JP6051292B2 - Clad steel pipe joining method and structure - Google Patents

Clad steel pipe joining method and structure Download PDF

Info

Publication number
JP6051292B2
JP6051292B2 JP2015505154A JP2015505154A JP6051292B2 JP 6051292 B2 JP6051292 B2 JP 6051292B2 JP 2015505154 A JP2015505154 A JP 2015505154A JP 2015505154 A JP2015505154 A JP 2015505154A JP 6051292 B2 JP6051292 B2 JP 6051292B2
Authority
JP
Japan
Prior art keywords
welding
friction stir
carbon steel
steel pipe
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015505154A
Other languages
Japanese (ja)
Other versions
JPWO2014141423A1 (en
Inventor
有治 木坂
有治 木坂
文映 木村
文映 木村
利秀 箱田
利秀 箱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Application granted granted Critical
Publication of JP6051292B2 publication Critical patent/JP6051292B2/en
Publication of JPWO2014141423A1 publication Critical patent/JPWO2014141423A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/028Seam welding; Backing means; Inserts for curved planar seams
    • B23K9/0282Seam welding; Backing means; Inserts for curved planar seams for welding tube sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/1215Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding for other purposes than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/34Coated articles, e.g. plated or painted; Surface treated articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • B23K2103/166Multilayered materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Arc Welding In General (AREA)

Description

本発明は、炭素鋼の内周に高耐食性材料(ステンレス鋼、Ni基合金など)が積層されたクラッド鋼管の突き合わせ接合に関するものであり、特に摩擦撹拌接合(以下、省略して「FSW」とも言う)により接合を行う工程を含むクラッド鋼管の接合方法及びクラッド鋼管の接合構造に関するものである。 The present invention relates to a butt joint of a clad steel pipe in which a high corrosion resistance material (stainless steel, Ni-based alloy, etc.) is laminated on the inner periphery of carbon steel, and in particular, friction stir welding (hereinafter abbreviated as “FSW”). The method of joining the clad steel pipe, and the joining structure of the clad steel pipe.

硫化水素雰囲気などの高腐食環境に設置される天然資源輸送用の鋼管材料として、炭素鋼鋼管内面に板厚1〜3mm程度のステンレス鋼(またはNi基合金) を積層したクラッド鋼管が使用される場合がある。このようなクラッド鋼管において、薄いステンレス鋼(またはNi基合金) の部分はクラッド層と呼ばれ、炭素鋼の部分は炭素鋼層と呼ばれる。   As steel pipe material for transporting natural resources installed in highly corrosive environment such as hydrogen sulfide atmosphere, clad steel pipe with stainless steel (or Ni-base alloy) with a plate thickness of about 1 to 3 mm is used on the inner surface of carbon steel pipe. There is a case. In such a clad steel pipe, a thin stainless steel (or Ni-based alloy) portion is called a clad layer, and a carbon steel portion is called a carbon steel layer.

クラッド鋼管(材)の端面どうしを突き合わせ溶接する場合は、溶接金属内のマルテンサイト組織の生成および割れの発生を防止することが重要である。   When the end faces of clad steel pipes (materials) are butt-welded, it is important to prevent the formation of martensite structure and the occurrence of cracks in the weld metal.

従来のクラッド鋼材の突き合わせ接合方法として、特許文献1に、互いに対向するクラッド層どうしと炭素鋼層どうしをそれらが同時に撹伴するように摩擦撹拌接合にて接合する摩擦撹拌接合工程を先に実行した後、クラッド層から離れた位置にある炭素鋼層どうしの未接合部分を炭素鋼層の側からNiが4wt%以下かつCrが12wt%以下の溶接材料を用いてアーク溶接するアーク溶接工程を実行するクラッド鋼材の接合方法が提案されている。   As a conventional butt-joining method for clad steel materials, a friction stir welding process is first performed in Patent Document 1 in which clad layers and carbon steel layers facing each other are joined by friction stir welding so that they are simultaneously stirred. After that, an arc welding process is performed in which an unwelded portion between the carbon steel layers located away from the cladding layer is arc-welded from the carbon steel layer side using a welding material having Ni of 4 wt% or less and Cr of 12 wt% or less. A method for joining clad steel has been proposed.

この方法は、ある摩擦撹拌接合による投入エネルギーが小さい接合条件の下でクラッド層と炭素鋼層を同時に撹拌するように摩擦撹拌接合を行うことで、クラッド層の成分と炭素鋼層の成分が板厚方向に混合しないという発見に基づいて提案されたものである。   In this method, the friction stir welding is performed so that the clad layer and the carbon steel layer are stirred at the same time under a joining condition in which the input energy by a certain friction stir welding is small. It has been proposed based on the discovery that it does not mix in the thickness direction.

この接合方法によれば、摩擦撹拌接合した際に、接合ビード内の成分が板厚方向でクラッド層の成分と炭素鋼層の成分とに分かれたまま残るため、その後、クラッド層から離れた位置にある炭素鋼層どうしの未接合部分を炭素鋼層の側からアーク溶接するとき、アーク溶接の先端側が接合ビード内の炭素鋼層の成分にのみ接するように溶接すれば、NiやCrを多く含まない炭素鋼用の溶接材料を用いて溶接したとしても、割れなどの不具合が発生しないようにすることができる。その結果、炭素鋼層どうしの接合に炭素鋼用の溶接材料を使用できることから、施工能率の向上および継手靭性の向上が可能になる。   According to this joining method, when the friction stir welding is performed, the components in the joining bead remain separated into the cladding layer component and the carbon steel layer component in the plate thickness direction. When arc welding the unbonded parts of the carbon steel layers between the carbon steel layers from the side of the carbon steel layers, if the welding is performed so that the tip side of the arc welding contacts only the components of the carbon steel layers in the joint beads, a large amount of Ni and Cr Even when welding is performed using a welding material for carbon steel that is not included, defects such as cracks can be prevented from occurring. As a result, since the welding material for carbon steel can be used for joining the carbon steel layers, it is possible to improve construction efficiency and joint toughness.

特開2011−255416号公報JP 2011-255416 A

ところで、本発明者らの研究の結果、特許文献1に記載の接合方法を実施した際に、摩擦撹拌接合の開始位置において、クラッド層と炭素鋼層とが板厚方向に混合してしまう恐れがあることが分かった。これは、通常、摩擦撹拌接合の開始位置では、回転ツールを材料中に挿入するために回転ツールの回転速度を大きく設定して、一定時間回転ツールを安定状態に保持した後、回転ツールの送りをスタートさせる必要があり、そのために、摩擦撹拌接合の開始位置での投入エネルギーが過大になり、その結果、クラッド層と炭素鋼層とが板厚方向に混合してしまうものと考えられる。   By the way, as a result of the present inventors' research, when the joining method described in Patent Document 1 is performed, the clad layer and the carbon steel layer may be mixed in the thickness direction at the start position of the friction stir welding. I found out that Normally, at the starting position of friction stir welding, the rotational speed of the rotary tool is set to be large in order to insert the rotary tool into the material, the rotary tool is kept stable for a certain period of time, and then the rotational tool is fed. Therefore, it is considered that the input energy at the start position of the friction stir welding becomes excessive, and as a result, the cladding layer and the carbon steel layer are mixed in the thickness direction.

クラッド層と炭素鋼層とが混合し、炭素鋼がクラッド層表面に存在すると、その部分の耐食性が低下するおそれがあるため、その様な状態は避けられなければならないが、摩擦撹拌接合の開始の際の投入エネルギーの制御を行うだけでは、摩擦撹拌接合の開始位置においてクラッド層と炭素鋼層との混合する現象を完全に無くすことは難しいことが分かった。   If the clad layer and carbon steel layer are mixed and carbon steel is present on the surface of the clad layer, the corrosion resistance of that part may be reduced, so such a state must be avoided, but the start of friction stir welding It was found that it was difficult to completely eliminate the phenomenon of mixing the clad layer and the carbon steel layer at the start position of the friction stir welding only by controlling the input energy at this time.

また、板状のクラッド鋼材を接合する場合であれば、タブ板と呼ばれる接合後に切り落とし可能な摩擦撹拌接合を開始および終了させるために用いる鋼板を用いた、上で摩擦撹拌接合を開始し、かつ接合終了後に当該タブ板を切り落とすことで、最終製品には耐食性が低下する摩擦撹拌接合スタート部が残らないが、クラッド鋼管のクラッド層側(すなわち鋼管の内側)から摩擦撹拌接合を行う場合は、作業性の問題からタブ板を用いることが困難であるため、摩擦撹拌接合スタート部がそのまま耐食性が低下した部分として残ることになる。   In the case of joining plate-like clad steel materials, a steel plate used for starting and ending friction stir welding that can be cut off after joining called a tab plate is used, and friction stir welding is started on, and By cutting off the tab plate after the end of welding, the friction stir welding start part where the corrosion resistance is reduced does not remain in the final product, but when performing friction stir welding from the cladding layer side of the clad steel pipe (i.e., inside the steel pipe) Since it is difficult to use the tab plate due to the problem of workability, the friction stir welding start portion remains as a portion where the corrosion resistance is reduced.

解決しようとする問題点は、摩擦撹拌接合によってクラッド層側から接合される場合の耐食性の向上を図ることのできるクラッド鋼管の接合方法および接合構造を提供する点である。 The problem to be solved is to provide a clad steel pipe joining method and joining structure capable of improving the corrosion resistance when joined from the clad layer side by friction stir welding.

本発明は、上記課題を解決するために、以下の手段を採用する。
本発明に係るクラッド鋼管の接合方法は、炭素鋼の内周に該炭素鋼よりも耐食性が高い高耐食性材料が積層されたクラッド鋼管の内側から、クラッド鋼管の端部どうしの突き合わせ部を、互いに対向する前記高耐食性材料どうしと前記炭素鋼どうしをそれらが同時に撹伴されるように摩擦撹拌接合にて円周溶接する摩擦撹拌接合工程と、前記摩擦撹拌接合工程の開始後または終了後に実行され、前記摩擦撹拌接合の開始位置における前記炭素鋼と高耐食性材料との混合範囲を、前記クラッド鋼管の内側から、前記炭素鋼よりも高耐食性の溶接材料を用いて非消耗電極式のアーク肉盛溶接することによって覆う肉盛溶接工程とを備える。
The present invention employs the following means in order to solve the above problems.
Method of joining clad steel pipe according to the present invention, the inner cladding steel pipe corrosion resistance is high high corrosion resistance materials are laminated than carbon Motoko on the inner periphery of the carbon steel, the butt portion of the end portion to each other of the cladding steel A friction stir welding step of circumferentially welding the high corrosion resistance materials facing each other and the carbon steels by friction stir welding so that they are simultaneously stirred, and after the start or end of the friction stir welding step A non-consumable electrode type arc is formed by using a welding material having a higher corrosion resistance than the carbon steel from the inside of the clad steel pipe, and performing a mixing range of the carbon steel and the high corrosion resistance material at a start position of the friction stir welding. A build-up welding process covering by overlay welding.

摩擦撹拌接合の開始位置は、回転ツール挿入時に高い投入エネルギーが必要であることから、高耐食性材料と炭素鋼とが混合する可能性が高い。高耐食性材料と炭素鋼とが混合し炭素鋼成分が高耐食性材料の表面に現れた場合は、当該部の耐食性が劣ることになる。そこで、上記の接合方法では、摩擦撹拌接合の開始位置における高耐食性材料と炭素鋼の混合範囲を、耐食性の高い溶接材料を用いて非消耗電極式のアーク肉盛溶接することにより肉盛溶接ビードで覆う。そうすることにより、摩擦撹拌接合の開始位置における耐食性を高めることができる。   The start position of the friction stir welding requires high input energy when the rotary tool is inserted, and therefore, there is a high possibility that the high corrosion resistance material and carbon steel are mixed. When the high corrosion resistance material and carbon steel are mixed and the carbon steel component appears on the surface of the high corrosion resistance material, the corrosion resistance of the part is inferior. Therefore, in the above-mentioned joining method, the overlay range of the high corrosion resistance material and the carbon steel at the start position of the friction stir welding is applied by overlay welding of the non-consumable electrode type arc welding using a welding material having high corrosion resistance. Cover with. By doing so, the corrosion resistance in the starting position of friction stir welding can be improved.

なお、摩擦撹拌接合の開始位置における炭素鋼と高耐食性材料の混合範囲としては、摩擦撹拌接合の回転ツールのプローブが当たる範囲ばかりでなく、回転ツールのショルダが当たる範囲も考慮して決める必要がある。摩擦撹拌接合の開始位置を回転ツールの回転中心で定義する場合は、開始位置の手前(摩擦撹拌接合の進行方向に対しての手前)のショルダの半径程度の距離の位置までが、混合の可能性のある範囲と考えて、ショルダの半径が8〜10mm程度なら、摩擦撹拌接合の開始位置の手前の10mmの位置から肉盛溶接を開始するのがよい。   The mixing range of carbon steel and highly corrosion-resistant material at the start position of friction stir welding must be determined in consideration of not only the range where the rotary tool probe hits the friction stir welding but also the range where the shoulder of the rotary tool hits. is there. When the start position of friction stir welding is defined by the rotation center of the rotary tool, mixing is possible up to a position about the radius of the shoulder before the start position (before the friction stir welding direction). If the shoulder radius is about 8 to 10 mm, the overlay welding is preferably started from a position of 10 mm before the start position of the friction stir welding.

また、本発明に係るクラッド鋼管の接合方法の好ましい態様として、摩擦撹拌接合工程は、摩擦撹拌接合の終了位置を、摩擦撹拌接合の開始位置における炭素鋼と高耐食性材料との混合範囲にオーバーラップさせることで終了し、次に、摩擦撹拌接合工程の終了時に摩擦撹拌接合ツールの引き抜きによって終了位置に生じるツール穴を、高耐食性材料と比較し同等以上の高耐食性の溶接材料を用いた非消耗電極式のアーク溶接にて埋める穴埋め溶接工程を実行し、前記肉盛溶接工程では、摩擦撹拌接合の開始位置における炭素鋼と高耐食性材料との混合範囲からツール穴を埋めた終了位置までを含む範囲を、クラッド鋼管の内側から、高耐食性材料と比較し同等以上の炭素鋼層よりも高耐食性の溶接材料を用いて非消耗電極式のアーク肉盛溶接することによって覆うことが望ましい。   Further, as a preferred embodiment of the method for joining clad steel pipes according to the present invention, the friction stir welding step overlaps the end position of the friction stir welding with the mixing range of the carbon steel and the high corrosion resistance material at the start position of the friction stir welding. Next, the tool hole generated at the end position by pulling out the friction stir welding tool at the end of the friction stir welding process is non-consumable using a high corrosion resistance welding material equivalent to or higher than the high corrosion resistance material. The hole filling welding process for filling by electrode type arc welding is executed, and the build-up welding process includes from the mixing range of the carbon steel and the high corrosion resistance material at the start position of the friction stir welding to the end position where the tool hole is filled. Non-consumable electrode-type arc overlay welding from the inside of the clad steel pipe using a welding material with a higher corrosion resistance than that of a carbon steel layer equivalent to or higher than that of a high corrosion resistance material. It is desirable to cover by.

上記の方法を用いることで、クラッド鋼管の接合線の始端(開始位置)と終端(終了位置)の耐食性を十分に確保することができる。さらに、摩擦撹拌接合の開始位置の不良範囲(混合範囲)と終了位置の不良範囲(ツール穴が生じた部分)を同じ肉盛処理下に収めることで、摩擦撹拌接合後の肉盛溶接処理を一度に行うことが可能になるため作業能率向上を図ることが出来る。なお、摩擦撹拌接合の終了位置の側の肉盛溶接の範囲も、前記サイズの回転ツールを用いることを前提とする場合、余裕をみて、摩擦撹拌接合の終了位置の10mm奥までの範囲とするのがよい。つまり、少なくとも、FSW開始位置の10mm手前からFSW終了位置の10mm奥までの範囲を肉盛溶接すればよい。   By using the above method, it is possible to sufficiently ensure the corrosion resistance of the start end (start position) and the end (end position) of the joint line of the clad steel pipe. Furthermore, by placing the defective range (mixing range) at the start position of friction stir welding and the defective range at the end position (the part where the tool hole has occurred) under the same build-up process, the overlay welding process after friction stir welding is performed. Since it becomes possible to carry out at once, the work efficiency can be improved. In addition, the range of the overlay welding on the end position side of the friction stir welding is also set to a range up to 10 mm behind the end position of the friction stir welding when it is assumed that the rotating tool of the size is used. It is good. That is, it is sufficient to build up at least a range from 10 mm before the FSW start position to 10 mm behind the FSW end position.

また、摩擦撹拌接合工程の終了後に、クラッド層から離れた位置にある炭素鋼層どうしの未接合部分をクラッド鋼管の外側からアーク溶接により接合するアーク溶接工程を炭素鋼用の溶接材料を用いてアーク溶接を実行するのが好ましい。   In addition, after the friction stir welding process is completed, an arc welding process in which the unbonded portions of the carbon steel layers that are separated from the clad layer are joined from the outside of the clad steel pipe by arc welding is performed using a welding material for carbon steel. Preferably arc welding is performed.

また、上記のクラッド鋼管の接合方法を、水平固定管同士の突き合わせ円周接合に用いる場合には、摩擦撹拌接合の開始位置と終了位置とを、クラッド鋼管の断面の周方向位置を周方向の最上部を12時として1周を12等分した時計の1時から12時までの時計の目盛に対応させた場合の5時から7時の範囲に設定するのがよい。   In addition, when the above-described clad steel pipe joining method is used for butt circumferential joining between horizontal fixed pipes, the start position and end position of friction stir welding are set, and the circumferential position of the cross section of the clad steel pipe is set in the circumferential direction. It is preferable to set the range from 5 o'clock to 7 o'clock in the case where the uppermost portion is 12 o'clock and corresponds to the time scale of the clock from 1 o'clock to 12 o'clock divided into 12 laps.

本発明のクラッド鋼管の接合構造は、炭素鋼鋼管の内周に該炭素鋼よりも耐食性が高い高耐食性材料が積層されたクラッド鋼管の内側から、クラッド鋼管の端部どうしの突き合わせ部が、互いに対向する前記高耐食性材料どうしと前記炭素鋼どうしをそれらが同時に撹伴するように摩擦撹拌接合にて円周溶接された摩擦撹拌接合部と、前記摩擦撹拌接合部の開始位置における前記炭素鋼と高耐食性材料との混合範囲を、前記クラッド鋼管の内側からの、前記炭素鋼よりも高耐食性を有する溶接材料を用いた非消耗電極式のアーク肉盛溶接によって覆う肉盛溶接ビードとを備える。 Junction structure of the clad steel pipe of the present invention, the inner cladding steel pipe inner high corrosion resistance materials is higher corrosion resistance than carbon Motoko circumferentially are laminated carbon steel pipe, the abutting portion of the ends to each other of the cladding steel A friction stir weld that is circumferentially welded by friction stir welding so that the high corrosion-resistant materials and the carbon steel that are opposed to each other are simultaneously stirred, and the carbon at the start position of the friction stir joint Overlay welding bead covering the mixing range of steel and high corrosion resistance material by non-consumable electrode type arc overlay welding using a welding material having higher corrosion resistance than carbon steel from the inside of the clad steel pipe. Prepare.

上記のクラッド鋼管の接合構造によれば、摩擦撹拌接合部の開始位置における炭素鋼と高耐食性材料との混合範囲が、クラッド鋼管の内側からの高耐食性の肉盛溶接ビードによって覆われているので、摩擦撹拌接合部の開始位置における耐食性を高めることができる。   According to the above-described joint structure of the clad steel pipe, the mixing range of the carbon steel and the high corrosion resistance material at the start position of the friction stir weld is covered with the high corrosion resistance overlay weld bead from the inside of the clad steel pipe. The corrosion resistance at the starting position of the friction stir weld can be enhanced.

また、本発明に係るクラッド鋼管の接合構造の好ましい態様としては、前記摩擦撹拌接合部の終了位置が、前記摩擦撹拌接合部の開始位置における炭素鋼と高耐食性材料と混合範囲にオーバーラップしており、前記摩擦撹拌接合部の終了時に摩擦撹拌接合ツールの引き抜きによって前記終了位置に生じるツール穴が、前記炭素鋼よりも高耐食性の溶接材料を用いた非消耗電極式のアーク溶接による溶接金属によって埋められ、前記摩擦撹拌接合部の開始位置における前記炭素鋼とクラッド層との混合範囲から前記ツール穴を埋めた終了位置までを含む範囲が、前記クラッド鋼管の内側からの、前記炭素鋼よりも高耐食性を有する溶接材料を用いた非消耗電極式のアーク肉盛溶接による肉盛溶接ビードによって覆われているのがよい。   Moreover, as a preferable aspect of the joining structure of the clad steel pipe according to the present invention, the end position of the friction stir weld overlaps the mixing range of the carbon steel and the high corrosion resistance material at the start position of the friction stir weld. The tool hole generated at the end position by pulling out the friction stir welding tool at the end of the friction stir welding portion is made of a weld metal by non-consumable electrode type arc welding using a welding material having higher corrosion resistance than the carbon steel. The range including from the mixing range of the carbon steel and the clad layer at the start position of the friction stir weld to the end position where the tool hole is filled is more than the carbon steel from the inside of the clad steel pipe. It is good to cover with the overlay welding bead by the non-consumable electrode type arc overlay welding using the welding material which has high corrosion resistance.

上述した方法を用いることで、クラッド鋼管の接合線の始端(開始位置)と終端(終了位置)の耐食性を十分に確保することができる。特に、摩擦撹拌接合の開始位置の不良範囲(混合範囲)と終了位置の不良範囲(ツール穴が生じた部分)を同じ肉盛処理下に収めているので、摩擦撹拌接合後の肉盛処理を一度に行うことが可能となる。   By using the method described above, it is possible to sufficiently ensure the corrosion resistance of the start end (start position) and the end (end position) of the joint line of the clad steel pipe. In particular, since the defective range (mixing range) at the start position of friction stir welding and the defective range at the end position (parts where tool holes are generated) are stored under the same build-up process, the build-up process after friction stir welding is performed. It can be done at once.

本発明によれば、摩擦撹拌接合の開始位置における高耐食性材料と炭素鋼の混合範囲を、耐食性の高い溶接材料を用いたアーク溶接による肉盛溶接ビードで覆うので、摩擦撹拌接合の開始位置における耐食性を高めることができる。   According to the present invention, the mixing range of the high corrosion resistance material and the carbon steel at the start position of the friction stir welding is covered with the overlay welding bead by arc welding using the high corrosion resistance welding material. Corrosion resistance can be increased.

また、摩擦撹拌接合の終了位置を、摩擦撹拌接合の開始位置における炭素鋼と高耐食性材料との混合範囲にオーバーラップさせ、摩擦撹拌接合の終了位置に生じるツール穴を高耐食性溶接材料で穴埋め溶接した上で、その上を高耐食性溶接材料によるアーク肉盛溶接で覆うことで、クラッド鋼管の接合線の始端(開始位置)と終端(終了位置)の耐食性を十分に確保することができる。特に、摩擦撹拌接合の開始位置の不良範囲(混合範囲)と終了位置の不良範囲(ツール穴が生じた部分)とを同じ肉盛処理下に収められるので、摩擦撹拌接合後の肉盛処理を一度に行うことが可能となり、作業能率の向上に貢献することができる。   In addition, the end position of friction stir welding is overlapped with the mixing range of carbon steel and high corrosion resistance material at the start position of friction stir welding, and the tool hole generated at the end position of friction stir welding is filled with high corrosion resistance welding material. Then, the corrosion resistance of the start end (start position) and the end (end position) of the joining line of the clad steel pipe can be sufficiently ensured by covering the top with arc overlay welding with a high corrosion resistance welding material. In particular, since the defective range (mixing range) at the start position of friction stir welding and the defective range at the end position (part where the tool hole is generated) can be stored under the same build-up process, the build-up process after friction stir welding is performed. This can be done at once, and can contribute to the improvement of work efficiency.

本発明に係るクラッド鋼材の接合方法における摩擦撹拌接合工程で用いる回転ツールの形状を示す概念図である。It is a conceptual diagram which shows the shape of the rotary tool used at the friction stir welding process in the joining method of the clad steel materials concerning this invention. 摩擦撹拌接合工程の説明用の概念図である。It is a conceptual diagram for description of a friction stir welding process. 摩擦撹拌接合工程の開始時の状態を示す鋼管軸方向の断面図である。It is sectional drawing of the steel pipe axial direction which shows the state at the time of the start of a friction stir welding process. 摩擦撹拌接合工程の終了時の状態を示す鋼管軸方向の断面図である。It is sectional drawing of the steel pipe axial direction which shows the state at the time of completion | finish of a friction stir welding process. 摩擦撹拌接合工程を終了した後、終了位置に回転ツールの引き抜きにより生じたツール穴をアーク溶接により埋めている状態を示す断面図である。It is sectional drawing which shows the state which has filled the tool hole produced by drawing | extracting a rotary tool in the completion | finish position by arc welding after finishing a friction stir welding process. 摩擦撹拌接合工程の終了後、摩擦撹拌接合の開始位置から終了位置までを含む範囲を非消耗電極式アーク溶接により、肉盛溶接している状態を示す断面図である。It is sectional drawing which shows the state which is overlay welding by the non-consumable electrode type arc welding after the completion | finish of a friction stir welding process including the range from the start position of friction stir welding to an end position. (a)〜(d)は摩擦撹拌接合工程から肉盛溶接工程までの手順を示す概念図である。(A)-(d) is a conceptual diagram which shows the procedure from a friction stir welding process to the overlay welding process. 水平固定管同士の突き合わせ円周接合に本発明を適用する場合の摩擦撹拌接合の開始位置と終了位置に関する説明図である。It is explanatory drawing regarding the starting position and end position of friction stir welding in the case of applying this invention to the butt | circumferential circumference joining of horizontal fixed pipes. 摩擦撹拌接合(FSW)の開始位置に炭素鋼層とクラッド層の混合が生じている状態を示す図で、摩擦撹拌接合の進行方向に直交する切断面で切ったマクロ断面図である。It is a figure which shows the state in which mixing of the carbon steel layer and a clad layer has arisen in the starting position of friction stir welding (FSW), and is a macro sectional view cut by a cut surface perpendicular to the advancing direction of friction stir welding. 摩擦撹拌接合(FSW)の開始位置から10mm離れた位置のマクロ断面図である。It is a macro sectional view of a position 10 mm away from the starting position of friction stir welding (FSW). 摩擦撹拌接合(FSW)の開始位置から20mm離れた位置のマクロ断面図である。It is a macro sectional view of a position 20 mm away from the starting position of friction stir welding (FSW). 摩擦撹拌接合(FSW)の開始位置から30mm離れた位置のマクロ断面図である。It is a macro sectional view of a position 30 mm away from the starting position of friction stir welding (FSW). 炭素鋼層とクラッド層との混合範囲をより詳しく追求するために用意したサンプルの摩擦撹拌接合ビードの上から見た図である。It is the figure seen from the friction stir welding bead of the sample prepared in order to pursue in more detail the mixing range of a carbon steel layer and a clad layer. 図13のa線の位置(FSW開始位置の手前1mmの位置)におけるマクロ断面図である。It is macro sectional drawing in the position of the a line of FIG. 13 (position of 1 mm before FSW start position). 図13のb線の位置(FSW開始位置0mm)におけるマクロ断面図である。FIG. 14 is a macro sectional view at the position of line b in FIG. 13 (FSW start position 0 mm). 図13のc線の位置(FSW開始位置から進行方向に2.0mm進んだ位置)におけるマクロ断面図である。FIG. 14 is a macro sectional view at a position of line c in FIG. 13 (a position advanced 2.0 mm in the traveling direction from the FSW start position). 図13のd線の位置(FSW開始位置から進行方向に2.8mm進んだ位置)におけるマクロ断面図である。FIG. 14 is a macro sectional view taken along the line d in FIG. 13 (a position advanced by 2.8 mm in the traveling direction from the FSW start position). 図13のe線の位置(FSW開始位置から進行方向に3.6mm進んだ位置)におけるマクロ断面図である。FIG. 14 is a macro sectional view at the position of line e in FIG. 13 (position advanced 3.6 mm from the FSW start position in the traveling direction). 図13のf線の位置(FSW開始位置から進行方向に5.2mm進んだ位置)におけるマクロ断面図である。It is a macro sectional view in the position of the f line of FIG. 13 (position advanced 5.2 mm from the FSW start position in the advancing direction). 摩擦撹拌接合の終了位置におけるマクロ断面図である。It is a macro sectional view in the end position of friction stir welding. 摩擦撹拌接合工程および肉盛溶接工程と、その後の鋼管外部からのアーク溶接工程の内容を説明するための概念図である。It is a conceptual diagram for demonstrating the content of the friction stir welding process, the overlay welding process, and the arc welding process from the outside of a steel pipe after that. 全工程を終了することで得られるクラッド鋼管の突き合わせ接合部の断面図である。It is sectional drawing of the butt joint part of the clad steel pipe obtained by complete | finishing all the processes. 図22に示す部分のマクロ断面図である。FIG. 23 is a macro sectional view of a portion shown in FIG. 22.

本発明に係るクラッド鋼管の接合方法の実施形態を以下に説明する。
図1は実施形態のクラッド鋼管の接合方法における摩擦撹拌接合工程で用いる回転ツールの形状を示す概念図、図2は摩擦撹拌接合の説明用の概念図、図3〜図6は摩擦撹拌接合工程から肉盛溶接工程までの手順説明図、図7(a)〜(d)も同様の手順説明図である。また、図8は水平固定管同士の突き合わせ円周接合に本発明を適用する場合の摩擦撹拌接合の開始位置と終了位置に関する説明図、図9〜図20は摩擦撹拌接合した部分のマクロ断面図、図23は全工程を終了することで得られるクラッド鋼管の突き合わせ接合部のマクロ断面図である。
Embodiments of a clad steel pipe joining method according to the present invention will be described below.
FIG. 1 is a conceptual diagram showing the shape of a rotary tool used in a friction stir welding process in the clad steel pipe joining method of the embodiment, FIG. 2 is a conceptual diagram for explaining friction stir welding, and FIGS. 3 to 6 are friction stir welding processes. The procedure explanatory drawing from the overlay welding process to FIGS. 7A to 7D are also the same procedure explanatory diagram. FIG. 8 is an explanatory diagram regarding the start position and end position of friction stir welding when the present invention is applied to butt circumferential joining between horizontal fixed tubes, and FIGS. 9 to 20 are macro sectional views of the portions subjected to friction stir welding. FIG. 23 is a macro sectional view of a butt joint portion of a clad steel pipe obtained by finishing all the steps.

本実施形態で接合の対象とするクラッド鋼管は、図2および図3に示すように、炭素鋼層5の内周に炭素鋼層5よりも高耐食性材料よりなるクラッド層(ステンレス鋼層など)6が積層されたクラッド鋼管4である。このクラッド鋼管4の端部どうしを突き合わせ接合するために、本発明のクラッド鋼管の接合方法が用いられる。   As shown in FIGS. 2 and 3, the clad steel pipe to be joined in the present embodiment is a clad layer (stainless steel layer or the like) made of a material having higher corrosion resistance than the carbon steel layer 5 on the inner periphery of the carbon steel layer 5. 6 is a clad steel pipe 4 laminated. In order to butt-join the ends of the clad steel pipe 4, the clad steel pipe joining method of the present invention is used.

クラッド鋼管4の端面の突き合わせ部100(図2参照)を接合する場合の工程は、クラッド鋼管4の内側(INSIDE)からの溶接工程と、その後に行われるクラッド鋼管4の外側(OUTSIDE)からの溶接工程と、からなる。クラッド鋼管4の内側(INSIDE)からの溶接工程は、摩擦撹拌接合工程、非消耗電極式のアーク溶接による穴埋め溶接工程、同じく非消耗電極式のアーク溶接による肉盛溶接工程の順番に行われる。クラッド鋼管4の外側(OUTSIDE)からの溶接工程は、クラッド層用の溶接材料を一部で用いる他は、主に炭素鋼用の溶接材料を用いて行われる。詳しくは後述する。   The process of joining the butted portion 100 (see FIG. 2) of the end surface of the clad steel pipe 4 includes a welding process from the inner side (INSIDE) of the clad steel pipe 4 and an outer side (OUTSIDE) of the clad steel pipe 4 performed thereafter. Welding process. The welding process from the inside (INSIDE) of the clad steel pipe 4 is performed in the order of a friction stir welding process, a hole filling welding process by non-consumable electrode type arc welding, and an overlay welding process by non-consumable electrode type arc welding. The welding process from the outside (OUTSIDE) of the clad steel pipe 4 is mainly performed using a welding material for carbon steel, except that a welding material for the cladding layer is partially used. Details will be described later.

最初の工程では、クラッド鋼管4の内側(INSIDE)から、クラッド鋼管4の端部どうしの突き合わせ部100(図2参照)を、互いに対向するクラッド層6どうしと炭素鋼層5どうしをそれらが同時に撹伴するように摩擦撹拌接合にて円周溶接する(摩擦撹拌接合工程)。摩擦撹拌接合の際に用いる回転ツールは、例えば図1に示すように構成されている。   In the first step, from the inside (INSIDE) of the clad steel pipe 4, the abutting portion 100 (see FIG. 2) between the ends of the clad steel pipe 4, the clad layers 6 and the carbon steel layers 5 facing each other are simultaneously placed. Circumferential welding is performed by friction stir welding so as to stir (friction stir welding step). The rotary tool used in the friction stir welding is configured as shown in FIG. 1, for example.

図1に示す回転ツール1は、円柱状のショルダ2と、ショルダ2の下面に該ショルダ2に対して同芯状かつショルダ2の径よりも小径とされたプローブ3とを備える。この回転ツール1は、図示しない摩擦撹拌接合装置本体に取り付けられ、該装置本体から、ショルダ2の軸線を中心に回転力が付与されると共に、ショルダ2からプローブ3へ(図1において下方へ)押圧荷重が加えられるようになっている。   A rotating tool 1 shown in FIG. 1 includes a cylindrical shoulder 2 and a probe 3 on the lower surface of the shoulder 2 that is concentric with the shoulder 2 and has a diameter smaller than the diameter of the shoulder 2. The rotary tool 1 is attached to a friction stir welding apparatus main body (not shown), and a rotational force is applied from the apparatus main body about the axis of the shoulder 2 and from the shoulder 2 to the probe 3 (downward in FIG. 1). A pressing load is applied.

また、回転ツール1の材料としては、クラッド鋼管4を構成するクラッド層6および炭素鋼層5の融点より高い温度においてクラッド層よりも強度の高い、例えば多結晶立方晶窒化ホウ素(以下PCBN)およびPCBNとタングステン合金との複合材料などが使用される。   Further, as the material of the rotary tool 1, for example, polycrystalline cubic boron nitride (hereinafter referred to as PCBN) having higher strength than the cladding layer at a temperature higher than the melting point of the cladding layer 6 and the carbon steel layer 5 constituting the cladding steel tube 4 and A composite material of PCBN and a tungsten alloy is used.

図2に示すように、この回転ツール1を用いてクラッド鋼管4を接合する場合、最初に、図2に示すように、クラッド鋼管4の端面どうしを突き合わせた状態とし(突き合わせ部100)、クラッド層6側から回転ツール1のプローブ3をクラッド層6どうしと炭素鋼層5どうしを撹拌するように、プローブ3の側面がクラッド層6と炭素鋼層5の両方と接触するまで挿入する。そして、回転ツール1をクラッド鋼管4に押しつけた状態で回転させながら、接合しようとする箇所(接合線)に沿って移動させることで、クラッド鋼管4どうし、具体的には、互いに対向するクラッド層6どうしと、クラッド層6に隣接する位置にある炭素鋼層5どうしを接合する(摩擦撹拌接合工程)。   As shown in FIG. 2, when the clad steel pipe 4 is joined using the rotary tool 1, first, as shown in FIG. 2, the end faces of the clad steel pipe 4 are brought into contact with each other (butting portion 100). The probe 3 of the rotary tool 1 is inserted from the layer 6 side so that the clad layers 6 and the carbon steel layers 5 are stirred until the side surfaces of the probes 3 are in contact with both the clad layers 6 and the carbon steel layers 5. Then, while rotating the rotary tool 1 while being pressed against the clad steel pipe 4, the clad steel pipes 4 are moved between the clad steel pipes 4, specifically, clad layers opposed to each other by moving along the location (joining line) to be joined. 6 and the carbon steel layers 5 at positions adjacent to the cladding layer 6 are joined together (friction stir welding step).

図2において、矢印Aは接合方向(回転ツール1の進行方向)、矢印Rは回転ツール1の回転方向を示している。回転ツール1の進行方向の左右両側のうち、回転ツール1の外周の移動方向が進行方向と同じ側を前進側Ra、回転ツール1の外周の移動方向が進行方向と逆になる側を後退側Rbと呼ぶ。   In FIG. 2, the arrow A indicates the joining direction (the traveling direction of the rotating tool 1), and the arrow R indicates the rotating direction of the rotating tool 1. Of the left and right sides of the traveling direction of the rotary tool 1, the side where the outer peripheral moving direction of the rotating tool 1 is the same as the moving direction is the forward side Ra and the side where the outer peripheral moving direction of the rotary tool 1 is opposite to the forward direction is the backward side Called Rb.

図3および図7(a)に示すように、開始位置PSから摩擦撹拌接合を開始して、矢印Aのように回転ツール1を移動させる。そして、回転ツール1がクラッド鋼管4を1周した段階で、摩擦撹拌接合工程を、図4および図7(b)に示すように、摩擦撹拌接合の終了位置PEを摩擦撹拌接合の開始位置PSにおける炭素鋼層5とクラッド層6との混合範囲にオーバーラップさせることで終了する。つまり、少なくとも摩擦撹拌接合の開始位置PSに終了位置PEが重なる位置か、開始位置PSを適当なラップ代Nだけ通過した位置を終了位置PEとして、摩擦撹拌接合工程を終了する。   As shown in FIG. 3 and FIG. 7A, friction stir welding is started from the start position PS, and the rotary tool 1 is moved as indicated by an arrow A. Then, at the stage where the rotating tool 1 makes one round of the clad steel pipe 4, as shown in FIGS. 4 and 7B, the friction stir welding end position PE is set as the friction stir welding start position PS. The process is terminated by overlapping the mixed range of the carbon steel layer 5 and the clad layer 6 in FIG. That is, the friction stir welding process is ended with at least a position where the end position PE overlaps the start position PS of the friction stir welding or a position that has passed the start position PS by an appropriate lap margin N as the end position PE.

このように摩擦撹拌接合を実行することで接合ビード(摩擦撹拌接合部)8が形成される。そして、この溶接ビード8によって、互いに対向するクラッド層6どうしと、クラッド層6に隣接する位置にある炭素鋼層5どうしがそれぞれ接合される。即ち、例えば図10および図23のマクロ断面図に示すように、接合ビード8は、互いに対向するクラッド層6どうしを接合するクラッド層接合部8aと、クラッド層6に隣接する位置にある炭素鋼層5どうしを接合する炭素鋼層接合部8bとを備える。   By performing the friction stir welding as described above, a joining bead (friction stirring joining portion) 8 is formed. The weld beads 8 join the clad layers 6 facing each other and the carbon steel layers 5 at positions adjacent to the clad layers 6. That is, for example, as shown in the macro sectional views of FIG. 10 and FIG. 23, the joining bead 8 includes a clad layer joining portion 8 a that joins the clad layers 6 facing each other, and a carbon steel in a position adjacent to the clad layer 6. And a carbon steel layer joint 8b for joining the layers 5 together.

そして、図23に示すように、互いに対向するクラッド層6どうしを接合したクラッド層接合部8aと、互いに対向する炭素鋼層5どうしを接合した炭素鋼層接合部8bとの間に、クラッド層接合部8aと炭素鋼層接合部8bを仕切る仕切面Sが形成される。この仕切面Sは、摩擦撹拌接合工程において、クラッド層6と炭素鋼層5が同時に撹拌するように摩擦撹拌接合されるときに、撹拌された接合ビード8内の成分がクラッド層6の成分と炭素鋼層5の成分とが板厚方向に混合されないことにより形成される。また、仕切面Sは、接合前の互いに対向する接合端部の炭素鋼層5とクラッド層6との境界部を結ぶ仮想境界面Kを基準に、そこの近傍、具体的には仮想境界面から0.5mmの範囲に形成されることが確認されている。   Then, as shown in FIG. 23, the clad layer is interposed between the clad layer joint 8 a obtained by joining the clad layers 6 facing each other and the carbon steel layer joint 8 b obtained by joining the carbon steel layers 5 opposed to each other. A partition surface S that partitions the joint 8a and the carbon steel layer joint 8b is formed. When the partition surface S is friction stir welded so that the clad layer 6 and the carbon steel layer 5 are stirred at the same time in the friction stir welding step, the components in the stirred bead 8 are the components of the clad layer 6. It is formed by not mixing the components of the carbon steel layer 5 in the thickness direction. Further, the partition surface S is based on a virtual boundary surface K that connects the boundary portions between the carbon steel layer 5 and the cladding layer 6 at the joint ends facing each other before joining, specifically, the virtual boundary surface. To 0.5 mm is confirmed.

ここで、摩擦撹拌接合工程で用いる回転ツール1のプローブ3の長さは、クラッド層6の板厚より少なくとも2mm以上長く設定してあることが望ましい。これは、摩擦撹拌接合工程において、クラッド層6どうしに限られることなく、炭素鋼層5どうしも撹拌されるように接合するためである。   Here, the length of the probe 3 of the rotary tool 1 used in the friction stir welding process is preferably set to be at least 2 mm longer than the plate thickness of the cladding layer 6. This is because, in the friction stir welding step, the carbon steel layers 5 are joined to each other without being limited to the clad layers 6.

ところで、摩擦撹拌接合時における接合条件として、主に回転ツール1の回転数と接合速度によって接合部に投入されるエネルギーが決定されるが、その投入エネルギーが高い場合(回転ツール1の回転数が大きくかつ接合速度が遅い場合)は、クラッド層6と炭素鋼層5とがお互いに混ざりあってしまう現象が起きる。このようにクラッド層6と炭素鋼層5とがお互いに混ざりあってしまうと、両者の間に明確な仕切面Sは形成されなくなる。このような場合、H2Sが濃縮されたサワー環境や二酸化炭素が濃縮された環境などの高腐食環境に溶接部がさらされると、クラッド層6側の表面が腐食する恐れがある。By the way, as a joining condition at the time of friction stir welding, energy to be input to the joint is mainly determined by the rotational speed and the joining speed of the rotary tool 1, but when the input energy is high (the rotational speed of the rotary tool 1 is When it is large and the bonding speed is low), a phenomenon occurs in which the cladding layer 6 and the carbon steel layer 5 are mixed with each other. Thus, when the cladding layer 6 and the carbon steel layer 5 are mixed with each other, a clear partition surface S is not formed between them. In such a case, if the weld is exposed to a highly corrosive environment such as a sour environment enriched with H 2 S or an environment enriched with carbon dioxide, the surface on the cladding layer 6 side may corrode.

このため、摩擦撹拌接合時の回転ツール1の回転数と接合速度は好適な条件に設定する必要がある。しかし、摩擦撹拌接合の開始位置PSでは、回転ツール挿入時に高いエネルギーを投入する必要性があるので、この条件が守れないことが多い。   For this reason, it is necessary to set the rotation speed and joining speed of the rotary tool 1 at the time of friction stir welding to suitable conditions. However, at the start position PS of the friction stir welding, it is necessary to input high energy when inserting the rotary tool, so this condition is often not observed.

例えば、図9に示すサンプルでは、摩擦撹拌接合の開始位置PSにおいて、クラッド層6と炭素鋼層5とがお互いに混ざり合う現象がきている。図10〜図12に示すように、開始位置PSから回転ツール1のショルダ2の半径以上に離れた位置では、クラッド層6と炭素鋼層5とがお互いに混ざり合う現象が起こらなくなっている。また、図13に示す別のサンプルで調べてみたところ、図14〜図19に示すように、クラッド層6と炭素鋼層5とが混じり合う現象(混合)は、開始位置PSの前後僅か1mm程度の範囲で起きていることが分かった。実際には、回転ツール1のサイズや回転数や押圧力などの条件によって混合範囲は変わる可能性があるが、安全をみた場合、少なくとも回転ツール1のショルダ2の当たる部分は混合が起こり得る範囲と考えた方がよい。   For example, in the sample shown in FIG. 9, the cladding layer 6 and the carbon steel layer 5 are mixed with each other at the start position PS of the friction stir welding. As shown in FIGS. 10 to 12, the phenomenon in which the clad layer 6 and the carbon steel layer 5 are mixed with each other does not occur at a position away from the start position PS by the radius of the shoulder 2 of the rotary tool 1. Further, when examined with another sample shown in FIG. 13, as shown in FIGS. 14 to 19, the phenomenon (mixing) in which the cladding layer 6 and the carbon steel layer 5 are mixed is only 1 mm before and after the start position PS. I found out that it was happening to a certain extent. Actually, the mixing range may vary depending on conditions such as the size, rotation speed, and pressing force of the rotary tool 1, but in terms of safety, at least the portion of the rotary tool 1 that corresponds to the shoulder 2 can be mixed. It is better to think.

そこで、本実施形態のクラッド鋼管の接合方法では、摩擦撹拌接合の開始位置におけるクラッド層6と炭素鋼層5との混合範囲を肉盛溶接で覆うことにした。   Therefore, in the method for joining clad steel pipes of this embodiment, the mixing range of the clad layer 6 and the carbon steel layer 5 at the start position of the friction stir welding is covered by overlay welding.

一方、摩擦撹拌接合工程の終了時には、図5に示すように、摩擦撹拌接合の回転ツール1の引き抜きによって、終了位置PEにツール穴12が生じることが知られている。そこで、本実施形態の接合方法では、摩擦撹拌接合工程終了後に、図5および図7(c)に示すように、炭素鋼層5よりも高耐食性の溶接材料21を用いた非消耗電極式のアーク溶接を用いた穴埋め溶接工程を実行し、その上で肉盛溶接を行うようにした。図5中の符号22は穴埋め溶接部を示している。   On the other hand, at the end of the friction stir welding process, as shown in FIG. 5, it is known that a tool hole 12 is formed at the end position PE by pulling out the rotary tool 1 for friction stir welding. Therefore, in the joining method of the present embodiment, after the friction stir welding process is finished, as shown in FIGS. 5 and 7C, a non-consumable electrode type using a welding material 21 having a higher corrosion resistance than the carbon steel layer 5 is used. A hole-filling welding process using arc welding was performed, and then overlay welding was performed. The code | symbol 22 in FIG. 5 has shown the hole-filling welding part.

そして、次の肉盛溶接工程では、図6および図7(d)に示すように、摩擦撹拌接合の開始位置PSにおける炭素鋼層5とクラッド層6との混合範囲からツール穴12を埋めた終了位置PEまでを十分に含む範囲、つまり図6においてP1(開始位置PSの手前約10mmの位置)からP2(終了位置PEの奥10mmの位置)で示す範囲を、クラッド鋼管4の内側から、炭素鋼層5よりも高耐食性の溶接材料21を用いて非消耗電極式のアーク肉盛溶接することによって覆う。これにより、摩擦撹拌接合の開始位置PSおよび終了位置PEにおける不良部分を全て一度に肉盛溶接ビード3で覆い隠すことができる。なお、図5および図6において、符号20で示すものは非消耗電極式アーク溶接のトーチであり、前記アーク溶接ではTIG溶接を実行する。図6の矢印Bは当該アーク溶接の進行方向を示している。 Then, in the next overlay welding process, as shown in FIGS. 6 and 7 (d), the tool hole 12 is filled from the mixing range of the carbon steel layer 5 and the cladding layer 6 at the start position PS of the friction stir welding. A range sufficiently including the end position PE, that is, a range indicated by P2 (position about 10 mm before the start position PS) to P2 (position 10 mm behind the end position PE) in FIG. It is covered by non-consumable electrode type arc overlay welding using a welding material 21 having a higher corrosion resistance than the carbon steel layer 5. This makes it possible to cover the defective part in start position PS and the end position PE of the friction stir welding all at once of the build-up weld bead 2 3. 5 and 6, reference numeral 20 denotes a non-consumable electrode type arc welding torch, and TIG welding is performed in the arc welding. An arrow B in FIG. 6 indicates the traveling direction of the arc welding.

このように、摩擦撹拌接合工程と穴埋め溶接工程と肉盛溶接工程とを順番に実行することにより、図6に示すような、クラッド層6側についてのクラッド鋼管4の接合構造ができあがる。   Thus, the joint structure of the clad steel pipe 4 on the clad layer 6 side as shown in FIG. 6 is completed by sequentially performing the friction stir welding process, the hole filling welding process, and the overlay welding process.

なお、本実施形態のクラッド鋼管の接合方法を、水平固定管同士の突き合わせ円周接合に用いる場合には、図8に示すように、摩擦撹拌接合の開始位置と終了位置とを、クラッド鋼管4の断面の周方向位置を、周方向の最上部を12時として1周を12等分した時計の1時から12時までの目盛に対応させた場合の5時から7時の範囲Hに設定することが望ましい。なぜならば、肉盛り溶接時における溶接欠陥の発生を防止するためである。   In addition, when using the joining method of the clad steel pipe of this embodiment for the butt | circumferential circumference joining of horizontally fixed pipes, as shown in FIG. The circumferential position of the cross section is set to the range H from 5 o'clock to 7 o'clock in the case of corresponding to the scale from 1 o'clock to 12 o'clock of the clock which divides the circumference into 12 equally with the top in the circumferential direction being 12 o'clock It is desirable to do. This is to prevent the occurrence of welding defects during overlay welding.

図20は、摩擦撹拌接合の終了位置のマクロ断面図である。この図に示すように、摩擦撹拌接合の終了位置に生じたツール穴12は、高耐食性の溶接材料21よりなる穴埋め溶接部22によって埋められており、その上に肉盛溶接ビード23が覆い被さっている。   FIG. 20 is a macro sectional view of the end position of the friction stir welding. As shown in this figure, the tool hole 12 generated at the end position of the friction stir welding is filled with a hole-welding welded portion 22 made of a highly corrosion-resistant welding material 21, and an overlay weld bead 23 is covered thereon. ing.

図21は摩擦撹拌接合工程および肉盛溶接工程と、その後の鋼管外部からのアーク溶接工程の内容を説明するための概念図、図22は全工程を終了することで得られるクラッド鋼管の突き合わせ接合部の断面図である。   FIG. 21 is a conceptual diagram for explaining the contents of the friction stir welding process and the overlay welding process and the arc welding process from the outside of the steel pipe, and FIG. 22 is a butt joint of the clad steel pipe obtained by finishing all the processes. It is sectional drawing of a part.

図21に示すように、以上のクラッド鋼管4の内側INからの溶接作業(摩擦撹拌接合工程、穴埋め溶接工程、肉盛溶接工程)終了後にクラッド鋼管4の外側(OUTSIDE)から、炭素鋼層5どうしの未接合部分をアーク溶接により接合するアーク溶接工程を実行する。図21において、30はアーク溶接トーチを示している。アーク溶接は、2台のトーチ30で矢印Eのように下進溶接することで行う。   As shown in FIG. 21, the carbon steel layer 5 is formed from the outside (OUTSIDE) of the clad steel pipe 4 after the welding operation (friction stir welding process, hole filling welding process, build-up welding process) from the inside IN of the clad steel pipe 4 is completed. An arc welding process is performed in which unjoined portions are joined by arc welding. In FIG. 21, reference numeral 30 denotes an arc welding torch. Arc welding is performed by performing downward welding as indicated by arrow E with two torches 30.

そのアーク溶接工程では、摩擦撹拌接合工程を実行することで炭素鋼層5とクラッド層6とが混合するクラッド鋼管4の周方向における領域(摩擦撹拌接合の開始位置と終了位置を含む肉盛溶接した範囲)に対しては、クラッド層6用の溶接材料でアーク溶接を実行し、それ以外のクラッド鋼管4の周方向における領域に対しては、炭素鋼層5用の溶接材料(NiおよびCrをそれぞれ1%以上含まない炭素鋼用の溶接材料)を用いてアーク溶接を実行する(アーク溶接工程)。   In the arc welding process, an area in the circumferential direction of the clad steel pipe 4 where the carbon steel layer 5 and the clad layer 6 are mixed by performing the friction stir welding process (the overlay welding including the start position and the end position of the friction stir welding) Arc welding is performed with the welding material for the cladding layer 6, and the welding material for the carbon steel layer 5 (Ni and Cr) is applied to the other regions in the circumferential direction of the cladding steel pipe 4. Arc welding is performed using a welding material for carbon steel that does not contain 1% or more of each (arc welding process).

このアーク溶接工程では、図22に示すように、溶接ビード9が形成される。この溶接ビード9によって、クラッド層6から離れた位置にある炭素鋼層5どうしの未接合部分が接合される。また、アーク溶接工程では、図23に示すように、アーク溶接により形成される溶接ビード9の先端(すなわち溶け込みの先端)9aが、摩擦撹拌接合によって形成された接合ビード8内でかつ炭素鋼層接合部8bの範囲に位置するよう制御する。アーク溶接の溶け込みが浅く、炭素鋼層接合部8bの範囲を外れた場合、溶け込み不良が発生する。一方、アーク溶接の溶け込みが深すぎて、溶接ビードの先端9aが炭素鋼層接合部8b範囲を外れてさらに奥側のクラッド層接合部8aに至る場合には、溶接ビード9でマルテンサイトが析出され、場合によっては割れが発生する場合がある。   In this arc welding process, a weld bead 9 is formed as shown in FIG. The weld bead 9 joins the unjoined portions of the carbon steel layers 5 that are located away from the clad layer 6. Further, in the arc welding process, as shown in FIG. 23, the tip of the weld bead 9 formed by arc welding (that is, the tip of penetration) 9a is in the joint bead 8 formed by friction stir welding and the carbon steel layer. It controls so that it may be located in the range of the junction part 8b. When the penetration of arc welding is shallow and the carbon steel layer joint 8b is out of the range, poor penetration occurs. On the other hand, when arc welding is so deep that the tip 9a of the weld bead is out of the range of the carbon steel layer joint 8b and reaches the inner cladding layer joint 8a, martensite precipitates on the weld bead 9. In some cases, cracks may occur.

なお、炭素鋼層5の板厚が厚い場合など、アーク溶接により形成される溶接ビード9の先端が炭素鋼層接合部8bの範囲に入らない場合、炭素鋼層5側からガウジングを行った後にアーク溶接を行うことで、溶接ビード9の先端を炭素鋼層接合部8bの範囲とすることができる。また、ガウジングを行う代わりに、あらかじめ炭素鋼層5側に開先を取っておくことで、アーク溶接により形成される溶接ビード9の先端を炭素鋼層接合部8bの範囲とすることも可能である。   In addition, after the gouging from the carbon steel layer 5 side, when the plate | board thickness of the carbon steel layer 5 is thick, etc., when the front-end | tip of the weld bead 9 formed by arc welding does not enter into the range of the carbon steel layer junction part 8b, By performing arc welding, the tip of the weld bead 9 can be within the range of the carbon steel layer joint 8b. Further, instead of performing gouging, a tip is provided in advance on the carbon steel layer 5 side so that the tip of the weld bead 9 formed by arc welding can be within the range of the carbon steel layer joint 8b. is there.

以上説明したように本実施形態のクラッド鋼材の接合方法によれば、摩擦撹拌接合により、互いに対向するクラッド層6どうしと炭素鋼層5どうしを接合するが、このとき、接合ビード8内の成分が板厚方向で、クラッド層6の成分と炭素鋼層5の成分とに分離される。このため、その後クラッド層6から離れた位置にある炭素鋼層5どうしの未接合部分を炭素鋼層5側からアーク溶接するとき、アーク溶接の先端側が接合ビード8内の炭素鋼層5の成分にのみ、つまり炭素鋼層接合部8bにのみ接するように溶接すれば、NiやCrをそれぞれ1%以上含まない炭素鋼用の溶接材料を用いて溶接したとしても、割れなどの不具合が発生しない。したがって、炭素鋼用の安価な溶接材料を用いることが可能となり、低コスト化を図ることができ、炭素鋼層5を溶接する際の溶接速度の向上が可能となり、施工コストも低減させることが可能となる。また炭素鋼部どうしの突き合わせ溶接部において、異材溶接とならない構造となるため、溶接部の靭性の低下を防止することができる。   As described above, according to the method for joining clad steel materials of the present embodiment, the clad layers 6 and the carbon steel layers 5 facing each other are joined by friction stir welding. At this time, components in the joint bead 8 are joined. Is separated into a component of the cladding layer 6 and a component of the carbon steel layer 5 in the plate thickness direction. Therefore, when arc welding is performed from the carbon steel layer 5 side to the unjoined portions of the carbon steel layers 5 that are located away from the cladding layer 6 thereafter, the tip side of the arc welding is a component of the carbon steel layer 5 in the joining bead 8. If it welds so that it may contact only to the carbon steel layer joint part 8b only, that is, even if it welds using the welding material for carbon steel which does not contain 1% or more of Ni and Cr, respectively, defects, such as a crack, do not occur . Therefore, it becomes possible to use an inexpensive welding material for carbon steel, to reduce the cost, to improve the welding speed when welding the carbon steel layer 5, and to reduce the construction cost. It becomes possible. Moreover, since it becomes a structure which does not become dissimilar material welding in the butt welding part of carbon steel parts, the fall of the toughness of a welding part can be prevented.

また、摩擦撹拌接合の開始位置PSは、摩擦撹拌接合する上での初期(回転ツール挿入時)の投入エネルギーの関係から、どうしてもクラッド層6と炭素鋼層5とが混ざり合ってしまう可能性が高い。クラッド層6と炭素鋼層5とが混ざり合ってしまうと、その部分の耐食性が劣ることになる。そこで、本実施形態の接合方法では、摩擦撹拌接合の開始位置PSにおけるクラッド層6と炭素鋼層5の混合範囲を、耐食性の高い溶接材料を用いて非消耗電極式のアーク肉盛溶接することにより肉盛溶接ビード23で覆うようにしている。そうすることにより、摩擦撹拌接合の開始位置PSにおける耐食性を高めることができる。   Further, the start position PS of the friction stir welding has a possibility that the clad layer 6 and the carbon steel layer 5 are inevitably mixed due to the initial input energy (when the rotary tool is inserted) in the friction stir welding. high. If the clad layer 6 and the carbon steel layer 5 are mixed, the corrosion resistance of the part will be inferior. Therefore, in the joining method of the present embodiment, the non-consumable electrode type arc overlay welding is performed on the mixing range of the cladding layer 6 and the carbon steel layer 5 at the start position PS of the friction stir welding using a welding material having high corrosion resistance. Thus, it is covered with the overlay welding bead 23. By doing so, the corrosion resistance in the friction stir welding start position PS can be improved.

また、摩擦撹拌接合工程は、摩擦撹拌接合の終了位置を、摩擦撹拌接合の開始位置PSにおける炭素鋼層5とクラッド層6との混合範囲にオーバーラップさせることで終了し、次に、摩擦撹拌接合工程の終了時に摩擦撹拌接合のための回転ツール1の引き抜きによって終了位置に生じるツール穴12を、炭素鋼層5よりも高耐食性の溶接材料21で穴埋め溶接し、更にその上で、摩擦撹拌接合の開始位置PSにおける炭素鋼層5とクラッド層6との混合範囲からツール穴12を埋めた終了位置までを含む範囲(図6のP1〜P2の範囲)を、炭素鋼層5よりも高耐食性の溶接材料21で肉盛溶接するので、クラッド鋼管の接合線の始端(開始位置)と終端(終了位置)の耐食性を十分に確保することができる。   Further, the friction stir welding process is finished by overlapping the end position of the friction stir welding with the mixing range of the carbon steel layer 5 and the clad layer 6 at the start position PS of the friction stir welding. At the end of the joining process, the tool hole 12 generated at the end position by pulling out the rotary tool 1 for friction stir welding is filled with a welding material 21 having a corrosion resistance higher than that of the carbon steel layer 5, and further, friction stirring is performed. The range including the range of mixing of the carbon steel layer 5 and the cladding layer 6 at the joining start position PS to the end position where the tool hole 12 is filled (the range of P1 to P2 in FIG. 6) is higher than the carbon steel layer 5. Since build-up welding is performed with the corrosion-resistant welding material 21, the corrosion resistance of the start end (start position) and the end (end position) of the joint line of the clad steel pipe can be sufficiently secured.

特に、摩擦撹拌接合の開始位置PSの不良範囲(混合範囲)と終了位置PEの不良範囲(ツール穴が生じた部分)を同じ肉盛処理下に収めることで、摩擦撹拌接合後の肉盛処理を一度に行うことが可能となり、作業性が向上する。   In particular, by placing the defective range (mixing range) of the start position PS of the friction stir welding and the defective range of the end position PE (the portion where the tool hole is generated) under the same build-up process, the build-up process after the friction stir welding is performed. Can be performed at once, and workability is improved.

なお、本発明は、図面を参照して説明した上述の実施形態に限定されるものではなく、その技術的範囲において様々な変形例が考えられる。   The present invention is not limited to the above-described embodiment described with reference to the drawings, and various modifications can be considered within the technical scope thereof.

以下、本発明を実施例により詳細に説明する。
実施例では、試験材として、SUS316L(2mm厚)とAPI5LX65相当材(16mm厚)を板厚方向に積層したクラッド鋼管を用いた。FSWツールの材料としては、PCBNとW−reの複合材料を用いた。穴埋め溶接や肉盛溶接のための非消耗電極式のアーク溶接(TIG溶接)に使用する溶接材料(TIG溶接材料)としては、ER309lMoとERNiCrMo−3を用いた。
Hereinafter, the present invention will be described in detail with reference to examples.
In the examples, a clad steel pipe in which SUS316L (2 mm thickness) and API5LX65 equivalent material (16 mm thickness) were laminated in the plate thickness direction was used as a test material. As a material for the FSW tool, a composite material of PCBN and W-re was used. ER309lMo and ERNiCrMo-3 were used as welding materials (TIG welding materials) used for non-consumable electrode type arc welding (TIG welding) for hole filling welding and overlay welding.

表1にTIG溶接による穴埋め溶接条件、肉盛溶接条件の一例を示す。
ここで、表1のウィービンク幅はFSWによる撹拌部幅よりも2mm程度小さい値とする。
Table 1 shows examples of hole filling welding conditions and overlay welding conditions by TIG welding.
Here, the weebink width in Table 1 is set to a value smaller by about 2 mm than the width of the stirring portion by FSW.

当該条件にて穴埋めTIG溶接および肉盛TIG溶接を実施した。実施例1〜実施例7で、肉盛溶接範囲(表2)を変化させた。FSW接合条件は、ツール回転速度を200rpm、鉛直方向荷重を40kN、接合速度を100mm/minとした。   Under these conditions, hole-filling TIG welding and overlay TIG welding were performed. In Example 1 to Example 7, the overlay welding range (Table 2) was changed. The FSW joining conditions were a tool rotation speed of 200 rpm, a vertical load of 40 kN, and a joining speed of 100 mm / min.

表2に、肉盛溶接範囲を変化させた場合の結果を示す。この表2のラップ量とは、図4の中のNのことである。肉盛開始位置の「−」の符号は、回転ツールの回転中心を開始位置とした場合の接合進行方向の手前(後)側であることを示している。また、肉盛開始位置の「+」の符号は、回転ツールの回転中心を終了位置とした場合の接合進行方向の進行(前)側であることを示している。 Table 2 shows the results when the overlay welding range is changed. The lap amount in Table 2 is N in FIG. The sign “−” of the buildup start position indicates that it is on the front (rear) side in the joining progress direction when the rotation center of the rotary tool is set as the start position. Further, the sign “+” of the build-up start position indicates that it is on the progress (front) side in the joining progress direction when the rotation center of the rotary tool is set as the end position.

表2の評価において「○」はFSW開始部および終端部が肉盛溶接ビードによって完全に隠れている状態を示し、「×」はFSW開始部および終端部が肉盛溶接ビードによって完全には隠れていない状態を示す。
表2の評価結果から、肉盛溶接の開始位置および終端位置がFSW開始位置および終端位置よりそれぞれ10mm程度長ければ、ビード表面の耐食性は満足されると考えられる。
In the evaluation of Table 2, “◯” indicates that the FSW start and end portions are completely hidden by the overlay weld bead, and “×” indicates that the FSW start and end portions are completely hidden by the overlay weld bead. Indicates a state that is not.
From the evaluation results of Table 2, it is considered that the corrosion resistance of the bead surface is satisfied if the start position and the end position of overlay welding are about 10 mm longer than the start position and the end position of FSW.

表3に孔食電位(耐食性に相当)の測定試験結果を示す。試験はJIS G0577に準拠して実施した。ただし、試験用液はJIS K 8150に規定された試薬特級のナトリウムと純水で調整した3.5%の塩化ナトリウム水溶液とした。   Table 3 shows the measurement test results of pitting potential (corresponding to corrosion resistance). The test was conducted in accordance with JIS G0577. However, the test solution was a 3.5% aqueous sodium chloride solution prepared with reagent-grade sodium and pure water specified in JIS K 8150.

当該試験結果に示されるように本実施例で示した穴埋めおよび肉盛溶接部の孔食電位は、母材およびFSW接合部と比較しほぼ同程度であると言える。   As shown in the test results, it can be said that the pitting corrosion potential of the hole filling and overlay welding shown in this example is substantially the same as that of the base metal and the FSW joint.

本発明は、炭素鋼の内周に高耐食性材料(ステンレス鋼、Ni基合金など)が積層されたクラッド鋼管の突き合わせ接合に関するものであり、特に摩擦撹拌接合(以下、省略して「FSW」とも言う)により接合を行う工程を含むクラッド鋼管の接合方法及びクラッド鋼管の接合構造に関する。摩擦撹拌接合によってクラッド層側から接合される場合の耐食性の向上を図ることができる。 The present invention relates to a butt joint of a clad steel pipe in which a high corrosion resistance material (stainless steel, Ni-based alloy, etc.) is laminated on the inner periphery of carbon steel, and in particular, friction stir welding (hereinafter abbreviated as “FSW”). The method of joining the clad steel pipe and the joining structure of the clad steel pipe. It is possible to improve the corrosion resistance when joining from the clad layer side by friction stir welding.

1 回転ツール
2 ショルダ
3 プローブ
4 クラッド鋼管
5 炭素鋼層
6 クラッド層
7 アーク溶接用トーチ
8 接合ビード(摩擦撹拌接合部)
8a クラッド層接合部
8b 炭素鋼層接合部
9 溶接ビード
溶接ビードの先端
12 ツール穴
20 アーク溶接(TIG溶接)用トーチ
22 穴埋め溶接部
23 肉盛溶接ビード
IN クラッド鋼管の内側
OUT クラッド鋼管の外側
A 摩擦撹拌接合の回転ツールの進行方向(接合方向)
N ラップ代
PS 摩擦撹拌接合の開始位置
PE 摩擦撹拌接合の終了位置
DESCRIPTION OF SYMBOLS 1 Rotating tool 2 Shoulder 3 Probe 4 Clad steel pipe 5 Carbon steel layer 6 Clad layer 7 Arc welding torch 8 Joint bead (friction stir weld)
8a Clad layer joint 8b Carbon steel layer joint 9 Weld bead 9 a Tip of a weld bead 12 Tool hole 20 Arc welding (TIG welding) torch 22 Filling weld 23 Overlay weld bead IN Inside clad steel pipe OUT Clad steel pipe Outer A Advancing direction of rotating tool for friction stir welding (joining direction)
N Lap allowance PS Friction stir welding start position PE Friction stir welding end position

Claims (5)

炭素鋼の内周に該炭素鋼よりも耐食性が高い高耐食性材料が積層されたクラッド鋼管の内側から、クラッド鋼管の端部どうしの突き合わせ部を、互いに対向する前記高耐食性材料どうしと前記炭素鋼どうしをそれらが同時に撹伴されるように摩擦撹拌接合にて円周溶接する摩擦撹拌接合工程と、
前記摩擦撹拌接合工程の開始後または終了後に実行され、前記摩擦撹拌接合の開始位置における前記炭素鋼と高耐食性材料との混合範囲を、前記クラッド鋼管の内側から、前記炭素鋼よりも高耐食性の溶接材料を用いて非消耗電極式のアーク肉盛溶接することによって覆う肉盛溶接工程とを備えるクラッド鋼管の接合方法。
Wherein the inner cladding steel pipe corrosion resistance is high high corrosion resistance materials are laminated than carbon Motoko on the inner periphery of the carbon steel, the butt portion of the end portion to each other of the cladding steel pipe, and the high corrosion resistant material to each other facing each other A friction stir welding process in which carbon steels are circumferentially welded by friction stir welding so that they are simultaneously stirred;
The mixing range of the carbon steel and the highly corrosion-resistant material at the start position of the friction stir welding is performed from the inside of the clad steel pipe and higher than that of the carbon steel. A cladding steel pipe joining method comprising: a build-up welding process that covers a non-consumable electrode-type arc overlay welding using a welding material.
前記摩擦撹拌接合工程は、摩擦撹拌接合の終了位置を、前記摩擦撹拌接合の開始位置における炭素鋼と高耐食性材料との混合範囲にオーバーラップさせることで終了し、
次に、前記摩擦撹拌接合工程の終了時に摩擦撹拌接合ツールの引き抜きによって前記終了位置に生じるツール穴を、前記炭素鋼よりも高耐食性の溶接材料を用いた非消耗電極式のアーク溶接にて埋める穴埋め溶接工程を実行し、
前記肉盛溶接工程では、前記摩擦撹拌接合の開始位置における前記炭素鋼と高耐食性材料との混合範囲から前記ツール穴を埋めた終了位置までを含む範囲を、前記クラッド鋼管の内側から、前記炭素鋼よりも高耐食性の溶接材料を用いて非消耗電極式のアーク肉盛溶接することによって覆う請求項1に記載のクラッド鋼管の接合方法。
The friction stir welding step is completed by overlapping the friction stir welding end position with the mixing range of the carbon steel and the high corrosion resistance material at the friction stir welding start position,
Next, the tool hole generated at the end position by pulling out the friction stir welding tool at the end of the friction stir welding process is filled by non-consumable electrode type arc welding using a welding material having higher corrosion resistance than the carbon steel. Perform hole filling welding process,
In the build-up welding process, a range including from the mixing range of the carbon steel and the high corrosion resistance material at the start position of the friction stir welding to the end position where the tool hole is filled is formed from the inside of the clad steel pipe. The method for joining clad steel pipes according to claim 1, wherein the welding is performed by non-consumable electrode-type arc overlay welding using a welding material having higher corrosion resistance than steel.
請求項1または2に記載のクラッド鋼管の接合方法を、水平固定管同士の突き合わせ円周接合に用いる場合に、
前記摩擦撹拌接合の開始位置と終了位置とを、
前記クラッド鋼管の断面の周方向位置を、周方向の最上部を12時として1周を12等分した時計の1時から12時までの目盛に対応させた場合の5時から7時の範囲に設定するクラッド鋼管の接合方法。
When using the method for joining clad steel pipes according to claim 1 or 2 for butt circumferential joining between horizontal fixed pipes,
The start position and end position of the friction stir welding,
The range from 5 o'clock to 7 o'clock in the case where the circumferential position of the cross section of the clad steel pipe corresponds to the scale from 1 o'clock to 12 o'clock of a watch that divides one circumference into 12 equally with the top in the circumferential direction at 12 o'clock Clad steel pipe joining method set to.
炭素鋼鋼管の内周に該炭素鋼よりも耐食性が高い高耐食性材料が積層されたクラッド鋼管の内側から、クラッド鋼管の端部どうしの突き合わせ部が、互いに対向する前記高耐食性材料どうしと前記炭素鋼どうしをそれらが同時に撹伴するように摩擦撹拌接合にて円周溶接された摩擦撹拌接合部と、
前記摩擦撹拌接合部の開始位置における前記炭素鋼と高耐食性材料との混合範囲を、前記クラッド鋼管の内側からの、前記炭素鋼よりも高耐食性を有する溶接材料を用いた非消耗電極式のアーク肉盛溶接によって覆う肉盛溶接ビードとを備えるクラッド鋼管の接合構造。
From the inside of the cladding steel pipe inner high corrosion resistance materials is higher corrosion resistance than carbon Motoko circumferentially are laminated carbon steel pipe, butt portion of the end portion to each other of the cladding steel pipe, and the high corrosion resistant material to each other facing each other A friction stir weld that is circumferentially welded by friction stir welding so that they are simultaneously stirring the carbon steel;
A non-consumable electrode type arc using a welding material having a higher corrosion resistance than the carbon steel from the inside of the clad steel pipe, in the mixing range of the carbon steel and the high corrosion resistance material at the start position of the friction stir weld. A welded structure of a clad steel pipe comprising an overlay weld bead covered by overlay welding.
前記摩擦撹拌接合部の終了位置が、前記摩擦撹拌接合部の開始位置における炭素鋼と高耐食性材料と混合範囲にオーバーラップしており、
前記摩擦撹拌接合部の終了時に摩擦撹拌接合ツールの引き抜きによって前記終了位置に生じるツール穴が、前記炭素鋼よりも高耐食性の溶接材料を用いた非消耗電極式のアーク溶接による溶接金属によって埋められ、
前記摩擦撹拌接合部の開始位置における前記炭素鋼とクラッド層との混合範囲から前記ツール穴を埋めた終了位置までを含む範囲が、前記クラッド鋼管の内側からの、前記炭素鋼よりも高耐食性を有する溶接材料を用いた非消耗電極式のアーク肉盛溶接による肉盛溶接ビードによって覆われている請求項4に記載のクラッド鋼管の接合構造。
The end position of the friction stir weld overlaps the carbon steel and high corrosion resistance material and the mixing range at the start position of the friction stir weld,
At the end of the friction stir welding part, the tool hole generated at the end position by pulling out the friction stir welding tool is filled with weld metal by non-consumable electrode type arc welding using a welding material having higher corrosion resistance than the carbon steel. ,
The range from the mixing range of the carbon steel and the clad layer at the start position of the friction stir weld to the end position where the tool hole is filled has higher corrosion resistance than the carbon steel from the inside of the clad steel pipe. The joint structure of the clad steel pipe of Claim 4 covered with the build-up weld bead by the non-consumable electrode type arc build-up welding using the welding material which has.
JP2015505154A 2013-03-14 2013-03-14 Clad steel pipe joining method and structure Active JP6051292B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/057155 WO2014141423A1 (en) 2013-03-14 2013-03-14 Method and structure for welding clad steel tube

Publications (2)

Publication Number Publication Date
JP6051292B2 true JP6051292B2 (en) 2016-12-27
JPWO2014141423A1 JPWO2014141423A1 (en) 2017-02-16

Family

ID=51536119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015505154A Active JP6051292B2 (en) 2013-03-14 2013-03-14 Clad steel pipe joining method and structure

Country Status (2)

Country Link
JP (1) JP6051292B2 (en)
WO (1) WO2014141423A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107695509A (en) * 2017-10-21 2018-02-16 天津大学 Titanium steel composite pipe welding method based on agitating friction weldering/melting welding Combined Welding
CN107717249B (en) * 2017-10-26 2023-06-06 无锡汉神电气股份有限公司 Arc-friction welding composite welding torch and welding method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01289572A (en) * 1988-05-16 1989-11-21 Nkk Corp Welding equipment for clad steel pipe
JPH1162101A (en) * 1997-08-13 1999-03-05 Nippon Light Metal Co Ltd Sandwich panel and manufacture thereof
JP2003001424A (en) * 2001-06-22 2003-01-08 Nkk Corp Method for preventing corrosion of steel structure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003314782A (en) * 2002-04-23 2003-11-06 Mitsubishi Heavy Ind Ltd Method of repairing pipe connection portion, and fluid piping
JP4335702B2 (en) * 2004-01-22 2009-09-30 三菱重工業株式会社 Clad material manufacturing method
JP2007313541A (en) * 2006-05-26 2007-12-06 Sumitomo Light Metal Ind Ltd Method for manufacturing clad tube
JP4588735B2 (en) * 2007-03-31 2010-12-01 財団法人大阪産業振興機構 Clad material manufacturing method and clad material
JP5538079B2 (en) * 2010-06-11 2014-07-02 新日鉄住金エンジニアリング株式会社 Clad steel material joining method and structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01289572A (en) * 1988-05-16 1989-11-21 Nkk Corp Welding equipment for clad steel pipe
JPH1162101A (en) * 1997-08-13 1999-03-05 Nippon Light Metal Co Ltd Sandwich panel and manufacture thereof
JP2003001424A (en) * 2001-06-22 2003-01-08 Nkk Corp Method for preventing corrosion of steel structure

Also Published As

Publication number Publication date
WO2014141423A1 (en) 2014-09-18
JPWO2014141423A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
JP5957719B2 (en) Friction stir welding method
WO2013027532A1 (en) Friction stir welding method
JP6025620B2 (en) Submerged arc welding method, method of manufacturing steel pipe using the submerged arc welding method, welded joint, and steel pipe having the welded joint
Torbati et al. Optimization procedures for GMAW of bimetal pipes
JP5151036B2 (en) Friction stir welding method
JP2006239734A (en) Weld joint and method for forming the same
WO2018042680A1 (en) Arc-spot welding method for joining different materials, joining auxiliary member, and different materials welding joint
CN101972885B (en) Bushing-free narrow-gap pulse gas metal arc backing welding method of petroleum kelly bar
JP6051292B2 (en) Clad steel pipe joining method and structure
JP5915802B2 (en) Friction stir welding method
WO2010064464A1 (en) Clad welding method
CN106583951A (en) Large aperture thick wall nickel alloy composite tube butt welding process
JP5538079B2 (en) Clad steel material joining method and structure
JP2016075586A (en) Method for repairing poor weld zone of metal cask weld structure and metal cask provided with heat transfer copper fins
JP4453682B2 (en) Joining method and joining tool
EP3389918A1 (en) Process of butt-welding a laminated item, and an assembly comprising a butt-welded laminated item
JP2011101891A (en) Joining method
JP3182672B2 (en) Internal welding method of clad steel pipe
JP5268594B2 (en) Welding method of type I joint, type I welded joint, and welded structure using the same
JP2015027699A (en) Friction stir welded body
JP5879460B2 (en) Laminate joining method
JP5622887B2 (en) Clad welding method and clad welding structure
JP2006130510A (en) Butt welding method for thick plate metal
RU2375161C2 (en) Electric rivet joint and method of its making
JP5962807B2 (en) Friction stir welding method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161128

R150 Certificate of patent or registration of utility model

Ref document number: 6051292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250