は、1以上3以下の整数を表す(つまり、n3およびn4が同時に0を表さない)。m1およびm2は、各々独立に0または1の整数を表す。RおよびRは、各々独立に炭素数1以上10以下のアルキル基、または炭素数1以上10以下のアルコキシ基を表す。rは、1以上10以上の整数を表す。 In general formula (2), n1, n2, n3, and n4 each independently represent an integer of 0 or more and 3 or less. However, at least one of n1 and n2 represents an integer of 1 or more and 3 or less (that is, n1 and n2 do not simultaneously represent 0). At least one of n3 and n4 represents an integer of 1 or more and 3 or less (that is, n3 and n4 do not represent 0 at the same time). m1 and m2 each independently represents an integer of 0 or 1. R 1 and R 2 each independently represents an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms. r represents an integer of 1 or more and 10 or more.

一般式(1)で示されるアントラキノン誘導体の中でも、細線再現性、残留電位の上昇抑制の観点から、RおよびRが各々独立に炭素数1以上10以下のアルコキシ基を示す化合物がよい。 Among the anthraquinone derivatives represented by the general formula (1), a compound in which R 1 and R 2 each independently represents an alkoxy group having 1 to 10 carbon atoms is preferable from the viewpoint of fine line reproducibility and suppression of increase in residual potential.

ここで、一般式(1)中RおよびRが表す炭素数1以上10以下のアルキル基、および一般式(2)中RおよびRが表す炭素数1以上10以下のアルキル基としては、直鎖状、または分鎖状のいずれでもよく、例えば、メチル基、エチル基、プロピル基、イソプロピル基等が挙げられる。炭素数1以上10以下のアルキル基としては、望ましくは1以上8以下のアルキル基、より望ましくは1以上6以下のアルキル基である。 Here, the general formula (1) Medium R 1 and R 1 carbon atoms 2 represents to 10 alkyl group, and as a general formula (2) an alkyl group having 1 to 10 carbon atoms which is medium R 1 and R 2 represents May be linear or branched, and examples thereof include a methyl group, an ethyl group, a propyl group, and an isopropyl group. The alkyl group having 1 to 10 carbon atoms is preferably an alkyl group having 1 to 8 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms.

一般式(1)中RおよびRが表す炭素数1以上10以下のアルコキシ基(アルコキシル基)、および一般式(2)中RおよびRが表す炭素数1以上10以下のアルコキシ基(アルコキシル基)としては、直鎖状、または分鎖状のいずれでもよく、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、オクトキシ基等が挙げられる。炭素数1以上10以下のアルコキシ基としては、望ましくは1以上8以下のアルコキシル基、より望ましくは1以上6以下のアルコキシル基である。 Formula (1) Medium R 1 and R 2 carbon atoms represents 1 to 10 alkoxy group (alkoxyl group), and general formula (2) Medium R 1 and R 2 carbon atoms represents 1 to 10 alkoxy group The (alkoxyl group) may be linear or branched, and examples thereof include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, and an octoxy group. The alkoxy group having 1 to 10 carbon atoms is preferably an alkoxyl group having 1 to 8 carbon atoms, more preferably an alkoxyl group having 1 to 6 carbon atoms.

ここで、一般式(1)で示されるアントラキノン誘導体の具体例を下記(1−1)乃至(1−11)に、一般式(2)で示される化合物の具体例を下記(1−12)乃至(1−13)に示す。但し、これらに限定されるものではない。
尚、下記具体例化合物を以下においては「例示化合物」と称し、例えば下記(1−1)の化合物であれば「例示化合物(1−1)」と称す。
Here, specific examples of the anthraquinone derivative represented by the general formula (1) are shown in the following (1-1) to (1-11), and specific examples of the compound represented by the general formula (2) are shown in the following (1-12). To (1-13). However, it is not limited to these.
In addition, the following specific example compound is called "exemplary compound" below, for example, if it is a compound of the following (1-1), it will be called "exemplary compound (1-1)."


また、一般式(1)または一般式(2)で示されるアントラキノン誘導体以外の電子受容性化合物を併用してもよい。上記電子受容性化合物としては、酸性基を持つ電子受容性化合物が適用される。この酸性基としては、水酸基(フェノール水酸基)、カルボキシル基、スルホニル基等が挙げられる。
電子受容性化合物として具体的には、例えば、キノン系、アントラキノン系、クマリン系、フタロシアニン系、トリフェニルメタン系、アントシアニン系、フラボン系、フラーレン系、ルテニウム錯体、キサンテン系、ベンゾキサジン系、ポルフィリン系の化合物が挙げられる。
一般式(1)または一般式(2)で示されるアントラキノン誘導体と併用し得る電子受容性化合物の具体例を下記(1−14)乃至(1−22)に示す。
Moreover, you may use together electron-accepting compounds other than the anthraquinone derivative shown by General formula (1) or General formula (2). As the electron-accepting compound, an electron-accepting compound having an acidic group is applied. Examples of the acidic group include a hydroxyl group (phenolic hydroxyl group), a carboxyl group, and a sulfonyl group.
Specific examples of the electron-accepting compound include quinone series, anthraquinone series, coumarin series, phthalocyanine series, triphenylmethane series, anthocyanin series, flavone series, fullerene series, ruthenium complexes, xanthene series, benzoxazine series, and porphyrin series. Compounds.
Specific examples of the electron-accepting compound that can be used in combination with the anthraquinone derivative represented by the general formula (1) or the general formula (2) are shown in the following (1-14) to (1-22).


一般式(1)または一般式(2)で示されるアントラキノン誘導体を含む全電子受容性化合物の含有量は、化学反応または吸着する相手である金属酸化物粒子の金属酸化物粒子の表面積および含有量と、各材料の電子輸送能力から決められるが、通常は下引層中において0.01質量%以上20質量%以下の範囲がよく、より望ましくは0.1質量%以上10質量%以下の範囲である。
電子受容性化合物の含有量が0.1質量%以上であることにより、アクセプター物質の効果が効率的に発現される。また、電子受容性化合物の含有量が20質量%以下であることにより、金属酸化物粒子同士の凝集が抑制され、金属酸化物粒子の下引層内での分布のムラが抑制され、良好な導電路が形成される。
The content of the total electron-accepting compound including the anthraquinone derivative represented by the general formula (1) or the general formula (2) is the surface area and the content of the metal oxide particles of the metal oxide particles that are the chemical reaction or adsorption partner. In general, the range of 0.01% by mass or more and 20% by mass or less in the undercoat layer is preferable, and the range of 0.1% by mass or more and 10% by mass or less is more preferable. It is.
When the content of the electron-accepting compound is 0.1% by mass or more, the effect of the acceptor substance is efficiently expressed. In addition, when the content of the electron-accepting compound is 20% by mass or less, aggregation of the metal oxide particles is suppressed, and uneven distribution in the undercoat layer of the metal oxide particles is suppressed, which is favorable. A conductive path is formed.

また、含有される電子受容性化合物の内、一般式(1)または一般式(2)で示されるアントラキノン誘導体の比率は、50質量%以上が望ましく、100質量%に近いほど望ましい。   Further, the ratio of the anthraquinone derivative represented by the general formula (1) or the general formula (2) among the contained electron-accepting compounds is desirably 50% by mass or more, and is desirably as close to 100% by mass.

・結着樹脂
結着樹脂としては、例えば、アセタール樹脂(例えばポリビニルブチラール等)、ポリビニルアルコール樹脂、カゼイン、ポリアミド樹脂、セルロース樹脂、ゼラチン、ポリウレタン樹脂、ポリエステル樹脂、メタクリル樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリビニルアセテート樹脂、塩化ビニル−酢酸ビニル−無水マレイン酸樹脂、シリコーン樹脂、シリコーン−アルキッド樹脂、フェノール樹脂、フェノール−ホルムアルデヒド樹脂、メラミン樹脂などの高分子樹脂化合物等が挙げられる。
-Binder resin As the binder resin, for example, acetal resin (for example, polyvinyl butyral), polyvinyl alcohol resin, casein, polyamide resin, cellulose resin, gelatin, polyurethane resin, polyester resin, methacrylic resin, acrylic resin, polyvinyl chloride Examples thereof include polymer resin compounds such as resins, polyvinyl acetate resins, vinyl chloride-vinyl acetate-maleic anhydride resins, silicone resins, silicone-alkyd resins, phenol resins, phenol-formaldehyde resins, and melamine resins.

−その他添加剤−
その他添加剤としては、樹脂粒子が挙げられる。露光装置にレーザー等のコヒーレント光を用いた場合、モアレ像を防止することがよい。そのためには。下引層の表面粗さを、使用する露光用レーザー波長λの1/4n(nは上層の屈折率)以上1/2λ以下に調整することがよい。そこで、樹脂粒子を下引層中に添加すると、表面粗さの調整が実現される。樹脂粒子としてはシリコーン樹脂粒子、架橋型ポリメチルメタアクリレート(PMMA)樹脂等が挙げられる。
また、その他添加剤としては、上記に限られず、周知の添加剤も挙げられる。
-Other additives-
Other additives include resin particles. When coherent light such as a laser is used for the exposure apparatus, it is preferable to prevent moiré images. for that purpose. The surface roughness of the undercoat layer is preferably adjusted to ¼n (n is the refractive index of the upper layer) or more and ½λ or less of the exposure laser wavelength λ to be used. Therefore, when the resin particles are added to the undercoat layer, the surface roughness can be adjusted. Examples of the resin particles include silicone resin particles and cross-linked polymethyl methacrylate (PMMA) resin.
Further, the other additives are not limited to the above, and well-known additives are also included.

−下引層の形成−
下引層の形成の際には、上記成分を溶媒に加えた下引層形成用塗布液が使用される。下引層形成用塗布液は、例えば、金属酸化物粒子、一般式(1)または一般式(2)で示されるアントラキノン誘導体や、その他、添加剤等を予備混合あるいは予備分散したものを、結着樹脂に分散させて得られる。
下引層形成用塗布液を得るために用いる溶剤としては前述した結着樹脂を溶解する公知の有機溶剤、例えばアルコール系、芳香族系、ハロゲン化炭化水素系、ケトン系、ケトンアルコール系、エーテル系、エステル系の溶剤が挙げられる。これらの溶剤は単独あるいは2種類以上混合して用いてもよい。
下引層形成用塗布液に金属酸化物粒子を分散させる方法としては公知の分散方法が用いられる。例えば、ロールミル、ボールミル、振動ボールミル、アトライター、サンドミル、コロイドミル、ペイントシェーカーなどが挙げられる。
-Formation of undercoat layer-
In forming the undercoat layer, a coating solution for forming an undercoat layer in which the above components are added to a solvent is used. The coating solution for forming the undercoat layer is obtained by, for example, binding a metal oxide particle, an anthraquinone derivative represented by the general formula (1) or the general formula (2), or other premixed or predispersed additives. Obtained by dispersing in a resin.
The solvent used for obtaining the coating solution for forming the undercoat layer is a known organic solvent that dissolves the above-mentioned binder resin, for example, alcohol, aromatic, halogenated hydrocarbon, ketone, ketone alcohol, ether. And ester solvents. These solvents may be used alone or in combination of two or more.
As a method for dispersing the metal oxide particles in the coating solution for forming the undercoat layer, a known dispersion method is used. Examples thereof include a roll mill, a ball mill, a vibrating ball mill, an attritor, a sand mill, a colloid mill, and a paint shaker.

下引層形成用塗布液の塗布方法としては浸漬塗布法、ブレード塗布法、ワイヤーバー塗布法、スプレー塗布法、ビード塗布法、エアーナイフ塗布法、カーテン塗布法など公知の塗布方法が用いられる。   As a coating method for the coating solution for forming the undercoat layer, known coating methods such as a dip coating method, a blade coating method, a wire bar coating method, a spray coating method, a bead coating method, an air knife coating method, and a curtain coating method are used.

下引層は、ビッカース硬度が35以上50以下であることが望ましい。   The undercoat layer preferably has a Vickers hardness of 35 to 50.

下引層の厚みは、画像の粒状性向上の観点から、15μm以上が望ましく、15μm以上30μm以下であることがより望ましく、20μm以上25μm以下が更に望ましい。   The thickness of the undercoat layer is preferably 15 μm or more, more preferably 15 μm or more and 30 μm or less, and further preferably 20 μm or more and 25 μm or less from the viewpoint of improving the graininess of the image.

(中間層)
中間層は、例えば、下引層と感光層との間に、電気特性向上、画質向上、画質維持性向上、感光層接着性向上などのために、設けてもよい。また、中間層は、導電性基材と下引層との間に設けてもよい。
(Middle layer)
The intermediate layer may be provided, for example, between the undercoat layer and the photosensitive layer in order to improve electrical characteristics, improve image quality, improve image quality maintenance, and improve photosensitive layer adhesion. The intermediate layer may be provided between the conductive base material and the undercoat layer.

中間層に用いられる結着樹脂としては、アセタール樹脂(例えばポリビニルブチラール等)、ポリビニルアルコール樹脂、カゼイン、ポリアミド樹脂、セルロース樹脂、ゼラチン、ポリウレタン樹脂、ポリエステル樹脂、メタクリル樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリビニルアセテート樹脂、塩化ビニル−酢酸ビニル−無水マレイン酸樹脂、シリコーン樹脂、シリコーン−アルキッド樹脂、フェノール−ホルムアルデヒド樹脂、メラミン樹脂などの高分子樹脂化合物のほかに、ジルコニウム、チタニウム、アルミニウム、マンガン、ケイ素原子などを含有する有機金属化合物などが挙げられる。これらの化合物は、単独にあるいは複数の化合物の混合物あるいは重縮合物として用いてもよい。中でも、ジルコニウムまたはケイ素を含有する有機金属化合物は残留電位が低く環境による電位変化が少なく、また繰り返し使用による電位の変化が少ないなど点から好適である。   As the binder resin used for the intermediate layer, acetal resin (for example, polyvinyl butyral), polyvinyl alcohol resin, casein, polyamide resin, cellulose resin, gelatin, polyurethane resin, polyester resin, methacrylic resin, acrylic resin, polyvinyl chloride resin In addition to polymer resin compounds such as polyvinyl acetate resin, vinyl chloride-vinyl acetate-maleic anhydride resin, silicone resin, silicone-alkyd resin, phenol-formaldehyde resin, melamine resin, zirconium, titanium, aluminum, manganese, silicon And organometallic compounds containing atoms. These compounds may be used alone or as a mixture or polycondensate of a plurality of compounds. Among these, an organometallic compound containing zirconium or silicon is preferable in that it has a low residual potential, a small potential change due to the environment, and a small potential change due to repeated use.

中間層の形成の際には、上記成分を溶媒に加えた中間層形成用塗布液が使用される。
中間層を形成する塗布方法としては、浸漬塗布法、突き上げ塗布法、ワイヤーバー塗布法、スプレー塗布法、ブレード塗布法、ナイフ塗布法、カーテン塗布法等の通常の方法が用いられる。
In forming the intermediate layer, a coating solution for forming an intermediate layer in which the above components are added to a solvent is used.
As the coating method for forming the intermediate layer, usual methods such as a dip coating method, a push-up coating method, a wire bar coating method, a spray coating method, a blade coating method, a knife coating method, and a curtain coating method are used.

なお、中間層は上層の塗布性改善の他に、電気的なブロッキング層の役割も果たすが、膜厚が大きすぎる場合には電気的な障壁が強くなりすぎて減感や繰り返しによる電位の上昇を引き起こすことがある。したがって、中間層を形成する場合には、0.1μm以上3μm以下の膜厚範囲に設定することがよい。また、この場合の中間層を下引層として使用してもよい。   In addition to improving the coatability of the upper layer, the intermediate layer also serves as an electrical blocking layer. However, if the film thickness is too large, the electrical barrier becomes too strong and the potential increases due to desensitization or repetition. May cause. Therefore, when forming the intermediate layer, it is preferable to set the film thickness within the range of 0.1 μm to 3 μm. In this case, the intermediate layer may be used as the undercoat layer.

(電荷発生層)
電荷発生層は、例えば、電荷発生材料と結着樹脂とを含んで構成される。また、電荷発生層は、電荷発生材料の蒸着膜で構成されていてもよい。
電荷発生材料としては、無金属フタロシアニン、クロロガリウムフタロシアニン、ヒドロキシガリウムフタロシアニン、ジクロロスズフタロシアニン、チタニルフタロシアニン等のフタロシアニン顔料が挙げられ、特に、CuKα特性X線に対するブラッグ角(2θ±0.2゜)の少なくとも7.4゜、16.6゜、25.5゜および28.3゜に強い回折ピークを有するクロロガリウムフタロシアニン結晶、CuKα特性X線に対するブラッグ角(2θ±0.2゜)の少なくとも7.7゜、9.3゜、16.9゜、17.5゜、22.4゜および28.8゜に強い回折ピークを有する無金属フタロシアニン結晶、CuKα特性X線に対するブラッグ角(2θ±0.2゜)の少なくとも7.5゜、9.9゜、12.5゜、16.3゜、18.6゜、25.1゜および28.3゜に強い回折ピークを有するヒドロキシガリウムフタロシアニン結晶、CuKα特性X線に対するブラッグ角(2θ±0.2゜)の少なくとも9.6゜、24.1゜および27.2゜に強い回折ピークを有するチタニルフタロシアニン結晶が挙げられる。その他、電荷発生材料としては、キノン顔料、ペリレン顔料、インジゴ顔料、ビスベンゾイミダゾール顔料、アントロン顔料、キナクリドン顔料等が挙げられる。また、これらの電荷発生材料は、単独または2種以上を混合して用いてもよい。
(Charge generation layer)
The charge generation layer includes, for example, a charge generation material and a binder resin. The charge generation layer may be composed of a vapor deposition film of a charge generation material.
Examples of the charge generation material include phthalocyanine pigments such as metal-free phthalocyanine, chlorogallium phthalocyanine, hydroxygallium phthalocyanine, dichlorotin phthalocyanine, and titanyl phthalocyanine. In particular, a Bragg angle (2θ ± 0.2 °) with respect to CuKα characteristic X-rays. Chlorogallium phthalocyanine crystal having strong diffraction peaks at least at 7.4 °, 16.6 °, 25.5 ° and 28.3 °, Bragg angle (2θ ± 0.2 °) to CuKα characteristic X-ray of at least 7. Metal-free phthalocyanine crystals having strong diffraction peaks at 7 °, 9.3 °, 16.9 °, 17.5 °, 22.4 ° and 28.8 °, Bragg angle (2θ ± 0. 2 °) at least 7.5 °, 9.9 °, 12.5 °, 16.3 °, 18.6 °, Hydroxygallium phthalocyanine crystals with strong diffraction peaks at 5.1 ° and 28.3 °, Bragg angles (2θ ± 0.2 °) to CuKα characteristic X-rays of at least 9.6 °, 24.1 ° and 27.2 A titanyl phthalocyanine crystal having a strong diffraction peak at 0 ° can be mentioned. In addition, examples of the charge generation material include quinone pigments, perylene pigments, indigo pigments, bisbenzimidazole pigments, anthrone pigments, quinacridone pigments, and the like. These charge generation materials may be used alone or in combination of two or more.

電荷発生層を構成する結着樹脂としては、例えば、ビスフェノールAタイプあるいはビスフェノールZタイプ等のポリカーボネート樹脂、アクリル樹脂、メタクリル樹脂、ポリアリレート樹脂、ポリエステル樹脂、ポリ塩化ビニル樹脂、ポリスチレン樹脂、アクリロニトリル−スチレン共重合体樹脂、アクリロニトリル−ブタジエン共重合体、ポリビニルアセテート樹脂、ポリビニルホルマール樹脂、ポリスルホン樹脂、スチレン−ブタジエン共重合体樹脂、塩化ビニリデン−アクリルニトリル共重合体樹脂、塩化ビニル−酢酸ビニル−無水マレイン酸樹脂、シリコーン樹脂、フェノール−ホルムアルデヒド樹脂、ポリアクリルアミド樹脂、ポリアミド樹脂、ポリ−N−ビニルカルバゾール樹脂等が挙げられる。これらの結着樹脂は、単独または2種以上混合して用いてもよい。   Examples of the binder resin constituting the charge generation layer include polycarbonate resin such as bisphenol A type or bisphenol Z type, acrylic resin, methacrylic resin, polyarylate resin, polyester resin, polyvinyl chloride resin, polystyrene resin, acrylonitrile-styrene. Copolymer resin, acrylonitrile-butadiene copolymer, polyvinyl acetate resin, polyvinyl formal resin, polysulfone resin, styrene-butadiene copolymer resin, vinylidene chloride-acrylonitrile copolymer resin, vinyl chloride-vinyl acetate-maleic anhydride Examples thereof include resins, silicone resins, phenol-formaldehyde resins, polyacrylamide resins, polyamide resins, poly-N-vinylcarbazole resins. These binder resins may be used alone or in combination of two or more.

なお、電荷発生材料と結着樹脂の配合比は、例えば10:1乃至1:10の範囲が望ましい。   The mixing ratio of the charge generating material and the binder resin is preferably in the range of 10: 1 to 1:10, for example.

電荷発生層の形成の際には、上記成分を溶剤に加えた電荷発生層形成用塗布液が使用される。
電荷発生層形成用塗布液中に粒子(例えば電荷発生材料)を分散させる方法としては、ボールミル、振動ボールミル、アトライター、サンドミル、横型サンドミル等のメディア分散機や、攪拌、超音波分散機、ロールミル、高圧ホモジナイザー等のメディアレス分散機が利用される。高圧ホモジナイザーとしては、高圧状態で分散液を液−液衝突や液−壁衝突させて分散する衝突方式や、高圧状態で微細な流路を貫通させて分散する貫通方式などが挙げられる。
When forming the charge generation layer, a coating solution for forming a charge generation layer in which the above components are added to a solvent is used.
As a method for dispersing particles (for example, charge generation material) in the coating solution for forming the charge generation layer, a media dispersion machine such as a ball mill, a vibration ball mill, an attritor, a sand mill, a horizontal sand mill, an agitation, an ultrasonic dispersion machine, a roll mill, etc. Medialess dispersers such as high-pressure homogenizers are used. Examples of the high-pressure homogenizer include a collision method in which the dispersion liquid is dispersed by liquid-liquid collision or liquid-wall collision in a high-pressure state, and a penetration method in which a fine flow path is dispersed in a high-pressure state.

電荷発生層形成用塗布液を下引層上に塗布する方法としては、浸漬塗布法、突き上げ塗布法、ワイヤーバー塗布法、スプレー塗布法、ブレード塗布法、ナイフ塗布法、カーテン塗布法等が挙げられる。   Examples of the method for applying the charge generation layer forming coating liquid on the undercoat layer include dip coating, push-up coating, wire bar coating, spray coating, blade coating, knife coating, and curtain coating. It is done.

電荷発生層の膜厚は、望ましくは0.01μm以上5μm以下、より望ましくは0.05μm以上2.0μm以下の範囲に設定される。   The thickness of the charge generation layer is desirably set in the range of 0.01 μm to 5 μm, more desirably 0.05 μm to 2.0 μm.

(電荷輸送層)
電荷輸送層は、例えば、電荷輸送材料、結着樹脂等を含んで構成される。
電荷輸送材料としては、例えば、2,5−ビス(p−ジエチルアミノフェニル)−1,3,4−オキサジアゾール等のオキサジアゾール誘導体、1,3,5−トリフェニル−ピラゾリン、1−[ピリジル−(2)]−3−(p−ジエチルアミノスチリル)−5−(p−ジエチルアミノスチリル)ピラゾリン等のピラゾリン誘導体、トリフェニルアミン、N,N’−ビス(3,4−ジメチルフェニル)ビフェニル−4−アミン、トリ(p−メチルフェニル)アミニル−4−アミン、ジベンジルアニリン等の芳香族第3級アミノ化合物、N,N’−ビス(3−メチルフェニル)−N,N’−ジフェニルベンジジン等の芳香族第3級ジアミノ化合物、3−(4’−ジメチルアミノフェニル)−5,6−ジ−(4’−メトキシフェニル)−1,2,4−トリアジン等の1,2,4−トリアジン誘導体、4−ジエチルアミノベンズアルデヒド−1,1−ジフェニルヒドラゾン等のヒドラゾン誘導体、2−フェニル−4−スチリル−キナゾリン等のキナゾリン誘導体、6−ヒドロキシ−2,3−ジ(p−メトキシフェニル)ベンゾフラン等のベンゾフラン誘導体、p−(2,2−ジフェニルビニル)−N,N−ジフェニルアニリン等のα−スチルベン誘導体、エナミン誘導体、N−エチルカルバゾール等のカルバゾール誘導体、ポリ−N−ビニルカルバゾールおよびその誘導体などの正孔輸送物質、クロラニル、ブロアントラキノン等のキノン系化合物、テトラアノキノジメタン系化合物、2,4,7−トリニトロフルオレノン、2,4,5,7−テトラニトロ−9−フルオレノン等のフルオレノン化合物、キサントン系化合物、チオフェン化合物等の電子輸送物質、および上記した化合物からなる基を主鎖または側鎖に有する重合体などが挙げられる。これらの電荷輸送材料は、1種または2種以上を組み合わせて用いてもよい。
(Charge transport layer)
The charge transport layer includes, for example, a charge transport material, a binder resin, and the like.
Examples of the charge transport material include oxadiazole derivatives such as 2,5-bis (p-diethylaminophenyl) -1,3,4-oxadiazole, 1,3,5-triphenyl-pyrazoline, 1- [ Pyrazoline derivatives such as pyridyl- (2)]-3- (p-diethylaminostyryl) -5- (p-diethylaminostyryl) pyrazoline, triphenylamine, N, N′-bis (3,4-dimethylphenyl) biphenyl- Aromatic tertiary amino compounds such as 4-amine, tri (p-methylphenyl) aminyl-4-amine, dibenzylaniline, N, N′-bis (3-methylphenyl) -N, N′-diphenylbenzidine Aromatic tertiary diamino compounds such as 3- (4′-dimethylaminophenyl) -5,6-di- (4′-methoxyphenyl) -1,2,4-tri 1,2,4-triazine derivatives such as gin, hydrazone derivatives such as 4-diethylaminobenzaldehyde-1,1-diphenylhydrazone, quinazoline derivatives such as 2-phenyl-4-styryl-quinazoline, 6-hydroxy-2,3- Benzofuran derivatives such as di (p-methoxyphenyl) benzofuran, α-stilbene derivatives such as p- (2,2-diphenylvinyl) -N, N-diphenylaniline, enamine derivatives, carbazole derivatives such as N-ethylcarbazole, poly -Hole transport materials such as -N-vinylcarbazole and its derivatives, quinone compounds such as chloranil and broanthraquinone, tetraanoquinodimethane compounds, 2,4,7-trinitrofluorenone, 2,4,5,7 -Fluorenone compounds such as tetranitro-9-fluorenone , Xanthone compounds, electron transporting material, such as a thiophene compound, and a polymerization products thereof having a group consisting of the compounds described above in the main chain or side chain. These charge transport materials may be used alone or in combination of two or more.

電荷輸送層を構成する結着樹脂としては、例えば、ビスフェノールAタイプあるいはビスフェノールZタイプ等のポリカーボネート樹脂、アクリル樹脂、メタクリル樹脂、ポリアリレート樹脂、ポリエステル樹脂、ポリ塩化ビニル樹脂、ポリスチレン樹脂、アクリロニトリル−スチレン共重合体樹脂、アクリロニトリル−ブタジエン共重合体樹脂、ポリビニルアセテート樹脂、ポリビニルホルマール樹脂、ポリスルホン樹脂、スチレン−ブタジエン共重合体樹脂、塩化ビニリデン−アクリルニトリル共重合体樹脂、塩化ビニル−酢酸ビニル−無水マレイン酸樹脂、シリコーン樹脂、フェノール−ホルムアルデヒド樹脂、ポリアクリルアミド樹脂、ポリアミド樹脂、塩素ゴム等の絶縁性樹脂、およびポリビニルカルバゾール、ポリビニルアントラセン、ポリビニルピレン等の有機光導電性ポリマー等があげられる。これらの結着樹脂は、単独または2種以上混合して用いてもよい。
なお、電荷輸送材料と上記結着樹脂との配合比は、例えば10:1乃至1:5が望ましい。
Examples of the binder resin constituting the charge transport layer include polycarbonate resin such as bisphenol A type or bisphenol Z type, acrylic resin, methacrylic resin, polyarylate resin, polyester resin, polyvinyl chloride resin, polystyrene resin, acrylonitrile-styrene. Copolymer resin, acrylonitrile-butadiene copolymer resin, polyvinyl acetate resin, polyvinyl formal resin, polysulfone resin, styrene-butadiene copolymer resin, vinylidene chloride-acrylonitrile copolymer resin, vinyl chloride-vinyl acetate-anhydrous maleic acid Insulating resins such as acid resins, silicone resins, phenol-formaldehyde resins, polyacrylamide resins, polyamide resins, chlorinated rubber, and polyvinyl carbazole and polyvinyl ant Sen, organic photoconductive polymers such as polyvinyl pyrene, and the like. These binder resins may be used alone or in combination of two or more.
The mixing ratio between the charge transport material and the binder resin is preferably 10: 1 to 1: 5, for example.

電荷輸送層は、上記成分を溶剤に加えた電荷輸送層形成用塗布液を用いて形成される。
電荷輸送層形成用塗布液を電荷発生層上に塗布する方法としては、浸漬塗布法、突き上げ塗布法、ワイヤーバー塗布法、スプレー塗布法、ブレード塗布法、ナイフ塗布法、カーテン塗布法等の通常の方法を用いられる。
The charge transport layer is formed using a charge transport layer forming coating solution in which the above components are added to a solvent.
As a method for applying the charge transport layer forming coating solution on the charge generation layer, dip coating method, push-up coating method, wire bar coating method, spray coating method, blade coating method, knife coating method, curtain coating method, etc. The method is used.

電荷輸送層の膜厚は、望ましくは5μm以上50μm以下、より望ましくは10μm以上40μm以下の範囲に設定される。   The film thickness of the charge transport layer is desirably set in the range of 5 μm to 50 μm, more desirably 10 μm to 40 μm.

・表面保護層
表面保護層5は、少なくとも反応性基として水酸基を有する第1の反応性電荷輸送材料と、反応性基としてアルコキシ基を有する第2の反応性電荷輸送材料と、の少なくとも2種の反応性電荷輸送材料が重合された重合体を含有する。
Surface protective layer The surface protective layer 5 includes at least two kinds of a first reactive charge transport material having at least a hydroxyl group as a reactive group and a second reactive charge transport material having an alkoxy group as a reactive group. The reactive charge transport material contains a polymerized polymer.

〔反応性電荷輸送材料が重合された重合体〕
前記重合体の原料である電荷輸送材料としては、少なくとも反応性基として水酸基(−OH)を有する第1の反応性電荷輸送材料と、反応性基としてアルコキシ基(−OR(Rは炭素数1以上以上のアルキル基))を有する第2の反応性電荷輸送材料と、の少なくとも2種の電荷輸送材料が用いられる。尚、これらの反応性基を少なくとも2つ持つものがより好適に挙げられ、3つ以上持つものが更に好適に挙げられる。
[Polymer obtained by polymerizing reactive charge transport material]
The charge transport material that is a raw material of the polymer includes at least a first reactive charge transport material having a hydroxyl group (—OH) as a reactive group, and an alkoxy group (—OR (R is carbon number 1) as the reactive group. At least two kinds of charge transporting materials, ie, a second reactive charge transporting material having the above alkyl group)) are used. In addition, those having at least two of these reactive groups are more preferable, and those having three or more are more preferable.

また、前記重合体としては、前記第1の反応性電荷輸送材料および第2の反応性電荷輸送材料に加え、更にこれら以外の反応性電荷輸送材料を併用して重合したものであってもよい。
例えば、併用し得る反応性電荷輸送材料としては、反応性官能基として−NH、−SH、−COOH等を有する電荷輸送材料が挙げられる。これらの反応性官能基を少なくとも2つ持つものがより好適に挙げられ、3つ以上持つものが更に好適に挙げられる。
In addition to the first reactive charge transport material and the second reactive charge transport material, the polymer may be a polymer obtained by using a reactive charge transport material other than these in combination. .
For example, as a reactive charge transport material that can be used in combination, a charge transport material having —NH 2 , —SH, —COOH or the like as a reactive functional group can be given. Those having at least two of these reactive functional groups are more preferred, and those having three or more are more preferred.

ここで、反応性基として水酸基(−OH)を有する第1の反応性電荷輸送材料、反応性基としてアルコキシ基(−OR(Rは炭素数1以上以上のアルキル基))を有する第2の反応性電荷輸送材料、および併用し得るその他の反応性電荷輸送材料について具体的に説明する。   Here, the first reactive charge transport material having a hydroxyl group (—OH) as a reactive group, and the second reactive charge group having an alkoxy group (—OR (R is an alkyl group having 1 or more carbon atoms)) as a reactive group. The reactive charge transport material and other reactive charge transport materials that can be used in combination will be specifically described.

反応性基を有する電荷輸送材料としては、特に下記一般式(I)で示される化合物が望ましい。
F−((−R−X)n1(Rn3−Y)n2 (I)
一般式(I)中、Fは正孔輸送能を有する化合物から誘導される有機基を示し、RおよびRはそれぞれ独立に炭素数1以上5以下の直鎖状若しくは分鎖状のアルキレン基を示し、n1は0または1を示し、n2は1以上4以下の整数を示し、n3は0または1を示す。Xは酸素、NH、または硫黄原子を示し、Yは−OH、−OR(Rは炭素数1以上のアルキル基)、−NH、−SH、または−COOHを示す。
As the charge transport material having a reactive group, a compound represented by the following general formula (I) is particularly desirable.
F - ((- R 7 -X ) n1 (R 8) n3 -Y) n2 (I)
In general formula (I), F represents an organic group derived from a compound having a hole transporting ability, and R 7 and R 8 are each independently a linear or branched alkylene having 1 to 5 carbon atoms. N1 represents 0 or 1, n2 represents an integer of 1 or more and 4 or less, and n3 represents 0 or 1. X represents an oxygen, NH, or sulfur atom, and Y represents —OH, —OR (R is an alkyl group having 1 or more carbon atoms), —NH 2 , —SH, or —COOH.

一般式(I)中、Fで示される正孔輸送能を有する化合物から誘導される有機基における正孔輸送能を有する化合物としては、アリールアミン誘導体が好適に挙げられる。アリールアミン誘導体としては、トリフェニルアミン誘導体、テトラフェニルベンジジン誘導体が好適に挙げられる。   In general formula (I), as the compound having a hole transport ability in an organic group derived from a compound having a hole transport ability represented by F, an arylamine derivative is preferably exemplified. Preferred examples of the arylamine derivative include a triphenylamine derivative and a tetraphenylbenzidine derivative.

そして、一般式(I)で示される化合物は、更に下記一般式(II)で示される化合物であることが望ましい。   The compound represented by the general formula (I) is preferably a compound represented by the following general formula (II).


一般式(II)中、Ar乃至Arは、同一でも異なっていてもよく、それぞれ独立に置換若しくは未置換のアリール基を示し、Arは置換若しくは未置換のアリール基または置換若しくは未置換のアリーレン基を示し、Dは−(−R−X)n1(Rn3−Yを示し、cはそれぞれ独立に0または1を示し、kは0または1を示し、Dの総数は1以上4以下である。また、RおよびRはそれぞれ独立に炭素数1以上5以下の直鎖状若しくは分鎖状のアルキレン基を示し、n1は0または1を示し、n3は0または1を示し、Xは酸素、NH、または硫黄原子を示し、Yは−OH、−OR(Rは炭素数1以上のアルキル基)、−NH、−SH、または−COOHを示す。 In general formula (II), Ar 1 to Ar 4 may be the same or different and each independently represents a substituted or unsubstituted aryl group, and Ar 5 represents a substituted or unsubstituted aryl group or a substituted or unsubstituted group. D represents — (— R 7 —X) n1 (R 8 ) n3 —Y, c represents 0 or 1 independently, k represents 0 or 1, and the total number of D is 1 or more and 4 or less. R 7 and R 8 each independently represents a linear or branched alkylene group having 1 to 5 carbon atoms, n1 represents 0 or 1, n3 represents 0 or 1, and X represents oxygen , NH, or a sulfur atom, Y represents —OH, —OR (R represents an alkyl group having 1 or more carbon atoms), —NH 2 , —SH, or —COOH.

一般式(II)中、Dを示す「−(−R−X)n1(Rn3−Y」は、一般式(I)と同義であり、RおよびRはそれぞれ独立に炭素数1以上5以下の直鎖状若しくは分鎖状のアルキレン基である。
尚、特にn1が0、n3が1であることが望ましく、その場合のRはメチレン基、エチレン基、プロピレン基が望ましく、メチレン基がより望ましい。また、Yとしては−OHがより望ましい。
In the general formula (II), “— (— R 7 —X) n1 (R 8 ) n3 —Y” representing D is synonymous with the general formula (I), and R 7 and R 8 are each independently carbon. A linear or branched alkylene group having a number of 1 or more and 5 or less.
In particular, n1 is preferably 0 and n3 is 1. In this case, R 8 is preferably a methylene group, an ethylene group or a propylene group, more preferably a methylene group. Y is more preferably -OH.

また、一般式(II)におけるDの総数は、一般式(I)におけるn2に相当し、望ましくは、2以上4以下であり、さらに望ましくは3以上4以下である。つまり、一般式(I)や一般式(II)において、望ましくは一分子中に2以上4以下、さらに望ましくは3以上4以下の、上記反応性基(−OH、−OR(Rは炭素数1以上のアルキル基)、−NH、−SH、または−COOH)を有することが望ましい。 The total number of D in the general formula (II) corresponds to n2 in the general formula (I), preferably 2 or more and 4 or less, and more preferably 3 or more and 4 or less. That is, in the general formula (I) or the general formula (II), the above reactive groups (—OH, —OR (R is the number of carbon atoms) preferably 2 to 4 and more preferably 3 to 4 in one molecule. It is desirable to have one or more alkyl groups), —NH 2 , —SH, or —COOH).

一般式(II)中、Ar乃至Arとしては、下記式(1)乃至(7)のうちのいずれかであることが望ましい。なお、下記式(1)乃至(7)は、各Ar乃至Arに連結され得る「−(D)」と共に示す。 In general formula (II), Ar 1 to Ar 4 are preferably any of the following formulas (1) to (7). The following formulas (1) to (7) are shown together with “-(D) c ” that can be linked to each of Ar 1 to Ar 4 .


[式(1)乃至(7)中、Rは水素原子、炭素数1以上4以下のアルキル基、炭素数1以上4以下のアルキル基もしくは炭素数1以上4以下のアルコキシ基で置換されたフェニル基、未置換のフェニル基、炭素数7以上10以下のアラルキル基からなる群より選ばれる1種を表し、R10乃至R12はそれぞれ水素原子、炭素数1以上4以下のアルキル基、炭素数1以上4以下のアルコキシ基、炭素数1以上4以下のアルコキシ基で置換されたフェニル基、未置換のフェニル基、炭素数7以上10以下のアラルキル基、ハロゲン原子からなる群より選ばれる1種を表し、Arは置換または未置換のアリーレン基を表し、Dおよびcは一般式(II)における「D」、「c」と同義であり、sはそれぞれ0または1を表し、tは1以上3以下の整数を表す。] [In the formulas (1) to (7), R 9 is substituted with a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms. Represents one selected from the group consisting of a phenyl group, an unsubstituted phenyl group, and an aralkyl group having 7 to 10 carbon atoms, wherein R 10 to R 12 are a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, carbon 1 selected from the group consisting of an alkoxy group having 1 to 4 carbon atoms, a phenyl group substituted with an alkoxy group having 1 to 4 carbon atoms, an unsubstituted phenyl group, an aralkyl group having 7 to 10 carbon atoms, and a halogen atom. Represents a seed, Ar represents a substituted or unsubstituted arylene group, D and c have the same meanings as “D” and “c” in formula (II), s represents 0 or 1, and t represents 1 3 or more It represents an integer. ]

ここで、式(7)中のArとしては、下記式(8)または(9)で表されるものが望ましい。   Here, as Ar in Formula (7), what is represented by following formula (8) or (9) is desirable.


[式(8)、(9)中、R13およびR14はそれぞれ水素原子、炭素数1以上4以下のアルキル基、炭素数1以上4以下のアルコキシ基、炭素数1以上4以下のアルコキシ基で置換されたフェニル基、未置換のフェニル基、炭素数7以上10以下のアラルキル基、ハロゲン原子からなる群より選ばれる1種を表し、tは1以上3以下の整数を表す。] [In formulas (8) and (9), R 13 and R 14 are each a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms. 1 represents one selected from the group consisting of a phenyl group substituted with, an unsubstituted phenyl group, an aralkyl group having 7 to 10 carbon atoms and a halogen atom, and t represents an integer of 1 to 3. ]

また、式(7)中のZ’としては、下記式(10)乃至(17)のうちのいずれかで表されるものが望ましい。   Further, Z ′ in the formula (7) is preferably represented by any one of the following formulas (10) to (17).


[式(10)乃至(17)中、R15およびR16はそれぞれ水素原子、炭素数1以上4以下のアルキル基、炭素数1以上4以下のアルコキシ基もしくは炭素数1以上4以下のアルコキシ基で置換されたフェニル基、未置換のフェニル基、炭素数7以上10以下のアラルキル基、ハロゲン原子からなる群より選ばれる1種を表し、Wは2価の基を表し、qおよびrはそれぞれ1以上10以下の整数を表し、tはそれぞれ1以上3以下の整数を表す。] [In the formulas (10) to (17), R 15 and R 16 are each a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms. 1 represents one selected from the group consisting of a phenyl group substituted with, an unsubstituted phenyl group, an aralkyl group having 7 to 10 carbon atoms, and a halogen atom, W represents a divalent group, q and r each represent Represents an integer of 1 to 10, and t represents an integer of 1 to 3. ]

上記式(16)乃至(17)中のWとしては、下記(18)乃至(26)で表される2価の基のうちのいずれかであることが望ましい。但し、式(25)中、uは0以上3以下の整数を表す。   W in the formulas (16) to (17) is preferably any one of divalent groups represented by the following (18) to (26). However, in formula (25), u represents an integer of 0 or more and 3 or less.


また、一般式(II)中、Arは、kが0のときはAr乃至Arの説明で例示された上記(1)乃至(7)のアリール基であり、kが1のときはかかる上記(1)乃至(7)のアリール基から1つの水素原子を除いたアリーレン基であることが望ましい。 In general formula (II), Ar 5 is the aryl group of the above (1) to (7) exemplified in the description of Ar 1 to Ar 4 when k is 0, and when k is 1, An arylene group obtained by removing one hydrogen atom from the above aryl groups (1) to (7) is desirable.

ここで、前記重合体の原料となる反応性電荷輸送材料の例(つまり、前記第1の反応性電荷輸送材料と前記第2の反応性電荷輸送材料、および併用し得るその他の反応性電荷輸送材料の例)を以下に示す。尚、前記重合体の原料となる反応性電荷輸送材料は、これらにより何ら限定されるものではない。   Here, an example of a reactive charge transport material that is a raw material of the polymer (that is, the first reactive charge transport material and the second reactive charge transport material, and other reactive charge transport materials that can be used in combination) Examples of materials are shown below. In addition, the reactive charge transport material used as the raw material of the polymer is not limited by these.









表面保護層の形成に用いられる全成分(固形分として残る材料)中における上記の電荷輸送材料の含有量は、85質量%以上であることが好ましく、またその上限値としては98質量%以下であることが好ましい。より好ましくは90質量%以上95質量%以下である。   The content of the charge transport material in all components (material remaining as a solid content) used for forming the surface protective layer is preferably 85% by mass or more, and the upper limit thereof is 98% by mass or less. Preferably there is. More preferably, it is 90 mass% or more and 95 mass% or less.

〔グアナミン化合物、メラミン化合物〕
また、電荷輸送材料が縮合重合された重合体は、更にグアナミン構造またはメラミン構造を有する化合物と架橋された架橋重合体であってもよい。
[Guanamine compounds, melamine compounds]
The polymer obtained by condensation polymerization of the charge transport material may be a crosslinked polymer further crosslinked with a compound having a guanamine structure or a melamine structure.

グアナミン構造を有する化合物(グアナミン化合物)は、グアナミン骨格を有する化合物であり、例えば、アセトグアナミン、ベンゾグアナミン、ホルモグアナミン、ステログアナミン、スピログアナミン、シクロヘキシルグアナミンなどが挙げられる。   A compound having a guanamine structure (guanamine compound) is a compound having a guanamine skeleton, and examples thereof include acetoguanamine, benzoguanamine, formoguanamine, steroguanamine, spiroguanamine, and cyclohexylguanamine.

グアナミン化合物としては、特に下記一般式(A)で示される化合物およびその多量体の少なくとも1種であることが望ましい。ここで、多量体は、一般式(A)で示される化合物を構造単位として重合されたオリゴマーであり、その重合度は例えば2以上200以下(望ましくは2以上100以下)である。なお、一般式(A)で示される化合物は、一種単独で用いてもよいが、2種以上を併用してもよい。   The guanamine compound is particularly preferably at least one of a compound represented by the following general formula (A) and a multimer thereof. Here, the multimer is an oligomer polymerized using the compound represented by the general formula (A) as a structural unit, and the degree of polymerization thereof is, for example, 2 or more and 200 or less (preferably 2 or more and 100 or less). In addition, the compound shown by general formula (A) may be used individually by 1 type, but may use 2 or more types together.


一般式(A)中、Rは、炭素数1以上10以下の直鎖状若しくは分鎖状のアルキル基、炭素数6以上10以下の置換若しくは未置換のフェニル基、または炭素数4以上10以下の置換若しくは未置換の脂環式炭化水素基を示す。R乃至Rは、それぞれ独立に水素、−CH−OH、または−CH−O−Rを示す。Rは、水素、または炭素数1以上10以下の直鎖状若しくは分鎖状のアルキル基を示す。 In General Formula (A), R 1 is a linear or branched alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted phenyl group having 6 to 10 carbon atoms, or 4 to 10 carbon atoms. The following substituted or unsubstituted alicyclic hydrocarbon groups are shown. R 2 to R 5 each independently represent hydrogen, —CH 2 —OH, or —CH 2 —O—R 6 . R 6 represents hydrogen or a linear or branched alkyl group having 1 to 10 carbon atoms.

一般式(A)において、Rを示すアルキル基は、炭素数が1以上10以下であるが、望ましくは炭素数が1以上8以下であり、より望ましくは炭素数が1以上5以下である。また、当該アルキル基は、直鎖状であってもよし、分鎖状であってもよい。 In general formula (A), the alkyl group represented by R 1 has 1 to 10 carbon atoms, preferably 1 to 8 carbon atoms, more preferably 1 to 5 carbon atoms. . The alkyl group may be linear or branched.

一般式(A)中、Rを示すフェニル基は、炭素数6以上10以下であるが、より望ましくは6以上8以下である。当該フェニル基に置換される置換基としては、例えば、メチル基、エチル基、プロピル基などが挙げられる。 In general formula (A), the phenyl group represented by R 1 has 6 to 10 carbon atoms, and more preferably 6 to 8 carbon atoms. Examples of the substituent substituted with the phenyl group include a methyl group, an ethyl group, and a propyl group.

一般式(A)中、Rを示す脂環式炭化水素基は、炭素数4以上10以下であるが、より望ましくは5以上8以下である。当該脂環式炭化水素基に置換される置換基としては、例えば、メチル基、エチル基、プロピル基などが挙げられる。 In general formula (A), the alicyclic hydrocarbon group representing R 1 has 4 to 10 carbon atoms, and more preferably 5 to 8 carbon atoms. Examples of the substituent substituted with the alicyclic hydrocarbon group include a methyl group, an ethyl group, and a propyl group.

一般式(A)中、R乃至Rを示す「−CH−O−R」において、Rを示すアルキル基は、炭素数が1以上10以下であるが、望ましくは炭素数が1以上8以下であり、より望ましくは炭素数が1以上6以下である。また、当該アルキル基は、直鎖状であってもよし、分鎖状であってもよい。望ましくは、メチル基、エチル基、ブチル基などが挙げられる。 In the general formula (A), in “—CH 2 —O—R 6 ” representing R 2 to R 5 , the alkyl group representing R 6 has 1 to 10 carbon atoms, and desirably has carbon atoms. 1 to 8 and more preferably 1 to 6 carbon atoms. The alkyl group may be linear or branched. Desirably, a methyl group, an ethyl group, a butyl group, etc. are mentioned.

一般式(A)で示される化合物としては、特に望ましくは、Rが炭素数6以上10以下の置換若しくは未置換のフェニル基を示し、R乃至Rがそれぞれ独立に−CH−O−Rを示される化合物である。また、Rは、メチル基またはn−ブチル基から選ばれることが望ましい。 As the compound represented by the general formula (A), it is particularly desirable that R 1 represents a substituted or unsubstituted phenyl group having 6 to 10 carbon atoms, and R 2 to R 5 are each independently —CH 2 —O. It is a compound represented by —R 6 . R 6 is preferably selected from a methyl group and an n-butyl group.

一般式(A)で示される化合物は、例えば、グアナミンとホルムアルデヒドとを用いて公知の方法(例えば、実験化学講座第4版、28巻、430ページ参照)で合成される。   The compound represented by the general formula (A) is synthesized by a known method using, for example, guanamine and formaldehyde (for example, see Experimental Chemistry Course 4th edition, Vol. 28, page 430).

以下、一般式(A)で示される化合物の具体例を示すが、これらに限られるわけではない。また、以下の具体例は、単量体のものを示すが、これらを構造単位とする多量体(オリゴマー)であってもよい。   Specific examples of the compound represented by the general formula (A) are shown below, but are not limited thereto. Moreover, although the following specific examples show the thing of a monomer, the multimer (oligomer) which uses these as a structural unit may be sufficient.





一般式(A)で示される化合物の市販品としては、例えば、”スーパーベッカミン(R)L−148−55、スーパーベッカミン(R)13−535、スーパーベッカミン(R)L−145−60、スーパーベッカミン(R)TD−126”以上DIC社製、”ニカラックBL−60、ニカラックBX−4000”以上三和ケミカル(株)、などが挙げられる。   Commercially available products of the compound represented by the general formula (A) include, for example, “Superbecamine (R) L-148-55, Superbecamine (R) 13-535, Superbecamine (R) L-145- 60, Super Becamine (R) TD-126 "or more manufactured by DIC Corporation," Nicarac BL-60, Nicarac BX-4000 "or more, Sanwa Chemical Co., Ltd., and the like.

また、一般式(A)で示される化合物(多量体を含む)は、合成後または市販品の購入後、残留触媒の影響を取り除くために、トルエン、キシレン、酢酸エチル、などの適当な溶剤に溶解し、蒸留水、イオン交換水などで洗浄してもよいし、イオン交換樹脂で処理して除去してもよい。   In addition, the compound represented by the general formula (A) (including multimers) can be used in a suitable solvent such as toluene, xylene, ethyl acetate, etc., in order to remove the influence of residual catalyst after synthesis or after purchasing a commercial product. It may be dissolved and washed with distilled water, ion exchange water or the like, or may be removed by treatment with an ion exchange resin.

次に、メラミン構造を有する化合物(メラミン化合物)は、特に下記一般式(B)で示される化合物およびその多量体の少なくとも1種であることが望ましい。ここで、多量体は、一般式(A)と同じく、一般式(B)で示される化合物を構造単位として重合されたオリゴマーであり、その重合度は例えば2以上200以下(望ましくは2以上100以下)である。なお、一般式(B)で示される化合物またはその多量体は、1種単独で用いても、2種以上を併用してもよい。また、前記一般式(A)で示される化合物またはその多量体と併用してもよい。   Next, the compound having a melamine structure (melamine compound) is particularly preferably at least one of a compound represented by the following general formula (B) and a multimer thereof. Here, like the general formula (A), the multimer is an oligomer polymerized using the compound represented by the general formula (B) as a structural unit, and the degree of polymerization thereof is, for example, 2 or more and 200 or less (preferably 2 or more and 100). The following). In addition, the compound shown by General formula (B) or its multimer may be used individually by 1 type, or may use 2 or more types together. Moreover, you may use together with the compound shown by the said general formula (A), or its multimer.


一般式(B)中、R乃至R12はそれぞれ独立に、水素原子、−CH−OH、−CH−O−R13を示し、R13は炭素数1以上5以下の分岐してもよいアルキル基を示す。R13としてはメチル基、エチル基、ブチル基などが挙げられる。 In general formula (B), R 7 to R 12 each independently represent a hydrogen atom, —CH 2 —OH, —CH 2 —O—R 13 , and R 13 is branched from 1 to 5 carbon atoms. Or a good alkyl group. Examples of R 13 include a methyl group, an ethyl group, and a butyl group.

一般式(B)で示される化合物は、例えば、メラミンとホルムアルデヒドとを用いて公知の方法(例えば、実験化学講座第4版、28巻、430ページのメラミン樹脂に準じて合成される)で合成される。   The compound represented by the general formula (B) is synthesized by, for example, a known method using melamine and formaldehyde (for example, synthesized according to the melamine resin in the 4th edition of Experimental Chemistry Course, Vol. 28, page 430). Is done.

以下、一般式(B)で示される化合物の具体例を示すが、これらに限られるわけではない。また、以下の具体例は、単量体のものを示すが、これらを構造単位とする多量体(オリゴマー)であってもよい。   Specific examples of the compound represented by the general formula (B) are shown below, but are not limited thereto. Moreover, although the following specific examples show the thing of a monomer, the multimer (oligomer) which uses these as a structural unit may be sufficient.


一般式(B)で示される化合物の市販品としては、例えば、スーパーメラミNo.90(日油社製)、スーパーベッカミン(R)TD−139−60(DIC社製)、ユーバン2020(三井化学)、スミテックスレジンM−3(住友化学工業)、ニカラックMW−30(三和ケミカル(株))、などが挙げられる。   As a commercial item of the compound represented by the general formula (B), for example, Super Melami No. 90 (manufactured by NOF Corporation), Super Becamine (R) TD-139-60 (manufactured by DIC), Uban 2020 (Mitsui Chemicals), Sumitex Resin M-3 (Sumitomo Chemical Industries), Nicarak MW-30 (three) (Wa Chemical Co., Ltd.)).

また、一般式(B)で示される化合物(多量体を含む)は、合成後または市販品の購入後、残留触媒の影響を取り除くために、トルエン、キシレン、酢酸エチルなどの適当な溶剤に溶解し、蒸留水、イオン交換水などで洗浄してもよいし、イオン交換樹脂で処理して除去してもよい。   In addition, the compound represented by the general formula (B) (including multimers) is dissolved in an appropriate solvent such as toluene, xylene or ethyl acetate after synthesis or after purchase of a commercial product in order to remove the influence of residual catalyst. It may be washed with distilled water, ion exchange water or the like, or may be removed by treatment with ion exchange resin.

〔フッ素含有樹脂〕
表面保護層5には、フッ素含有樹脂を含有させてもよい。
フッ素含有樹脂としては、4フッ化エチレン樹脂(PTFE)、3フッ化塩化エチレン樹脂、6フッ化プロピレン樹脂、フッ化ビニル樹脂、フッ化ビニリデン樹脂、2フッ化2塩化エチレン樹脂およびそれらの共重合体等が挙げられ、これらの中から1種あるいは2種以上を選択して用いる。尚、より望ましくは4フッ化エチレン樹脂、フッ化ビニリデン樹脂であり、特に望ましくは4フッ化エチレン樹脂である。
[Fluorine-containing resin]
The surface protective layer 5 may contain a fluorine-containing resin.
Fluorine-containing resins include tetrafluoroethylene resin (PTFE), trifluorinated ethylene chloride resin, hexafluoropropylene resin, vinyl fluoride resin, vinylidene fluoride resin, difluorinated dichloride ethylene resin and their co-polymers. The combination etc. are mentioned, Among these, 1 type (s) or 2 or more types are selected and used. More preferably, they are tetrafluoroethylene resin and vinylidene fluoride resin, and particularly preferably tetrafluoroethylene resin.

用いるフッ素含有樹脂の平均一次粒径は0.05μm以上1μm以下が望ましく、更に望ましくは0.1μm以上0.5μm以下である。
尚、上記フッ素含有樹脂の平均一次粒径は、レーザー回折式粒度分布測定装置LA−700(堀場製作所製)を用いて、フッ素含有樹脂が分散された分散液と同じ溶剤に希釈した測定液を屈折率1.35で測定した値をいう。
The average primary particle size of the fluorine-containing resin to be used is desirably 0.05 μm or more and 1 μm or less, and more desirably 0.1 μm or more and 0.5 μm or less.
The average primary particle size of the fluorine-containing resin is obtained by using a laser diffraction particle size distribution measuring apparatus LA-700 (manufactured by Horiba Seisakusho) and measuring liquid diluted in the same solvent as the dispersion liquid in which the fluorine-containing resin is dispersed. A value measured at a refractive index of 1.35.

フッ素含有樹脂の含有量は、表面保護層の全固形分に対して、5質量%以上12質量%以下であることが好ましく、より好ましくは7質量%以上10質量%以下である。   The content of the fluorine-containing resin is preferably 5% by mass or more and 12% by mass or less, and more preferably 7% by mass or more and 10% by mass or less with respect to the total solid content of the surface protective layer.

〔その他の成分〕
表面保護層5には、フェノール樹脂、メラミン樹脂、尿素樹脂、アルキッド樹脂、ベンゾグアナミン樹脂などの熱硬化性樹脂を用いてもよい。また、スピロアセタール系グアナミン樹脂(例えば「CTU−グアナミン」(味の素ファインテクノ(株)))など、一分子中の官能基のより多い化合物を当該架橋物中の材料に共重合させてもよい。
[Other ingredients]
For the surface protective layer 5, a thermosetting resin such as a phenol resin, a melamine resin, a urea resin, an alkyd resin, or a benzoguanamine resin may be used. In addition, a compound having a larger number of functional groups in one molecule such as a spiroacetal guanamine resin (for example, “CTU-guanamine” (Ajinomoto Fine Techno Co., Ltd.)) may be copolymerized with the material in the crosslinked product.

また、表面保護層5には界面活性剤を添加してもよい。用いる界面活性剤としては、フッ素原子、アルキレンオキサイド構造、シリコーン構造のうち少なくとも一種類以上の構造を含む界面活性剤が好適に挙げられる。   Further, a surfactant may be added to the surface protective layer 5. As the surfactant to be used, a surfactant containing at least one kind of structure among a fluorine atom, an alkylene oxide structure, and a silicone structure is preferably exemplified.

表面保護層5には、酸化防止剤を添加してもよい。酸化防止剤としては、ヒンダードフェノール系またはヒンダードアミン系が望ましく、有機イオウ系酸化防止剤、フォスファイト系酸化防止剤、ジチオカルバミン酸塩系酸化防止剤、チオウレア系酸化防止剤、ベンズイミダゾール系酸化防止剤、などの公知の酸化防止剤を用いてもよい。酸化防止剤の添加量としては20質量%以下が望ましく、10質量%以下がより望ましい。   An antioxidant may be added to the surface protective layer 5. Antioxidants are preferably hindered phenols or hindered amines, organic sulfur antioxidants, phosphite antioxidants, dithiocarbamate antioxidants, thiourea antioxidants, benzimidazole antioxidants. , Etc., may be used. The addition amount of the antioxidant is preferably 20% by mass or less, and more preferably 10% by mass or less.

ヒンダードフェノール系酸化防止剤としては、2,6−ジ−t−ブチル−4−メチルフェノール、2,5−ジ−t−ブチルヒドロキノン、N,N’−ヘキサメチレンビス(3,5−ジ−t−ブチル−4−ヒドロキシヒドロシンナマイド、3,5−ジ−t−ブチル−4−ヒドロキシ−ベンジルフォスフォネート−ジエチルエステル、2,4−ビス[(オクチルチオ)メチル]−o−クレゾール、2,6−ジ−t−ブチル−4−エチルフェノール、2,2’−メチレンビス(4−メチル−6−t−ブチルフェノール)、2,2’−メチレンビス(4−エチル−6−t−ブチルフェノール)、4,4’−ブチリデンビス(3−メチル−6−t−ブチルフェノール)、2,5−ジ−t−アミルヒドロキノン、2−t−ブチル−6−(3−ブチル−2−ヒドロキシ−5−メチルベンジル)−4−メチルフェニルアクリレート、4,4’−ブチリデンビス(3−メチル−6−t−ブチルフェノール)等が挙げられる。   Examples of the hindered phenol antioxidant include 2,6-di-t-butyl-4-methylphenol, 2,5-di-t-butylhydroquinone, N, N′-hexamethylene bis (3,5-di). -T-butyl-4-hydroxyhydrocinnamide, 3,5-di-t-butyl-4-hydroxy-benzylphosphonate-diethyl ester, 2,4-bis [(octylthio) methyl] -o-cresol, 2,6-di-t-butyl-4-ethylphenol, 2,2'-methylenebis (4-methyl-6-t-butylphenol), 2,2'-methylenebis (4-ethyl-6-t-butylphenol) 4,4'-butylidenebis (3-methyl-6-t-butylphenol), 2,5-di-t-amylhydroquinone, 2-t-butyl-6- (3-butyl-2- Dorokishi-5-methylbenzyl) -4-methylphenyl acrylate, 4,4'-butylidene bis (3-methyl -6-t-butylphenol) and the like.

表面保護層5には、前記電荷輸送材料や前記グアナミン化合物およびメラミン化合物の硬化を促進するための硬化触媒を含有させてもよい。硬化触媒として酸系の触媒が望ましく用いられる。酸系の触媒としては、酢酸、クロロ酢酸、トリクロロ酢酸、トリフルオロ酢酸、シュウ酸、マレイン酸、マロン酸、乳酸などの脂肪族カルボン酸、安息香酸、フタル酸、テレフタル酸、トリメリット酸などの芳香族カルボン酸、メタンスルホン酸、ドデシルスルホン酸、ベンゼンスルホン酸、ドデシルベンゼンスルホン酸、ナフタレンスルホン酸、などの脂肪族、および芳香族スルホン酸類などが用いられるが、含硫黄系材料を用いることが望ましい。   The surface protective layer 5 may contain a curing catalyst for accelerating the curing of the charge transport material, the guanamine compound and the melamine compound. An acid catalyst is preferably used as the curing catalyst. Acid-based catalysts include acetic acid, chloroacetic acid, trichloroacetic acid, trifluoroacetic acid, oxalic acid, maleic acid, malonic acid, lactic acid and other aliphatic carboxylic acids, benzoic acid, phthalic acid, terephthalic acid, trimellitic acid, etc. Aromatic carboxylic acids, methane sulfonic acids, dodecyl sulfonic acids, benzene sulfonic acids, aliphatics such as dodecyl benzene sulfonic acids, naphthalene sulfonic acids, and aromatic sulfonic acids are used, but sulfur-containing materials should be used. desirable.

硬化触媒としての含硫黄系材料は、常温(例えば25℃)、または加熱後に酸性を示すものが望ましく、有機スルホン酸およびその誘導体の少なくとも1種が最も望ましい。表面保護層5中にこれら触媒の存在は、エネルギー分散型X線分析(EDS)、X線光電子分光法(XPS)等により容易に確認される。   The sulfur-containing material as the curing catalyst is desirably one that exhibits acidity at room temperature (for example, 25 ° C.) or after heating, and is most desirably at least one of organic sulfonic acids and derivatives thereof. The presence of these catalysts in the surface protective layer 5 is easily confirmed by energy dispersive X-ray analysis (EDS), X-ray photoelectron spectroscopy (XPS) or the like.

有機スルホン酸および/またはその誘導体としては、例えば、パラトルエンスルホン酸、ジノニルナフタレンスルホン酸(DNNSA)、ジノニルナフタレンジスルホン酸(DNNDSA)、ドデシルベンゼンスルホン酸、フェノールスルホン酸等が挙げられる。これらの中でも、パラトルエンスルホン酸、ドデシルベンゼンスルホン酸が望ましい。また、硬化性樹脂組成物中で、解離し得るものであれば、有機スルホン酸塩を用いてもよい。   Examples of the organic sulfonic acid and / or a derivative thereof include p-toluenesulfonic acid, dinonylnaphthalenesulfonic acid (DNNSA), dinonylnaphthalenedisulfonic acid (DNNDSA), dodecylbenzenesulfonic acid, and phenolsulfonic acid. Among these, p-toluenesulfonic acid and dodecylbenzenesulfonic acid are desirable. Moreover, as long as it can dissociate in a curable resin composition, you may use an organic sulfonate.

また、熱をかけた際に触媒能力が高くなる、所謂熱潜在性触媒を用いてもよい。
熱潜在性触媒として、たとえば有機スルホン化合物等をポリマーで粒子状に包んだマイクロカプセル、ゼオライトの如く空孔化合物に酸等を吸着させたもの、プロトン酸および/またはプロトン酸誘導体を塩基でブロックした熱潜在性プロトン酸触媒や、プロトン酸および/またはプロトン酸誘導体を一級もしくは二級のアルコールでエステル化したもの、プロトン酸および/またはプロトン酸誘導体をビニルエーテル類および/またはビニルチオエーテル類でブロックしたもの、三フッ化ホウ素のモノエチルアミン錯体、三フッ化ホウ素のピリジン錯体などが挙げられる。
Further, a so-called thermal latent catalyst, which has a high catalytic ability when heated, may be used.
As a heat latent catalyst, for example, a microcapsule in which an organic sulfone compound or the like is encapsulated in a polymer form, an adsorbed acid or the like on a pore compound such as zeolite, and a proton acid and / or proton acid derivative is blocked with a base Thermal latent proton acid catalyst, proton acid and / or proton acid derivative esterified with primary or secondary alcohol, proton acid and / or proton acid derivative blocked with vinyl ethers and / or vinyl thioethers , Boron trifluoride monoethylamine complex, boron trifluoride pyridine complex, and the like.

中でも、プロトン酸および/またはプロトン酸誘導体を塩基でブロックしたものが望ましい。
熱潜在性プロトン酸触媒のプロトン酸として、硫酸、塩酸、酢酸、ギ酸、硝酸、リン酸、スルホン酸、モノカルボン酸、ポリカルボン酸類、プロピオン酸、シュウ酸、安息香酸、アクリル酸、メタクリル酸、イタコン酸、フタル酸、マレイン酸、ベンゼンスルホン酸、o、m、p−トルエンスルホン酸、スチレンスルホン酸、ジノニルナフタレンスルホン酸、ジノニルナフタレンジスルホン酸、デシルベンゼンスルホン酸、ウンデシルベンゼンスルホン酸、トリデシルベンゼンスルホン酸、テトラデシルベンゼンスルホン酸、ドデシルベンゼンスルホン酸等が挙げられる。また、プロトン酸誘導体として、スルホン酸、リン酸等のプロトン酸のアルカリ金属塩またはアルカリ土類金属円などの中和物、プロトン酸骨格が高分子鎖中に導入された高分子化合物(ポリビニルスルホン酸等)等が挙げられる。プロトン酸をブロックする塩基として、アミン類が挙げられる。
Of these, a protonic acid and / or a protonic acid derivative blocked with a base is desirable.
As the protonic acid of the heat latent protonic acid catalyst, sulfuric acid, hydrochloric acid, acetic acid, formic acid, nitric acid, phosphoric acid, sulfonic acid, monocarboxylic acid, polycarboxylic acids, propionic acid, oxalic acid, benzoic acid, acrylic acid, methacrylic acid, Itaconic acid, phthalic acid, maleic acid, benzenesulfonic acid, o, m, p-toluenesulfonic acid, styrenesulfonic acid, dinonylnaphthalenesulfonic acid, dinonylnaphthalenedisulfonic acid, decylbenzenesulfonic acid, undecylbenzenesulfonic acid, Examples include tridecylbenzenesulfonic acid, tetradecylbenzenesulfonic acid, dodecylbenzenesulfonic acid and the like. In addition, as protonic acid derivatives, neutralized products such as alkali metal salts of alkaline acids or alkaline earth metal circles such as sulfonic acid and phosphoric acid, and polymer compounds in which a protonic acid skeleton is introduced into the polymer chain (polyvinylsulfone) Acid, etc.). Examples of the base that blocks the protonic acid include amines.

アミン類は、1級、2級または3級アミンに分類される。特に制限はなく、いずれも使用してもよい。   Amines are classified as primary, secondary or tertiary amines. There is no restriction in particular and any of them may be used.

1級アミンとして、メチルアミン、エチルアミン、プロピルアミン、イソプロピルアミン、n−ブチルアミン、イソブチルアミン、t−ブチルアミン、ヘキシルアミン、2−エチルヘキシルアミン、セカンダリーブチルアミン、アリルアミン、メチルヘキシルアミン等が挙げられる。   Examples of the primary amine include methylamine, ethylamine, propylamine, isopropylamine, n-butylamine, isobutylamine, t-butylamine, hexylamine, 2-ethylhexylamine, secondary butylamine, allylamine, and methylhexylamine.

2級アミンとして、ジメチルアミン、ジエチルアミン、ジn−プロピルアミン、ジイソプロピルアミン、ジn−ブチルアミン、ジイソブチルアミン、ジt−ブチルアミン、ジヘキシルアミン、ジ(2−エチルヘキシル)アミン、N−イソプロピルN−イソブチルアミン、ジ(2−エチルヘキシル)アミン、ジセカンダリーブチルアミン、ジアリルアミン、N−メチルヘキシルアミン、3−ピペコリン、4−ピペコリン、2,4−ルペチジン、2,6−ルペチジン、3,5−ルペチジン、モルホリン、N−メチルベンジルアミン等が挙げられる。   As secondary amines, dimethylamine, diethylamine, di-n-propylamine, diisopropylamine, di-n-butylamine, diisobutylamine, di-t-butylamine, dihexylamine, di (2-ethylhexyl) amine, N-isopropyl N-isobutylamine , Di (2-ethylhexyl) amine, disecondary butylamine, diallylamine, N-methylhexylamine, 3-pipecoline, 4-pipecoline, 2,4-lupetidine, 2,6-lupetidine, 3,5-lupetidine, morpholine, N -Methylbenzylamine and the like.

3級アミンとして、トリメチルアミン、トリエチルアミン、トリn−プロピルアミン、トリイソプロピルアミン、トリn−ブチルアミン、トリイソブチルアミン、トリt−ブチルアミン、トリヘキシルアミン、トリ(2−エチルヘキシル)アミン、N−メチルモルホリン、N,N−ジメチルアリルアミン、N−メチルジアリルアミン、トリアリルアミン、N,N−ジメチルアリルアミン、N,N,N’,N’−テトラメチル−1,2−ジアミノエタン、N,N,N’,N’−テトラメチル−1,3−ジアミノプロパン、N,N,N’,N’−テトラアリル−1,4−ジアミノブタン、N−メチルピペリジン、ピリジン、4−エチルピリジン、N−プロピルジアリルアミン、3−ジメチルアミノプロパノ−ル、2−エチルピラジン、2,3−ジメチルピラジン、2,5−ジメチルピラジン、2,4−ルチジン、2,5−ルチジン、3,4−ルチジン、3,5−ルチジン、2,4,6−コリジン、2−メチル−4−エチルピリジン、2−メチル−5−エチルピリジン、N,N,N’,N’ −テトラメチルヘキサメチレンジアミン、N−エチル−3−ヒドロキシピペリジン、3−メチル−4−エチルピリジン、3−エチル−4−メチルピリジン、4−(5−ノニル)ピリジン、イミダゾ−ル、N−メチルピペラジン等が挙げられる。   As tertiary amines, trimethylamine, triethylamine, tri-n-propylamine, triisopropylamine, tri-n-butylamine, triisobutylamine, tri-t-butylamine, trihexylamine, tri (2-ethylhexyl) amine, N-methylmorpholine, N, N-dimethylallylamine, N-methyldiallylamine, triallylamine, N, N-dimethylallylamine, N, N, N ′, N′-tetramethyl-1,2-diaminoethane, N, N, N ′, N '-Tetramethyl-1,3-diaminopropane, N, N, N', N'-tetraallyl-1,4-diaminobutane, N-methylpiperidine, pyridine, 4-ethylpyridine, N-propyldiallylamine, 3- Dimethylaminopropanol, 2-ethylpyrazine, 2,3-di Tilpyrazine, 2,5-dimethylpyrazine, 2,4-lutidine, 2,5-lutidine, 3,4-lutidine, 3,5-lutidine, 2,4,6-collidine, 2-methyl-4-ethylpyridine, 2-methyl-5-ethylpyridine, N, N, N ′, N′-tetramethylhexamethylenediamine, N-ethyl-3-hydroxypiperidine, 3-methyl-4-ethylpyridine, 3-ethyl-4-methyl Pyridine, 4- (5-nonyl) pyridine, imidazole, N-methylpiperazine and the like can be mentioned.

市販品としては、キングインダストリーズ社製の「NACURE2501」(トルエンスルホン酸解離、メタノール/イソプロパノール溶媒、pH6.0以上pH7.2以下、解離温度80℃)、「NACURE2107」(p−トルエンスルホン酸解離、イソプロパノール溶媒、pH8.0以上pH9.0以下、解離温度90℃)、「NACURE2500」(p−トルエンスルホン酸解離、イソプロパノール溶媒、pH6.0以上pH7.0以下、解離温度65℃)、「NACURE2530」(p−トルエンスルホン酸解離、メタノール/イソプロパノール溶媒、pH5.7以上pH6.5以下、解離温度65℃)、「NACURE2547」(p−トルエンスルホン酸解離、水溶液、pH8.0以上pH9.0以下、解離温度107℃)、「NACURE2558」(p−トルエンスルホン酸解離、エチレングリコール溶媒、pH3.5以上pH4.5以下、解離温度80℃)、「NACUREXP−357」(p−トルエンスルホン酸解離、メタノール溶媒、pH2.0以上pH4.0以下、解離温度65℃)、「NACUREXP−386」(p−トルエンスルホン酸解離、水溶液、pH6.1以上pH6.4以下、解離温度80℃)、「NACUREXC−2211」(p−トルエンスルホン酸解離、pH7.2以上pH8.5以下、解離温度80℃)、「NACURE5225」(ドデシルベンゼンスルホン酸解離、イソプロパノール溶媒、pH6.0以上pH7.0以下、解離温度120℃)、「NACURE5414」(ドデシルベンゼンスルホン酸解離、キシレン溶媒、解離温度120℃)、「NACURE5528」(ドデシルベンゼンスルホン酸解離、イソプロパノール溶媒、pH7.0以上pH8.0以下、解離温度120℃)、「NACURE5925」(ドデシルベンゼンスルホン酸解離、pH7.0以上pH7.5以下、解離温度130℃)、「NACURE1323」(ジノニルナフタレンスルホン酸解離、キシレン溶媒、pH6.8以上pH7.5以下、解離温度150℃)、「NACURE1419」(ジノニルナフタレンスルホン酸解離、キシレン/メチルイソブチルケトン溶媒、解離温度150℃)、「NACURE1557」(ジノニルナフタレンスルホン酸解離、ブタノール/2−ブトキシエタノール溶媒、pH6.5以上pH7.5以下、解離温度150℃)、「NACUREX49−110」(ジノニルナフタレンジスルホン酸解離、イソブタノール/イソプロパノール溶媒、pH6.5以上pH7.5以下、解離温度90℃)、「NACURE3525」(ジノニルナフタレンジスルホン酸解離、イソブタノール/イソプロパノール溶媒、pH7.0以上pH8.5以下、解離温度120℃)、「NACUREXP−383」(ジノニルナフタレンジスルホン酸解離、キシレン溶媒、解離温度120℃)、「NACURE3327」(ジノニルナフタレンジスルホン酸解離、イソブタノール/イソプロパノール溶媒、pH6.5以上pH7.5以下、解離温度150℃)、「NACURE4167」(リン酸解離、イソプロパノール/イソブタノール溶媒、pH6.8以上pH7.3以下、解離温度80℃)、「NACUREXP−297」(リン酸解離、水/イソプロパノール溶媒、pH6.5以上pH7.5以下、解離温度90℃、「NACURE4575」(リン酸解離、pH7.0以上pH8.0以下、解離温度110℃)等が挙げられる。
これらの熱潜在性触媒は単独または二種類以上組み合わせても使用される。
Commercially available products include “NACURE2501” (toluenesulfonic acid dissociation, methanol / isopropanol solvent, pH 6.0 to pH 7.2, dissociation temperature 80 ° C.), “NACURE2107” (p-toluenesulfonic acid dissociation, manufactured by King Industries, Inc. Isopropanol solvent, pH 8.0 to pH 9.0, dissociation temperature 90 ° C.) “NACURE 2500” (p-toluenesulfonic acid dissociation, isopropanol solvent, pH 6.0 to pH 7.0, dissociation temperature 65 ° C.), “NACURE 2530” (P-toluenesulfonic acid dissociation, methanol / isopropanol solvent, pH 5.7 to pH 6.5, dissociation temperature 65 ° C.), “NACURE2547” (p-toluenesulfonic acid dissociation, aqueous solution, pH 8.0 to pH 9.0, Dissociation temperature 107 ), “NACURE2558” (p-toluenesulfonic acid dissociation, ethylene glycol solvent, pH 3.5 to pH4.5, dissociation temperature 80 ° C.), “NACUREXP-357” (p-toluenesulfonic acid dissociation, methanol solvent, pH 2. 0 to pH 4.0, dissociation temperature 65 ° C.) “NACUREXP-386” (p-toluenesulfonic acid dissociation, aqueous solution, pH 6.1 to pH 6.4, dissociation temperature 80 ° C.), “NACUREX C-2211” (p -Toluenesulfonic acid dissociation, pH 7.2 to pH 8.5, dissociation temperature 80 ° C.), “NACURE 5225” (dodecylbenzenesulfonic acid dissociation, isopropanol solvent, pH 6.0 to pH 7.0, dissociation temperature 120 ° C.), “ NACURE 5414 "(dodecylbenzenesulfonic acid dissociation, key Ren solvent, dissociation temperature 120 ° C.), “NACURE 5528” (dodecylbenzenesulfonic acid dissociation, isopropanol solvent, pH 7.0 to pH 8.0, dissociation temperature 120 ° C.), “NACURE 5925” (dodecylbenzenesulfonic acid dissociation, pH 7.0) PH 7.5 or less, dissociation temperature 130 ° C., “NACURE 1323” (disinyl naphthalene sulfonic acid dissociation, xylene solvent, pH 6.8 to pH 7.5, dissociation temperature 150 ° C.), “NACURE 1419” (dinonyl naphthalene sulfonic acid Dissociation, xylene / methyl isobutyl ketone solvent, dissociation temperature 150 ° C.), “NACURE1557” (dinonylnaphthalenesulfonic acid dissociation, butanol / 2-butoxyethanol solvent, pH 6.5 to pH 7.5, dissociation temperature 150 ° C.), “ NA CUREX 49-110 ”(dinonyl naphthalene disulfonic acid dissociation, isobutanol / isopropanol solvent, pH 6.5 to pH 7.5, dissociation temperature 90 ° C.),“ NACURE 3525 ”(dinonyl naphthalene disulfonic acid dissociation, isobutanol / isopropanol solvent, pH 7.0 to pH 8.5, dissociation temperature 120 ° C., “NACUREXP-383” (dinonyl naphthalene disulfonic acid dissociation, xylene solvent, dissociation temperature 120 ° C.), “NACURE 3327” (dinonyl naphthalene disulfonic acid dissociation, isobutanol / Isopropanol solvent, pH 6.5 to pH 7.5, dissociation temperature 150 ° C.), “NACURE4167” (phosphoric acid dissociation, isopropanol / isobutanol solvent, pH 6.8 to pH 7.3, dissociation temperature 80 ), “NACUREXP-297” (phosphoric acid dissociation, water / isopropanol solvent, pH 6.5 to pH 7.5, dissociation temperature 90 ° C., “NACURE 4575” (phosphoric acid dissociation, pH 7.0 to pH 8.0, dissociation temperature) 110 ° C.).
These thermal latent catalysts may be used alone or in combination of two or more.

ここで、触媒の配合量は、塗布液におけるフッ素含有樹脂を除いた全固形分に対し、0.1質量%以上10質量%以下の範囲であることが望ましく、特に0.1質量%以上5質量%以下が望ましい。   Here, the blending amount of the catalyst is desirably in the range of 0.1% by mass to 10% by mass with respect to the total solid content excluding the fluorine-containing resin in the coating solution, and particularly 0.1% by mass to 5%. The mass% or less is desirable.

〔表面保護層の形成方法〕
表面保護層5は、溶媒中に前述の各成分を含む表面保護層形成用の塗布液を準備し、該塗布液を塗布して塗布膜を形成する塗布工程と、前記塗布膜を加熱して少なくとも電荷輸送材料を縮合重合して重合体を形成させ且つ乾燥させて溶媒を除去する加熱工程と、を経て形成される。
[Method for forming surface protective layer]
The surface protective layer 5 is prepared by preparing a coating solution for forming a surface protective layer containing each of the aforementioned components in a solvent, applying the coating solution to form a coating film, and heating the coating film. And a heating step in which at least the charge transport material is subjected to condensation polymerization to form a polymer and dried to remove the solvent.

尚、表面保護層用塗布液に用いられる溶媒としては、例えばシクロブタノン、シクロペンタノン、シクロヘキサノン、シクロヘプタノン等の環状脂肪族ケトン化合物;メタノール、エタノール、プロパノール、ブタノール、シクロペンタノール等の環状或いは直鎖状アルコール類;アセトン、メチルエチルケトン等の直鎖状ケトン類;テトラヒドロフラン、ジオキサン、エチレングリコール、ジエチルエーテル等の環状或いは直鎖状エーテル類;塩化メチレン、クロロホルム、塩化エチレン等のハロゲン化脂肪族炭化水素溶媒等が挙げられる。溶媒は1種を単独で使用しても2種以上を混合して使用してもよい。   Examples of the solvent used in the coating solution for the surface protective layer include cyclic aliphatic ketone compounds such as cyclobutanone, cyclopentanone, cyclohexanone and cycloheptanone; cyclic such as methanol, ethanol, propanol, butanol and cyclopentanol; Linear alcohols; linear ketones such as acetone and methyl ethyl ketone; cyclic or linear ethers such as tetrahydrofuran, dioxane, ethylene glycol, and diethyl ether; halogenated aliphatic carbonization such as methylene chloride, chloroform, and ethylene chloride A hydrogen solvent etc. are mentioned. A solvent may be used individually by 1 type, or may mix and use 2 or more types.

前記加熱工程においては、例えば温度100℃以上170℃以下で30分以上60分以下加熱することで前述の反応性基を有する電荷輸送材料が縮合重合され、更に前述のグアナミン化合物やメラミン化合物を添加した場合であれば架橋重合が進行することで重合体が形成され、且つ溶媒が除去されて表面保護層5が得られる。   In the heating step, for example, the charge transporting material having the above-mentioned reactive group is condensed and polymerized by heating at a temperature of 100 ° C. to 170 ° C. for 30 minutes to 60 minutes, and further, the above-described guanamine compound or melamine compound is added. In such a case, the cross-linking polymerization proceeds to form a polymer, and the solvent is removed to obtain the surface protective layer 5.

(単層型の感光層)
単層型の感光層(電荷発生/電荷輸送層)は、例えば、結着樹脂、電荷発生材料、電荷輸送材料を含んで構成される。これら材料については、電荷発生層や電荷輸送層で説明したものが好適に挙げられる。
単層型の感光層において、電荷発生材料の含有量は10質量%以上85質量%以下程度が望ましく、より望ましくは20質量%以上50質量%以下である。また、電荷輸送材料の含有量は5質量%以上50質量%以下とすることが望ましい。
単層型の感光層の形成方法は、電荷発生層や電荷輸送層の形成方法が適用される。単層型感光層の厚さは5μm以上50μm以下程度が望ましく、10μm以上40μm以下とするのがさらに望ましい。
(Single layer type photosensitive layer)
The single-layer type photosensitive layer (charge generation / charge transport layer) includes, for example, a binder resin, a charge generation material, and a charge transport material. Preferred examples of these materials include those described in the charge generation layer and the charge transport layer.
In the single-layer type photosensitive layer, the content of the charge generating material is desirably about 10% by mass to 85% by mass, and more desirably 20% by mass to 50% by mass. In addition, the content of the charge transport material is desirably 5% by mass or more and 50% by mass or less.
As a method for forming a single-layer type photosensitive layer, a method for forming a charge generation layer or a charge transport layer is applied. The thickness of the single-layer photosensitive layer is preferably about 5 μm to 50 μm, and more preferably 10 μm to 40 μm.

(その他)
本実施形態に係る電子写真感光体において、感光層や表面保護層には、画像形成装置中で発生するオゾンや酸化性ガス、あるいは光・熱による感光体の劣化を防止する目的で、感光層中に酸化防止剤、光安定剤、熱安定剤などの添加剤を添加してもよい。
また、感光層や表面保護層には、感度の向上、残留電位の低減、繰り返し使用時の疲労低減等を目的として少なくとも1種の電子受容性物質を添加してもよい。
また、感光層や表面保護層には、各層を形成する塗布液にレベリング剤としてシリコーンオイルを添加し、塗膜の膜厚ムラを抑制してもよい。
(Other)
In the electrophotographic photosensitive member according to the exemplary embodiment, the photosensitive layer and the surface protective layer include a photosensitive layer for the purpose of preventing degradation of the photosensitive member due to ozone, oxidizing gas, or light / heat generated in the image forming apparatus. You may add additives, such as antioxidant, a light stabilizer, and a heat stabilizer in it.
Further, at least one kind of electron accepting substance may be added to the photosensitive layer and the surface protective layer for the purpose of improving sensitivity, reducing residual potential, and reducing fatigue during repeated use.
Further, in the photosensitive layer and the surface protective layer, silicone oil may be added as a leveling agent to the coating solution for forming each layer to suppress film thickness unevenness of the coating film.

−帯電装置−
帯電装置8は、電源9に接続され、電源9により電圧が印加され、電子写真感光体7の表面を帯電する。
帯電装置8としては、例えば、導電性の帯電ローラ、帯電ブラシ、帯電フィルム、帯電ゴムブレード、帯電チューブ等を用いた接触方式の帯電器が挙げられる。また、帯電装置8としては、例えば、非接触方式のローラ帯電器、コロナ放電を利用したスコロトロン帯電器やコロトロン帯電器等のそれ自体公知の帯電器等も挙げられる。帯電装置8としては、接触方式の型帯電器がよい。
-Charging device-
The charging device 8 is connected to a power source 9 and a voltage is applied by the power source 9 to charge the surface of the electrophotographic photosensitive member 7.
Examples of the charging device 8 include a contact-type charger using a conductive charging roller, a charging brush, a charging film, a charging rubber blade, a charging tube, and the like. Examples of the charging device 8 include a non-contact type roller charger and a known charger such as a scorotron charger using a corona discharge or a corotron charger. The charging device 8 is preferably a contact type charger.

−露光装置−
露光装置10は、帯電した電子写真感光体7を露光して電子写真感光体7上に静電潜像を形成する。
露光装置10としては、例えば、電子写真感光体7表面に、半導体レーザ光、LED光、液晶シャッタ光等の光を、像様に露光する光学系機器等が挙げられる。光源の波長は電子写真感光体7の分光感度領域にあるものがよい。半導体レーザーの波長としては、例えば、780nm前後に発振波長を有する近赤外がよい。しかし、この波長に限定されず、600nm台の発振波長レーザーや青色レーザーとして400nm以上450nm以下に発振波長を有するレーザーも利用してもよい。また、露光装置30としては、例えばカラー画像形成のためにはマルチビーム出力するタイプの面発光型のレーザー光源も有効である。
-Exposure device-
The exposure device 10 exposes the charged electrophotographic photosensitive member 7 to form an electrostatic latent image on the electrophotographic photosensitive member 7.
Examples of the exposure apparatus 10 include optical system devices that expose the surface of the electrophotographic photoreceptor 7 with light such as semiconductor laser light, LED light, and liquid crystal shutter light in an image-like manner. The wavelength of the light source is preferably in the spectral sensitivity region of the electrophotographic photoreceptor 7. As the wavelength of the semiconductor laser, for example, near infrared having an oscillation wavelength around 780 nm is preferable. However, the present invention is not limited to this wavelength, and a laser having an oscillation wavelength of 600 nm or a laser having an oscillation wavelength of 400 nm to 450 nm as a blue laser may be used. Further, as the exposure apparatus 30, for example, a surface emitting laser light source of a multi-beam output type is also effective for color image formation.

−現像装置−
現像装置11は、トナーを含む現像剤を収容し、且つ現像剤を表面に保持する現像ロール11A(現像剤保持体の一例)を有し、現像ロール11Aの表面に保持した現像剤により、電子写真感光体7の表面に形成された静電潜像を現像してトナー像を形成する。なお、現像装置11は、例えば、現像剤を収容する容器内に、現像領域で電子写真感光体7に対向して現像ロール11Aを配置している。
-Developer-
The developing device 11 has a developing roll 11A (an example of a developer holding body) that contains a developer containing toner and holds the developer on the surface, and the developer held on the surface of the developing roll 11A generates electrons. The electrostatic latent image formed on the surface of the photographic photoreceptor 7 is developed to form a toner image. In the developing device 11, for example, a developing roll 11A is disposed in a developing region so as to face the electrophotographic photosensitive member 7 in a developing region.

以下、現像装置11に使用される現像剤について説明する。
現像剤は、トナー単独の一成分現像剤であってもよいし、トナーとキャリアとを含む二成分現像剤であってもよい。
Hereinafter, the developer used in the developing device 11 will be described.
The developer may be a single component developer of toner alone or a two component developer containing toner and carrier.

・トナー
トナーは、体積平均粒径4.0μm以下(望ましくは2.5μm以上3.8μm以下、より望ましくは3.0μm以上3.5μm以下)の小径トナーが適用される。
また、トナーの平均円形度は、0.900以上0.998以下であることがよく、望ましくは0.950以上0.980以下である。
なお、トナーの体積平均粒径および平均円形度は、トナー粒子の体積平均粒径および平均円形度に相当する。
Toner As the toner, a small diameter toner having a volume average particle size of 4.0 μm or less (desirably 2.5 μm or more and 3.8 μm or less, more desirably 3.0 μm or more and 3.5 μm or less) is applied.
The average circularity of the toner is preferably 0.900 or more and 0.998 or less, and more preferably 0.950 or more and 0.980 or less.
The volume average particle diameter and average circularity of the toner correspond to the volume average particle diameter and average circularity of the toner particles.

更に、トナーの平均形状係数SF1は100以上130以下がよく、望ましくは110以上120以下である。   Further, the average shape factor SF1 of the toner is preferably from 100 to 130, and more preferably from 110 to 120.

ここで、トナー(トナー粒子)の体積平均粒径D50vの測定法は、次の通りである。
まず、分散剤として界面活性剤(望ましくはアルキルベンゼンスルホン酸ナトリウム)の5質量%水溶液2ml中に、測定試料を0.5mg以上50mg以下加え、これを電解液100ml以上150ml以下中に添加した。この測定試料を懸濁させた電解液を超音波分散器で1分間分散処理を行い、コールターマルチサイザーII型(ベックマン−コールター社製)により、アパーチャー径が100μmのアパーチャーを用いて、粒径が2.0μm以上60μm以下の範囲の粒子の粒度分布を測定する。測定する粒子数は50,000とする。
得られた粒度分布を分割された粒度範囲(チャンネル)に対し、小粒径側から体積累積分布を引いて、累積50%となる粒径を体積平均粒径D50vとする。
Here, the measuring method of the volume average particle diameter D50v of the toner (toner particles) is as follows.
First, 0.5 mg to 50 mg of a measurement sample was added to 2 ml of a 5 mass% aqueous solution of a surfactant (desirably sodium alkylbenzenesulfonate) as a dispersant, and this was added to 100 ml to 150 ml of an electrolytic solution. The electrolytic solution in which the measurement sample is suspended is subjected to a dispersion treatment with an ultrasonic disperser for 1 minute, and a particle size of 100 μm is used with an aperture having a diameter of 100 μm by a Coulter Multisizer II type (manufactured by Beckman-Coulter). The particle size distribution of particles in the range of 2.0 μm to 60 μm is measured. The number of particles to be measured is 50,000.
For the particle size range (channel) obtained by dividing the obtained particle size distribution, the volume cumulative distribution is subtracted from the small particle size side, and the particle size that becomes 50% cumulative is defined as the volume average particle size D50v.

一方、トナー(トナー粒子)の平均円形度は、(円相当周囲長)/(周囲長)[(粒子像と同じ投影面積をもつ円の周囲長)/(粒子投影像の周囲長)]により求められ、測定対象となるトナーを吸引採取し、扁平な流れを形成させ、瞬時にストロボ発光させることにより静止画像として粒子像を取り込み、その粒子像を画像解析するフロー式粒子像解析装置(例えばシスメックス社製のFPIA−2100)によって求める。なお、平均円形度を求める際のサンプリング数は3500個である。   On the other hand, the average circularity of toner (toner particles) is (circumference equivalent to circle) / (perimeter) [(perimeter of circle having the same projection area as the particle image) / (perimeter of particle projection image)] A flow type particle image analyzer (for example, a particle image is captured as a still image by sucking and collecting the toner to be measured, forming a flat flow, and instantly flashing light, and analyzing the particle image (for example, It is obtained by FPIA-2100) manufactured by Sysmex Corporation. The number of samplings when obtaining the average circularity is 3500.

また、形状係数SF1は下記式により求められる。
式:SF1=100π×(ML)/(4×A)
上記式中、MLは粒子の最大長、Aは粒子の投影面積である。粒子の最大長と投影面積は、スライドガラス上にサンプリングした粒子を光学顕微鏡により観察し、ビデオカメラを通じて画像解析装置(LUZEX III、NIRECO社製)に取り込んで、画像解析を行うことにより求められる。この際のサンプリング数は100個以上で、その平均値を用いて、上記式に示す形状係数を求める。
In addition, the shape factor SF1 is obtained by the following equation.
Formula: SF1 = 100π × (ML) 2 / (4 × A)
In the above formula, ML is the maximum particle length, and A is the projected area of the particle. The maximum length and projected area of the particles are determined by observing the particles sampled on the slide glass with an optical microscope, taking them into an image analysis apparatus (LUZEX III, manufactured by NIRECO) through a video camera, and performing image analysis. In this case, the number of sampling is 100 or more, and the shape factor shown in the above equation is obtained using the average value.

−トナーの構成−
トナーは、トナー粒子単独で構成されていてもよいし、トナー粒子と外添剤とを含んで構成されていてもよい。
-Toner composition-
The toner may be composed of toner particles alone or may be composed of toner particles and an external additive.

トナー粒子は、例えば、結着樹脂や、その他、着色剤、離型剤、その他内添剤等を含有して構成される。   The toner particles are configured to contain, for example, a binder resin, a colorant, a release agent, and other internal additives.

結着樹脂としては、特に制限はないが、スチレン類(例えばスチレン、クロロスチレン等)、モノオレフィン類(例えばエチレン、プロピレン、ブチレン、イソプレン等)、ビニルエステル類(例えば酢酸ビニル、プロピオン酸ビニル、安息香酸ビニル、酪酸ビニル等)、α−メチレン脂肪族モノカルボン酸エステル類(例えばアクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸ドデシル、アクリル酸オクチル、アクリル酸フェニル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸ドデシル等)、ビニルエーテル類(例えばビニルメチルエーテル、ビニルエチルエーテル、ビニルブチルエーテル等)、ビニルケトン類(例えばビニルメチルケトン、ビニルヘキシルケトン、ビニルイソプロペニルケトン等)等の単独重合体および共重合体、ジカルボン酸類とジオール類との共重合によるポリエステル樹脂等が挙げられる。   The binder resin is not particularly limited, but styrenes (eg, styrene, chlorostyrene, etc.), monoolefins (eg, ethylene, propylene, butylene, isoprene, etc.), vinyl esters (eg, vinyl acetate, vinyl propionate, Vinyl benzoate, vinyl butyrate, etc.), α-methylene aliphatic monocarboxylic acid esters (eg methyl acrylate, ethyl acrylate, butyl acrylate, dodecyl acrylate, octyl acrylate, phenyl acrylate, methyl methacrylate, methacrylic acid) Ethyl acetate, butyl methacrylate, dodecyl methacrylate, etc.), vinyl ethers (eg, vinyl methyl ether, vinyl ethyl ether, vinyl butyl ether), vinyl ketones (eg, vinyl methyl ketone, vinyl hexyl ketone, vinyl isopro) Homopolymers and copolymers of Niruketon etc.), etc., and polyester resins by copolymerization of dicarboxylic acids and diols.

特に代表的な結着樹脂としては、ポリスチレン、スチレン−アクリル酸アルキル共重合体、スチレン−メタクリル酸アルキル共重合体、スチレン−アクリロニトリル共重合体、スチレン−ブタジエン共重合体、スチレン−無水マレイン酸共重合体、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエステル樹脂等が挙げられる。
また、代表的な結着樹脂としては、ポリウレタン、エポキシ樹脂、シリコーン樹脂、ポリアミド、変性ロジン、パラフィンワックス等も挙げられる。
Particularly representative binder resins include polystyrene, styrene-alkyl acrylate copolymer, styrene-alkyl methacrylate copolymer, styrene-acrylonitrile copolymer, styrene-butadiene copolymer, styrene-maleic anhydride copolymer. Examples thereof include a polymer, a polyethylene resin, a polypropylene resin, and a polyester resin.
Typical binder resins include polyurethane, epoxy resin, silicone resin, polyamide, modified rosin, paraffin wax and the like.

着色剤としては、磁性粉(例えばマグネタイト、フェライト等)、カーボンブラック、アニリンブルー、カルイルブルー、クロムイエロー、ウルトラマリンブルー、デュポンオイルレッド、キノリンイエロー、メチレンブルークロリド、フタロシアニンブルー、マラカイトグリーンオキサレート、ランプブラック、ローズベンガル、C.I.ピグメント・レッド48:1、C.I.ピグメント・レッド122、C.I.ピグメント・レッド57:1、C.I.ピグメント・イエロー97、C.I.ピグメント・イエロー17、C.I.ピグメント・ブルー15:1、C.I.ピグメント・ブルー15:3等が代表的なものとして挙げられる。   Examples of the colorant include magnetic powder (eg, magnetite, ferrite, etc.), carbon black, aniline blue, caryl blue, chrome yellow, ultramarine blue, DuPont oil red, quinoline yellow, methylene blue chloride, phthalocyanine blue, malachite green oxalate, Lamp Black, Rose Bengal, C.I. I. Pigment red 48: 1, C.I. I. Pigment red 122, C.I. I. Pigment red 57: 1, C.I. I. Pigment yellow 97, C.I. I. Pigment yellow 17, C.I. I. Pigment blue 15: 1, C.I. I. Pigment Blue 15: 3 is a typical example.

離型剤としては、例えば、炭化水素系ワックス;カルナウバワックス、ライスワックス、キャンデリラワックス等の天然ワックス;モンタンワックス等の合成或いは鉱物・石油系ワックス;脂肪酸エステル、モンタン酸エステル等のエステル系ワックス;などが挙げられるが、これに限定されるものではない。   Examples of mold release agents include hydrocarbon waxes; natural waxes such as carnauba wax, rice wax, and candelilla wax; synthetic or mineral / petroleum waxes such as montan wax; ester types such as fatty acid esters and montanic acid esters. Wax; and the like, but is not limited thereto.

その他内添剤としては、例えば、磁性体、帯電制御剤、無機粉体等が挙げられる。   Examples of other internal additives include magnetic materials, charge control agents, inorganic powders, and the like.

外添剤としては、例えば、無機粒子が挙げられ、該無機粒子として、SiO、TiO、Al、CuO、ZnO、SnO、CeO、Fe、MgO、BaO、CaO、KO、NaO、ZrO、CaO・SiO、KO・(TiO、Al・2SiO、CaCO、MgCO、BaSO、MgSO等が挙げられる。 Examples of the external additive include inorganic particles. Examples of the inorganic particles include SiO 2 , TiO 2 , Al 2 O 3 , CuO, ZnO, SnO 2 , CeO 2 , Fe 2 O 3 , MgO, BaO, and CaO. , K 2 O, Na 2 O, ZrO 2 , CaO.SiO 2 , K 2 O. (TiO 2 ) n , Al 2 O 3 .2SiO 2 , CaCO 3 , MgCO 3 , BaSO 4 , MgSO 4 and the like. .

外添剤の表面は、予め疎水化処理をしてもよい。疎水化処理は、例えば疎水化処理剤に無機粒子を浸漬する等して行う。疎水化処理剤は特に制限されないが、例えば、シラン系カップリング剤、シリコーンオイル、チタネート系カップリング剤、アルミニウム系カップリング剤等が挙げられる。これらは1種単独で使用してもよいし、2種以上を併用してもよい。   The surface of the external additive may be hydrophobized in advance. The hydrophobic treatment is performed, for example, by immersing inorganic particles in a hydrophobic treatment agent. The hydrophobizing agent is not particularly limited, and examples thereof include silane coupling agents, silicone oils, titanate coupling agents, aluminum coupling agents and the like. These may be used individually by 1 type and may use 2 or more types together.

−トナーの製造方法−
トナーには、例えば、トナー粒子を得た後、外添剤と混合してもよい。
トナー粒子の製造方法としては、特に製造方法により限定されるものではないが、例えば、結着樹脂や、その他着色剤、離型剤その他内添剤等を加えて混練、粉砕、分級する混練粉砕法;混練粉砕法にて得られた粒子を機械的衝撃力または熱エネルギーにて形状を変化させる方法;結着樹脂の重合性単量体を乳化重合させ、形成された分散液や、その他着色剤、離型剤その他内添剤等の分散液と、を混合し、凝集、加熱融着する乳化重合凝集法;結着樹脂を得るための重合性単量体や、その他着色剤、離型剤その他内添剤等の溶液を水系溶媒に懸濁させて重合する懸濁重合法;結着樹脂や、その他着色剤、離型剤その他内添剤等の溶液と、を水系溶媒に懸濁させて造粒する溶解懸濁法等が挙げられる。
また、トナー粒子は、上記方法で得られたトナー粒子をコアにして、さらに凝集粒子を付着、加熱融合してコアシェル構造のトナー粒子としてもよい。
なお、トナー粒子の製造方法としては、形状制御、粒度分布制御の観点から水系溶媒にて製造する懸濁重合法、乳化重合凝集法、溶解懸濁法が望ましく、乳化重合凝集法が特に望ましい。
-Toner production method-
For example, after obtaining toner particles, the toner may be mixed with an external additive.
The method for producing the toner particles is not particularly limited by the production method. For example, kneading and pulverization in which a binder resin, other colorant, release agent, and other internal additives are added and kneaded, pulverized, and classified. Method: Method of changing the shape of particles obtained by kneading and pulverization method by mechanical impact force or thermal energy; Emulsion polymerization of polymerizable monomer of binder resin, and formed dispersion or other coloring An emulsion polymerization aggregation method in which a dispersing agent, a release agent and other internal additives are mixed, agglomerated, and heat-sealed; a polymerizable monomer for obtaining a binder resin, other colorants, a release agent Suspension polymerization method in which a solution of an agent and other internal additives is suspended in an aqueous solvent for polymerization; a binder resin, a solution of other colorants, a release agent, and other internal additives are suspended in an aqueous solvent Examples thereof include a dissolution suspension method in which granulation is performed.
The toner particles may be core-shell toner particles obtained by using the toner particles obtained by the above method as a core, and further adhering and aggregating aggregated particles.
As a method for producing the toner particles, a suspension polymerization method, an emulsion polymerization aggregation method, and a dissolution suspension method in which an aqueous solvent is used are desirable from the viewpoint of shape control and particle size distribution control, and an emulsion polymerization aggregation method is particularly desirable.

そして、トナーは、外添剤を含む場合、トナー粒子および外添剤をヘンシェルミキサーまたはVブレンダー等で混合することによって製造される。また、トナー粒子を湿式にて製造する場合は、湿式にて外添してもよい。   When the toner includes an external additive, the toner is manufactured by mixing the toner particles and the external additive with a Henschel mixer or a V blender. Further, when the toner particles are produced by a wet method, they may be externally added by a wet method.

・キャリア
キャリアとしては、例えば、鉄粉、ガラスビーズ、フェライト粉、ニッケル粉またはそれ等の表面に樹脂コーティングを施したものが挙げられる。
なお、トナーとキャリアとの混合比(質量比)は、例えば、トナー:キャリア=1:100から30:100程度の範囲が挙げられる。
-Carrier As the carrier, for example, iron powder, glass beads, ferrite powder, nickel powder, or those having a resin coating on the surface thereof may be mentioned.
The mixing ratio (mass ratio) of the toner and the carrier is, for example, in the range of toner: carrier = 1: 100 to 30: 100.

−転写装置−
転写装置12は、電子写真感光体7上に現像されたトナー像を被転写媒体に転写する。 転写装置12としては、例えば、ベルト、ローラ、フィルム、ゴムブレード等を用いた接触型転写帯電器、コロナ放電を利用したスコロトロン転写帯電器やコロトロン転写帯電器等のそれ自体公知の転写帯電器が挙げられる。
-Transfer device-
The transfer device 12 transfers the toner image developed on the electrophotographic photoreceptor 7 to a transfer medium. Examples of the transfer device 12 include known transfer chargers such as a contact transfer charger using a belt, a roller, a film, a rubber blade, a scorotron transfer charger using a corona discharge, and a corotron transfer charger. Can be mentioned.

−クリーング装置−
クリーニング装置13は、転写後の電子写真感光体7上に残存するトナーを除去する。 クリーニング装置13は、電子写真感光体7に対して線圧10g/cm以上150g/cm以下で接するクリーニングブレードを有することが望ましい。クリーニング装置13は、例えば、筐体と、クリーニングブレードと、クリーニングブレードの電子写真感光体7回転方向下流側に配置されるクリーニングブラシと、を含んで構成される。また、クリーニングブラシには、例えば、固形状の潤滑剤が接触して配置される。
-Cleaning device-
The cleaning device 13 removes toner remaining on the electrophotographic photosensitive member 7 after transfer. The cleaning device 13 preferably has a cleaning blade that contacts the electrophotographic photoreceptor 7 at a linear pressure of 10 g / cm to 150 g / cm. The cleaning device 13 includes, for example, a housing, a cleaning blade, and a cleaning brush disposed on the downstream side of the cleaning blade in the rotation direction of the electrophotographic photosensitive member 7. In addition, for example, a solid lubricant is disposed in contact with the cleaning brush.

−除電装置−
除電装置(イレーズ装置)14は、トナー像を転写した後の電子写真感光体7の表面に除電光を照射して、電子写真感光体の表面に残留する電位を除電する。除電装置14は、例えば、電子写真感光体7の軸方向幅方向全域にわたって除電光を照射して、電子写真感光体7の表面に生じた露光装置10による露光部と非露光部との電位差を除去する。
-Static neutralizer-
The static eliminator (erase device) 14 irradiates the surface of the electrophotographic photosensitive member 7 after the toner image has been transferred with static elimination light, and eliminates the potential remaining on the surface of the electrophotographic photosensitive member. For example, the static eliminator 14 irradiates static electricity over the entire width in the axial direction of the electrophotographic photosensitive member 7, and determines the potential difference between the exposed portion and the non-exposed portion by the exposure device 10 generated on the surface of the electrophotographic photosensitive member 7. Remove.

除電装置14の光源としては、特に制限はなく、例えば、タングステンランプ(例えば白色光)、発光ダイオード(LED:例えば赤色光)等が挙げられる。   There is no restriction | limiting in particular as a light source of the static elimination apparatus 14, For example, a tungsten lamp (for example, white light), a light emitting diode (LED: for example, red light), etc. are mentioned.

−定着装置−
画像形成装置101は、転写工程後の記録紙Pにトナー像を定着させる定着装置15を備えている。定着装置としては、特に制限はなく、それ自体公知の定着器、例えば熱ローラ定着器、オーブン定着器等が挙げられる。
-Fixing device-
The image forming apparatus 101 includes a fixing device 15 that fixes the toner image on the recording paper P after the transfer process. The fixing device is not particularly limited, and examples thereof include known fixing devices such as a heat roller fixing device and an oven fixing device.

次に、本実施形態に係る画像形成装置101の動作について説明する。まず、電子写真感光体7が矢印Aで示される方向に沿って回転すると同時に、帯電装置8により負に帯電する。   Next, the operation of the image forming apparatus 101 according to the present embodiment will be described. First, the electrophotographic photoreceptor 7 rotates in the direction indicated by the arrow A, and at the same time is negatively charged by the charging device 8.

帯電装置8によって表面が負に帯電した電子写真感光体7は、露光装置10により露光され、表面に静電潜像が形成される。   The electrophotographic photosensitive member 7 whose surface is negatively charged by the charging device 8 is exposed by the exposure device 10 to form an electrostatic latent image on the surface.

電子写真感光体7における静電潜像の形成された部分が現像装置11に近づくと、現像装置11により、静電潜像にトナーが付着し、トナー像が形成される。   When the portion where the electrostatic latent image is formed on the electrophotographic photosensitive member 7 approaches the developing device 11, the developing device 11 attaches toner to the electrostatic latent image and forms a toner image.

トナー像が形成された電子写真感光体7が矢印Aに方向にさらに回転すると、転写装置12によりトナー像は記録紙Pに転写される。これにより、記録紙Pにトナー像が形成される。   When the electrophotographic photosensitive member 7 on which the toner image is formed further rotates in the direction of arrow A, the toner image is transferred onto the recording paper P by the transfer device 12. As a result, a toner image is formed on the recording paper P.

画像が形成された記録紙Pは、定着装置15でトナー像が定着される。   The toner image is fixed on the recording paper P on which the image is formed by the fixing device 15.

<プロセスカートリッジ>
本実施形態に係る画像形成装置は、例えば、前記した本実施形態における電子写真感光体7と、前記した本実施形態における現像装置11と、を備えたプロセスカートリッジを画像形成装置に着脱させる形態であってもよい。
本実施形態に係るプロセスカートリッジの構成は、少なくとも、前記本実施形態における電子写真感光体7および前記本実施形態における現像装置11を備えていればよく、これらのほかに、例えば、帯電装置8、露光装置10、転写装置12、クリーニング装置13、および除電装置14から選択される少なくとも1つの構成部材を備えていてもよい。
<Process cartridge>
The image forming apparatus according to the present embodiment is, for example, a form in which a process cartridge including the electrophotographic photosensitive member 7 according to the present embodiment and the developing device 11 according to the present embodiment is attached to and detached from the image forming apparatus. There may be.
The configuration of the process cartridge according to the present embodiment only needs to include at least the electrophotographic photosensitive member 7 according to the present embodiment and the developing device 11 according to the present embodiment. You may provide at least 1 component selected from the exposure apparatus 10, the transfer apparatus 12, the cleaning apparatus 13, and the static elimination apparatus 14. FIG.

また、本実施形態に係る画像形成装置は、上記構成に限られず、例えば、電子写真感光体7の周囲であって、転写装置12よりも電子写真感光体7の回転方向下流側でクリーニング装置13よりも電子写真感光体7の回転方向上流側に、残留したトナーの極性を揃え、クリーニングブラシで除去しやすくするための第1除電装置を設けた形態であってもよい。   In addition, the image forming apparatus according to the present embodiment is not limited to the above-described configuration. For example, the cleaning apparatus 13 is around the electrophotographic photosensitive member 7 and downstream of the transfer device 12 in the rotation direction of the electrophotographic photosensitive member 7. Alternatively, the first static eliminating device may be provided on the upstream side in the rotation direction of the electrophotographic photosensitive member 7 so that the polarity of the remaining toner is aligned and easily removed with a cleaning brush.

また、本実施形態に係る画像形成装置は、上記構成に限れず、周知の構成、例えば、電子写真感光体7に形成したトナー像を中間転写体に転写した後、記録紙Pに転写する中間転写方式の画像形成装置を採用してもよいし、タンデム方式の画像形成装置を採用してもよい。   In addition, the image forming apparatus according to the present embodiment is not limited to the above-described configuration, and a known configuration, for example, an intermediate for transferring the toner image formed on the electrophotographic photosensitive member 7 to the intermediate transfer member and then transferring the toner image to the recording paper P. A transfer type image forming apparatus may be employed, or a tandem type image forming apparatus may be employed.

なお、本実施形態に係る電子写真感光体は、除電装置を備えていない画像形成装置にも適用してもよい。   Note that the electrophotographic photoreceptor according to the exemplary embodiment may be applied to an image forming apparatus that does not include a static eliminator.

以下、実施例および比較例に基づき本発明をさらに具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。尚、以下において「部」および「%」は、特に断りのない限り、質量基準を表す。   EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example and a comparative example, this invention is not limited to a following example at all. In the following description, “parts” and “%” are based on mass unless otherwise specified.

<<感光体>>
[感光体1の作製]
−下引層の作製−
酸化亜鉛(平均粒子径:70nm、テイカ社製、比表面積値:15m/g)100部をテトラヒドロフラン500部と攪拌混合し、シランカップリング剤として、KBM603(信越化学社製)1.25部を添加し、2時間攪拌した。その後、テトラヒドロフランを減圧蒸留にて留去し、120℃で3時間焼き付けを行い、シランカップリング剤表面処理酸化亜鉛粒子を得た。
<< Photoconductor >>
[Preparation of Photoreceptor 1]
-Production of undercoat layer-
100 parts of zinc oxide (average particle size: 70 nm, manufactured by Teica, specific surface area value: 15 m 2 / g) is stirred and mixed with 500 parts of tetrahydrofuran, and 1.25 parts of KBM603 (manufactured by Shin-Etsu Chemical Co., Ltd.) is used as a silane coupling agent. And stirred for 2 hours. Then, tetrahydrofuran was distilled off under reduced pressure and baked at 120 ° C. for 3 hours to obtain silane coupling agent surface-treated zinc oxide particles.

前記表面処理を施した酸化亜鉛粒子60部と、前述の例示化合物(1−2)に示す電子輸送材料0.6部と、硬化剤としてブロック化イソシアネート(スミジュール3173、住友バイエルンウレタン社製)13.5部と、ブチラール樹脂(エスレックBM−1、積水化学社製)15部とを、メチルエチルケトン85部に溶解した溶液38部と、メチルエチルケトン25部とを混合し、直径1mmのガラスビーズを用いてサンドミルにて4時間の分散を行い分散液を得た。   60 parts of the surface-treated zinc oxide particles, 0.6 part of the electron transport material shown in the above-mentioned exemplary compound (1-2), and blocked isocyanate as a curing agent (Sumijoule 3173, manufactured by Sumitomo Bayern Urethane Co., Ltd.) 13.5 parts and 15 parts of butyral resin (ESREC BM-1, manufactured by Sekisui Chemical Co., Ltd.) in 38 parts of methyl ethyl ketone were mixed with 25 parts of methyl ethyl ketone, and glass beads having a diameter of 1 mm were used. Then, dispersion was performed for 4 hours with a sand mill to obtain a dispersion.

得られた分散液に、触媒としてジオクチルスズジラウレート0.005部と、シリコーン樹脂粒子(トスパール145、GE東芝シリコーン社製)4.0部とを添加し、下引層用塗布液を得た。この塗布液を、浸漬塗布法にて直径30mmのアルミニウム基材上に塗布し、180℃、40分の乾燥硬化を行い厚さ25μmの下引層を得た。   To the obtained dispersion, 0.005 part of dioctyltin dilaurate and 4.0 parts of silicone resin particles (Tospearl 145, manufactured by GE Toshiba Silicone) were added as a catalyst to obtain an undercoat layer coating liquid. This coating solution was applied on an aluminum substrate having a diameter of 30 mm by a dip coating method, followed by drying and curing at 180 ° C. for 40 minutes to obtain an undercoat layer having a thickness of 25 μm.

−電荷発生層の作製−
次に、電荷発生材料として、CuKα特性X線に対するブラッグ角(2θ±0.2゜)の少なくとも7.4゜、16.6゜、25.5゜および28.3゜に強い回折ピークを有するクロロガリウムフタロシアニン結晶15部、塩化ビニル−酢酸ビニル共重合体樹脂(VMCH、日本ユニオンカーバイト社製)10部およびn−ブチルアルコール300部からなる混合物を、直径1mmのガラスビーズを用いてサンドミルにて4時間分散して電荷発生層用の塗布液を得た。この電荷発生層用塗布液を前記下引層上に浸漬塗布し、120℃、5分間乾燥して、厚みが0.2μmの電荷発生層を得た。
-Fabrication of charge generation layer-
Next, as a charge generating material, it has strong diffraction peaks at Bragg angles (2θ ± 0.2 °) with respect to CuKα characteristic X-rays of at least 7.4 °, 16.6 °, 25.5 ° and 28.3 °. Mix a mixture of 15 parts of chlorogallium phthalocyanine crystal, 10 parts of vinyl chloride-vinyl acetate copolymer resin (VMCH, manufactured by Nippon Union Carbide) and 300 parts of n-butyl alcohol in a sand mill using glass beads having a diameter of 1 mm. For 4 hours to obtain a coating solution for the charge generation layer. This charge generation layer coating solution was dip coated on the undercoat layer and dried at 120 ° C. for 5 minutes to obtain a charge generation layer having a thickness of 0.2 μm.

−電荷輸送層の作製−
続いて、電荷輸送物質としてN,N’−ビス(3−メチルフェニル)−N,N’−ジフェニルベンジジン2部、N,N’−ビス(3,4−ジメチルフェニル)ビフェニル−4−アミン2部、ビスフェノールZ型ポリカーボネート樹脂(粘度平均分子量:40,000)6部、酸化防止剤として2,6−ジ−t−ブチル−4−メチルフェノール0.1部を混合してテトラヒドロフラン24部およびトルエン11部を混合溶解し、電荷輸送層用の塗布液を得た。この電荷輸送層用塗布液を前記電荷発生層上に浸漬塗布し、120℃、40分間乾燥して、厚みが22μmの電荷輸送層を得た。
-Preparation of charge transport layer-
Subsequently, 2 parts of N, N′-bis (3-methylphenyl) -N, N′-diphenylbenzidine, N, N′-bis (3,4-dimethylphenyl) biphenyl-4-amine 2 as charge transport materials Parts, 6 parts of bisphenol Z-type polycarbonate resin (viscosity average molecular weight: 40,000), 0.1 part of 2,6-di-t-butyl-4-methylphenol as an antioxidant, and 24 parts of tetrahydrofuran and toluene 11 parts were mixed and dissolved to obtain a coating solution for the charge transport layer. This charge transport layer coating solution was dip-coated on the charge generation layer and dried at 120 ° C. for 40 minutes to obtain a charge transport layer having a thickness of 22 μm.

−表面保護層の作製−
続いて、4フッ化エチレン樹脂粒子としてルブロンL−2(ダイキン工業製)10部、および下記構造式2で表される繰り返し単位を含むフッ化アルキル基含有共重合体(重量平均分子量50,000、l:m=1:1、s=1、n=60)0.3部をシクロペンタノン40部に攪拌混合して、4フッ化エチレン樹脂粒子懸濁液を作製した。次に、前述の化学式I−8で表される化合物を80部、化学式I−26で表される化合物を20部、ベンゾグアナミン樹脂(ニカラックBL−60、三和ケミカル社製)を4部、シクロペンタノン220部に加えて、溶解混合した後に、前記4フッ化エチレン樹脂粒子懸濁液を加えて、攪拌混合した後、微細な流路をもつ貫通式チャンバーを装着した高圧ホモジナイザー(吉田機械興業製 YSNM−1500AR)を用いて、700kgf/cmまで昇圧しての分散処理を20回繰返した後、ジメチルポリシロキサン(グラノール450、共栄社化学)を1部、NACURE5225(キングインダストリー社製)を0.1部加え表面保護層用塗布液を調製した。この表面保護層用塗布液を浸漬塗布法で電荷輸送層の上に塗布し155℃で35分乾燥し、膜厚6μmの表面保護層を形成した感光体を、感光体1とした。
-Preparation of surface protective layer-
Subsequently, 10 parts of Lubron L-2 (manufactured by Daikin Industries) as tetrafluoroethylene resin particles and a fluorinated alkyl group-containing copolymer containing a repeating unit represented by the following structural formula 2 (weight average molecular weight 50,000) , L: m = 1: 1, s = 1, n = 60) 0.3 parts of cyclopentanone was stirred and mixed to prepare a tetrafluoroethylene resin particle suspension. Next, 80 parts of the compound represented by the above chemical formula I-8, 20 parts of the compound represented by chemical formula I-26, 4 parts of benzoguanamine resin (Nicarac BL-60, manufactured by Sanwa Chemical Co., Ltd.), cyclohexane In addition to 220 parts of pentanone, dissolved and mixed, the tetrafluoroethylene resin particle suspension was added, stirred and mixed, and then a high-pressure homogenizer equipped with a through-type chamber having fine channels (Yoshida Kikai Kogyo Co., Ltd.) YSSNM-1500AR) was used, and after the dispersion treatment with the pressure increased to 700 kgf / cm 2 was repeated 20 times, 1 part of dimethylpolysiloxane (Granol 450, Kyoeisha Chemical Co., Ltd.) and NACURE 5225 (manufactured by King Industry Co., Ltd.) 0 .1 part was added to prepare a coating solution for the surface protective layer. The surface-sensitive layer coating solution was applied onto the charge transport layer by a dip coating method and dried at 155 ° C. for 35 minutes to form a surface-sensitive layer having a film thickness of 6 μm.

構造式2

Structural formula 2

[感光体2〜12の作製]
下引層に用いた電子輸送材料、および表面保護層に用いた反応性電荷輸送材料を、下記表1に記載のものに変更した以外は、感光体1に記載の方法により、それぞれ感光体2〜12を作製した
[Preparation of photoconductors 2 to 12]
Except for changing the electron transport material used for the undercoat layer and the reactive charge transport material used for the surface protective layer to those shown in Table 1 below, each of the photoconductor 2 and the photoconductor 2 was prepared by the method described in Photoconductor 1. Made ~ 12

[比較感光体1〜17の作製]
下引層に用いた電子輸送材料、および表面保護層に用いた反応性電荷輸送材料を、下記表2に記載のものに変更した以外は、感光体1に記載の方法により、それぞれ比較感光体1〜9を作製した
[Production of Comparative Photoconductors 1 to 17]
The comparative photoconductors were prepared by the method described in Photoconductor 1 except that the electron transport material used for the undercoat layer and the reactive charge transport material used for the surface protective layer were changed to those shown in Table 2 below. 1 to 9 were produced


<<現像剤>>
[比較現像剤1]
(比較トナー粒子1の作製)
−結晶性ポリエステル樹脂(1)の合成−
加熱乾燥した3口フラスコに、エチレングリコール124部、5−スルホイソフタル酸ナトリウムジメチル22.2部、セバシン酸ジメチル213部、と触媒としてジブチル錫オキサイド0.3部を入れた後、減圧操作により容器内の空気を窒素ガスにより不活性雰囲気下とし、機械攪拌にて180℃で5時間攪拌を行った。その後、減圧下にて220℃まで徐々に昇温を行い4時間攪拌し、粘稠な状態となったところで空冷し、反応を停止させ、結晶性ポリエステル樹脂(1)220部を合成した。
ゲルパーミエーションクロマトグラフィーによる分子量測定(ポリスチレン換算)で、得られた結晶性ポリエステル樹脂(1)の重量平均分子量(MW)は19000であり、数平均分子量(Mn)は5800であった。
また、結晶性ポリエステル樹脂(1)の溶融温度(Tm)を、前述の測定方法により、示差走査熱量計(DSC)を用いて測定したところ、明確なピークを有し、ピークトップの温度は70℃であった。
<< Developer >>
[Comparative developer 1]
(Preparation of Comparative Toner Particle 1)
-Synthesis of crystalline polyester resin (1)-
In a heat-dried three-necked flask, 124 parts of ethylene glycol, 22.2 parts of sodium dimethyl 5-sulfoisophthalate, 213 parts of dimethyl sebacate, and 0.3 part of dibutyltin oxide as a catalyst were added, and then the vessel was subjected to a decompression operation. The inside air was brought into an inert atmosphere with nitrogen gas, and stirred at 180 ° C. for 5 hours by mechanical stirring. Thereafter, the temperature was gradually raised to 220 ° C. under reduced pressure, and the mixture was stirred for 4 hours. When it became a viscous state, it was air-cooled, the reaction was stopped, and 220 parts of crystalline polyester resin (1) was synthesized.
The molecular weight measurement (polystyrene conversion) by gel permeation chromatography revealed that the obtained crystalline polyester resin (1) had a weight average molecular weight (MW) of 19000 and a number average molecular weight (Mn) of 5800.
Further, when the melting temperature (Tm) of the crystalline polyester resin (1) was measured using a differential scanning calorimeter (DSC) by the above-described measuring method, it had a clear peak, and the peak top temperature was 70. ° C.

−樹脂分散液の調製−
結晶性ポリエステル樹脂(1)150部を蒸留水850部中に入れ、80℃に加熱しながらホモジナイザー(IKAジャパン社製:ウルトラタラクス)にて混合攪拌して、樹脂粒子分散液を得た。
-Preparation of resin dispersion-
150 parts of crystalline polyester resin (1) was put in 850 parts of distilled water, and mixed and stirred with a homogenizer (IKA Japan, Ultratarax) while heating to 80 ° C. to obtain a resin particle dispersion.

−着色剤分散液の調製−
カーボンブラック250部、アニオン界面活性剤20部(第一工業製薬(株)社製:ネオゲンRK)、イオン交換水700部を混合し、溶解させた後、ホモジナイザー(IKA社製:ウルトラタラクス)を用いて分散し、着色剤を分散させてなる着色剤分散液を調製した。
-Preparation of colorant dispersion-
250 parts of carbon black, 20 parts of an anionic surfactant (Daiichi Kogyo Seiyaku Co., Ltd .: Neogen RK) and 700 parts of ion-exchanged water were mixed and dissolved, and then a homogenizer (manufactured by IKA: Ultra Tarax). Was used to prepare a colorant dispersion liquid in which a colorant was dispersed.

−離型剤分散液の調製−
パラフィンワックス(HNP0190、日本精蝋社製、溶融温度85℃)100部、カチオン性界面活性剤(サニゾールB50、花王社製)5部、イオン交換水240部を、丸型ステンレス鋼製フラスコ中でホモジナイザー(ウルトラタラックスT50、IKA社製)を用いて10分間分散した後、圧力吐出型ホモジナイザーで分散処理し、平均粒径550nmの離型剤粒子が分散された離型剤分散液を調製した。
-Preparation of release agent dispersion-
In a round stainless steel flask, 100 parts of paraffin wax (HNP0190, manufactured by Nippon Seiwa Co., Ltd., melting temperature 85 ° C.), 5 parts of cationic surfactant (Sanisol B50, manufactured by Kao Corporation), and 240 parts of ion-exchanged water are added. After dispersing for 10 minutes using a homogenizer (Ultra Turrax T50, manufactured by IKA), the dispersion was performed with a pressure discharge type homogenizer to prepare a release agent dispersion in which release agent particles having an average particle size of 550 nm were dispersed. .

−比較トナー粒子1の作製―
樹脂粒子分散液2400部、着色剤分散液100部、離型剤分散液63部、過酸化ラウロイル10部、硫酸アルミニウム5部(和光純薬社製)、イオン交換水100部、を丸型ステンレス製フラスコ中に収容させ、pH2.0に調整した後、ホモジナイザー(IKA社製:ウルトラタラックスT50)を用いて分散させた後、加熱用オイルバス中で65℃まで攪拌しながら加熱した。65℃で2.5時間保持した後、光学顕微鏡にて観察すると、平均粒径が4.5μmである凝集粒子が形成されていることが確認された。
-Production of comparative toner particles 1-
2400 parts of resin particle dispersion, 100 parts of colorant dispersion, 63 parts of release agent dispersion, 10 parts of lauroyl peroxide, 5 parts of aluminum sulfate (manufactured by Wako Pure Chemical Industries, Ltd.), 100 parts of ion-exchanged water, round stainless steel After being accommodated in a flask and adjusted to pH 2.0, the mixture was dispersed using a homogenizer (manufactured by IKA: Ultra Tarrax T50), and then heated to 65 ° C. with stirring in an oil bath for heating. After maintaining at 65 ° C. for 2.5 hours, observation with an optical microscope confirmed that aggregated particles having an average particle diameter of 4.5 μm were formed.

この凝集粒子液のpHは2.4であった。そこで炭酸ナトリウム(和光純薬社製)を0.5%に希釈した水溶液を穏やかに添加し、pHを5.0に調整した後、攪拌を継続しながら75℃まで加熱し、3.5時間保持した。
その後、反応生成物をろ過し、イオン交換水で洗浄した後、真空乾燥機を用いて乾燥させることにより、K(ブラック)色の比較トナー粒子1を得た。得られた比較トナー粒子1の溶融温度は65℃であった。
得られたK色の比較トナー粒子1について、D50(体積平均粒径)を測定したところ、D50は4.2μm、平均形状係数SF1は129であった。
The pH of this aggregated particle liquid was 2.4. Therefore, an aqueous solution obtained by diluting sodium carbonate (manufactured by Wako Pure Chemical Industries, Ltd.) to 0.5% was gently added to adjust the pH to 5.0, and then heated to 75 ° C. while continuing stirring for 3.5 hours. Retained.
Thereafter, the reaction product was filtered, washed with ion-exchanged water, and then dried using a vacuum dryer, to obtain comparative toner particles 1 of K (black) color. The melting temperature of the obtained comparative toner particles 1 was 65 ° C.
With respect to the obtained comparative toner particle 1 of K color, D50 (volume average particle diameter) was measured. As a result, D50 was 4.2 μm and average shape factor SF1 was 129.

(比較現像剤1の作製)
得られたK色の比較トナー粒子1に外添剤として、ヘキサメチルジシラザン処理したシリカ(平均粒径40nm)0.5%、メタチタン酸にイソブチルトリメトキシシラン50%処理後焼成して得られたチタン化合物(平均粒径30nm)0.7%を加え(何れもトナーに対する質量比)、75Lヘンシェルミキサーにて10分間混合し、その後、風力篩分機ハイボルター300(新東京機械社製)にて篩分し、外添トナーを作製した。
平均粒径50μmのフェライトコア100部に対して、0.15部にあたる弗化ビニリデン、および1.35部にあたるメチルメタアクリレートとトリフロロエチレンとの共重合体(重合比80:20)樹脂をニーダー装置を用いコーティングし、キャリアを作製した。得られたキャリアと外添トナーとを100部:8部の割合で2リッターのVブレンダーで混合し、比較現像剤1を作製した。
(Preparation of Comparative Developer 1)
The obtained K-color comparative toner particles 1 are obtained by firing 0.5% hexamethyldisilazane-treated silica (average particle size 40 nm) as an external additive, and treating with metatitanic acid 50% isobutyltrimethoxysilane. The titanium compound (average particle size 30 nm) 0.7% was added (both mass ratio to the toner) and mixed for 10 minutes with a 75 L Henschel mixer, and then with a wind sieving machine high voltor 300 (manufactured by Shin Tokyo Kikai Co., Ltd.). Sieving was performed to prepare an externally added toner.
For 100 parts of ferrite core having an average particle size of 50 μm, 0.15 parts of vinylidene fluoride and 1.35 parts of a copolymer of methyl methacrylate and trifluoroethylene (polymerization ratio 80:20) are kneaded. Coating was performed using an apparatus to prepare a carrier. The obtained carrier and the externally added toner were mixed at a ratio of 100 parts: 8 parts by a 2 liter V blender to prepare Comparative Developer 1.

[比較現像剤2]
比較現像剤1の比較トナー粒子1の作製において、65℃加熱攪拌の保持時間を2時間に、炭酸ナトリウム水溶液添加によるpH調整後の75℃加熱攪拌時間を3時間に変更した以外は同様にして、K色の比較トナー粒子2を作製し、比較現像剤2を得た。
[Comparative developer 2]
In the preparation of the comparative toner particles 1 of the comparative developer 1, the holding time for stirring at 65 ° C. was changed to 2 hours, and the heating / stirring time after adjusting the pH by adding an aqueous sodium carbonate solution was changed to 3 hours. Comparative toner particles 2 of K color were produced, and a comparative developer 2 was obtained.

[現像剤1]
比較現像剤1の比較トナー粒子1の作製において、65℃加熱攪拌の保持時間を2時間に、炭酸ナトリウム水溶液添加によるpH調整後の75℃加熱攪拌時間を5時間に変更した以外は同様にして、K色のトナー粒子1を作製し、現像剤1を得た。
[Developer 1]
In the preparation of the comparative toner particles 1 of the comparative developer 1, the holding time for 65 ° C. heating and stirring was changed to 2 hours, and the 75 ° C. heating and stirring time after pH adjustment by adding sodium carbonate aqueous solution was changed to 5 hours. , K toner particles 1 were produced, and a developer 1 was obtained.

[現像剤2]
比較現像剤1の比較トナー粒子1の作製において、65℃加熱攪拌の保持時間を2時間に、炭酸ナトリウム水溶液添加によるpH調整後の75℃加熱攪拌時間を4時間に変更した以外は同様にして、K色のトナー粒子2を作製し、現像剤2を得た。
[Developer 2]
In the preparation of the comparative toner particles 1 of the comparative developer 1, the holding time for 65 ° C. heating and stirring was changed to 2 hours, and the 75 ° C. heating and stirring time after pH adjustment by adding sodium carbonate aqueous solution was changed to 4 hours. , K toner particles 2 were produced, and a developer 2 was obtained.

[現像剤3]
比較現像剤1の比較トナー粒子1の作製において、65℃加熱攪拌の保持時間を2時間に、炭酸ナトリウム水溶液添加によるpH調整後の75℃加熱攪拌時間を3.5時間に変更した以外は同様にして、K色のトナー粒子3を作製し、現像剤3を得た。
[Developer 3]
In the production of comparative toner particles 1 of Comparative Developer 1, the same holds except that the holding time for 65 ° C. heating and stirring is changed to 2 hours, and the 75 ° C. heating and stirring time after pH adjustment by adding sodium carbonate aqueous solution is changed to 3.5 hours. Thus, K toner particles 3 were produced, and a developer 3 was obtained.

[現像剤4]
比較現像剤1の比較トナー粒子1の作製において、65℃加熱攪拌の保持時間を1.5時間に、炭酸ナトリウム水溶液添加によるpH調整後の75℃加熱攪拌時間を3.5時間に変更した以外は同様にして、K色のトナー粒子4を作製し、現像剤4を得た。
[Developer 4]
In preparation of comparative toner particle 1 of comparative developer 1, except that the holding time of 65 ° C. heating and stirring was changed to 1.5 hours, and the heating and stirring time of 75 ° C. after pH adjustment by adding sodium carbonate aqueous solution was changed to 3.5 hours. In the same manner, K-color toner particles 4 were produced, and a developer 4 was obtained.

[現像剤5]
比較現像剤1の比較トナー粒子1の作製において、65℃加熱攪拌の保持時間を1時間に、炭酸ナトリウム水溶液添加によるpH調整後の75℃加熱攪拌時間を3.5時間に変更した以外は同様にして、K色のトナー粒子5を作製し、現像剤5を得た。
作製した各現像剤(トナー)の特性を一覧にして表3に示す。
[Developer 5]
In the production of comparative toner particles 1 of Comparative Developer 1, the same holds except that the holding time for 65 ° C. heating and stirring is changed to 1 hour, and the 75 ° C. heating and stirring time after pH adjustment by adding sodium carbonate aqueous solution is changed to 3.5 hours. Thus, K toner particles 5 were produced, and a developer 5 was obtained.
Table 3 shows a list of characteristics of the produced developers (toners).


<<実施例1>>
続いて、感光体1、および現像剤3を組み合わせて、富士ゼロックス社製「ApeosPort−III C4400」に装着し、以下の評価を行った。結果を表4に示す。
<< Example 1 >>
Subsequently, the photoreceptor 1 and the developer 3 were combined and mounted on “Apeos Port-III C4400” manufactured by Fuji Xerox Co., Ltd., and the following evaluation was performed. The results are shown in Table 4.

[初期階調性評価]
高温高湿環境下(30℃85%)において、図4に示す画像パターンをプリント(出力)し、狙い画像密度0%以上20%以下、および80%以上100%以下の領域の階調性を評価した。このときのプロセススピードは320mm/sとした。
評価基準は以下の通りである。
A:狙い画像濃度とプリントされた実際の画像濃度の差が2%以下B:狙い画像濃度とプリントされた実際の画像濃度の差が2%より大きく3%以下
C:狙い画像濃度とプリントされた実際の画像濃度の差が3%より大きく5%以下
D:狙い画像濃度とプリントされた実際の画像濃度の差が5%より大きい
なお、画像濃度は、X−Rite社製、X−Rite404を用いて測定を行った。
[Initial gradation evaluation]
The image pattern shown in FIG. 4 is printed (output) in a high-temperature and high-humidity environment (30 ° C. and 85%), and the target image density is 0% to 20% and 80% to 100%. evaluated. The process speed at this time was 320 mm / s.
The evaluation criteria are as follows.
A: The difference between the target image density and the actual printed image density is 2% or less. B: The difference between the target image density and the actual printed image density is greater than 2% and less than 3%. C: The target image density is printed. The actual image density difference is greater than 3% and less than 5%. D: The difference between the target image density and the printed actual image density is greater than 5%. Note that the image density is X-Rite 404 manufactured by X-Rite. Measurement was performed using

[プリント後階調性評価]
高温高湿環境下(30℃85%)において、画像密度5%の全面ハーフトーン画像A4用紙50000枚プリントした。
その後、図4に示す画像パターンをプリント(出力)し、狙い画像密度0%以上20%以下、および80%以上100%以下の領域の階調性を評価した。このときのプロセススピードは320mm/sとした。
評価基準は以下の通りである。
A:狙い画像濃度とプリントされた実際の画像濃度の差が2%以下
B:狙い画像濃度とプリントされた実際の画像濃度の差が2%より大きく3%以下
C:狙い画像濃度とプリントされた実際の画像濃度の差が3%より大きく5%以下
D:狙い画像濃度とプリントされた実際の画像濃度の差が5%より大きい
なお、画像濃度は、X−Rite社製、X−Rite404を用いて測定を行った。
[Gradation evaluation after printing]
In a high-temperature and high-humidity environment (30 ° C. and 85%), 50,000 sheets of full-surface halftone image A4 paper with an image density of 5% were printed.
Thereafter, the image pattern shown in FIG. 4 was printed (output), and the gradation of the target image density of 0% to 20% and 80% to 100% was evaluated. The process speed at this time was 320 mm / s.
The evaluation criteria are as follows.
A: The difference between the target image density and the actual printed image density is 2% or less. B: The difference between the target image density and the actual printed image density is greater than 2% and less than 3%. C: The target image density is printed. The actual image density difference is greater than 3% and less than 5%. D: The difference between the target image density and the printed actual image density is greater than 5%. Note that the image density is X-Rite 404 manufactured by X-Rite. Measurement was performed using

[初期文字解像度評価]
文字解像度評価は7ポイントサイズの文字「響」をプリントし、解像度を目視にて観察し判断した。
評価基準は以下の通りである。
A:文字のつぶれなし。
B:若干の文字のつぶれがあるが許容範囲。
C:文字のつぶれがあり許容し得ない。
D:解像度が明らかに不良。
[Initial character resolution evaluation]
The character resolution evaluation was performed by printing a 7-point character “Hibiki” and visually observing the resolution.
The evaluation criteria are as follows.
A: No character collapse.
B: Although some characters are crushed, it is acceptable.
C: Characters are crushed and unacceptable.
D: The resolution is clearly poor.

[プリント後文字解像度評価]
高温高湿環境下(30℃85%)において、画像密度5%の全面ハーフトーン画像A4用紙50000枚プリントした。
その後、文字解像度評価は7ポイントサイズの文字「響」をプリントし、解像度を目視にて観察し判断した。
評価基準は以下の通りである。
A:文字のつぶれなし。
B:若干の文字のつぶれがあるが許容範囲。
C:若干の文字のつぶれがあり許容し得ない。
D:解像度が明らかに不良。
[Character resolution evaluation after printing]
In a high-temperature and high-humidity environment (30 ° C. and 85%), 50,000 sheets of full-surface halftone image A4 paper with an image density of 5% were printed.
Thereafter, the character resolution evaluation was performed by printing a 7-point character “Hibi” and visually observing the resolution.
The evaluation criteria are as follows.
A: No character collapse.
B: Although some characters are crushed, it is acceptable.
C: Some characters are crushed and unacceptable.
D: The resolution is clearly poor.

<<実施例2〜16>>
用いた感光体および現像剤を表4に記載のものに変更した以外は、実施例1と同様に評価を行った。結果を表4に示す。
<< Examples 2 to 16 >>
Evaluation was performed in the same manner as in Example 1 except that the photoconductor and developer used were changed to those shown in Table 4. The results are shown in Table 4.

<<比較例1〜17>>
用いた感光体および現像剤を表5に記載のものに変更した以外は、実施例1と同様に評価を行った。結果を表5に示す。
<< Comparative Examples 1-17 >>
Evaluation was performed in the same manner as in Example 1 except that the photoconductor and developer used were changed to those shown in Table 5. The results are shown in Table 5.



1 導電性基材、2 下引層、3 感光層、4 下引層、5 表面保護層、7 電子写真感光体、8 帯電装置、9 電源、10 露光装置、11 現像装置、12 転写装置、13 クリーニング装置、14 除電装置、15 定着装置、31 電荷発生層、32 電荷輸送層、101 画像形成装置、P 記録紙(記録媒体の一例)
DESCRIPTION OF SYMBOLS 1 Conductive base material, 2 Undercoat layer, 3 Photosensitive layer, 4 Undercoat layer, 5 Surface protective layer, 7 Electrophotographic photoreceptor, 8 Charging device, 9 Power supply, 10 Exposure device, 11 Developing device, 12 Transfer device, DESCRIPTION OF SYMBOLS 13 Cleaning apparatus, 14 Static elimination apparatus, 15 Fixing apparatus, 31 Charge generation layer, 32 Charge transport layer, 101 Image forming apparatus, P Recording paper (an example of a recording medium)

Claims (2)

導電性基材と、金属酸化物粒子および該金属酸化物粒子に配位する下記一般式(1)または一般式(2)で示されるアントラキノン誘導体を含有し、層中における前記金属酸化物粒子の含有量が30質量%以上60質量%以下である下引層と、感光層と、反応性基として水酸基を有する第1の反応性電荷輸送材料および反応性基としてアルコキシ基を有する第2の反応性電荷輸送材料の少なくとも2種の反応性電荷輸送材料重合体を含有する表面保護層と、をこの順に具備する電子写真感光体と、
電子写真感光体の表面を帯電する帯電装置と、
帯電された前記電子写真感光体の表面を露光して、静電潜像を形成する露光装置と、
体積平均粒径4.0μm以下のトナーを含む現像剤を収容し、且つ前記現像剤を表面に保持する現像剤保持体を有し、前記現像剤保持体の表面に保持した前記現像剤により、前記電子写真感光体の表面に形成された静電潜像を現像してトナー像を形成する現像装置と、
前記電子写真感光体の表面に形成されたトナー像を記録媒体に転写する転写装置と、
を備える画像形成装置。


(一般式(1)中、n1およびn2は、各々独立に0以上3以下の整数を表す。但し、n1およびn2の少なくとも一方は、1以上3以下の整数を表す(つまり、n1およびn2が同時に0を表さない)。m1およびm2は、各々独立に0または1の整数を表す。RおよびRは、各々独立に炭素数1以上10以下のアルキル基、または炭素数1以上10以下のアルコキシ基を表す。)


(一般式(2)中、n1、n2、n3、およびn4は、各々独立に0以上3以下の整数を表す。但し、n1およびn2の少なくとも一方は、1以上3以下の整数を表す(つまり、n1およびn2が同時に0を表さない)。また、n3およびn4の少なくとも一方は、1以上3以下の整数を表す(つまり、n3およびn4が同時に0を表さない)。m1およびm2は、各々独立に0または1の整数を表す。RおよびRは、各々独立に炭素数1以上10以下のアルキル基、または炭素数1以上10以下のアルコキシ基を表す。rは、1以上10以上の整数を表す。)
A conductive substrate, metal oxide particles, and an anthraquinone derivative represented by the following general formula (1) or general formula (2) coordinated to the metal oxide particles, A subbing layer having a content of 30% by mass to 60% by mass , a photosensitive layer, a first reactive charge transport material having a hydroxyl group as a reactive group, and a second reaction having an alkoxy group as a reactive group A surface protective layer containing a polymer of at least two types of reactive charge transport materials of the conductive charge transport material , and an electrophotographic photoreceptor comprising in this order,
A charging device for charging the surface of the electrophotographic photosensitive member;
An exposure device that exposes a surface of the charged electrophotographic photosensitive member to form an electrostatic latent image; and
A developer holding body that contains a developer containing a toner having a volume average particle size of 4.0 μm or less and that holds the developer on the surface, and the developer held on the surface of the developer holding body, A developing device that develops an electrostatic latent image formed on the surface of the electrophotographic photosensitive member to form a toner image;
A transfer device for transferring a toner image formed on the surface of the electrophotographic photosensitive member to a recording medium;
An image forming apparatus comprising:


(In general formula (1), n1 and n2 each independently represent an integer of 0 or more and 3 or less, provided that at least one of n1 and n2 represents an integer of 1 or more and 3 or less (that is, n1 and n2 are M1 and m2 each independently represent an integer of 0 or 1. R 1 and R 2 each independently represents an alkyl group having 1 to 10 carbon atoms, or 1 to 10 carbon atoms. Represents the following alkoxy group.)


(In general formula (2), n1, n2, n3, and n4 each independently represents an integer of 0 or more and 3 or less, provided that at least one of n1 and n2 represents an integer of 1 or more and 3 or less (that is, N1 and n2 do not represent 0 at the same time, and at least one of n3 and n4 represents an integer of 1 or more and 3 or less (that is, n3 and n4 do not represent 0 at the same time). Each independently represents an integer of 0 or 1. R 1 and R 2 each independently represent an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms, r is 1 or more. Represents an integer of 10 or more.)
導電性基材と、金属酸化物粒子および該金属酸化物粒子に配位する下記一般式(1)または一般式(2)で示されるアントラキノン誘導体を含有し、層中における前記金属酸化物粒子の含有量が30質量%以上60質量%以下である下引層と、感光層と、反応性基として水酸基を有する第1の反応性電荷輸送材料および反応性基としてアルコキシ基を有する第2の反応性電荷輸送材料の少なくとも2種の反応性電荷輸送材料重合体を含有する表面保護層と、をこの順に具備する電子写真感光体と、
体積平均粒径4.0μm以下のトナーを含む現像剤を収容し、且つ前記現像剤を表面に保持する現像剤保持体を有し、前記電子写真感光体の表面に静電潜像が形成された後、前記現像剤保持体の表面に保持した前記現像剤により該静電潜像を現像してトナー像を形成する現像装置と、を備え、
画像形成装置に着脱されるプロセスカートリッジ。


(一般式(1)中、n1およびn2は、各々独立に0以上3以下の整数を表す。但し、n1およびn2の少なくとも一方は、1以上3以下の整数を表す(つまり、n1およびn2が同時に0を表さない)。m1およびm2は、各々独立に0または1の整数を表す。RおよびRは、各々独立に炭素数1以上10以下のアルキル基、または炭素数1以上10以下のアルコキシ基を表す。)


(一般式(2)中、n1、n2、n3、およびn4は、各々独立に0以上3以下の整数を表す。但し、n1およびn2の少なくとも一方は、1以上3以下の整数を表す(つまり、n1およびn2が同時に0を表さない)。また、n3およびn4の少なくとも一方は、1以上3以下の整数を表す(つまり、n3およびn4が同時に0を表さない)。m1およびm2は、各々独立に0または1の整数を表す。RおよびRは、各々独立に炭素数1以上10以下のアルキル基、または炭素数1以上10以下のアルコキシ基を表す。rは、1以上10以上の整数を表す。)
A conductive substrate, metal oxide particles, and an anthraquinone derivative represented by the following general formula (1) or general formula (2) coordinated to the metal oxide particles, A subbing layer having a content of 30% by mass to 60% by mass , a photosensitive layer, a first reactive charge transport material having a hydroxyl group as a reactive group, and a second reaction having an alkoxy group as a reactive group A surface protective layer containing a polymer of at least two types of reactive charge transport materials of the conductive charge transport material , and an electrophotographic photoreceptor comprising in this order,
A developer holding body that contains a developer containing a toner having a volume average particle size of 4.0 μm or less and that holds the developer on the surface is formed, and an electrostatic latent image is formed on the surface of the electrophotographic photosensitive member. A developing device that develops the electrostatic latent image with the developer held on the surface of the developer holder to form a toner image;
A process cartridge attached to and detached from the image forming apparatus.


(In general formula (1), n1 and n2 each independently represent an integer of 0 or more and 3 or less, provided that at least one of n1 and n2 represents an integer of 1 or more and 3 or less (that is, n1 and n2 are M1 and m2 each independently represent an integer of 0 or 1. R 1 and R 2 each independently represents an alkyl group having 1 to 10 carbon atoms, or 1 to 10 carbon atoms. Represents the following alkoxy group.)


(In general formula (2), n1, n2, n3, and n4 each independently represents an integer of 0 or more and 3 or less, provided that at least one of n1 and n2 represents an integer of 1 or more and 3 or less (that is, N1 and n2 do not represent 0 at the same time, and at least one of n3 and n4 represents an integer of 1 or more and 3 or less (that is, n3 and n4 do not represent 0 at the same time). Each independently represents an integer of 0 or 1. R 1 and R 2 each independently represent an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms, r is 1 or more. Represents an integer of 10 or more.)
JP2013019573A 2013-02-04 2013-02-04 Image forming apparatus and process cartridge Expired - Fee Related JP6051898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013019573A JP6051898B2 (en) 2013-02-04 2013-02-04 Image forming apparatus and process cartridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013019573A JP6051898B2 (en) 2013-02-04 2013-02-04 Image forming apparatus and process cartridge

Publications (2)

Publication Number Publication Date
JP2014149501A JP2014149501A (en) 2014-08-21
JP6051898B2 true JP6051898B2 (en) 2016-12-27

Family

ID=51572500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013019573A Expired - Fee Related JP6051898B2 (en) 2013-02-04 2013-02-04 Image forming apparatus and process cartridge

Country Status (1)

Country Link
JP (1) JP6051898B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6508948B2 (en) * 2015-01-26 2019-05-08 キヤノン株式会社 Electrophotographic photosensitive member, method of manufacturing electrophotographic photosensitive member, process cartridge and electrophotographic apparatus
KR102289697B1 (en) * 2015-12-29 2021-08-13 삼성에스디아이 주식회사 Polymer, organic layer composition, and method of forming patterns
WO2017115978A1 (en) * 2015-12-29 2017-07-06 삼성에스디아이 주식회사 Organic film composition and pattern forming method
KR102296794B1 (en) * 2016-07-28 2021-08-31 삼성에스디아이 주식회사 Polymer, organic layer composition, and method of forming patterns
JP2019061145A (en) * 2017-09-27 2019-04-18 富士ゼロックス株式会社 Electrophotographic photoreceptor, process cartridge, and image forming apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006053268A (en) * 2004-08-10 2006-02-23 Fuji Xerox Co Ltd Image forming method
JP2006084564A (en) * 2004-09-14 2006-03-30 Fuji Xerox Co Ltd Image forming method
JP5479175B2 (en) * 2009-12-07 2014-04-23 富士フイルム株式会社 Method for producing alizarin derivative compound, novel alizarin derivative compound, surface modification method, photoelectric conversion film, photoelectric conversion element, and electrophotographic photoreceptor
JP5672027B2 (en) * 2011-01-28 2015-02-18 富士ゼロックス株式会社 Electrophotographic photosensitive member, image forming apparatus, and process cartridge
JP5724519B2 (en) * 2011-03-28 2015-05-27 富士ゼロックス株式会社 Electrophotographic photosensitive member, image forming apparatus, and process cartridge
JP5724518B2 (en) * 2011-03-28 2015-05-27 富士ゼロックス株式会社 Electrophotographic photosensitive member, image forming apparatus, and process cartridge
JP2012203395A (en) * 2011-03-28 2012-10-22 Fuji Xerox Co Ltd Image forming apparatus and image forming method
JP2013200415A (en) * 2012-03-23 2013-10-03 Fuji Xerox Co Ltd Electrophotographic photoreceptor, process cartridge, and image forming apparatus

Also Published As

Publication number Publication date
JP2014149501A (en) 2014-08-21

Similar Documents

Publication Publication Date Title
JP5573170B2 (en) Electrophotographic photosensitive member, method for manufacturing electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP4194930B2 (en) Image forming apparatus, image forming method, and process cartridge for image forming apparatus
US8895216B2 (en) Image forming apparatus
US8942587B2 (en) Electrostatic image developer and image forming apparatus
US8790854B2 (en) Electrophotographic photoreceptor, image forming apparatus, and process cartridge
JP5659643B2 (en) Electrophotographic photoreceptor, method for producing electrophotographic photoreceptor, image forming apparatus, and process cartridge
JP6051898B2 (en) Image forming apparatus and process cartridge
JP2010122583A (en) Electrophotographic photoreceptor, process cartridge and image forming apparatus
JP2011133805A (en) Image forming apparatus and process cartridge
JP5724519B2 (en) Electrophotographic photosensitive member, image forming apparatus, and process cartridge
JP2010014854A (en) Magnetic carrier and image forming method using the same
JP2009156996A (en) Image forming method, process cartridge, and image forming apparatus
JP2013195571A (en) Electrophotographic photoreceptor, process cartridge, image forming apparatus, and image forming method
JP2013057810A (en) Electrophotographic photoreceptor, method of producing electrophotographic photoreceptor, image forming apparatus, and process cartridge
JP6759773B2 (en) Image forming device
JP2009193016A (en) Image forming apparatus and image forming method
JP2005091760A (en) Image forming apparatus, image forming method, and process cartridge for image forming apparatus
JP6048183B2 (en) Image forming apparatus and process cartridge
JP6354230B2 (en) Image forming apparatus and process cartridge
JP6028621B2 (en) Image forming apparatus and process cartridge
JP6354252B2 (en) Image forming apparatus and process cartridge
JP4360288B2 (en) Electrophotographic photosensitive member, image forming apparatus, and process cartridge
JP2009229739A (en) Image forming apparatus and process cartridge
JP2011059518A (en) Electrophotographic photoreceptor, process cartridge and image forming apparatus
JP6984397B2 (en) Image forming device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161114

R150 Certificate of patent or registration of utility model

Ref document number: 6051898

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees