JP6048886B2 - Local plasma processing method and apparatus using pulse width modulation power control - Google Patents

Local plasma processing method and apparatus using pulse width modulation power control Download PDF

Info

Publication number
JP6048886B2
JP6048886B2 JP2013052219A JP2013052219A JP6048886B2 JP 6048886 B2 JP6048886 B2 JP 6048886B2 JP 2013052219 A JP2013052219 A JP 2013052219A JP 2013052219 A JP2013052219 A JP 2013052219A JP 6048886 B2 JP6048886 B2 JP 6048886B2
Authority
JP
Japan
Prior art keywords
pulse width
width modulation
processing
time
power control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013052219A
Other languages
Japanese (ja)
Other versions
JP2014177673A (en
Inventor
和也 山村
和也 山村
泰久 佐野
泰久 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Original Assignee
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC filed Critical Osaka University NUC
Priority to JP2013052219A priority Critical patent/JP6048886B2/en
Publication of JP2014177673A publication Critical patent/JP2014177673A/en
Application granted granted Critical
Publication of JP6048886B2 publication Critical patent/JP6048886B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Description

本発明は、パルス幅変調電力制御を用いた局所プラズマ処理方法及びその装置に係わり、更に詳しくは被処理物表面に対する局所プラズマの印加電力をパルス幅変調によって制御してプラズマ処理能率を変化させる局所プラズマ処理方法及びその装置に関するものである。   The present invention relates to a local plasma processing method and apparatus using pulse width modulation power control. More specifically, the present invention relates to a local plasma processing efficiency that is changed by controlling the power applied to the surface of a workpiece by pulse width modulation. The present invention relates to a plasma processing method and an apparatus therefor.

大気開放型Plasma Chemical Vaporization Machining(PCVM)法は、大気圧雰囲気中で局所的に発生させたプラズマを用いて加工を行う超精密形状創成法である。つまり、PCVMは、局所プラズマを被加工物表面に対して相対的に走査して被加工物表面を局所的に加工し、加工量を局所的に制御して任意曲面を創成するものであり、非接触かつ化学反応を利用した加工法であるため、被加工物表面の原子配列を乱すことなくダメージフリーな加工が可能である。   The open air Plasma Chemical Vaporization Machining (PCVM) method is an ultra-precise shape creation method in which processing is performed using plasma generated locally in an atmospheric pressure atmosphere. That is, the PCVM scans the local plasma relative to the workpiece surface to locally process the workpiece surface, locally controls the processing amount, and creates an arbitrary curved surface. Since it is a non-contact and chemical processing method, damage-free processing is possible without disturbing the atomic arrangement on the workpiece surface.

従来のPCVMでは、不活性ガスと反応ガスの雰囲気中で電極に高周波電力を投入して、安定な局所プラズマを発生させ、被加工物表面に対するプラズマの滞在時間と単位加工痕形状から加工量を決定していた。例えば、特許文献1に記載されたPCVMを用いた数値制御加工方法では、加工電極を固定し、被加工物を載せたXYステージを駆動して、加工量をXYステージの走査速度をパラメータとし、プラズマ滞在時間を数値制御することで目的形状を高精度に創成するものであった。この場合に、XYステージの加速、減速が急激にならないように走査速度を制御する工夫をしていた。また、PCVM装置、特に加工電極への電力投入系については、特許文献2に記載されている。   In the conventional PCVM, high-frequency power is applied to the electrode in an atmosphere of inert gas and reactive gas to generate stable local plasma, and the amount of processing is determined based on the plasma residence time on the workpiece surface and the unit processing trace shape. It was decided. For example, in the numerically controlled machining method using PCVM described in Patent Document 1, the machining electrode is fixed, the XY stage on which the workpiece is mounted is driven, the machining amount is set with the scanning speed of the XY stage as a parameter, The target shape was created with high accuracy by numerically controlling the plasma residence time. In this case, the scanning speed is controlled so that the acceleration and deceleration of the XY stage do not become abrupt. A PCVM device, particularly a power input system for a machining electrode, is described in Patent Document 2.

このように、従来のPCVMにおいて任意の形状を創成するには、プラズマに対する被加工物ステージの走査速度を制御することにより、任意座標における加工量を制御していた。また、反応ガスを適宜選択することにより、同様な局所プラズマ処理装置で、被処理物表面に成膜すること(Plasma Chemical Vaporization Deposition:PCVD)、あるいは被処理物表面を改質することが可能である。これらの処理の場合にも、局所的なプラズマ処理能率を制御するために、被処理物ステージの走査速度を制御することになる。   Thus, in order to create an arbitrary shape in the conventional PCVM, the processing amount at an arbitrary coordinate is controlled by controlling the scanning speed of the workpiece stage with respect to the plasma. In addition, by appropriately selecting the reaction gas, it is possible to form a film on the surface of the object to be processed (Plasma Chemical Vaporization Deposition: PCVD) or to modify the surface of the object to be processed with the same local plasma processing apparatus. is there. Also in these processes, the scanning speed of the workpiece stage is controlled in order to control the local plasma processing efficiency.

特許第2962583号公報Japanese Patent No. 2962583 特許第2816365号公報Japanese Patent No. 2816365

しかしながら、加工量が短区間で急激に変化する場合には、ステージの走査速度の変化も大きくなるため、ステージの運動性能によっては設定値に追従できなくなって加工誤差が生じてしまうことが問題となっていた。そのため、加工量を多く設定し、加工前の表面凹凸の影響を小さくする必要があるが、その分だけ加工時間が長くなるといった課題があった。また、加工速度(加工能率)を下げて、ステージの走査速度を遅くすれば、加工量が少なくても、比較的高精度に形状を創成できるが、やはり加工時間が長くなるという課題は残る。   However, when the machining amount changes suddenly in a short section, the change in the scanning speed of the stage also increases, and depending on the movement performance of the stage, it becomes impossible to follow the set value, resulting in a machining error. It was. Therefore, it is necessary to set a large amount of processing and reduce the influence of surface irregularities before processing, but there is a problem that the processing time becomes longer by that amount. Further, if the processing speed (processing efficiency) is lowered and the scanning speed of the stage is decreased, the shape can be created with relatively high accuracy even if the processing amount is small, but the problem that the processing time becomes long remains.

そこで、本発明が前述の状況に鑑み、解決しようとするところは、安定に発生させた局所プラズマで被処理物表面を走査して加工、成膜若しくは改質などの処理を行うために、被処理物表面における局所的なプラズマ処理能率を高速に制御して、被処理物表面を数値制御して効率良く高精度に処理することが可能なパルス幅変調電力制御を用いた局所プラズマ処理方法及びその装置を提供する点にある。   Therefore, in view of the above-described situation, the present invention intends to solve the problem in order to perform processing such as processing, film formation, or modification by scanning the surface of the processing object with the stably generated local plasma. Local plasma processing method using pulse width modulation power control capable of controlling the local plasma processing efficiency on the surface of the processing object at high speed, and numerically controlling the surface of the object to be processed efficiently and accurately, and The point is to provide the device.

本発明は、前述の課題解決のために、局所的に発生させた高周波プラズマを被処理物表面に対して等速度で走査するとともに、該被処理物表面における局所的なプラズマ処理能率を、予め設定した前記被処理物表面の最小処理領域毎の位置情報とその処理量とからなるNC処理データに基づき、高周波プラズマのON時間(t1)とOFF時間(t2)の比率を変化させるパルス幅変調(Pulse Width Modulation:PWM)電力制御によって変化させ、該被処理物表面の所定領域を数値制御して処理することを特徴とするパルス幅変調電力制御を用いた局所プラズマ処理方法を構成した(請求項1)。   In order to solve the above-mentioned problems, the present invention scans a locally generated high frequency plasma at a constant speed with respect to the surface of the object to be processed, and determines the local plasma processing efficiency on the surface of the object to be processed in advance. Pulse width modulation that changes the ratio of the ON time (t1) and the OFF time (t2) of the high-frequency plasma based on the NC processing data consisting of the set position information for each minimum processing area of the workpiece surface and its processing amount (Pulse Width Modulation: PWM) A local plasma processing method using pulse width modulation power control characterized in that a predetermined region on the surface of the object to be processed is numerically controlled and processed by power control. Item 1).

ここで、本発明の方法において、前記高周波プラズマは、大気開放下のプロセスガス雰囲気中で、電極に10MHz〜2.45GHzの一定の高周波電力を印加して発生させてなることが好ましい(請求項2)。   Here, in the method of the present invention, the high-frequency plasma is preferably generated by applying a constant high-frequency power of 10 MHz to 2.45 GHz to the electrode in a process gas atmosphere that is open to the atmosphere. 2).

また、本発明の方法において、前記パルス幅変調電力制御に用いるON時間(t1)とOFF時間(t2)の繰り返し周期(t1+t2)は、処理量を数値制御する最小処理領域を局所プラズマが通過する時間よりも短く設定する必要がある(請求項3)。   In the method of the present invention, the local plasma passes through the minimum processing region in which the processing amount is numerically controlled during the repetition period (t1 + t2) of the ON time (t1) and the OFF time (t2) used for the pulse width modulation power control. It is necessary to set it shorter than the time (claim 3).

更に、本発明の方法において、前記パルス幅変調電力制御に用いるON時間(t1)とOFF時間(t2)の繰り返し周波数は、1kHz〜100kHzに設定することがより好ましい(請求項4)。   Furthermore, in the method of the present invention, the repetition frequency of the ON time (t1) and the OFF time (t2) used for the pulse width modulation power control is more preferably set to 1 kHz to 100 kHz (Claim 4).

そして、本発明の方法において、高周波プラズマの投入電力を一定とし、デューティ比[t1/(t1+t2)]を変化させて高周波プラズマの平均電力を変化させた際のデューティ比に対するプラズマ処理能率の検量線を予め取得し、前記被処理物表面の最小処理領域の処理量に応じて、前記検量線に基づいてデューティ比を数値制御してなるのである(請求項5)。   In the method of the present invention, the calibration curve of the plasma processing efficiency with respect to the duty ratio when the input power of the high-frequency plasma is constant and the average power of the high-frequency plasma is changed by changing the duty ratio [t1 / (t1 + t2)]. Is obtained in advance, and the duty ratio is numerically controlled based on the calibration curve in accordance with the processing amount of the minimum processing region on the surface of the workpiece (Claim 5).

また、本発明は、大気開放下のプロセスガス雰囲気中で局所的に高周波プラズマを発生させる電極と、前記電極との間に一定のギャップを維持して被処理物を保持し、前記電極に対して等速度で走査する移動ステージと、前記電極に10MHz〜2.45GHzの一定の高周波電力を供給する高周波電源と、前記高周波電源のON時間(t1)とOFF時間(t2)の比率を変化させるパルス幅変調(PWM)電力制御手段と、前記移動ステージの位置情報を取得し、前記パルス幅変調電力制御手段に位置情報を入力するエンコーダと、を備え、予め設定した前記被処理物表面の最小処理領域毎の位置情報とその処理量とからなるNC処理データに基づき、パルス幅変調電力制御手段によって前記高周波電源のON時間(t1)とOFF時間(t2)の比率を変化させて局所的なプラズマ処理能率を変化させ、該被処理物表面の所定領域を数値制御して処理することを特徴とするパルス幅変調電力制御を用いた局所プラズマ処理装置を構成した(請求項)。 In addition, the present invention maintains a constant gap between an electrode that generates high-frequency plasma locally in a process gas atmosphere that is open to the atmosphere and the electrode, and holds an object to be processed. The ratio of the ON time (t1) and the OFF time (t2) of the high-frequency power source is changed. A pulse width modulation (PWM) power control means; and an encoder that acquires position information of the moving stage and inputs the position information to the pulse width modulation power control means, and is a preset minimum surface of the workpiece On-time (t1) and off-time of the high-frequency power source by the pulse width modulation power control means based on NC processing data comprising position information for each processing region and its processing amount A local plasma processing apparatus using pulse width modulation power control, wherein the local plasma processing efficiency is changed by changing the ratio of t2), and a predetermined region on the surface of the object to be processed is numerically controlled. (Claim 6 ).

同様に、本発明の装置において、前記パルス幅変調電力制御手段に用いるON時間(t1)とOFF時間(t2)の繰り返し周期(t1+t2)は、処理量を数値制御する最小処理領域を局所プラズマが通過する時間よりも短く設定する必要がある(請求項)。 Similarly, in the apparatus of the present invention, the repetition period (t1 + t2) of the ON time (t1) and the OFF time (t2) used for the pulse width modulation power control means is such that the local plasma has a minimum processing region for numerically controlling the processing amount. It is necessary to set the time shorter than the passing time (Claim 7 ).

また、本発明の装置において、前記パルス幅変調電力制御手段に用いるON時間(t1)とOFF時間(t2)の繰り返し周波数は、1kHz〜100kHzに設定することがより好ましい(請求項)。 In the apparatus of the present invention, the repetition frequency of the ON time (t1) and the OFF time (t2) used for the pulse width modulation power control means is more preferably set to 1 kHz to 100 kHz (Claim 8 ).

そして、本発明の装置において、前記高周波電源による電極への投入電力を一定とし、前記パルス幅変調電力制御手段におけるデューティ比[t1/(t1+t2)]を変化させて高周波プラズマの平均電力を変化させた際のデューティ比に対するプラズマ処理能率の検量線を予め取得し、前記被処理物表面の最小処理領域の処理量に応じて、前記検量線に基づいてデューティ比を数値制御してなるのである(請求項)。 In the apparatus of the present invention, the electric power applied to the electrode by the high frequency power source is made constant, and the duty ratio [t1 / (t1 + t2)] in the pulse width modulation power control means is changed to change the average power of the high frequency plasma. A calibration curve of the plasma processing efficiency with respect to the duty ratio is acquired in advance, and the duty ratio is numerically controlled based on the calibration curve in accordance with the processing amount of the minimum processing region on the surface of the workpiece ( Claim 9 ).

本発明のパルス幅変調電力制御を用いた局所プラズマ処理方法及びその装置によれば、被処理物の移動ステージの走査速度は一定の下、局所プラズマを発生させる高周波電力をパルス幅変調(Pulse Width Modulation:PWM)制御により増減させてプラズマ処理能率(加工速度)の制御を行うので、電気的に行われるPWM制御はステージの速度制御と比較して応答速度が格段に速く、従来の応答遅れによる加工誤差を無くすることができ、また走査における急激な加減速も不要となるため機械的な負荷が小さくなり、駆動機構のコストを低減できる。本発明は、被加工物表面を数値制御加工して任意の形状を創成するのに最も威力を発揮するが、成膜や改質においても駆動機構に対する要求度が緩和されるので効果的である。   According to the local plasma processing method and apparatus using pulse width modulation power control of the present invention, the high frequency power for generating local plasma is pulse width modulated (Pulse Width) while the scanning speed of the moving stage of the workpiece is constant. Since the control of plasma processing efficiency (processing speed) is controlled by increasing / decreasing by Modulation (PWM) control, the response speed of the PWM control performed electrically is much faster than the speed control of the stage, which is due to the conventional response delay. Processing errors can be eliminated, and rapid acceleration / deceleration in scanning is not required, so the mechanical load is reduced and the cost of the drive mechanism can be reduced. The present invention is most effective for creating an arbitrary shape by numerically controlling the surface of a workpiece, but it is effective because the degree of demand for a drive mechanism is eased even in film formation and modification. .

本発明の加工装置の簡略説明図である。It is simplified explanatory drawing of the processing apparatus of this invention. 局所プラズマで被加工物表面を走査する例を示す説明用平面図である。It is an explanatory top view which shows the example which scans the surface of a workpiece by local plasma. 加工電極の簡略断面図である。It is a simplified sectional view of a processing electrode. 走査速度を変化させて局所プラズマの滞在時間を制御する加工方法において、(a)は加工前表面と二つの加工量の関係を示すグラフ、(b)は二つの加工量に対する走査速度の関係を示すグラフである。In the processing method for controlling the residence time of the local plasma by changing the scanning speed, (a) is a graph showing the relationship between the surface before processing and the two processing amounts, and (b) shows the relationship of the scanning speed with respect to the two processing amounts. It is a graph to show. パルス幅変調電力制御の説明図であり、(a)は高周波電源の出力をPWM制御するためのパルス信号波形を示すグラフ、(b)はPWM制御された高周波電源の出力波形を示すグラフである。It is explanatory drawing of pulse width modulation electric power control, (a) is a graph which shows the pulse signal waveform for carrying out PWM control of the output of a high frequency power supply, (b) is a graph which shows the output waveform of the high frequency power supply by which PWM control was carried out. . PWM制御及びAM制御と加工速度との関係(検量線)を示すグラフである。It is a graph which shows the relationship (calibration curve) of PWM control and AM control, and a processing speed. (a)はPWM制御するためのパルス信号の周波数が1kHzの場合のデューティ比と加工速度の関係のグラフ、(b)はPWM制御するためのパルス信号の周波数が10kHzの場合のデューティ比と加工速度の関係のグラフ、(c)はPWM制御するためのパルス信号の周波数が100kHzの場合のデューティ比と加工速度の関係のグラフである。(A) is a graph of the relationship between the duty ratio and processing speed when the frequency of the pulse signal for PWM control is 1 kHz, and (b) is the duty ratio and processing when the frequency of the pulse signal for PWM control is 10 kHz. (C) is a graph of the relationship between the duty ratio and the machining speed when the frequency of the pulse signal for PWM control is 100 kHz.

次に、添付図面に示した実施形態に基づき、本発明を更に詳細に説明する。本実施形態では、本発明に係るパルス幅変調電力制御を用いた局所プラズマ処理装置のなかで、特に加工装置を説明するが、成膜装置や改質装置も原理的には同じである。図1は本発明の加工装置の概念図であり、図中符号1は加工電極、2は被加工物、3は移動ステージ、4は高周波電源、5はマッチングユニット、6はパルス幅変調電力制御インターフェイス、7はエンコーダ、Pは局所プラズマをそれぞれ示している。   Next, the present invention will be described in more detail based on the embodiments shown in the accompanying drawings. In the present embodiment, a processing apparatus will be described in particular among local plasma processing apparatuses using pulse width modulation power control according to the present invention, but a film forming apparatus and a reforming apparatus are also the same in principle. FIG. 1 is a conceptual diagram of a processing apparatus according to the present invention, in which reference numeral 1 is a processing electrode, 2 is a workpiece, 3 is a moving stage, 4 is a high-frequency power source, 5 is a matching unit, and 6 is pulse width modulation power control. An interface, 7 is an encoder, and P is a local plasma.

本発明の加工装置は、図1及び図2に示すように、大気開放下のプロセスガス雰囲気中で局所的に高周波プラズマPを発生させる加工電極1と、前記加工電極1との間に一定のギャップGを維持して被加工物2を保持し、前記加工電極1に対して等速度で走査する移動ステージ3と、前記加工電極1に10MHz〜2.45GHzの一定の高周波電力を供給する高周波電源4と、前記高周波電源4と負荷とのインピーダンスを整合させるためのマッチングユニット5と、前記高周波電源4のON時間(t1)とOFF時間(t2)の比率を変化させるパルス幅変調(PWM)電力制御インターフェイス6と、前記移動ステージ3の位置情報を取得し、前記パルス幅変調電力制御インターフェイス6に位置情報を入力するエンコーダ7とを備えている。そして、予め設定した前記被加工物2表面の最小処理領域毎の位置情報とその処理量とからなるNC処理データに基づき、パルス幅変調電力制御インターフェイス6によって前記高周波電源4のON時間(t1)とOFF時間(t2)の比率を変化させて局所的なプラズマ加工能率(加工速度)を変化させ、該被加工物2表面の所定領域を数値制御して加工するのである。   As shown in FIGS. 1 and 2, the machining apparatus of the present invention has a constant gap between a machining electrode 1 that locally generates a high-frequency plasma P in a process gas atmosphere that is open to the atmosphere, and the machining electrode 1. A moving stage 3 that holds the workpiece 2 while maintaining the gap G and scans the machining electrode 1 at a constant speed, and a high frequency that supplies the machining electrode 1 with a constant high frequency power of 10 MHz to 2.45 GHz. The power supply 4, the matching unit 5 for matching the impedance of the high frequency power supply 4 and the load, and pulse width modulation (PWM) for changing the ratio of the ON time (t1) and the OFF time (t2) of the high frequency power supply 4. A power control interface 6 and an encoder 7 that acquires position information of the moving stage 3 and inputs the position information to the pulse width modulation power control interface 6 are provided. There. Then, based on NC processing data including preset position information for each minimum processing area of the surface of the workpiece 2 and its processing amount, the pulse width modulation power control interface 6 turns on the high frequency power supply 4 (t1). Then, the local plasma processing efficiency (processing speed) is changed by changing the ratio of the OFF time (t2), and the predetermined region on the surface of the workpiece 2 is numerically controlled for processing.

図2は、局所プラズマPを被加工物2の表面に沿ってジグザグに走査する例を示し、走査方向が変化する部分を除き、等速度で相対的に走査する。本実施形態では、前記加工電極1は固定し、XY方向の移動ステージ3で被加工物2を局所プラズマPに対して移動させるようにしている。走査方向は図中Sで表している。   FIG. 2 shows an example in which the local plasma P is scanned in a zigzag manner along the surface of the workpiece 2, and the relative plasma is scanned at a constant speed except for a portion where the scanning direction changes. In the present embodiment, the processing electrode 1 is fixed, and the workpiece 2 is moved with respect to the local plasma P by the moving stage 3 in the XY directions. The scanning direction is indicated by S in the figure.

前記加工電極1は、図3に示すように、中心の電極棒8の外周に絶縁体からなる外筒9を同心配置し、前記電極棒8と外筒9の間から先端へプロセスガスを噴出させながら、前記電極棒8に高周波電力を印加して局所的に高周波プラズマPを発生させるのである。ここで、プロセスガスとして、例えばHeやArなどの不活性ガスとCFやOなどの反応ガスの混合ガスを用いる。加工は、プラズマ中で反応ガスから生成された反応種(主に中性ラジカル)と被加工物2の表面原子との化学的な反応によって発生した揮発性化合物を、被加工物2の表面から除去することで進行する。被加工物2の材質によって最適なガスは異なる。このプロセスガスを変えるだけで、成膜や改質を行うことができる。 As shown in FIG. 3, the processing electrode 1 has an outer cylinder 9 made of an insulating material concentrically arranged on the outer periphery of a central electrode bar 8 and jets process gas from between the electrode bar 8 and the outer cylinder 9 to the tip. The high frequency plasma P is locally generated by applying high frequency power to the electrode rod 8. Here, for example, a mixed gas of an inert gas such as He or Ar and a reactive gas such as CF 4 or O 2 is used as the process gas. In the processing, volatile compounds generated by a chemical reaction between reactive species (mainly neutral radicals) generated from the reaction gas in the plasma and surface atoms of the workpiece 2 are removed from the surface of the workpiece 2. It progresses by removing. The optimum gas varies depending on the material of the workpiece 2. By changing this process gas, film formation and modification can be performed.

先ず、従来の局所プラズマPの滞在時間を制御する数値制御加工方法についてシミュレーションした結果を図4に基づいて説明する。図4(a)の最上段のギザギザの実線は、加工前の表面形状を示し、中段の実線は取りしろ28nmの場合の加工後の目標表面形状(厚さ200nm)、下段の点線は取りしろ178nmの場合の加工後の目標表面形状(厚さ50nm)を示している。横軸は加工面の位置を示している。図4(b)は、(a)のような表面形状を持った試料を取りしろ28nm及び178nmとした場合の速度分布を直径3mmの加工電極から得られる単位加工痕からシミュレーションしたものである。取りしろが小さい場合、加工時間は短いが図4(b)の実線で示すように速度変化が激しいためステージの走査速度を制御するモータの性能上、急激な速度変化に追従できず加工精度に誤差が生じる要因となりうる。一方、取りしろが多い場合は、加工時間がかかってしまうが、図4(b)の点線で示すように速度変化は緩やかである。   First, a simulation result of a numerically controlled machining method for controlling the stay time of the local plasma P will be described with reference to FIG. The solid line of the uppermost jagged line in FIG. 4 (a) shows the surface shape before processing, the solid line in the middle level is 28 nm, the target surface shape after processing (thickness 200 nm), and the lower dotted line is the size. The target surface shape (thickness 50 nm) after processing in the case of 178 nm is shown. The horizontal axis indicates the position of the processed surface. FIG. 4B is a simulation of the velocity distribution when a sample having a surface shape as shown in FIG. 4A is taken as 28 nm and 178 nm from unit machining traces obtained from a machining electrode having a diameter of 3 mm. If the margin is small, the machining time is short, but the speed change is large as shown by the solid line in FIG. 4 (b). An error may be a factor. On the other hand, when there are many margins, processing time is required, but the speed change is slow as shown by the dotted line in FIG.

それに対して本発明は、走査速度一定の下、電極-基板間に投入する平均電力を制御し加工量分布制御を行うことで目的形状創成の高精度化を目指すのである。平均電力を制御する投入電力制御の方法として振幅変調(Amplitude Modulation:AM)制御及びパルス幅変調(Pulse Width Modulation:PWM)制御が挙げられる。PWM制御は投入電力一定の下、パルス波を高周波電源に印加することでON/OFFを外部から制御し、平均電力を制御する方法である。そのための手段が、PWM制御インターフェイス6である。尚、AM制御は、周波数一定で振幅を変化させる通常の電力制御の方法である。   On the other hand, the present invention aims to increase the accuracy of target shape creation by controlling the average power input between the electrode and the substrate while controlling the processing amount distribution while keeping the scanning speed constant. Examples of methods for controlling the input power for controlling the average power include amplitude modulation (AM) control and pulse width modulation (PWM) control. The PWM control is a method of controlling the average power by controlling ON / OFF from the outside by applying a pulse wave to a high frequency power source with a constant input power. A means for this is the PWM control interface 6. AM control is a normal power control method in which the amplitude is changed at a constant frequency.

図5(a)は高周波電源の出力をPWM制御するためのパルス信号波形を示し、図5(b)はPWM制御された高周波電源の出力波形を示している。図5は、横軸は時間、縦軸は電圧を示している。ここで、t1はパルス幅を示し、高周波電源のON時間に対応し、t2はOFF時間に対応し、周期は(t1+t2)であり、デューティ比は[t1/(t1+t2)]と定義される。図5に示すように、PWM制御インターフェイス6で発生させるパルス波のデューティ比を変化させることによって、高周波電源4から加工電極1に投入される平均電力を制御することが可能となる。   FIG. 5A shows a pulse signal waveform for PWM control of the output of the high frequency power supply, and FIG. 5B shows an output waveform of the PWM controlled high frequency power supply. In FIG. 5, the horizontal axis represents time, and the vertical axis represents voltage. Here, t1 indicates a pulse width, which corresponds to the ON time of the high frequency power supply, t2 corresponds to the OFF time, the cycle is (t1 + t2), and the duty ratio is defined as [t1 / (t1 + t2)]. As shown in FIG. 5, by changing the duty ratio of the pulse wave generated by the PWM control interface 6, it is possible to control the average power input from the high frequency power supply 4 to the machining electrode 1.

次に、投入電力制御として本発明のPWM制御とAM制御を適用して平均電力を制御し加工を行った。作製した静止加工痕を位相シフト干渉顕微鏡で測定し体積加工量を計算した。   Next, processing was performed by controlling the average power by applying the PWM control and AM control of the present invention as input power control. The produced static processing trace was measured with a phase shift interference microscope, and the volume processing amount was calculated.

具体的には、プラズマCVM装置を用いてSi(111)基板上に静止加工痕を作製した。加工条件はプロセスガス流量He:CF:O=750:20:2.5sccm、加工ギャップ400μm、加工時間を2分とした。高周波電源の周波数は13.56MHzである。AM制御の場合、投入電力(CW)はPCVM装置内でグロー放電を維持出来る45Wから80Wまでを5W刻みで変化させて加工を行った。PWM制御の場合、繰り返し周波数1kHzのパルス波を高周波電源に印加させ、投入電力をデューティ比100%時の80Wで固定し、デューティ比を10%から100%まで10%刻みで変化させて加工を行った。 Specifically, static processing marks were produced on a Si (111) substrate using a plasma CVM apparatus. The processing conditions were a process gas flow rate He: CF 4 : O 2 = 750: 20: 2.5 sccm, a processing gap of 400 μm, and a processing time of 2 minutes. The frequency of the high frequency power supply is 13.56 MHz. In the case of AM control, machining was performed by changing the input power (CW) from 45 W to 80 W, which can maintain glow discharge, in 5 W increments in the PCVM apparatus. In the case of PWM control, a pulse wave with a repetition frequency of 1 kHz is applied to a high frequency power supply, the applied power is fixed at 80 W when the duty ratio is 100%, and the duty ratio is changed from 10% to 100% in 10% increments for processing. went.

図6はAM制御の場合の加工速度と投入電力の関係及びPWM制御における加工速度と平均電力の関係を示したものである。AM制御における投入電力とPWM制御における平均電力が等しい場合でも、PWM制御はAM制御に比べて電極−試料間に印加される高周波電圧の波高値が高いためAM制御と比べて電界が強い。PWM制御はAM制御と比べて衝突前に電子の持つエネルギーが大きいため解離しやすくプラズマ中に多くの反応種が発生し加工速度が多いと推測される。ただ、PWM制御及びAM制御の何れの場合も平均電力によらず、電子温度は約0.9eVで一定であった。また、図6よりAM制御の場合加工量は0.95×10−2mm/minから3.62×10−2mm/minの範囲で加工速度制御することでき、PWM制御は0.24×10−2mm/minから3.34×10−2mm/minの範囲で加工速度制御可能なことが分かる。AM制御の場合、投入電力80Wにおける加工速度を100%とすると、26%まで加工速度を制御することが可能である。それに対してPWM制御の場合、平均電力が80W(デューティ比100%)の時の加工速度を100%とすると、7%まで加工速度を制御することが可能である。以上より、本発明のPWM制御は、AM制御より加工速度の制御範囲が広いことが確かめられた。この平均電力(デューティ比)と加工速度(プラズマ処理能率)の関係が検量線として用いられる。 FIG. 6 shows the relationship between machining speed and input power in the case of AM control, and the relationship between machining speed and average power in PWM control. Even when the input power in the AM control and the average power in the PWM control are equal, the PWM control has a higher electric field than the AM control because the peak value of the high-frequency voltage applied between the electrode and the sample is higher than the AM control. In PWM control, compared to AM control, the energy of electrons before collision is large, so it is likely to dissociate, and it is assumed that many reactive species are generated in the plasma and the processing speed is high. However, in both cases of PWM control and AM control, the electron temperature was constant at about 0.9 eV regardless of the average power. Further, from FIG. 6, in the case of AM control, the processing rate can be controlled in the range of 0.95 × 10 −2 mm 3 / min to 3.62 × 10 −2 mm 3 / min, and PWM control is set to 0. It can be seen that the machining speed can be controlled in the range of 24 × 10 −2 mm 3 / min to 3.34 × 10 −2 mm 3 / min. In the case of AM control, if the machining speed at an input power of 80 W is 100%, the machining speed can be controlled to 26%. On the other hand, in the case of PWM control, if the machining speed when the average power is 80 W (duty ratio 100%) is 100%, the machining speed can be controlled up to 7%. From the above, it was confirmed that the PWM control of the present invention has a wider processing speed control range than the AM control. The relationship between the average power (duty ratio) and the processing speed (plasma processing efficiency) is used as a calibration curve.

本発明では、等速度で移動するステージ3の座標情報をエンコーダ7で読み取り、座標毎に予め設定した電力印加パルス幅(デューティ比)をプラズマ発生用高周波電源(RF電源)4にインターフェイス6を通して指令する。図5に示すように、デューティ比で決定される平均電力に応じて加工量は線型的に変化するため、基板の任意座標位置における加工量は正確に制御できる。本発明では、取りしろを小さくして、加工時間を大幅に短縮できるにも係わらず、移動ステージを等速度で駆動するだけであるので、安価な駆動機構を用いることができるのである。ここで、前記被加工物表面の最小加工領域毎の位置情報とその加工量(取りしろ)とからなるNC処理データは、従来のPCVM装置での加工の際にも作成するものと同じである。尚、最小加工領域とは、静止加工痕ではなく、被加工物の加工量を決定するデータの最小領域である。   In the present invention, the coordinate information of the stage 3 moving at a constant speed is read by the encoder 7, and a power application pulse width (duty ratio) preset for each coordinate is commanded to the plasma generating high frequency power source (RF power source) 4 through the interface 6. To do. As shown in FIG. 5, since the processing amount changes linearly according to the average power determined by the duty ratio, the processing amount at an arbitrary coordinate position on the substrate can be accurately controlled. In the present invention, although the margin can be reduced and the machining time can be greatly shortened, an inexpensive drive mechanism can be used because only the moving stage is driven at a constant speed. Here, the NC processing data including the position information for each minimum processing area on the surface of the workpiece and the processing amount (allowance) is the same as that generated when processing with the conventional PCVM apparatus. . Note that the minimum machining area is not a static machining trace but a minimum area of data for determining a machining amount of a workpiece.

PWM制御に用いるパルス波のON時間(t1)とOFF時間(t2)の繰り返し周期(t1+t2)は、処理量を数値制御する最小処理領域を局所プラズマが通過する時間よりも短く設定する必要がある。ここで、「局所プラズマが通過する時間」とは、局所プラズマの中心が最小処理領域を通過する時間のことであり、最小処理領域の走査方向距離を走査速度で割った時間のことである。例えば、走査速度が最高80mm/secの場合、最小処理領域を0.5mmの間隔とした場合、6.25×10−3secで通過する。これは、パルス波の周波数が160Hzに対応する。少なくとも、この周波数よりも高くする必要がある。実用的には、PWM制御に用いるパルス波の周波数は、1kHz〜100kHzに設定する。 It is necessary to set the repetition period (t1 + t2) of the ON time (t1) and OFF time (t2) of the pulse wave used for PWM control to be shorter than the time during which the local plasma passes through the minimum processing region for numerically controlling the processing amount. . Here, the “time for the local plasma to pass” is the time for the center of the local plasma to pass through the minimum processing region, and is the time obtained by dividing the scanning direction distance of the minimum processing region by the scanning speed. For example, when the scanning speed is 80 mm / sec at the maximum and the minimum processing area is 0.5 mm, it passes at 6.25 × 10 −3 sec. This corresponds to a pulse wave frequency of 160 Hz. It must be at least higher than this frequency. Practically, the frequency of the pulse wave used for PWM control is set to 1 kHz to 100 kHz.

PWM制御に用いるパルス波の周波数の違いによる影響を調べた。試料は、Si(111)基板である。高周波電源の電力を80Wとし、プロセスガス流量He:CF:O=750:20:2.5sccm、加工ギャップ400μm、加工時間を2分とした。そして、パルス周波数を1,10,100kHzとし、デューティ比を10〜90%で加工速度を測定した。図7に示した結果から分かるように、どの周波数でもデューティ比に対して加工速度は線形になっているが、パルス周波数が低い方がデューティ比の小さい値まで加工速度が制御できる。しかし、PWM制御に用いるパルス波の周波数は、前述のように下限があるので、走査速度と高周波電源の周波数に応じて適当な値を選択することが望ましい。 The influence of the frequency difference of the pulse wave used for PWM control was investigated. The sample is a Si (111) substrate. The power of the high-frequency power source was 80 W, the process gas flow rate He: CF 4 : O 2 = 750: 20: 2.5 sccm, the processing gap 400 μm, and the processing time was 2 minutes. Then, the processing speed was measured at a pulse frequency of 1, 10, 100 kHz and a duty ratio of 10 to 90%. As can be seen from the results shown in FIG. 7, the machining speed is linear with respect to the duty ratio at any frequency, but the machining speed can be controlled to a value with a lower duty ratio when the pulse frequency is lower. However, since the frequency of the pulse wave used for PWM control has a lower limit as described above, it is desirable to select an appropriate value according to the scanning speed and the frequency of the high-frequency power source.

1 加工電極、
2 被加工物(被処理物)、
3 移動ステージ、
4 高周波電源、
5 マッチングユニット、
6 パルス幅変調電力制御インターフェイス、
7 エンコーダ、
8 電極棒、
9 外筒、
P 局所プラズマ、
S 走査方向。
1 processing electrode,
2 Workpiece (workpiece),
3 Moving stage
4 High frequency power supply,
5 matching units,
6 Pulse width modulation power control interface,
7 Encoder,
8 electrode rods,
9 outer cylinder,
P local plasma,
S Scan direction.

Claims (9)

局所的に発生させた高周波プラズマを被処理物表面に対して等速度で走査するとともに、該被処理物表面における局所的なプラズマ処理能率を、予め設定した前記被処理物表面の最小処理領域毎の位置情報とその処理量とからなるNC処理データに基づき、高周波プラズマのON時間(t1)とOFF時間(t2)の比率を変化させるパルス幅変調(PWM)電力制御によって変化させ、該被処理物表面の所定領域を数値制御して処理することを特徴とするパルス幅変調電力制御を用いた局所プラズマ処理方法。   The high-frequency plasma generated locally is scanned at a constant speed with respect to the surface of the object to be processed, and the local plasma processing efficiency on the surface of the object to be processed is set for each minimum processing region of the surface of the object to be processed. Is changed by pulse width modulation (PWM) power control that changes the ratio of the ON time (t1) and the OFF time (t2) of the high-frequency plasma based on the NC processing data consisting of the position information and the processing amount thereof. A local plasma processing method using pulse width modulation power control, wherein a predetermined region of an object surface is processed by numerical control. 前記高周波プラズマは、大気開放下のプロセスガス雰囲気中で、電極に10MHz〜2.45GHzの一定の高周波電力を印加して発生させてなる請求項1記載のパルス幅変調電力制御を用いた局所プラズマ処理方法。   2. The local plasma using pulse width modulation power control according to claim 1, wherein the high frequency plasma is generated by applying a constant high frequency power of 10 MHz to 2.45 GHz to an electrode in a process gas atmosphere under an open atmosphere. Processing method. 前記パルス幅変調電力制御に用いるON時間(t1)とOFF時間(t2)の繰り返し周期(t1+t2)は、処理量を数値制御する最小処理領域を局所プラズマが通過する時間よりも短く設定する請求項1又は2記載のパルス幅変調電力制御を用いた局所プラズマ処理方法。   The repetition period (t1 + t2) of the ON time (t1) and the OFF time (t2) used for the pulse width modulation power control is set to be shorter than the time for the local plasma to pass through the minimum processing region for numerically controlling the processing amount. A local plasma processing method using the pulse width modulation power control described in 1 or 2. 前記パルス幅変調電力制御に用いるON時間(t1)とOFF時間(t2)の繰り返し周波数は、1kHz〜100kHzに設定する請求項3記載のパルス幅変調電力制御を用いた局所プラズマ処理方法。   The local plasma processing method using pulse width modulation power control according to claim 3, wherein a repetition frequency of the ON time (t1) and the OFF time (t2) used for the pulse width modulation power control is set to 1 kHz to 100 kHz. 高周波プラズマの投入電力を一定とし、デューティ比[t1/(t1+t2)]を変化させて高周波プラズマの平均電力を変化させた際のデューティ比に対するプラズマ処理能率の検量線を予め取得し、前記被処理物表面の最小処理領域の処理量に応じて、前記検量線に基づいてデューティ比を数値制御してなる請求項3又は4記載のパルス幅変調電力制御を用いた局所プラズマ処理方法。   A calibration curve of the plasma processing efficiency with respect to the duty ratio when the average power of the high-frequency plasma is changed by changing the duty ratio [t1 / (t1 + t2)] while keeping the input power of the high-frequency plasma constant is obtained in advance. The local plasma processing method using pulse width modulation power control according to claim 3 or 4, wherein the duty ratio is numerically controlled based on the calibration curve in accordance with a processing amount of a minimum processing region on the object surface. 大気開放下のプロセスガス雰囲気中で局所的に高周波プラズマを発生させる電極と、
前記電極との間に一定のギャップを維持して被処理物を保持し、前記電極に対して等速度で走査する移動ステージと、
前記電極に10MHz〜2.45GHzの一定の高周波電力を供給する高周波電源と、
前記高周波電源のON時間(t1)とOFF時間(t2)の比率を変化させるパルス幅変調(PWM)電力制御手段と、
前記移動ステージの位置情報を取得し、前記パルス幅変調電力制御手段に位置情報を入力するエンコーダと、
を備え、予め設定した前記被処理物表面の最小処理領域毎の位置情報とその処理量とからなるNC処理データに基づき、パルス幅変調電力制御手段によって前記高周波電源のON時間(t1)とOFF時間(t2)の比率を変化させて局所的なプラズマ処理能率を変化させ、該被処理物表面の所定領域を数値制御して処理することを特徴とするパルス幅変調電力制御を用いた局所プラズマ処理装置。
An electrode that generates high-frequency plasma locally in a process gas atmosphere under the atmosphere;
A movable stage that maintains a constant gap with the electrode and holds the object to be processed, and scans the electrode at a constant speed;
A high frequency power supply for supplying a constant high frequency power of 10 MHz to 2.45 GHz to the electrode;
Pulse width modulation (PWM) power control means for changing the ratio of the ON time (t1) and the OFF time (t2) of the high-frequency power source;
An encoder for acquiring position information of the moving stage and inputting the position information to the pulse width modulation power control means;
Based on NC processing data consisting of preset position information for each minimum processing area on the surface of the workpiece and its processing amount, and the ON time (t1) and OFF time of the high-frequency power source by the pulse width modulation power control means Local plasma using pulse width modulation power control characterized in that the local plasma processing efficiency is changed by changing the ratio of time (t2), and a predetermined region on the surface of the object to be processed is numerically controlled. Processing equipment.
前記パルス幅変調電力制御手段に用いるON時間(t1)とOFF時間(t2)の繰り返し周期(t1+t2)は、処理量を数値制御する最小処理領域を局所プラズマが通過する時間よりも短く設定する請求項記載のパルス幅変調電力制御を用いた局所プラズマ処理装置。 The repetition period (t1 + t2) of the ON time (t1) and the OFF time (t2) used for the pulse width modulation power control means is set to be shorter than the time for the local plasma to pass through the minimum processing region for numerically controlling the processing amount. Item 7. A local plasma processing apparatus using the pulse width modulation power control according to Item 6 . 前記パルス幅変調電力制御手段に用いるON時間(t1)とOFF時間(t2)の繰り返し周波数は、1kHz〜100kHzに設定する請求項記載のパルス幅変調電力制御を用いた局所プラズマ処理装置。 The local plasma processing apparatus using pulse width modulation power control according to claim 7 , wherein the repetition frequency of the ON time (t1) and the OFF time (t2) used for the pulse width modulation power control means is set to 1 kHz to 100 kHz. 前記高周波電源による電極への投入電力を一定とし、前記パルス幅変調電力制御手段におけるデューティ比[t1/(t1+t2)]を変化させて高周波プラズマの平均電力を変化させた際のデューティ比に対するプラズマ処理能率の検量線を予め取得し、前記被処理物表面の最小処理領域の処理量に応じて、前記検量線に基づいてデューティ比を数値制御してなる請求項7又は8記載のパルス幅変調電力制御を用いた局所プラズマ処理装置。 Plasma processing for the duty ratio when the average power of the high-frequency plasma is changed by changing the duty ratio [t1 / (t1 + t2)] in the pulse width modulation power control means while keeping the power applied to the electrode by the high-frequency power supply constant. The pulse width modulation power according to claim 7 or 8 , wherein an efficiency calibration curve is acquired in advance, and a duty ratio is numerically controlled based on the calibration curve in accordance with a processing amount of a minimum processing region on the surface of the workpiece. Local plasma processing equipment using control.
JP2013052219A 2013-03-14 2013-03-14 Local plasma processing method and apparatus using pulse width modulation power control Active JP6048886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013052219A JP6048886B2 (en) 2013-03-14 2013-03-14 Local plasma processing method and apparatus using pulse width modulation power control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013052219A JP6048886B2 (en) 2013-03-14 2013-03-14 Local plasma processing method and apparatus using pulse width modulation power control

Publications (2)

Publication Number Publication Date
JP2014177673A JP2014177673A (en) 2014-09-25
JP6048886B2 true JP6048886B2 (en) 2016-12-21

Family

ID=51697922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013052219A Active JP6048886B2 (en) 2013-03-14 2013-03-14 Local plasma processing method and apparatus using pulse width modulation power control

Country Status (1)

Country Link
JP (1) JP6048886B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114344511B (en) * 2021-12-31 2024-02-23 桂林电子科技大学 Plasma sterilization apparatus and plasma sterilization method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012018821A (en) * 2010-07-08 2012-01-26 Seiko Epson Corp Atmospheric pressure plasma processing apparatus and atmospheric pressure plasma processing method

Also Published As

Publication number Publication date
JP2014177673A (en) 2014-09-25

Similar Documents

Publication Publication Date Title
JP2017529239A (en) Additive manufacturing using laser and gas flow
JP2017526815A (en) Additive manufacturing using laser and plasma
TWI594322B (en) Plasma processing method and plasma processing apparatus
EP3528983B1 (en) Charged particle beam steering arrangement
KR20070084347A (en) Improved dose uniformity during scanned ion implantation
US20170002467A1 (en) Adaptive control for charged particle beam processing
WO2012060325A1 (en) Plasma annealing method and device for same
JP6048886B2 (en) Local plasma processing method and apparatus using pulse width modulation power control
JP5959275B2 (en) Plasma processing apparatus and plasma processing method
US10861674B2 (en) Compensated location specific processing apparatus and method
JP7121226B2 (en) Method of forming a product using an additive manufacturing apparatus, and additive manufacturing apparatus
US10784090B2 (en) Plasma processing device and semiconductor device production method
JP6414901B2 (en) Electron beam processing equipment
Yamamura et al. High-spatial resolution figuring by pulse width modulation controlled plasma chemical vaporization machining
JP2006324691A (en) Machining method and apparatus thereof
JP2013197304A (en) Plasma processing apparatus and method
Yamamura et al. Flatness correction of quartz glass substrate by plasma jet figuring with pulse width modulation control
JP2021086991A (en) Etching device and etching method
JP2012187608A (en) Method of electron beam machining
JPH06216079A (en) Processing method and device by radical reaction
KR20010095763A (en) A thin-film fixing area enlarged pulse laser a thin-film fixing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161111

R150 Certificate of patent or registration of utility model

Ref document number: 6048886

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250