JP6049978B1 - Oxidation-resistant low-binder hard alloy with a large thermal expansion coefficient or lens mold made of this material - Google Patents

Oxidation-resistant low-binder hard alloy with a large thermal expansion coefficient or lens mold made of this material Download PDF

Info

Publication number
JP6049978B1
JP6049978B1 JP2016098852A JP2016098852A JP6049978B1 JP 6049978 B1 JP6049978 B1 JP 6049978B1 JP 2016098852 A JP2016098852 A JP 2016098852A JP 2016098852 A JP2016098852 A JP 2016098852A JP 6049978 B1 JP6049978 B1 JP 6049978B1
Authority
JP
Japan
Prior art keywords
mass
thermal expansion
expansion coefficient
nbc
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016098852A
Other languages
Japanese (ja)
Other versions
JP2017206403A (en
Inventor
勉 小椋
勉 小椋
優 川上
優 川上
北村 幸三
幸三 北村
一彦 土屋
一彦 土屋
斉藤 実
実 斉藤
宏爾 林
宏爾 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Die Co Ltd
Original Assignee
Fuji Die Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Die Co Ltd filed Critical Fuji Die Co Ltd
Priority to JP2016098852A priority Critical patent/JP6049978B1/en
Application granted granted Critical
Publication of JP6049978B1 publication Critical patent/JP6049978B1/en
Publication of JP2017206403A publication Critical patent/JP2017206403A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Ceramic Products (AREA)

Abstract

【課題】従来の、熱膨張係数がカルコゲナイドに近い耐酸化性サーメットは、高い解像度を必要とするカルコゲナイドレンズの金型成形用素材としては、鏡面加工性が劣っており、超仕上げ加工を容易にすることが望まれていた。【解決手段】NbCを20mass%以上40mass%以下、Niを0.3mass%以上10mass%以下、不可避不純物を含み、残部がCr3C2である、Cr3C2−NbC−Ni焼結硬質合金を提供する。この材料は熱膨張係数が大きく、鏡面加工性もよいため、高解像度用のカルコゲナイドレンズの成形金型用素材に適する。【選択図】図5A conventional oxidation-resistant cermet having a thermal expansion coefficient close to that of chalcogenide is inferior in mirror surface workability as a mold molding material for chalcogenide lenses that require high resolution, making super-finishing easy. It was hoped to do. Provided is a Cr3C2-NbC-Ni sintered hard alloy containing 20 mass% or more and 40 mass% or less of NbC, 0.3 mass% or more and 10 mass% or less of Ni, containing inevitable impurities, and the balance being Cr3C2. Since this material has a large coefficient of thermal expansion and good mirror finish, it is suitable for a molding die material for a high-resolution chalcogenide lens. [Selection] Figure 5

Description

本発明は、レンズ成形用の金型のうち大きな熱膨張係数を必要とする金型、およびその素材の技術分野に関する。   The present invention relates to a mold that requires a large thermal expansion coefficient among molds for lens molding, and a technical field of the material thereof.

各種光学レンズのうち、デジタルカメラなどの可視光領域用の非球面ガラスレンズを成形する金型の素材としては、硬さ、耐酸化性および鏡面性に優れるバインダーレス超硬合金が主として用いられているほか、超微粒超硬合金なども用いられている。   Among various optical lenses, binderless cemented carbide with excellent hardness, oxidation resistance and specularity is mainly used as a mold material for molding aspherical glass lenses for visible light region such as digital cameras. In addition, ultrafine cemented carbide is also used.

これらの金型素材の熱膨張係数は、室温(Room Temperature、以下RTと記述する)〜800℃においてバインダーレス超硬合金が4.7〜5.1MK−1、超微粒超硬合金が6.4MK−1であり、SUS420J2のRT〜540℃での11.7MK−1と比べて、温度が変化しても金型寸法の変化がより少ないことにより金型設計が容易になる。 These mold materials have a thermal expansion coefficient of 4.7 to 5.1 MK −1 for a binderless cemented carbide at room temperature (hereinafter referred to as RT) to 800 ° C., and 6. for an ultrafine cemented carbide. a 4MK -1, as compared with 11.7MK -1 at RT~540 ° C. of SUS420J2, the change in mold dimensions even if the temperature changes are the mold can be easily designed by fewer.

また、ポアなどの欠陥がSUS420J2と比べて著しく少ないこと、さらに軟質相が少ない、またはほとんどないため、鏡面加工性がよいことにより、金型加工が容易になる。   Further, since defects such as pores are remarkably small as compared with SUS420J2, and there is little or almost no soft phase, mold processing becomes easy due to good mirror surface workability.

そして、非球面レンズに求められる形状精度が高くなるに従って、段落0002の2種の合金のうち、熱膨張係数のより小さい、バインダーレス超硬合金が主として適用されるようになった。これらは特許文献1〜3に記載されている。   As the shape accuracy required for aspherical lenses increases, binderless cemented carbide having a smaller thermal expansion coefficient among the two types of alloys in paragraph 0002 has come to be mainly applied. These are described in Patent Documents 1 to 3.

以上は、通常のデジタルカメラ用の光学すなわち可視光レンズに関する技術であるが、近年は、夜間の防犯用および伝染病感染者識別用の赤外線カメラ、省エネ目的の赤外線センサー付照明器具が増加している。   The above is the technology related to optical or visible light lenses for ordinary digital cameras, but in recent years, infrared cameras for nighttime crime prevention and infectious disease identification, and lighting fixtures with infrared sensors for energy saving purposes have increased. Yes.

これらカメラやセンサーの分解精度を高める場合は中〜遠赤外線デジタルカメラを用いることが良いが、通常の可視光領域用の光学レンズは中〜遠赤外線を透過しにくいため、赤外線デジタルカメラには、中〜遠赤外線を透過しやすいレンズ(以後、赤外線レンズと記載)を必要とする。   In order to increase the resolution accuracy of these cameras and sensors, it is preferable to use a medium to far infrared digital camera, but since an ordinary optical lens for visible light region does not easily transmit medium to far infrared rays, A lens (hereinafter referred to as “infrared lens”) that easily transmits medium to far infrared rays is required.

従来の赤外線レンズの素材は、ガラス転移温度(以下Tgと記す)が700℃以上と高いため金型成形が困難であることから、特許文献4のように、金型成形用としてTgが500℃未満と低いカルコゲナイドガラスレンズが提供されるようになった。   The conventional infrared lens material has a glass transition temperature (hereinafter referred to as Tg) as high as 700 ° C. and is difficult to mold. Therefore, as in Patent Document 4, Tg is 500 ° C. for mold molding. Less and less chalcogenide glass lenses have been provided.

ところが、カルコゲナイドガラスの熱膨張係数は15〜25MK−1であるため、従来のバインダーレス超硬合金製の金型では、熱プレス成形後の冷却時に、両者間の熱収縮量が大きく異なるため、レンズの形状いかんによってレンズに引張り応力が作用して、レンズが割れる問題がある。 However, since the thermal expansion coefficient of chalcogenide glass is 15 to 25 MK −1 , in the conventional binderless cemented carbide metal mold, the amount of thermal shrinkage between the two greatly differs upon cooling after hot press molding. There is a problem that a tensile stress acts on the lens depending on the shape of the lens and the lens breaks.

そこで、本発明者らは特許文献4において、RT〜500℃での熱膨張係数が9.2MK−1より大きい耐酸化性硬質サーメットを開発し、熱収縮量が大きく異なることによる成形性の問題の解決を試みた。 Therefore, the inventors of the present invention have developed an oxidation-resistant hard cermet having a thermal expansion coefficient greater than 9.2 MK −1 at RT to 500 ° C. in Patent Document 4 and has a problem of moldability due to a large difference in thermal shrinkage. I tried to solve the problem.

特開平02−120244号公報Japanese Patent Laid-Open No. 02-120244 特開2013−213259号公報JP 2013-213259 A 特開2015−63708号公報JP2015-63708A 特許第5770357号公報Japanese Patent No. 5770357

鈴木壽編著:超硬合金と焼結硬質材料−基礎と応用、丸善株式会社、1986年、p.2Edited by Jun Suzuki: Cemented carbides and sintered hard materials-Fundamentals and applications, Maruzen Co., 1986, p. 2 鈴木壽編著:超硬合金と焼結硬質材料−基礎と応用、丸善株式会社、1986年、p.90Edited by Jun Suzuki: Cemented carbides and sintered hard materials-Fundamentals and applications, Maruzen Co., 1986, p. 90 鈴木壽編著:超硬合金と焼結硬質材料−基礎と応用、丸善株式会社、1986年、p.110Edited by Jun Suzuki: Cemented carbides and sintered hard materials-Fundamentals and applications, Maruzen Co., 1986, p. 110 P.Villars,A.Prince,H.Okamoto:Handbook of Ternary Alloy Phase Diagrams,Volume 1−10,ASM International,1995,p.6657P. Villars, A.M. Prince, H.M. Okamoto: Handbook of Territory Alloy Phase Diagrams, Volume 1-10, ASM International, 1995, p. 6657 鈴木壽編著:超硬合金と焼結硬質材料−基礎と応用、丸善株式会社、1986年、p.511Edited by Jun Suzuki: Cemented carbides and sintered hard materials-Fundamentals and applications, Maruzen Co., 1986, p. 511 深津保:「Cr3C2−Ni系焼結合金の金属相の研究」、粉体および粉末冶金、第8巻第6号、1961年、p.247−252Fukatsu: “Study on the metal phase of Cr3C2-Ni-based sintered alloy”, Powder and Powder Metallurgy, Vol. 8, No. 6, 1961, p. 247-252 P.Villars,A.Prince,H.Okamoto:Handbook of Ternary Alloy Phase Diagrams,Volume 1−10,ASM International,1995,p.6688P. Villars, A.M. Prince, H.M. Okamoto: Handbook of Territory Alloy Phase Diagrams, Volume 1-10, ASM International, 1995, p. 6688 鈴木壽編著:超硬合金と焼結硬質材料−基礎と応用、丸善株式会社、1986年、p.65Edited by Jun Suzuki: Cemented carbides and sintered hard materials-Fundamentals and applications, Maruzen Co., 1986, p. 65

ところが、特許文献4における著者ら発明の耐酸化性サーメットは硬質粒子としてCr(1300HV:非特許文献1)およびTi(C,N)(2050〜3200HV:非特許文献1のTiCの硬さおよび非特許文献2のTiNの硬さから混合則による)、結合相としてNi(210HV:非特許文献3)を使用しているため、硬質粒子同士での硬さの差および硬質粒子と結合相との硬さの差から、金型形状・鏡面性を得るための研削ないし切削加工・研磨中に、Ti(C,N)の一部が欠けやすく、かつNiが軟質なため結合相が凹部となりやすく、短時間での鏡面加工仕上げが困難となる問題が見られた。 However, the oxidation-resistant cermets of the inventors' invention in Patent Document 4 are hard particles of Cr 3 C 2 (1300HV: Non-Patent Document 1) and Ti (C, N) (2050-3200HV: Non-Patent Document 1) of TiC. And NiN (210HV: Non-Patent Document 3) is used as the binder phase because of the hardness of TiN in Non-Patent Document 2 and the hardness of TiN. Due to the difference in hardness from the phase, part of Ti (C, N) is easily chipped during grinding or cutting / polishing to obtain the mold shape and specularity, and Ni is soft, so the binder phase is There was a problem that it was easy to form a recess and it was difficult to finish the mirror finish in a short time.

また、赤外線レンズに求められる解像度も急速に大きくなり、金型の鏡面仕上げ精度すなわち表面粗さRaが、耐酸化性硬質サーメットを開発した時点の50nmと比べて、現在は10nm以下の精度の超仕上げ加工が要求されるようになった。ここまで精密になると、金型材料中の硬質粒子と結合相との硬さの差が大きいと超仕上げの加工性が低下し、加工できなくはないものの、慎重な加工を必要とし、長時間を要するので、コスト高となって、耐酸化性サーメットは事実上使用できなくなった。   In addition, the resolution required for infrared lenses is also rapidly increasing, and the mirror finish accuracy of the mold, that is, the surface roughness Ra, is now more than 10 nm, compared to 50 nm at the time when the oxidation-resistant hard cermet was developed. Finishing is now required. If it becomes precise so far, if the difference in hardness between the hard particles in the mold material and the binder phase is large, the workability of superfinishing will be reduced and it will not be impossible to process, but it requires careful processing, and it takes a long time. Therefore, the cost is high and the oxidation-resistant cermet is virtually unusable.

そこで、本発明者らは、最近の赤外線レンズ用ガラスおよび低Tgガラスの熱膨張係数に相応し、さらに高精度な表面粗さまで容易に加工できる金型材料を発明することとした。その開発目標として、通常の加工時間での超仕上げ後の表面粗さRaを10nm以下にできる材料を開発することとした。   Accordingly, the present inventors have invented a mold material that corresponds to the thermal expansion coefficients of recent infrared lens glass and low Tg glass, and can be easily processed to a high-precision surface roughness. The development goal was to develop a material that can reduce the surface roughness Ra after superfinishing in a normal processing time to 10 nm or less.

なお、熱膨張係数は、本発明者らの特許文献4の耐酸化性硬質サーメットを開発した経験より、RT〜500℃で8.3MK−1以上を開発目標とした。バインダーレスの被研削性をよくするためには、室温の破壊強度(抗折力)が800MPa以上あればよいので、開発目標の抗折力を800MPa以上とした。 In addition, the thermal expansion coefficient was set to 8.3 MK −1 or more at RT to 500 ° C. based on the experience of the inventors of developing the oxidation-resistant hard cermet disclosed in Patent Document 4. In order to improve the binder-less grindability, the fracture strength at the room temperature (bending strength) should be 800 MPa or more, so the development target bending strength was set to 800 MPa or more.

初めに、特許文献4で開発した耐酸化性硬質サーメットをバインダーレスにすることを考えた。すなわちCr−30mass%Ti(C,N)である。これは、軟質の結合相を含ませないことで、硬質相のみとなり、特許文献4のサーメットより軟質相がなくなった分だけ鏡面性がよくなり、加工性を改善できると思われたためである。 First, it was considered to make the oxidation-resistant hard cermet developed in Patent Document 4 binderless. That is, Cr 3 C 2 -30 mass% Ti (C, N). This is because, by not including the soft binder phase, only the hard phase is obtained, and the specularity is improved as much as the soft phase disappears from the cermet of Patent Document 4, and it is thought that the workability can be improved.

ここで、Ti(C,N)は難焼結性であることが知られており、普通の焼結で緻密化できるか懸念されたが、予想通り、1600℃での焼結でも十分緻密化しなかった。普通焼結に比べて緻密化を促進できるホットプレス等での生産は経済的でないのでCr−Ti(C,N)は断念した。 Here, Ti (C, N) is known to be difficult to sinter, and there was a concern whether it could be densified by ordinary sintering, but as expected, it was sufficiently densified even at 1600 ° C. There wasn't. Since production by a hot press or the like that can promote densification as compared with ordinary sintering is not economical, Cr 3 C 2 —Ti (C, N) was abandoned.

そこで、段落0017の耐酸化性バインダーレス素材の構成成分の中で、より熱膨張係数が低く欠けやすいTi(C,N)に代わる物質を表1(特許文献4)に示した各炭窒化物から探索した。この中では、NbNは熱膨張係数が10.1MK−1と高く、硬さも1460HV(非特許文献2)とCrに近いことから、Cr−NbNが有望と思われた。 Therefore, among the constituent components of the oxidation-resistant binderless material of paragraph 0017, each carbonitride shown in Table 1 (Patent Document 4) is a substitute for Ti (C, N) that has a lower thermal expansion coefficient and is easily chipped. Searched from. Among these, since NbN has a high thermal expansion coefficient of 10.1 MK −1 and hardness is close to 1460 HV (Non-patent Document 2) and Cr 3 C 2 , Cr 3 C 2 —NbN seemed promising.

ここで、Cr−NbN擬二元系状態図およびCr−Nb−Nの三元系状態図は見当たらなかったが、非特許文献4にNbC−Crの擬二元系状態図があり、それを図1に示した。これより、NbCとCrの擬二元系で最も低い液相出現温度(この場合共晶点)が1100℃であることからCr−NbNでも比較的低温で焼結できると予想した。 Here, the Cr 3 C 2 -NbN pseudo binary system phase diagram and the Cr—Nb—N ternary system phase diagram were not found, but Non-Patent Document 4 has an NbC—Cr pseudo binary system phase diagram. This is shown in FIG. From this, the lowest liquid phase appearance temperature (eutectic point in this case) in the pseudo binary system of NbC and Cr was 1100 ° C., so it was predicted that Cr 3 C 2 —NbN could be sintered at a relatively low temperature.

Cr−30mass%Ti(C0.50.5)のTi(C0.50.5)とほぼ同じvol%のNbNを添加したCr−40mass%NbNは、800kPaの窒素雰囲気で1550℃−1hの焼結を行ったが緻密化しなかった。 Cr 3 C 2 -40 mass% Ti (C 0.5 N 0.5 ) Cr 3 C 2 -40 mass% NbN added with approximately the same vol% NbN as Ti (C 0.5 N 0.5 ) Sintering was performed at 1550 ° C. for 1 h in a nitrogen atmosphere of 800 kPa, but it was not densified.

そこで、NbNは緻密化を抑制する成分であると考え、NbN量を40mass%より減らしたCr−30mass%NbNについて、同条件で焼結を行ったところ、緻密化に成功した。 Therefore, NbN was considered to be a component that suppresses densification, and Cr 3 C 2 -30 mass% NbN, in which the amount of NbN was reduced from 40 mass%, was sintered under the same conditions, and the densification was successful.

しかし、この1550℃は、予想外に高温であった。また、RT〜500℃における熱膨張係数の測定値は、8.1MK−1であり目標値を達成できなかった。よって、NbNを用いて目標の熱膨張係数を得ることは困難と思われると共に、Ti(C、N)以外で大きな熱膨張係数を有し、かつ容易に入手できる物質は見当たらず、大きな熱膨張係数を有する耐酸化性硬質バインダーレス素材の開発は当初極めて困難であると思われた。 However, this 1550 ° C. was unexpectedly high. Moreover, the measured value of the thermal expansion coefficient in RT-500 degreeC was 8.1MK- 1 , and was not able to achieve a target value. Therefore, it seems difficult to obtain the target thermal expansion coefficient using NbN, and there is no material that has a large thermal expansion coefficient other than Ti (C, N) and can be easily obtained. Development of an oxidation-resistant hard binderless material with a modulus seemed to be extremely difficult at first.

なお、Ti(C,N)−MoC−Ni系サーメットが市販の耐食性硬質材料として普及し、これの熱膨張係数は約7MK−1と比較的大きい(非特許文献5)。しかし、主成分のTi(C,N)が欠け易く、かつダイヤモンド砥石のダイヤモンドの構成元素であるCを吸収することから難加工性であるため低コストでの超仕上げ加工が困難であり、本用途には適していない。 In addition, Ti (C, N) -Mo 2 C—Ni-based cermet is widely used as a commercially available corrosion-resistant hard material, and its thermal expansion coefficient is relatively large at about 7 MK −1 (Non-patent Document 5). However, Ti (C, N) as a main component is easily chipped and absorbs C, which is a constituent element of diamond in a diamond grindstone. Not suitable for use.

本発明者らは、段落0024における問題を解決するため、先に試作したCr−30mass%NbNの焼結体についてよく調べることとした。まず、X線回折を行った結果、図2が得られた。 In order to solve the problem in paragraph 0024, the present inventors decided to investigate the sintered body of Cr 3 C 2 -30 mass% NbN that was made as a trial. First, as a result of X-ray diffraction, FIG. 2 was obtained.

図2より、Cr相が認められなくて、bのピークで示されるCrC相があることを突き止めた。cのピークはCrである。これは、CrがCr、CrCおよびCに分解して生成したものと思われる。これは古くから知られていることである(非特許文献6)。xは同定できなかったピークでunknownであるが、量が少なく熱膨張係数などに影響しないと思われる。 From FIG. 2, it was found that the Cr 3 C 2 phase was not recognized and there was a Cr 2 C phase indicated by the peak b. The peak of c is Cr 7 C 3 . This is probably because Cr 3 C 2 was decomposed into Cr 7 C 3 , Cr 2 C and C. This has been known for a long time (Non Patent Literature 6). x is an unknown peak, which is unknown, but is small in quantity and does not affect the thermal expansion coefficient.

図3は、非特許文献7によるC−Cr−W三元系状態図である。図3には、CrCが認められないので、CrCは準安定相であると思われた。このCrCの生成は、焼結温度が1550℃と高いことと、段落0030に示すようにCがNbNの方に移動すること等が原因と考えられた。 FIG. 3 is a C—Cr—W ternary phase diagram according to Non-Patent Document 7. In FIG. 3, since Cr 2 C was not observed, Cr 2 C seemed to be a metastable phase. The formation of Cr 2 C was considered to be caused by the high sintering temperature of 1550 ° C. and the movement of C toward NbN as shown in paragraph 0030.

また、合金中窒素分析を行い、窒素量を定量分析した結果、NbNも窒素が約30%解離していることが分かった。   Further, nitrogen analysis in the alloy was performed, and as a result of quantitative analysis of the amount of nitrogen, it was found that NbN was also dissociated by about 30%.

以上より、得られた焼結体はCr−30mass%NbNではなく、CrC−30mass%Nb(C0.30.7)であることを突き止めた。このため図2にはaのピークをNb(C0.30.7)と示している。 From the above, it was found that the obtained sintered body was not Cr 3 C 2 -30 mass% NbN but Cr 2 C-30 mass% Nb (C 0.3 N 0.7 ). Therefore, FIG. 2 shows the peak a as Nb (C 0.3 N 0.7 ).

CrCの熱膨張係数は知られていないものの、得られた焼結体のRT〜500℃の熱膨張係数が8.1MK−1であったこと、Nb(C0.30.7)の熱膨張係数を、NbCとNbNの熱膨張係数から混合則で見積もると9.2MK−1と見積もられるので、CrCの熱膨張係数は、やはり混合則で7.0MK−1と見積もられた。このため、8.3MK−1の目標値を達成することはこの成分系ではできないと考えた。 Although the thermal expansion coefficient of Cr 2 C is not known, the thermal expansion coefficient of the obtained sintered body from RT to 500 ° C. was 8.1 MK −1 , Nb (C 0.3 N 0.7 ) Is estimated to be 9.2 MK −1 from the thermal expansion coefficients of NbC and NbN, it is estimated to be 9.2 MK −1 , so the thermal expansion coefficient of Cr 2 C is also estimated to be 7.0 MK −1 by the mixing rule. It was lost. For this reason, it was considered that this component system cannot achieve the target value of 8.3 MK −1 .

また、NbNがNb(C0.30.7)になっていることから、焼結中にNbNの脱窒が起こり、生じたNガスが孤立空隙内に取り残され、そのNガス圧が高いために焼結性が悪いと考えられた。 Further, since NbN is Nb (C 0.3 N 0.7 ), denitrification of NbN occurs during sintering, and the generated N 2 gas is left in the isolated void, and the N 2 gas It was thought that the sinterability was poor due to the high pressure.

すなわち、窒化物を用いなければより低温で焼結できるのではないかと思われた。低温で焼結できれば、CrCを生じることなく、熱膨張係数が大きいCr(10.3MK−1)で構成された、目標とする大きな熱膨張係数を持つ耐酸化性硬質バインダーレス素材を作ることが可能と考えた。 That is, it was thought that sintering could be performed at a lower temperature without using nitride. If it can be sintered at a low temperature, it does not produce Cr 2 C, and is composed of Cr 3 C 2 (10.3 MK −1 ) having a large thermal expansion coefficient, and is an oxidation-resistant hard binderless having a target large thermal expansion coefficient. I thought it was possible to make the material.

なお、NbNを用いないとするとNbCを用いることになるが、NbCの熱膨張係数は6.6MK−1であり、TiCおよびTiNより熱膨張係数が小さい。しかし、熱膨張係数が大きいCrを主成分とすれば、目標の熱膨張係数に達する可能性はあると思われた。 If NbN is not used, NbC is used, but NbC has a thermal expansion coefficient of 6.6 MK −1 , which is smaller than that of TiC and TiN. However, if Cr 3 C 2 having a large thermal expansion coefficient is a main component, it seems that the target thermal expansion coefficient may be reached.

また、NbCの硬さは2400HV(非特許文献1)であり、Ti(C0.70.3)の硬さ2850HV(非特許文献1のTiCの硬さおよび非特許文献2のTiNの硬さから混合則による計算値)よりも、前述したCrの硬さ1300HVに近く、硬質相間の硬さの差が小さいことから超仕上げしやすくなることもメリットと考えた。 Further, the hardness of NbC is 2400 HV (Non-Patent Document 1), the hardness of Ti (C 0.7 N 0.3 ) is 2850 HV (the hardness of TiC of Non-Patent Document 1 and the hardness of TiN of Non-Patent Document 2). From the hardness, the calculated value by the mixing rule) is closer to the above-mentioned Cr 3 C 2 hardness of 1300 HV, and since the difference in hardness between the hard phases is small, super-finishing is considered to be an advantage.

そこで、Cr−30mass%NbCを調製し、冷間プレス成形して得た4×8×25mmの圧粉体試験片を800kPaの窒素雰囲気で1350℃−1hの焼結を行った。 Therefore, Cr 3 C 2 -30 mass% NbC was prepared, and a 4 × 8 × 25 mm 3 green compact specimen obtained by cold press molding was sintered at 1350 ° C. for 1 h in a nitrogen atmosphere of 800 kPa. .

その結果、理論密度の96%の緻密化に成功し、さらに、1350℃で1hr、100MPaのArによるHIP処理して得られた100%密度の素材は、RT〜500℃における熱膨張係数が8.7MK−1であり開発目標の8.3MK−1を超えた。これは、後掲の表2および表3のNo.10の試料である。 As a result, 96% of the theoretical density was successfully densified, and a 100% density material obtained by HIP treatment with Ar at 1350 ° C. for 1 hr and 100 MPa had a thermal expansion coefficient of 8 to RT from 500 ° C. It was .7MK -1 and exceeded the development target of 8.3MK -1 . This is because No. 2 in Table 2 and Table 3 below. Ten samples.

しかし、表面近傍に800kPaの加圧窒素下での焼結に起因する窒化による組織異常が見られ、使用できないことはないが、やや研削代が多くなる欠点があった。そこでさらに研究を進め、800kPaに比べてかなり低圧の40kPaの窒素雰囲気焼結を試みた。   However, a structural abnormality due to nitriding due to sintering under pressurized nitrogen of 800 kPa was observed in the vicinity of the surface, and although it could not be used, there was a disadvantage that the grinding allowance was slightly increased. Therefore, further research was conducted, and an attempt was made to sinter nitrogen atmosphere at 40 kPa, which is considerably lower pressure than 800 kPa.

すなわち、Cr−30mass%NbCを調製し、冷間プレス成形して得た4×8×25mmの圧粉体試験片を1350℃−1hで40kPaの窒素雰囲気焼結を行った。しかし、理論密度に対して65%までしか緻密化せず失敗した。 That is, Cr 3 C 2 -30 mass% NbC was prepared, and a 4 × 8 × 25 mm 3 green compact specimen obtained by cold press molding was sintered at 1350 ° C.-1 h for 40 kPa in nitrogen atmosphere. However, it failed to densify only up to 65% of the theoretical density.

この原因は、加圧窒素下での焼結では、窒素が焼結体に入り込むことにより、液相線を下げ、40kPaの窒素雰囲気焼結ではそれが得られないためと思われる。   This seems to be because, in sintering under pressurized nitrogen, nitrogen enters the sintered body, lowering the liquidus, and cannot be obtained in 40 kPa nitrogen atmosphere sintering.

そこで、窒素の役割、すなわち液相線を下げ窒素が無い場合に比べて液相を低温で出現させ緻密化を促進する効果を他の方法で実現するために、加工硬化したNi粉末を0.3mass%添加して焼結することとした。   Therefore, in order to realize the role of nitrogen, that is, the effect of promoting the densification by lowering the liquidus line and lowering the liquidus and promoting the densification compared to the case where there is no nitrogen, the work-hardened Ni powder is reduced to 0.000. It was decided to sinter by adding 3 mass%.

これは、特許文献2において記載されている、加工硬化したNi粉末を0.12mass%〜0.3mass%添加することで、焼結性が改善されることを応用したものである。   This is an application of improving the sinterability by adding 0.12 mass% to 0.3 mass% of work-hardened Ni powder described in Patent Document 2.

0.3mass%としたのは、特許文献2のWC基素材と比較すると本発明材料の比重は約半分であるため、硬質粒子の重量が約1/2となるので、硬質粒子の結合相となるNiの量は0.12mass%〜0.3mass%の下限値(0.12mass%)の2倍よりやや多い量としたものである。   The reason why 0.3 mass% is set is that the specific gravity of the material of the present invention is about half compared to the WC-based material of Patent Document 2, and the weight of the hard particles is about ½. The amount of Ni to be obtained is slightly larger than twice the lower limit (0.12 mass%) of 0.12 mass% to 0.3 mass%.

Cr−30mass%NbC−0.3mass%Niを調製し、冷間プレス成形して得た4×8×25mmの圧粉体試験片を1350℃−1hで40kPaの窒素雰囲気焼結を行った。 Cr 3 C 2 -30 mass% NbC-0.3 mass% Ni was prepared, and a 4 × 8 × 25 mm 3 green compact specimen obtained by cold press molding was sintered at 1350 ° C.-1 h at 40 kPa in nitrogen atmosphere. Went.

その結果、相対密度98%まで緻密化させることに成功した。相対密度100%になっていないのは、ポアが残留するためであり、この原因は、原料粉末中に含まれる酸化物、および圧粉体の調製途中で生じる酸化により、酸化物が焼結前の圧粉体に多くあるために、緻密化前に炭化物すなわちCrとNbCのCにより十分に還元除去されないことにあると思われた。 As a result, it succeeded in densifying to a relative density of 98%. The reason why the relative density is not 100% is that the pores remain, and this is because the oxide contained in the raw material powder and the oxidation that occurred during the preparation of the green compact, the oxide was not sintered. Therefore, it was considered that the material was not sufficiently reduced and removed by carbides, that is, Cr 3 C 2 and C of NbC before densification.

そこで、還元を促進する目的で炭素を0.5mass%添加した、Cr−30mass%NbC−0.3mass%Ni−0.5mass%Cを調製し、冷間プレス成形して得た4×8×25mmの圧粉体試験片を1350℃−1hで40kPaの窒素雰囲気焼結を行った。 Therefore, Cr 3 C 2 -30 mass% NbC-0.3 mass% Ni-0.5 mass% C added with 0.5 mass% of carbon for the purpose of promoting reduction was obtained by cold pressing 4 A green compact test piece of × 8 × 25 mm 3 was sintered at 1350 ° C.-1 h for 40 kPa in nitrogen atmosphere.

その結果、ほぼ相対密度100%の焼結体の作製に成功した。この焼結体について、1350℃−1h、100MPaのAr雰囲気でHIP処理し、光学顕微鏡で合金組織観察をした結果を図4に示す。アルカリ赤血塩溶液(村上試薬:非特許文献8)による食刻をしている。これは、後掲の表2および表3のNo.22の試料である。   As a result, a sintered body having a relative density of 100% was successfully produced. FIG. 4 shows the result of HIP treatment of this sintered body in an Ar atmosphere at 1350 ° C. for 1 h and 100 MPa, and observation of the alloy structure with an optical microscope. Etching with alkaline red blood salt solution (Murakami Reagent: Non-Patent Document 8). This is because No. 2 in Table 2 and Table 3 below. There are 22 samples.

濃い灰色の粒子はNbCである。淡い灰色のマトリックス部分は、段落0057および段落0068に示すように、Crである。 Dark gray particles are NbC. The light gray matrix portion is Cr 3 C 2 as shown in paragraphs 0057 and 0068.

Cを添加しているにもかかわらず図4において遊離炭素が認められないのは、添加したCが焼結の昇温過程でCOまたはCOとなって焼結体から脱離したことによると判断された。 The reason why no free carbon is observed in FIG. 4 in spite of the addition of C is that the added C is desorbed from the sintered body as CO 2 or CO during the heating process of sintering. It was judged.

このようにして、Cr−30mass%NbC−0.3mass%Niという新種のバインダーレスに近い素材を作製することができた。 In this way, a new kind of binderless material such as Cr 3 C 2 -30 mass% NbC-0.3 mass% Ni could be produced.

この焼結体について、1350℃−1h、100MPaのAr雰囲気によるHIP処理を行った後、RT〜500℃間の平均熱膨張係数を測定した結果、8.6MK−1であることが分かり、開発目標の熱膨張係数「8.3MK−1以上」を達成した。 This sintered body was subjected to HIP treatment in an Ar atmosphere at 1350 ° C. for 1 h and 100 MPa, and then measured for an average thermal expansion coefficient between RT and 500 ° C. As a result, it was found to be 8.6 MK −1. The target coefficient of thermal expansion “8.3 MK −1 or more” was achieved.

次に、通常の加工時間での超仕上げ加工をして表面粗さRaを測定した結果、6nmであったことから目標の「10nm以下」を達成した。   Next, as a result of measuring the surface roughness Ra by performing super-finishing with a normal processing time, the target “10 nm or less” was achieved because it was 6 nm.

なお、表面粗さ6nmRaという超仕上げ加工でなくてもよい用途もあるとともに金型使用時の温度変化許容値を大きくしたい(昇温降温速度を早くして効率化したい)用途もあるので、多少表面粗さを犠牲にし、その分、耐熱衝撃性を高める目的でNi添加量を多くした試料も作製した。   In addition, there are applications that do not require super-finishing with a surface roughness of 6 nmRa, and there are applications that want to increase the allowable temperature change when using a mold (want to increase the temperature-decreasing rate and increase the efficiency). A sample with an increased amount of Ni added was also produced for the purpose of increasing the thermal shock resistance by sacrificing the surface roughness.

ここで、耐熱衝撃性は、窒素雰囲気で試料を加熱した後、水中に投下して、その試験片を抗折力測定して、水中投下なしと比べて著しく抗折力が低下しない最高の温度を耐熱衝撃温度として評価した(50℃単位で測定)。   Here, the thermal shock resistance is the highest temperature at which the bending strength is not significantly reduced compared to when the specimen is heated in a nitrogen atmosphere and then dropped in water, and the specimen is subjected to the bending strength measurement. Was evaluated as a thermal shock temperature (measured in units of 50 ° C.).

図5は、1250℃−1h、40kPaの窒素雰囲気焼結を行い、1200℃−1h、100MPaのArでHIP処理をした、Cr−24〜28.5mass%NbC−5mass%〜20mass%Ni合金の、村上試薬食刻した表面の光学顕微鏡組織である。それぞれ後掲の表2および表3のNo.29〜32の試料である。 FIG. 5 shows Cr 3 C 2 -24 to 28.5 mass% NbC- 5 mass% to 20 mass%, which was sintered at 1250 ° C. for 1 h and in nitrogen atmosphere at 40 kPa, and was subjected to HIP treatment with Ar at 1200 ° C. for 1 h and 100 MPa. It is an optical microscope structure of the surface of Ni alloy etched with Murakami reagent. No. in Table 2 and Table 3 below, respectively. There are 29 to 32 samples.

図4と同じく、淡い灰色のマトリックス部分はCr相で、濃い灰色の粒子はNbC相である。また、白色の粒子はNi相である。5〜20mass%Ni合金のいずれの組織中にもNi相が認められた。 As in FIG. 4, the light gray matrix portion is the Cr 3 C 2 phase and the dark gray particles are the NbC phase. The white particles are Ni phase. Ni phase was observed in any structure of the 5-20 mass% Ni alloy.

後掲の表2と表3のNo.29、30のX線回折結果を図6に示す。Cr相、NbC相、Ni相が認められる。 Nos. In Table 2 and Table 3 below. The X-ray diffraction results of 29 and 30 are shown in FIG. Cr 3 C 2 phase, NbC phase, and Ni phase are observed.

10mass%NiまでNi相の分散状態がよく、5mass%Niおよび10mass%Ni添加試料の超仕上げ後の表面粗さRaは10nm以下と、幸いに実用範囲になった。10mass%Niより多く添加すると、超仕上げ後の表面粗さRaは10nmより大となった。Cr相、NbC相と比べて軟質なNi相が多くなりすぎるためである。 The Ni phase was well dispersed up to 10 mass% Ni, and the surface roughness Ra after superfinishing of the samples added with 5 mass% Ni and 10 mass% Ni was fortunately 10 nm or less, which was in the practical range. When more than 10 mass% Ni was added, the surface roughness Ra after superfinishing became larger than 10 nm. This is because there are too many soft Ni phases compared to the Cr 3 C 2 phase and the NbC phase.

0.3mass%Ni添加の試料の耐熱衝撃温度は200℃であったが、5mass%Ni添加により、耐熱衝撃温度は350℃に向上した。10mass%Niも同様で耐熱衝撃温度は350℃であった。5、10mass%Ni添加試料は、熱変化に強く使いやすいレンズ成形材料であると言える。   The thermal shock temperature of the sample with 0.3 mass% Ni added was 200 ° C., but the thermal shock temperature was improved to 350 ° C. with the addition of 5 mass% Ni. The same applies to 10 mass% Ni, and the thermal shock temperature was 350 ° C. It can be said that the 5, 10 mass% Ni-added sample is a lens molding material that is strong against heat change and easy to use.

なお、従来の耐酸化性サーメットと発明試料の破壊靱性値をIF法で測定して比較したが、特許文献4の耐酸化性サーメットCr−30mass%Ti(C,N)−6mass%Mo−2mass%VC−20mass%Ni合金の2.9MPam1/2に対して、Ni量が半分のCr−27mass%NbC−10mass%Ni合金(後掲の表2のNo.30)は3.3MPam1/2と優れていた。 In addition, although the fracture toughness value of the conventional oxidation-resistant cermet and the invention sample was measured and compared by the IF method, the oxidation-resistant cermet Cr 3 C 2 -30 mass% Ti (C, N) -6 mass% of Patent Document 4 was compared. Cr 3 C 2 -27 mass% NbC-10 mass% Ni alloy (No. 30 in Table 2 below) with half the amount of Ni with respect to 2.9 MPam 1/2 of Mo-2 mass% VC-20 mass% Ni alloy Was as excellent as 3.3 MPam 1/2 .

Ni添加量が少ない場合について、Ni量、NbC量およびC添加量の諸特性に対する影響について整理すると次の様になる。Ni量は0.3mass%以上10mass%以下が最適であった。10mass%より多いと、Niの偏析を生じやすくなって超仕上げした場合の表面粗さRaが10nmより大となりやすくなり実用的でなくなる。 When the amount of added Ni is small, the effects of the amount of Ni, the amount of NbC, and the amount of added C on various characteristics are summarized as follows. The optimum amount of Ni was 0.3 mass% or more and 10 mass% or less. If the amount is more than 10 mass%, the segregation of Ni is likely to occur, and the surface roughness Ra when superfinished tends to be larger than 10 nm, which is not practical.

NbCは、20mass%NbC未満では焼結性が劣化し、緻密体が得られなくなる。また40mass%NbCより多くなると熱膨張係数が8.3MK−1より小となり、実用的でなくなる。 If NbC is less than 20 mass% NbC, the sinterability deteriorates and a dense body cannot be obtained. On the other hand, if it exceeds 40 mass% NbC, the thermal expansion coefficient becomes smaller than 8.3 MK −1 , which is not practical.

C添加量は0mass%〜0.6mass%がよい。0.6mass%より多いと、遊離炭素を生じて、鏡面性が劣化する。   The addition amount of C is preferably 0 mass% to 0.6 mass%. When it is more than 0.6 mass%, free carbon is generated and the specularity is deteriorated.

Ni添加量が多い場合については、C添加量は無添加でよい。この理由は、Niが多いと焼結時の液相が多いため、焼結性が元々よいことと、CrがCrとCに分解する可能性があり、その結果Cが供給されることが考えられた。段落0027で述べたように、CrがCrとCに分解することは古くから知られている(非特許文献6)。 In the case where the Ni addition amount is large, the C addition amount may not be added. The reason for this is that if Ni is large, the liquid phase during sintering is large, so that the sinterability is originally good, and Cr 3 C 2 may decompose into Cr 7 C 3 and C. It was considered to be supplied. As described in paragraph 0027, it has long been known that Cr 3 C 2 decomposes into Cr 7 C 3 and C (Non-Patent Document 6).

ここで、組織ではCr相とNi相が同様に観察されるため識別が困難であり、X線回折ではCrとCrのピークが重なりやはり識別が困難であった。よって、さらにCrがCrとCに分解する量が多くなるために、Cが供給されるという本発明者らの予想を裏付けるCrを、組織およびX線回折では確認できていない。 Here, the tissue is difficult to distinguish because Cr 7 C 3 phase and Ni phase are observed in the same manner, the X-ray diffraction it was difficult also identify overlapping peaks of Cr 3 C 2 and Cr 7 C 3 . Therefore, since the amount of Cr 3 C 2 further decomposed into Cr 7 C 3 and C increases, Cr 7 C 3 supporting the inventors' expectation that C will be supplied is determined in the structure and X-ray diffraction. It has not been confirmed.

そこで、後掲の表2の発明試料No.29の組成(5mass%Ni)に0.5mass%Cを添加して、1250℃−1hの焼結をした結果、遊離炭素(free carbon、後掲の表3ではf.c.と表示)を生じることを確かめた。すなわち、Ni少量添加試料と比較して、遊離炭素が合金中に発生しやすいことを確かめた。   Therefore, the invention sample No. As a result of adding 0.5 mass% C to 29 compositions (5 mass% Ni) and sintering at 1250 ° C. for 1 h, free carbon (free carbon, shown as fc in Table 3 below) is obtained. It was confirmed that it occurred. That is, it was confirmed that free carbon is likely to be generated in the alloy as compared with the sample added with a small amount of Ni.

0.3mass%Niの試料では、C添加は0.6mass%まで遊離炭素が発生しないので、5mass%Niではこれよりも0.1mass%少ない。これは、CrがCr、CrCおよびCに分解するのは、0.1mass%未満であることを示す。 In the sample of 0.3 mass% Ni, the addition of C does not generate free carbon up to 0.6 mass%, and therefore 5 mass% Ni is 0.1 mass% less than this. This indicates that it is less than 0.1 mass% that Cr 3 C 2 decomposes into Cr 7 C 3 , Cr 2 C and C.

したがって、Cr炭化物相はほぼ全てCrであるという傍証を得た。10mass%Niの合金でも同様であった。5、10mass%Niの試料でC添加しなくてよいのは、主として焼結性のよさにある。 Therefore, the evidence that the Cr carbide phase is almost all Cr 3 C 2 was obtained. The same was true for the 10 mass% Ni alloy. The reason why it is not necessary to add C in the samples of 5, 10 mass% Ni is mainly due to good sinterability.

なお、No.19、20、23、26は遊離炭素を生じているので超仕上げ加工後のRaが大きかった。後掲の表2と表3の試料No.31、32はNiの大きな偏析を生じるため、超仕上げ加工後のRaが大きかった。   In addition, No. 19, 20, 23, and 26 produced free carbon, so Ra after superfinishing was large. Sample No. in Tables 2 and 3 below. Since 31 and 32 cause large segregation of Ni, Ra after superfinishing was large.

本発明のバインダーレスに近い素材は、熱膨張係数がカルコゲナイドレンズ素材に近く、鏡面加工性もよく、そのカルコゲナイドレンズのモールド成形に適すると共に、その他の、カルコゲナイドレンズ素材に近い特性のレンズ素材である低Tgガラスについても有用である。   The material close to the binderless of the present invention is a lens material having a thermal expansion coefficient close to that of the chalcogenide lens material, good mirror finish, suitable for molding the chalcogenide lens, and other characteristics close to those of the chalcogenide lens material. It is also useful for low Tg glass.

非特許文献4による、NbC−Crの擬二元系状態図である。文字を大きく改変して見やすくしている。It is a quasi binary system phase diagram of NbC-Cr according to Non-Patent Document 4. The characters have been greatly modified to make them easier to see. 800kPa窒雰囲気で1550℃−1hの焼結をしたCr−30mass%NbN合金(後掲の表2および表3のNo.6)について、X線回折を行った結果である。X線種はCuKαである。About 1550 ℃ -1h Cr 3 C 2 -30mass % NbN alloy sintering (No.6 in Table 2 and Table 3 given later) at 800kPa nitrogen atmosphere, that is the result of X-ray diffraction. The X-ray type is CuKα. 非特許文献7による、C−Cr−Wの三元系状態図である。文字を大きく改変して見やすくしている。It is a ternary phase diagram of C—Cr—W according to Non-Patent Document 7. The characters have been greatly modified to make them easier to see. 1350℃−1hで、40kPaの窒素雰囲気焼結後、1350℃−1h、100MPaのArでHIP処理したCr−30mass%NbC−0.3mass%Ni−0.5mass%C合金の、村上試薬食刻した表面の光学顕微鏡組織である。後掲の表2および表3のNo.22の試料である。淡い灰色のマトリック部分はCrである。濃い灰色の粒子はNbCである。At 1350 ° C.-1H, after nitrogen atmosphere sintering of 40 kPa, of 1350 ℃ -1h, Cr 3 C 2 -30mass% NbC-0.3mass% Ni-0.5mass% C alloy HIP treatment in Ar of 100 MPa, Murakami It is the optical microscope structure of the surface where the reagent was etched. No. in Table 2 and Table 3 below. There are 22 samples. The light gray matrix is Cr 3 C 2 . Dark gray particles are NbC. 1250℃−1hで40kPaの窒素雰囲気焼結後、1200℃−1h、100MPaのArでHIP処理したCr−24〜28.5mass%NbC−5〜20mass%Ni合金の、村上試薬食刻した表面の光学顕微鏡組織である。それぞれ後掲の表2および表3のNo.29〜32の試料である。図4と同じく、淡い灰色のマトリック部分はCrで、濃い灰色の粒子はNbCである。また、白色の粒子はNiである。Murakami's reagent etching of Cr 3 C 2 -24 to 28.5 mass% NbC-5 to 20 mass% Ni alloy that was HIP-treated with Ar at 100 ° C.-1 h and 100 MPa after sintering at 1250 ° C. for 1 kPa in nitrogen atmosphere This is an optical microscopic structure of the surface. No. in Table 2 and Table 3 below, respectively. There are 29 to 32 samples. As in FIG. 4, the light gray matrix portion is Cr 3 C 2 and the dark gray particles are NbC. The white particles are Ni. 1250℃−1hで40kPaの窒素雰囲気焼結後、1200℃−1h、100MPaのArでHIP処理したCr−27〜28.5mass%NbC−5〜10mass%Ni合金(後掲の表2および表3のNo.29、30)について、X線回折を行った結果である。X線種はCuKαである。Cr 3 C 2 -27 to 28.5 mass% NbC-5 to 10 mass% Ni alloy (after-mentioned Table 2) after sintering at 1250 ° C. for 1 h in a nitrogen atmosphere of 40 kPa and 1200 ° C. for 1 h and HIP treatment with 100 MPa for Ar And Nos. 29 and 30) in Table 3 are the results of X-ray diffraction. The X-ray type is CuKα.

原料として、アライドマテリアル社製の平均粒度1.4μmのCr(炭素量13.3mass%、窒素量0.18mass%、酸素量0.35mass%)、日本新金属社製の平均粒度5.5μmのNbN(炭素量1.0mass%、窒素量11.7mass%、酸素量0.48mass%)、日本新金属社製の平均粒度1.2μmのNbC(炭素量11.4mass%、窒素量0.02mass%、酸素量0.44mass%)、アライドマテリアル社製の平均粒度0.8μmのVC(炭素量17.2mass%、窒素量0.04mass%、酸素量0.3mass%)、日本新金属社製の平均粒度1.5μmのMo(酸素量0.3mass%)各粉末を用いた。 As raw materials, Cr 3 C 2 with an average particle size of 1.4 μm (carbon amount: 13.3 mass%, nitrogen amount: 0.18 mass%, oxygen amount: 0.35 mass%) manufactured by Allied Materials, average particle size of 5 manufactured by Nippon Shin Metals Co., Ltd. NbN (carbon amount: 1.0 mass%, nitrogen amount: 11.7 mass%, oxygen amount: 0.48 mass%), NbC with an average particle size of 1.2 μm (carbon amount: 11.4 mass%, nitrogen amount) 0.02 mass%, oxygen content 0.44 mass%), VC with an average particle size of 0.8 μm manufactured by Allied Materials (carbon content 17.2 mass%, nitrogen content 0.04 mass%, oxygen content 0.3 mass%), Nippon Shin Each powder of Mo (oxygen amount 0.3 mass%) having an average particle size of 1.5 μm manufactured by Metal Co., Ltd. was used.

Ni少量添加の試料ではインコ社製の平均粒度2.5μmのNi(酸素量0.15mass%)およびの各粉末を粉末:ボール重量比を1:8とし、エタノール中で120h粉砕することで加工硬化させたNiとして用いた。また、Niを5mass%以上添加する試料では、インコ社製の平均粒度2.5μmのNi(酸素量0.15mass%)をそのまま用いた。   Samples with a small amount of Ni added were processed by pulverization in ethanol for 120 hours with a powder: ball weight ratio of 1: 8 Ni (oxygen 0.15 mass%) and an average particle size of 2.5 μm manufactured by Inco. Used as cured Ni. Further, in a sample to which Ni was added in an amount of 5 mass% or more, Ni having an average particle size of 2.5 μm (oxygen amount 0.15 mass%) manufactured by Inco Corporation was used as it was.

上記の各種粉末を選択して、表2のNo.5〜32の組成に配合し、粉末:ボールを重量比で1:8としたボールミル粉砕をエタノール中で48h行い、乾燥後、面圧100MPaで冷間圧縮成形した。なお、No.16〜20、22、23、25〜27のCは、原料中の酸化物および製作過程での酸化によって生じた酸化物を焼結で還元するために添加している。   By selecting the above various powders, No. The composition was blended into a composition of 5 to 32, and ball milling was performed in ethanol for 48 hours with a powder: ball weight ratio of 1: 8, followed by drying and cold compression molding at a surface pressure of 100 MPa. In addition, No. C in 16-20, 22, 23, 25-27 is added to reduce oxides in the raw materials and oxides produced by oxidation in the manufacturing process by sintering.

表3には、比重、抗折力、硬さ、熱膨張係数、超仕上げ後の表面粗さRaおよび耐熱衝撃温度などの諸特性値を焼結温度と焼結雰囲気と共に示した。なお、No.1〜4は既存材料で表3の備考に示した特許文献からの引用である。これらの試料の焼結は表3に示した焼結温度と焼結雰囲気で1h焼結している。表中f.c.は遊離炭素である。   Table 3 shows characteristic values such as specific gravity, bending strength, hardness, thermal expansion coefficient, surface roughness Ra after superfinishing, and thermal shock temperature, together with the sintering temperature and the sintering atmosphere. In addition, No. Reference numerals 1 to 4 are quotations from the patent documents shown in the remarks of Table 3 for existing materials. These samples were sintered for 1 hour at the sintering temperature and sintering atmosphere shown in Table 3. F. c. Is free carbon.

諸特性は、1350℃焼結の試料は1350℃−1h、100MPaのAr雰囲気でHIP処理を行った後に測定した。1250℃焼結の試料は、1200℃−1h、100MPaのAr雰囲気でHIP処理を行った後に測定した。   Various characteristics were measured after a 1350 ° C. sintered sample was subjected to HIP treatment in an Ar atmosphere of 1350 ° C.-1 h and 100 MPa. A sample sintered at 1250 ° C. was measured after HIP treatment in an Ar atmosphere of 1200 ° C.-1 h and 100 MPa.

既存材料No.1およびNo.4の超仕上げ後のRaは、特許文献に無かったため、今回、本発明者らが測定した。表3の発明試料は、いずれも超仕上げ後の表面粗さRaが10nm以下で、熱膨張係数が8.3MK−1以上で、抗折力が800MPa以上であり目標を達成した。 Existing material No. 1 and no. Since Ra in No. 4 after superfinishing was not found in the patent literature, the present inventors measured this time. All of the inventive samples in Table 3 achieved the target with a surface roughness Ra after superfinishing of 10 nm or less, a thermal expansion coefficient of 8.3 MK −1 or more, and a bending strength of 800 MPa or more.

なお、Niを多く添加した試料No.28〜30の熱膨張係数は、Ni少量添加の場合より大となると推定したが、実際は同程度である。この原因はよく分らなかった。   Note that Sample No. to which a large amount of Ni was added was used. Although the thermal expansion coefficient of 28-30 was estimated to be larger than that in the case of adding a small amount of Ni, it is actually the same level. The cause of this was not well understood.

実施例1で得られた発明試料を用いて、中〜遠赤外線カメラ用カルコゲナイドガラスの金型成形加工を行った結果、容易にRaが10nm以下の超仕上げとすることができるとともに、それを用いて、高解像度のレンズの良好な成形を行えた。   Using the inventive sample obtained in Example 1 as a result of mold forming processing of a chalcogenide glass for a medium to far-infrared camera, Ra can be easily superfinished with 10 nm or less, and using it As a result, a high-resolution lens was successfully molded.

本発明サーメットは、中〜遠赤外線カメラ用カルコゲナイドガラスの金型成形を容易にし、高解像度のレンズを作りやすくして高解像度の中〜遠赤外線カメラの量産化に寄与し、自動車の安全運転を進展させる。また、太陽電池パネルのエレクトロ・ルミネッセンス検査(赤外線カメラで太陽電池パネルを撮影し、パネルの不具合を可視化する検査)をしやすくしてその性能向上に寄与し省エネに貢献する。   The cermet of the present invention facilitates the molding of chalcogenide glass for mid- to far-infrared cameras, facilitates the production of high-resolution lenses, contributes to the mass production of high-resolution mid- to far-infrared cameras, and ensures safe driving of automobiles. Make progress. In addition, it facilitates the electroluminescence inspection of solar cell panels (inspection of solar cell panels taken with an infrared camera and visualizes panel defects), contributing to improved performance and energy saving.

Claims (3)

NbCを20mass%以上40mass%以下、Niを0.3mass%以上10mass%以下、および不可避不純物を含み、残部がCrである、Cr−NbC−Ni組成の焼結硬質合金。 A sintered hard alloy having a Cr 3 C 2 —NbC—Ni composition, including NbC of 20 mass% or more and 40 mass% or less, Ni of 0.3 mass% or more and 10 mass% or less, and inevitable impurities, with the balance being Cr 3 C 2 . 抗折力が800MPa以上、かつ熱膨張係数が8.3MK−1以上9.0MK−1以下である、請求項1の焼結硬質合金。 The sintered hard alloy according to claim 1 , having a bending strength of 800 MPa or more and a thermal expansion coefficient of 8.3 MK -1 or more and 9.0 MK -1 or less. 請求項1または請求項2の硬質材料で構成される赤外線レンズ成形用金型。 An infrared lens molding die made of the hard material according to claim 1 .
JP2016098852A 2016-05-17 2016-05-17 Oxidation-resistant low-binder hard alloy with a large thermal expansion coefficient or lens mold made of this material Active JP6049978B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016098852A JP6049978B1 (en) 2016-05-17 2016-05-17 Oxidation-resistant low-binder hard alloy with a large thermal expansion coefficient or lens mold made of this material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016098852A JP6049978B1 (en) 2016-05-17 2016-05-17 Oxidation-resistant low-binder hard alloy with a large thermal expansion coefficient or lens mold made of this material

Publications (2)

Publication Number Publication Date
JP6049978B1 true JP6049978B1 (en) 2016-12-21
JP2017206403A JP2017206403A (en) 2017-11-24

Family

ID=57572484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016098852A Active JP6049978B1 (en) 2016-05-17 2016-05-17 Oxidation-resistant low-binder hard alloy with a large thermal expansion coefficient or lens mold made of this material

Country Status (1)

Country Link
JP (1) JP6049978B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7351582B1 (en) 2023-03-08 2023-09-27 冨士ダイス株式会社 Sintered alloy and mold

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7294887B2 (en) 2019-05-30 2023-06-20 矢崎エナジーシステム株式会社 Flat glass manufacturing method
JP7305264B2 (en) 2019-05-30 2023-07-10 矢崎エナジーシステム株式会社 Hollow glass manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4990612A (en) * 1972-12-29 1974-08-29
JPS59107970A (en) * 1982-12-09 1984-06-22 株式会社クボタ Heat resistant ceramic material
JPH01108166A (en) * 1987-10-20 1989-04-25 Kurasawa Opt Ind Co Ltd Chromium carbide ceramics
JPH02205294A (en) * 1989-02-03 1990-08-15 Kubota Ltd Overplaying alloy having excellent high-temperature tensile creep characteristic
JPH05849A (en) * 1991-06-21 1993-01-08 Denki Kagaku Kogyo Kk Ceramic composite body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4990612A (en) * 1972-12-29 1974-08-29
JPS59107970A (en) * 1982-12-09 1984-06-22 株式会社クボタ Heat resistant ceramic material
JPH01108166A (en) * 1987-10-20 1989-04-25 Kurasawa Opt Ind Co Ltd Chromium carbide ceramics
JPH02205294A (en) * 1989-02-03 1990-08-15 Kubota Ltd Overplaying alloy having excellent high-temperature tensile creep characteristic
JPH05849A (en) * 1991-06-21 1993-01-08 Denki Kagaku Kogyo Kk Ceramic composite body

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6016022584; P. Rutkowski: 'Sintering of NbC0.95-CryCz composite materials' International Journal of Refractory Metals and Hard Materials Vol.41, 2013, p.614-621 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7351582B1 (en) 2023-03-08 2023-09-27 冨士ダイス株式会社 Sintered alloy and mold

Also Published As

Publication number Publication date
JP2017206403A (en) 2017-11-24

Similar Documents

Publication Publication Date Title
US20110236713A1 (en) Functionally graded material shape and method for producing such a shape
JP6049978B1 (en) Oxidation-resistant low-binder hard alloy with a large thermal expansion coefficient or lens mold made of this material
CN110372386B (en) Method for preparing compact tantalum carbide ceramic through low-temperature liquid-phase hot-pressing sintering
CN113234950B (en) Preparation method of Ti (C, N) -based metal ceramic
JP2023546744A (en) WC cemented carbide and its uses
US8173561B2 (en) Inert high hardness material for tool lens production in imaging applications
Jones et al. Optical and mechanical properties of α/β composite sialons
US7163650B2 (en) Process for producing ceramic bearing components
NL2028306B1 (en) Method for preparing binderless wc-y2o3 cemented carbide by pressure-assisted cold and hot sintering
CN105803286A (en) Ceramic compound tool material and preparation method
CN113201676B (en) Preparation method of high-temperature oxidation-resistant low-bonding-phase metal ceramic
JP5134217B2 (en) Sintered hard material and mold using the same
JPWO2005037731A1 (en) Hard material with high temperature resistance
JP5063129B2 (en) cermet
KR102012442B1 (en) The noble process for preparation of sintered oxide having high toughness
JP2012087045A (en) Method for producing binderless alloy
JP3550420B2 (en) Wear-resistant silicon nitride sintered body, method for producing the same, and cutting tool
CN109763054A (en) A kind of multi-element mixed Cutanit and its preparation method and application
JP7351582B1 (en) Sintered alloy and mold
JP4971564B2 (en) Sintered alloy with excellent high-temperature properties and hot forming mold using the same
JP2011025388A (en) Cermet sintered body and cutting tool
JP2009209022A (en) WC-SiC-Mo2C-BASED SINTERED BODY AND ITS MANUFACTURING METHOD
KR970008043B1 (en) Method of guide roller
JP4925202B2 (en) Composition-gradient molybdenum-niobium alloy powder
JPH07277843A (en) High toughness ceramic composite material, ceramic composite powder and their production

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161123

R150 Certificate of patent or registration of utility model

Ref document number: 6049978

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250