JP6048161B2 - 二次電池の製造方法 - Google Patents

二次電池の製造方法 Download PDF

Info

Publication number
JP6048161B2
JP6048161B2 JP2013010865A JP2013010865A JP6048161B2 JP 6048161 B2 JP6048161 B2 JP 6048161B2 JP 2013010865 A JP2013010865 A JP 2013010865A JP 2013010865 A JP2013010865 A JP 2013010865A JP 6048161 B2 JP6048161 B2 JP 6048161B2
Authority
JP
Japan
Prior art keywords
kneading
solvent
active material
powder
electrode mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013010865A
Other languages
English (en)
Other versions
JP2014143080A (ja
Inventor
良輔 大澤
良輔 大澤
橋本 浩幸
浩幸 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013010865A priority Critical patent/JP6048161B2/ja
Publication of JP2014143080A publication Critical patent/JP2014143080A/ja
Application granted granted Critical
Publication of JP6048161B2 publication Critical patent/JP6048161B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は,活物質層を有する電極板により二次電池を製造する方法に関する。より詳細には,電極板における活物質層を形成するための電極合材ペーストを適切に製造し,その電極合材ペーストを用いて二次電池を製造する方法に関するものである。
二次電池は通常,正負の電極板をセパレータとともに捲回したものをケースに収納した構成のものである。その電極板は,集電箔に活物質層をコーティングしたものである。よって電極板は,集電箔となる金属箔に,活物質成分を含むペーストをコーティングして乾燥させることにより製造される。そのペーストの製造は当然,粉末状の活物質成分と,液状の溶媒成分とを混練することにより製造される。この,ペーストの製造に係る従来技術として,特許文献1に記載のものが挙げられる。特許文献1の技術では,電極活物質の粉末に試薬液体を滴下し,混練トルクを測定している。その際の試薬液体の滴下量と混練トルクとの関係により,電極活物質の性状を評価している。こうして評価した性状に基づいて,ペースト製造時の各種条件を定めるためである。
特開2005−285606号公報
しかしながら前記した従来の技術には,次のような問題点があった。すなわち,特許文献1の技術で評価されるのは,純粋な電極活物質の粉末の性状である。これに対し,実際に混練によりペーストを製造する際の粉末成分は,電極活物質だけとは限らない。増粘剤などの添加剤が含まれる場合がある。このため,実際のペーストの性状は,特許文献1の技術で評価した性状とは異なってしまう。このため,特許文献1の技術では,実際のペーストの性状を適切に評価することができないという問題があった。
また,ペーストを製造する際の粉末成分には,タップ密度1.0g/cm以上の電極活物質が用いられる場合がある。このような高タップ密度の電極活物質(図6参照)は,タップ密度1.0g/cm未満の低タップ密度の電極活物質(図7参照)と比べて,粒子同士が詰まりやすいため,粒子50間の隙間が狭くなりやすい。そのため,粉末成分に最適な溶媒の量(粉末成分と溶媒成分との混合比)を決定するための予備混練において,粒子50間に溶媒が入り込みにくい。これに対して,実際の電極合材ペーストを製造する本混練においては,電極活物質の粒子の詰まりが混練によりばらけるため,予備混練時よりも溶媒が電極活物質の粒子間に入り込みやすくなる。よって,予備混練において,最適な混合比を決定しても,本混練における最適な混合比とならないことがある。
本発明は,前記した従来の技術が有する問題点の解決を目的としてなされたものである。すなわちその課題とするところは,タップ密度1.0g/cm以上の電極活物質を用いる場合であっても良好な性状の電極合材ペーストを製造することが可能な二次電池の製造方法を提供することであった。
この課題の解決を目的としてなされた本発明の二次電池の製造方法は,二次電池の電極合材層の粉末成分と溶媒成分とを混練して電極合材ペーストを製造し,その電極合材ペーストに基づいて形成された電極合材層を有する電極板を用いて二次電池を製造する二次電池の製造方法において,電極合材ペースト作成時に使用する粉末成分のうち電極活物質および増粘剤と同じ成分の粉末に,電極合材ペースト作成時に使用する溶媒成分と同じ成分の溶媒を,吸液量を測定しながら注入するとともに,混練トルクを測定しながら粉末と注入された溶媒とを混練する予備混練工程と,予備混練工程の開始時の粉末成分の量と予備混練工程の際に混練トルクが最大値を示したときの溶媒の累積給液量との比と等しい混合比で,電極合材ペーストの粉末成分と溶媒成分とを混合して混練する粗練り混練工程と,粗練り混練工程後の電極合材ペーストに結着剤を添加するとともに配合比を後に行われる下工程からの要求仕様に合わせて調整する調整混練工程とを行い,さらに,電極合材ペースト作成時に使用する粉末成分に含まれる電極活物質のタップ密度が1.0g/cm3以上である場合には,予備混練工程前に,予備混練工程で使用する電極活物質に,前記タップ密度に応じて予め定めた時間,電極合材ペースト作成時に使用する溶媒成分と同じ成分の溶媒を混合することにより,予め定めた量の溶媒を含ませる湿潤工程を行って,電極合材ペーストを製造することを特徴とする。ここで,予備混練工程の際に混練トルクが最大値を示したときの溶媒の累積給液量には,予備混練工程において注入された溶媒のみならず,湿潤工程において混合された溶媒も含む。
この二次電池の製造方法では,予備混練が行われる。予備混練の目的は,粗練り混練の際の粉末成分と溶媒成分との混合比を,粗練り混練に先立って決定することである。よって,粉末成分,溶媒成分ともに,粗練り混練時に使用するものと同じものを用いる。そして,混練トルクが最大となったときの溶媒量により配合比を決定する。
ここで本発明の二次電池の製造方法では,電極合材ペースト作成時に使用する粉末成分に含まれる電極活物質のタップ密度が,1.0g/cm3以上である場合には,予備混練工程の前に,湿潤工程を行う。湿潤工程では,予備混練工程で使用する電極活物質に,そのタップ密度に応じて予め定めた時間,電極合材ペースト作成時に使用する溶媒成分と同じ成分の溶媒を混合する。これにより,予め定めた量の溶媒を含ませる。すなわち,溶媒が吸収され難いタップ密度1.0g/cm3以上の電極活物質に対して,予め溶媒を染み込ませておく。言い換えれば,タップ密度が1.0g/cm3以上と高いために予備混練工程において吸収されない溶媒を,電極活物質に予め補っておくのである。
そして,このような湿潤工程を経た電極活物質を含む粉末を用いて,予備混練を行う。そのため,予備混練工程において,粗練り混練の際の粉末成分と溶媒成分との混合比を正確に決定することができる。よって,このようにして決定した配合比で粗練り混練を行うことにより,使用する原料の特性に合った配合比で良好な性状の電極合材ペーストを得ることができる。
本発明の二次電池の製造方法によれば,タップ密度1.0g/cm以上の電極活物質を用いる場合であっても良好な性状の電極合材ペーストを製造することができる。
電極活物質に必要な湿潤時間を,電極活物質のタップ密度との関係で示すグラフである。 本形態で使用する吸油量測定機の構成を示す断面図である。 粉末の量は一定として溶媒量を次第に増やしていったときの攪拌子の混練トルクの変動の典型例を示すグラフである。 負極用試料の予備混練でのトルク測定の結果を示すグラフである。 負極用ペーストの最終粘度を示すグラフである。 タップ密度の高い電極活物質の粒子を模式的に示す図である。 タップ密度の低い電極活物質の粒子を模式的に示す図である。
以下,本発明を具体化した実施の形態について,添付図面を参照しつつ詳細に説明する。まず,本形態の方法により製造される二次電池の負極には,活物質として,タップ密度が1.0g/cm以上のものが用いられる。この活物質の平均粒径(D50)は,15μm以上25μm以下である。また,この活物質は,黒鉛粒子の表面を非晶質膜により被覆したものである。
ここで,本形態における黒鉛粒子とは,前駆体であるピッチなどから得られる人造黒鉛や,天然黒鉛などである。このような黒鉛粒子は,その表面が剥き出しのままの状態では,電解液と接触することにより劣化膜を生じるおそれがある。すなわち,黒鉛粒子をそのまま活物質として用いた場合,二次電池においては電池特性が低下するおそれがある。これを防止することを主な目的として,黒鉛粒子の表面には非晶質膜が被覆されている。本形態における非晶質膜とは,非晶質炭素による被膜のことである。
本形態では,上記のような活物質を用いた二次電池を,次の手順により製造する。
1.湿潤工程

2.予備混練工程(電極合材ペースト(以下,単にペーストという)の配合比の決定)

3.本混練工程(ペーストの製造)

4.下工程(塗布,捲回,収納等)
このうち,「4.下工程」については従来と特段に変わるところはない。本形態の特徴は,「1.湿潤工程」,「2.予備混練工程」および「3.本混練工程」にある。特にそのうち,「1.湿潤工程」及び「2.予備混練工程」が本発明としての核心部分である。以下,「1.湿潤工程」及び「2.予備混練工程」を中心に説明する。
<湿潤工程> 本形態では予備混練工程に先立ち,湿潤工程を行う。湿潤工程では,予備混練工程で使用するタップ密度1.0g/cmの活物質に,実際のペーストの製造に用いられる溶媒と同じ成分の溶媒(本形態では水)を所定量含ませる。
具体的には,活物質と溶媒とを,活物質のタップ密度に応じて定めた時間だけ,混合する。図1は,活物質に必要な湿潤時間を,活物質のタップ密度との関係で示すグラフである。湿潤時間とは,活物質と溶媒とを混合している時間である。図1に示すように,例えば,タップ密度1.0g/cmの活物質であれば,1分程度,溶媒と混合する。これにより,活物質(黒鉛)に溶媒(水)を所定量含ませる。本形態では,活物質約30gに対して溶媒を10cm程度含ませる。活物質のタップ密度が変わっても,活物質に含ませる溶媒の量は変わらない。なお,図1に示すグラフの式は,y=0.0014exp(6.5424x)である。この式において,xは,活物質のタップ密度(g/cm)であり,yは,湿潤時間(分)である。
〈予備混練工程〉 本形態では湿潤工程に続いて予備混練工程を行う。予備混練工程では,ペーストの製造に先立ち,配合比の決定を行う。ここで言う配合比とは,粉末成分と溶媒成分との配合比のことである。そして粉末成分とは,主として活物質の粉末であるが,それだけではない。増粘剤などの添加剤の粉末をも含んだ混合粉末のことである。この混合粉末における各成文粉末の配合比は,実際のペースト製造を行うときの配合比と同じである。つまり粉末成分は,実際の製造時の粉末と同じものである。但し,混合粉末における活物質の粉末には,上述の湿潤工程を経た活物質を用いる。もちろん溶媒成分も,実際の製造時の溶媒と同じものである。溶媒として2以上の液体を混合したものを用いる場合にはその混合比も,実際の製造時と同じである。
本形態での粉末成分と溶媒成分との配合比の決定は,予備混練を行うことによってなされる。ここで予備混練とは,粉末と溶媒とを,その配合比を変更しつつ混練することにより,最適な配合比を見つけることである。この予備混練には,JIS−K101−13に準ずる吸油量測定機を用いる。そのためには例えば,図2に示すような構造の吸油量測定機1を用いることができる。
図2の吸油量測定機1は,攪拌容器2と,攪拌子3と,注液ノズル4と,漏斗5とを有している。攪拌容器2は,粉末6と溶媒7との予備混練を行うための容器である。攪拌容器2の中に,攪拌子3が設けられている。攪拌子3はむろん,攪拌容器2内の粉末6および溶媒7を予備混練のために攪拌するものである。本形態での攪拌子3は,攪拌時のトルク(本願では混練トルクという)を測定できるようになっている。注液ノズル4は,攪拌容器2に溶媒を供給するものである。本形態での注液ノズル4は,溶媒の供給量を把握できるようになっている。漏斗5は,攪拌容器2の入り口に取り付けられており,注液ノズル4から供給された溶媒を漏れなく攪拌容器2内に導くものである。
上記の構成の吸油量測定機1を用いた予備混練は,以下のようにして行われる。まず,粉末6と溶媒7とのうち粉末6のみを攪拌容器2に収容する。もちろん,収容した粉末6の量Pを記録しておく。そして,攪拌子3を駆動しつつ,注液ノズル4から溶媒7を滴下していく。これにより,攪拌容器2内における粉末6の量は一定としつつ,溶媒7の量を次第に増やしていく。この過程における攪拌子3の回転速度を一定に維持しつつ,その混練トルクの変動を記録していくのである。
すると一般的に,概ね図3のようなグラフが得られる。すなわち,始めのうちは混練トルクが小さく,溶媒7の量が増えるに従い混練トルクは大きくなっていく。これは,粉末6に対し溶媒7を添加することにより,粉末6と溶媒7とが混じったペーストの量が徐々に増えていくことによると考えられる。また,粉末6に含まれる増粘剤の効果が,溶媒7の量の増加とともに発現してくるためと考えられる。しかしある溶媒量Sで混練トルクはピークTを示し,その後は逆に溶媒7の量が増えるに従い混練トルクは小さくなっていく。これは,溶媒7の量が過多となると,ペーストが希釈状態となって粘性が低下するためと考えられる。そこで図3の過程における,粉末量Pと,混練トルクがピークTを示したときの溶媒量Sとの比P:Sを,ペーストの配合比,として決定する。ここで溶媒量Sとは,注液ノズル4からの溶媒7の供給開始時から,混練トルクのピーク時までの溶媒の供給量と,湿潤工程における溶媒の供給量(湿潤工程において含ませた溶媒の量)との累積値のことである。
〈本混練工程〉 続く「3.本混練工程」では,「2.予備混練工程」において決定した配合比P:Sに則してペーストを製造する。すなわち,実際の製造工程で使用する粉末6の量と溶媒7の量との比は,上記の配合比P:Sに等しくされる。この実際の製造工程そのものは,従来から行われている方法により行えばよい。これにより,タップ密度1.0g/cm3の活物質を用いる場合であっても,現に使用している原料の特性に適切に合致した配合比となっているので,良好な性状のペーストを製造できる。これによりその後の下工程も良好になされ,二次電池が作製される。
上記のようにして決定した配合比P:Sの適用範囲は,予備混練に使用した粉末および溶媒と同種の粉末および溶媒を用いて行うペーストの製造に限られる。粉末や溶媒の成分が異なる場合には適用できず,その場合の粉末および溶媒について改めて予備混練を行い決定する必要がある。さらには,原料である粉末および溶媒について,同一メーカーによる同一仕様のものであっても,原料の製造ロットが変われば改めて配合比を決定し直すことが好ましい。
次に本発明の実施例を,比較例とともに説明する。実施例および比較例では,配合比の決定のための予備混練およびその後の本混練を,以下の条件で行った。なお,以下のうち,実施例か比較例かの区別がない事項は,両者に共通の事項である。
[予備混練]
混練機 :図1の吸油量測定機
使用溶媒 :水
粉末成分
活物質 :天然黒鉛 平均粒径15〜25μm タップ密度1.0g/cm以上(湿潤工程あり) 「実施例」
天然黒鉛 平均粒径15〜25μm タップ密度1.0g/cm以上(湿潤工程なし) 「比較例」
増粘剤 :カルボキシメチルセルロースナトリウム(CMC−Na)
混合比率 :活物質成分99重量%+増粘剤1重量%
試料重量 :30g
測定温度 :室温20℃成り行き
溶媒滴下速度 :3cm/分
攪拌子回転数 :220rpm
ここで測定温度についての「成り行き」とは,試料について加熱や冷却を目的とする特段の処理をしていない,ということである。ただし,攪拌の摩擦熱や溶媒の蒸発気化熱等によるある程度の温度変動はあり得る。
上記条件での予備混練の結果,図4に示す結果が得られた。図4のグラフでは,縦軸が混練トルクを,横軸が固形分率を示している。まず,比較例である湿潤工程なしの活物質(湿潤工程を経ていない活物質)を用いた例では,固形分率が66.5重量%のときに混練トルクのピーク値T1が得られている。これに対して,実施例である湿潤工程ありの活物質(湿潤工程を経た活物質)を用いた例では,固形分率が68.0重量%のときに混練トルクのピーク値T2が得られている。
これにより,湿潤工程を経ていない活物質を用いた場合には,固形分率が66.5重量%となる配合比に決定されることになる。これに対し,湿潤工程を経た活物質を用いた場合には,固形分率が68.0重量%となる配合比に決定されることになる。
[本混練]
混練機 :プラネタリミキサ(容量1リットル)
使用溶媒 :水
粉末成分
活物質 :天然黒鉛 平均粒径15〜25μm タップ密度1.0g/cm以上
増粘剤 :予備混練の欄に記載の通り
結着剤 :スチレンブタジエンゴム(SBR)
混合比率 :活物質98重量%+増粘剤1重量%+結着剤1重量%
試料重量 :300g(活物質と増粘剤との重量)
測定温度 :室温20℃成り行き
粗練り混練
固形分率 :68.0重量% 「実施例」
66.5重量% 「比較例」
回転数 :50rpm
混練時間 :30分
希釈練り混練
回転数 :50rpm
混練時間 :10分
最終固形分率 :54重量%
すなわち本混練では,実施例および比較例ともに,予備混練で決定した固形分率となる配合比により,まず,粗練り混練を行った。粗練り混練に用いた粉末の成分は,本混練の欄の粉末成分の混合比率に示すもののうち,活物質および増粘剤のみである。また,粗練り混練後のペーストに溶媒を少し追加して希釈練り混練を行った。さらに,希釈練り混練後のペーストに結着剤を添加して最終混練を行った。これら希釈練り混練および最終混練は,ペーストの最終固形分率や性状を下工程からの要求仕様に合わせて調整するための調整混練である。すなわち,本混練では,電極合材ペーストの粉末成分と溶媒成分とを混合する混練に引き続き,電極合材ペーストの配合比を下工程からの要求仕様に合わせて調整する調整混練を行っている。なお,本混練の欄の混合比率については結着剤の添加後のものを示しているが,このうち活物質と増粘剤とについて見たときの混合比率は,予備混練の欄に示す混合比率と同じである。
ここで,図5のグラフに,上記のすべての混練工程により完成したペーストの最終粘度を示す。図5においては,縦軸にペーストの最終粘度を,横軸に粗練り混練時の固形分率をとっている。図5のグラフは,複数の異なる配合比の粉末成分と溶媒成分とを用いてペーストを完成させ,そのときの粗練り混練時の固形分率とペーストの最終粘度との関係を曲線による近似により表したものである。その関係の中には,前述の実施例および比較例も含まれている。図5のグラフから分かるように,粗練り混練時において最も好ましい固形分率は,67.7重量%程度である。これを目標の固形分率に定めて粗練り混練時の粉末成分と溶媒成分とを配合すれば,その配合において多少のズレが生じた場合にも,完成したペーストの最終粘度は適正範囲に収まりやすいからである。
ここにおいて,湿潤工程を経ていない活物質を用いた予備混練により決定された固形分率は,66.5重量%である。すなわち,最適な固形分率である67.7重量%との差が1.2重量%と大きい。さらに,図5に示すように,粗練り混練時の固形分率を66.5重量%として完成したペーストの最終粘度は高過ぎるため,適正範囲に収まっていない。予備混練において湿潤工程を経ていない活物質を用いた例を比較例としたのは,このためである。
これに対し,湿潤工程を経た活物質を用いた予備混練により決定された固形分率は,68.0重量%である。すなわち,最適な固形分率である67.7重量%との差が0.3重量%と小さい。また,その固形分率により完成したペーストの最終粘度は適正範囲内である。従って,実施例では,低いペースト粘度となり,適正な分散トルクが付与されるため,粉末成分に溶媒である水が均一に分散した良好なペーストが得られる。予備混練において湿潤工程を経た活物質を用いた例を実施例としたのは,このためである。
このように,比較例においては適正な粘度のペーストが製造されず,実施例においては適正な粘度のペーストが製造される理由は,次の通りであると考えられる。すなわち,タップ密度1.0g/cm以上の高タップ密度の活物質(図6参照)は,タップ密度1.0g/cm未満の低タップ密度の活物質(図7参照)と比べて,粒子同士が詰まりやすく粒子50間の隙間が狭い。そのため,予備混練において,溶媒が活物質の粒子50間に入り込みにくい。しかし,実際の電極合材ペーストを製造する本混練においては,活物質の粒子の詰まりが混練により多少ばらける。そのため,予備混練時よりも溶媒が活物質の粒子間に入り込みやすくなる。よって,高タップ密度の活物質について,湿潤工程を経ることなく,予備混練工程で最適な混合比を決定しても,本混練に適した混合比とはならないのである。そこで,実施例では,高タップ密度の活物質を用いて予備混練を行うにあたって,予め湿潤工程により活物質に溶媒を染み込ませている。すなわち,予備混練で吸収できない分の溶媒を予め補っている。従って,実施例では,このように準備した活物質を用いて予備混練を行って混合比を決定しているため,本混練における最適な混合比から大きく外れることはなく,適正な混合比を決定することができるのである。
そして,実施例により得られた負極用の最終ペーストを用いて,「4.下工程(塗布,捲回,収納等)」により,二次電池が製造される。すなわち,負極用ペーストを負極用集電箔に塗布・乾燥して負極板を作製する。この,塗布・乾燥の段階ではペーストの良否による工程への影響が大きいが,本形態では良好である。前述のように良好な性状のペーストが得られているからである。この負極板には,負極合剤層が形成されている。さらに,得られた負極板を正極板とともに,これらの間にセパレータを挟み込みつつ捲回または平積みにより積層して電極体となし,この電極体を電池ケースに収納することで二次電池が製造される。この正極板やセパレータなどには,従来より用いられているものを用いればよい。
以上詳細に説明したように本実施の形態によれば,粉末成分と溶媒成分との混練により電極合材ペーストを製造するに際し,同一の原料による予備混練にて配合比を決定する。そして,この決定した配合比により本混練を行う。しかも,活物質のタップ密度が1.0g/cm3である場合には,予備混練に使用する活物質に予め所定量の溶媒を含ませておく。すなわち,溶媒を吸収し難いタップ密度1.0g/cm3以上の電極活物質に対して,予め溶媒を染み込ませておく。言い換えれば,タップ密度が1.0g/cm3以上と高いために予備混練工程において吸収されない溶媒を,電極活物質に予め充填しておく。従って,予備混練工程において,本混練時の適正な配合比を決定することができ,本混練工程において,良好な性状のペーストを得ることができる。このため,下工程が良好に実施され,高品質な二次電池が得られる。
なお,本形態の電極活物質は,平均粒径(D50)が15μm以上25μm以下のものである。平均粒径が15μm以上25μm以下で,且つ,タップ密度が1.0g/cm以上の活物質は,予備混練時の溶媒の浸透性が特に低い。しかし,予備混練前に,湿潤工程により電極活物質に予め所定量の溶媒を含ませれば,このような粒径の活物質であっても,本混練に適した配合比を見つけることができる。すなわち,本発明は,使用する活物質の平均粒径(D50)が15μm以上25μm以下である場合に特に意義が大きい。
また,本形態の電極活物質は,黒鉛粒子を核としてその表面を非晶質炭素により被覆してなるものである。非晶質炭素により被覆された黒鉛粒子で,且つ,タップ密度が1.0g/cm以上の活物質は,予備混練時の溶媒の浸透性が特に低い。しかし,予備混練前に,湿潤工程により電極活物質に予め所定量の溶媒を含ませれば,このような粒径の活物質であっても,本混練に適した配合比を見つけることができる。すなわち,本発明は,使用する活物質が,黒鉛粒子を核としてその表面を非晶質炭素により被覆してなるものである場合に特に意義が大きい。
なお,本実施の形態は単なる例示にすぎず,本発明を何ら限定するものではない。したがって本発明は当然に,その要旨を逸脱しない範囲内で種々の改良,変形が可能である。例えば,混練機自体は,前述のものに限らず別の機種のものを用いてもよい。また,活物質を始めとして各種材料は,単なる一例である。また,湿潤工程においては,予備混練工程で使用する活物質のみに溶媒を含ませるのではなく,予備混練工程で使用する混合粉末に溶媒を含ませてもよい。
また,電極合材ペースト作成時に使用する粉末成分に含まれる電極活物質のタップ密度が1.0g/cm未満である場合には,湿潤工程を行う必要はない。すなわち,上述の「1.湿潤工程」を行うことなく,「2.予備混練工程」,「3.本混練工程」,及び「4.下工程」を行うことにより,使用する原料の特性に合った配合比で良好な性状の電極合材ペーストを得ることができ,高品質な二次電池が得られる。
また,予備混練工程では,完成した活物質の粉末ではなく,その代わりの活物質成分として黒鉛粒子の粉末(非晶質膜の被覆前の黒鉛粒子の粉末)を用いてもよい。すなわち,予備混練工程において,非晶質炭素により被覆する前の黒鉛粒子の粉末を,電極合材ペースト作成時に使用する粉末成分において電極活物質の粉末が占める割合と同じ割合で含み,それ以外の成分は電極合材ペースト作成時に使用する粉末成分と同じ成分の粉末に,電極合材ペースト作成時に使用する溶媒成分と同じ成分の溶媒を,吸液量を測定しながら注入するとともに,混練トルクを測定しながら粉末と注入された溶媒とを混練してもよい。但し本混練工程では,完成した活物質の粉末を使用する。
非晶質膜の形成時に活物質の粒子が互いに付着してできた塊が,その後の解砕処理を経てもほぐれないことがある。ほぐれなかった塊は,予備混練程度の混練ではほぐれないが,本混練ではほぐれ得る。そのため,予備混練で求めた配合比が本混練における適正値からはずれてしまうおそれがある。非晶質膜の被覆前の黒鉛粒子の粉末を用いて予備混練を行えば,このような不具合の防止を図ることができる。なお,非晶質膜の被覆前の黒鉛粒子の粒度分布と,本混練後の活物質の粒度分布は略同じである。このように,非晶質膜の被覆前の黒鉛粒子の粉末を用いて予備混練を行う場合には当然,非晶質膜の被覆前の黒鉛粒子を用いて湿潤工程を行う。この湿潤工程にいて,非晶質膜の被覆前の黒鉛粒子に含ませる溶媒の量は,非晶質膜の被覆された黒鉛粒子に含ませる溶媒の量と同程度でよい。
2…攪拌容器
3…攪拌子
4…注液ノズル
6…粉末
7…溶媒

Claims (1)

  1. 二次電池の電極合材層の粉末成分と溶媒成分とを混練して電極合材ペーストを製造し,その電極合材ペーストに基づいて形成された電極合材層を有する電極板を用いて二次電池を製造する二次電池の製造方法において,
    電極合材ペースト作成時に使用する粉末成分のうち電極活物質および増粘剤と同じ成分の粉末に,電極合材ペースト作成時に使用する溶媒成分と同じ成分の溶媒を,吸液量を測定しながら注入するとともに,混練トルクを測定しながら粉末と注入された溶媒とを混練する予備混練工程と,
    前記予備混練工程の開始時の粉末成分の量と前記予備混練工程の際に混練トルクが最大値を示したときの溶媒の累積給液量との比と等しい混合比で,電極合材ペーストの粉末成分と溶媒成分とを混合して混練する粗練り混練工程と
    前記粗練り混練工程後の電極合材ペーストに結着剤を添加するとともに配合比を後に行われる下工程からの要求仕様に合わせて調整する調整混練工程とを行い,さらに,
    電極合材ペースト作成時に使用する粉末成分に含まれる電極活物質のタップ密度が1.0g/cm3以上である場合には,前記予備混練工程前に,前記予備混練工程で使用する電極活物質に,前記タップ密度に応じて予め定めた時間,電極合材ペースト作成時に使用する溶媒成分と同じ成分の溶媒を混合することにより,予め定めた量の溶媒を含ませる湿潤工程を行って,前記電極合材ペーストを製造することを特徴とする二次電池の製造方法。
JP2013010865A 2013-01-24 2013-01-24 二次電池の製造方法 Active JP6048161B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013010865A JP6048161B2 (ja) 2013-01-24 2013-01-24 二次電池の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013010865A JP6048161B2 (ja) 2013-01-24 2013-01-24 二次電池の製造方法

Publications (2)

Publication Number Publication Date
JP2014143080A JP2014143080A (ja) 2014-08-07
JP6048161B2 true JP6048161B2 (ja) 2016-12-21

Family

ID=51424218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013010865A Active JP6048161B2 (ja) 2013-01-24 2013-01-24 二次電池の製造方法

Country Status (1)

Country Link
JP (1) JP6048161B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112259717A (zh) * 2020-10-14 2021-01-22 安徽益佳通电池有限公司 一种锂离子电池正极浆料的干混制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170114418A (ko) * 2016-04-04 2017-10-16 주식회사 엘지화학 이차전지용 슬러리의 제조방법 및 제조장치

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003115295A (ja) * 2001-10-04 2003-04-18 Toyota Motor Corp 電極の製造方法
JP4151459B2 (ja) * 2003-03-31 2008-09-17 松下電器産業株式会社 極板の製造方法およびこの製造方法によって得られる極板を用いた非水電解液二次電池
JP2011014262A (ja) * 2009-06-30 2011-01-20 Panasonic Corp 非水電解質二次電池用電極の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112259717A (zh) * 2020-10-14 2021-01-22 安徽益佳通电池有限公司 一种锂离子电池正极浆料的干混制备方法

Also Published As

Publication number Publication date
JP2014143080A (ja) 2014-08-07

Similar Documents

Publication Publication Date Title
US20220285669A1 (en) Electrochemical slurry compositions and methods for preparing the same
JP2013157257A (ja) 二次電池の製造方法
CN106463697B (zh) 非水系二次电池用层叠体及其制造方法、以及非水系二次电池
Bai et al. Preparation and electrochemical properties of Mg2+ and F− co-doped Li4Ti5O12 anode material for use in the lithium-ion batteries
CN106716689A (zh) 具有改进的倍率能力的含有锂金属氧化物的电池
CN104425802B (zh) 硅基复合材料、其制备方法、应用及其制得的锂离子电池
JP6048161B2 (ja) 二次電池の製造方法
CN106252656A (zh) 铅酸蓄电池负极活性物质和膏方法
CN114050260A (zh) 一种正极膜层添加剂组合物、正极膜层添加剂、正极极片以及二次电池
CN107834048A (zh) 钛酸锂电池负极浆料及其制备方法
JP2008016313A (ja) 二次電池用部材の製造方法および製造装置
JP5699951B2 (ja) 二次電池の製造方法
JP2013105638A (ja) 二次電池の製造方法
JP6064752B2 (ja) 非水電解質二次電池の電極板の製造方法,非水電解質二次電池の電極体の製造方法,および非水電解質二次電池の製造方法
JP6544150B2 (ja) 正極用スラリー、蓄電デバイス正極、蓄電デバイス正極の製造方法、蓄電デバイス、及び蓄電デバイスの製造方法
CN107256948A (zh) 一种高性能酚醛树脂炭包覆球形石墨负极材料制备方法
JPH09213310A (ja) 電池電極の製造方法
JP6146323B2 (ja) 二次電池用正極の製造方法
JP5601341B2 (ja) リチウムイオン二次電池の製造方法
JP2006236658A (ja) 非水電解液二次電池用電極の製造方法及び非水電解液二次電池
CN111933903A (zh) 磷酸铁锂电池正极浆料及其制备方法
JP6790882B2 (ja) リチウムイオン二次電池用正極の製造方法
JP7111552B2 (ja) 活物質合材の製造方法及び製造装置
US10651497B2 (en) Apparatus and method for preparing slurry for secondary battery
JP7272282B2 (ja) 電極合材ペーストの製造方法、及び、非水系二次電池の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161107

R151 Written notification of patent or utility model registration

Ref document number: 6048161

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151