JP6047773B1 - Assembly of medical guide wire and layer diagnostic imaging catheter used for diagnostic imaging catheter, and assembly of optical coherence tomographic diagnostic apparatus - Google Patents

Assembly of medical guide wire and layer diagnostic imaging catheter used for diagnostic imaging catheter, and assembly of optical coherence tomographic diagnostic apparatus Download PDF

Info

Publication number
JP6047773B1
JP6047773B1 JP2016018393A JP2016018393A JP6047773B1 JP 6047773 B1 JP6047773 B1 JP 6047773B1 JP 2016018393 A JP2016018393 A JP 2016018393A JP 2016018393 A JP2016018393 A JP 2016018393A JP 6047773 B1 JP6047773 B1 JP 6047773B1
Authority
JP
Japan
Prior art keywords
core wire
rear end
diameter
wire
diagnostic imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016018393A
Other languages
Japanese (ja)
Other versions
JP2017124146A (en
Inventor
剛 寺師
剛 寺師
志村 誠司
誠司 志村
Original Assignee
株式会社エフエムディ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エフエムディ filed Critical 株式会社エフエムディ
Priority to JP2016018393A priority Critical patent/JP6047773B1/en
Application granted granted Critical
Publication of JP6047773B1 publication Critical patent/JP6047773B1/en
Publication of JP2017124146A publication Critical patent/JP2017124146A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】画像診断用カテーテルを用いて病変部の断層画像を撮影する場合に、断層画像内には医療用ガイドワイヤに起因する明度の低い暗色のバックシャドーが現れる。このバックシャドーを低減しようとすれば、医療用ガイドワイヤの外径をより細径化しなければならず、一方、細径化すれば医療用ガイドワイヤの機械的強度特性が大きく低下する。この相反する技術課題が存在する。【解決手段】医療用ガイドワイヤの機械的強度特性については、芯線のねじり剛性比を、断層画像内のバックシャドーについては、芯線とコイル体との表面積比を考察し、この双方の範囲を満たすことにより、相反する技術課題を克服することができる。【選択図】図2When taking a tomographic image of a lesion using a catheter for diagnostic imaging, a dark back shadow with low brightness due to a medical guide wire appears in the tomographic image. If the back shadow is to be reduced, the outer diameter of the medical guide wire must be further reduced. On the other hand, if the diameter is reduced, the mechanical strength characteristics of the medical guide wire are greatly reduced. This conflicting technical problem exists. The mechanical strength characteristics of a medical guide wire satisfy the ranges of both the torsional rigidity ratio of the core wire and the back shadow in the tomographic image by considering the surface area ratio of the core wire to the coil body. By doing so, conflicting technical problems can be overcome. [Selection] Figure 2

Description

この発明は、体腔内の病変部治療に際して、画像診断用カテーテルに用いられる医療用ガイドワイヤ等に関する。  The present invention relates to a medical guide wire and the like used for a diagnostic imaging catheter when treating a lesion in a body cavity.

従来、血管又は器官等の体腔内の病変部治療に際して、例えば血管の断層画像を得る為に、血管内へ医療用ガイドワイヤ(以下ガイドワイヤという)を挿入し、その後ガイドワイヤを道案内として画像診断用カテーテルを病変部まで導入する。そして、画像診断用カテーテルの先端側のカテーテルシース内に備えられたプローブを回転させながら手元側(後端側)へ一定距離後退させ(プルバック操作)、病変部の断層画像を撮影し、その断層画像に基づいて術者が病変部の診断と治療を行っている。  Conventionally, when treating a lesion in a body cavity such as a blood vessel or an organ, for example, in order to obtain a tomographic image of the blood vessel, a medical guide wire (hereinafter referred to as a guide wire) is inserted into the blood vessel, and then the guide wire is used as a route guide. A diagnostic catheter is introduced to the lesion. Then, while rotating the probe provided in the catheter sheath on the distal end side of the diagnostic imaging catheter, the probe is retracted by a certain distance to the proximal side (rear end side) (pullback operation), and a tomographic image of the lesion is photographed. The surgeon diagnoses and treats the lesion based on the image.

かかる場合において、病変部の断層画像内に、プローブからの信号をガイドワイヤが遮断することによって発生する明度の低い暗色のバックシャドー(又はアーチファクト、ここでは総称してバックシャドーという)が現れ、このバックシャドーが病変部の血管壁断層画像を暗色で覆って、術者が断層画像からの病変部の症状を正確に認識することが困難な場合がある。  In such a case, in the tomographic image of the lesion, dark back shadows (or artifacts, collectively referred to as back shadows) generated by blocking the signal from the probe by the guide wire appear. In some cases, the back shadow covers the tomographic image of the vascular wall in the lesion area with a dark color, and it is difficult for the operator to accurately recognize the symptom of the lesion area from the tomographic image.

特許文献1には、ルーメンを有するカテーテル本体の先端部にガイドワイヤが挿通する管状のガイドワイヤ挿通部を配置し、カテーテル本体のルーメン内のシャフトを回転させるとともに手元側へ後退させて、光の送信・受信により血管の断層画像を得るためのカテーテル組立体が開示されている。
かかる場合に、ガイドワイヤは光を遮断する為、バックシャドーが発生する。これを解消する為、ガイドワイヤの先端側に光透過部材の管状体を備えたガイドワイヤが記載されている。
In Patent Document 1, a tubular guide wire insertion portion through which a guide wire is inserted is arranged at the distal end portion of a catheter main body having a lumen, and a shaft in the lumen of the catheter main body is rotated and retracted to the proximal side, so that light is transmitted. A catheter assembly for obtaining a tomographic image of a blood vessel by transmission / reception is disclosed.
In such a case, since the guide wire blocks light, back shadow occurs. In order to solve this problem, a guide wire including a tubular body of a light transmitting member on the distal end side of the guide wire is described.

特許文献2には、先端部に先端から後端側へ全長が300mm、外径が約0.360mmの金属製の外側コイルと、先端から後端側へ全長が50mm、外径が約0.190mmの金属製の内側コイルを備えた二層構造のコイルから成るガイドワイヤが記載されている。  In Patent Document 2, a metal outer coil having a total length of 300 mm from the front end to the rear end side and an outer diameter of about 0.360 mm at the front end portion, a total length of 50 mm from the front end to the rear end side, and an outer diameter of about 0.1 mm. A guide wire consisting of a two-layer coil with a 190 mm metal inner coil is described.

WO2011/114600号公報WO2011 / 114600 Publication 特開2013−162920号公報JP2013-162920A

特許文献1に記載のガイドワイヤは、管状体の光透過部材が光透過樹脂材料又はガラス材料で構成されている。光透過樹脂材料は、金属材料と比較して柔軟性は高いがねじり剛性が極端に低く、ねじり剛性の低下に伴いねじれ角は極端に増大する。又、ガラス材料は、金属材料と比較してある程度剛性は高いが伸びが極端に低く、かつ、脆く、又ねじり力を加えた場合にはねじれ破断し易い傾向にある。  In the guide wire described in Patent Document 1, the tubular light transmitting member is made of a light transmitting resin material or a glass material. The light-transmitting resin material has higher flexibility than the metal material but has extremely low torsional rigidity, and the torsional angle increases extremely as the torsional rigidity decreases. In addition, the glass material has a certain degree of rigidity as compared with the metal material, but the elongation is extremely low and is brittle. When a torsion force is applied, the glass material tends to be twisted and broken.

特許文献2に記載のガイドワイヤは、先端部に、先端から後端側へ全長が300mm、外径が約0.360mmの金属製の外側コイルが配置されている。この場合には、断層画像を撮影する為に、後述するプローブが手元側(後端側)へ後退する範囲内に大きな外径(約0.360mm)をもつ外側コイルが存在し、この大きな外径をもつ外側コイルによってプローブからの信号を後退する全範囲にわたって遮断し、外側コイルに起因する暗色の大きな外径に応じた大きなバックシャドーが断層画像内に現れる。
さらに、外側コイルの内側に内側コイルが備えられている為、より一層明度の低い、強い暗色のバックシャドーが断層画像内に現れることとなる。
In the guide wire described in Patent Document 2, a metal outer coil having a total length of 300 mm and an outer diameter of about 0.360 mm is arranged at the front end portion from the front end to the rear end side. In this case, in order to take a tomographic image, an outer coil having a large outer diameter (about 0.360 mm) exists within a range in which a probe, which will be described later, retreats to the hand side (rear end side). A signal from the probe is blocked over the entire range where the outer coil having a diameter recedes, and a large back shadow corresponding to a large dark outer diameter caused by the outer coil appears in the tomographic image.
Furthermore, since the inner coil is provided inside the outer coil, a strong dark-colored back shadow with even lower brightness appears in the tomographic image.

そして、特許文献1、2のいずれについても、ガイドワイヤの芯線に金属材料を用いながら金属材料のもつ優れた機械的強度特性を活かし、病変部での通過性を維持させながら、かつ、ガイドワイヤに起因する断層画像内のバックシャドーの低減を図る技術思想については、何ら記載されていない。このことは、断層画像から正確な病変部の症状を認識するうえで重要な技術課題が存在する。  And in either of Patent Documents 1 and 2, while using a metal material for the core wire of the guide wire, taking advantage of the excellent mechanical strength characteristic of the metal material, maintaining the passage through the lesion, and the guide wire No technical idea for reducing the back shadow in the tomographic image due to the above is described. This presents an important technical problem in recognizing accurate lesion symptoms from tomographic images.

本発明は、上記技術課題を鑑みてなされたものであり、ガイドワイヤの病変部での通過性を維持しながら断層画像内のバックシャドーの低減を図り、鮮明化した断層画像に基づいて正確な病変部の症状が認識できるガイドワイヤ等を提供することを目的とする。  The present invention has been made in view of the above technical problem, and reduces back shadow in a tomographic image while maintaining the passage of a guide wire through a lesioned part, and is accurate based on a sharpened tomographic image. An object of the present invention is to provide a guide wire or the like that can recognize a symptom of a lesion.

上記目的を達成する為、本発明のガイドワイヤ等は、管腔内へ配置されたガイドワイヤの後端を、画像診断用カテーテルの先端部に設けられた円筒状のガイドワイヤ挿通部へ挿入して、画像診断用カテーテルをガイドワイヤに沿わせて管腔内へ導入する。
ガイドワイヤ挿通部よりも後端側で、画像診断用カテーテルのシース内に備えられたプローブを回転させながら後端側へ後退させ、生体組織の断層画像を得る。
In order to achieve the above-described object, the guide wire or the like according to the present invention inserts the rear end of the guide wire disposed in the lumen into a cylindrical guide wire insertion portion provided at the distal end of the diagnostic imaging catheter. Then, the diagnostic imaging catheter is introduced into the lumen along the guide wire.
On the rear end side with respect to the guide wire insertion portion, the probe provided in the sheath of the diagnostic imaging catheter is moved backward while rotating to obtain a tomographic image of the living tissue.

ガイドワイヤは、芯線が擬弾性特性を有する第1芯線を備え、第1芯線は、後端から先端へ、芯線後端径大部と芯線中間細径部と芯線先端径小部とを備え、後端側から先端側へ徐変縮径する部分を有する。芯線先端径小部は、等径部を有するコイル体内に配置する。
コイル体の先端と芯線先端径小部の先端とを接合した先端接合部と、コイル体の後端と芯線先端径小部の後端側とを接合した後端接合部とを備える。
The guide wire includes a first core wire in which the core wire has pseudoelastic characteristics, and the first core wire includes, from the rear end to the front end, a core wire rear end large diameter portion, a core wire intermediate small diameter portion, and a core wire front end small diameter portion, It has a portion that gradually changes in diameter from the rear end side to the front end side. The core wire tip diameter small portion is disposed in a coil body having an equal diameter portion.
A tip joint portion that joins the tip of the coil body and the tip of the core wire tip diameter small portion, and a rear end joint portion that joins the rear end of the coil body and the rear end side of the core wire tip diameter small portion.

芯線後端径大部に対する芯線中間細径部のねじり剛性比(芯線中間細径部のねじり剛性/芯線後端径大部のねじり剛性)が、0.06565以上0.3735以下である。
コイル体の等径部の最大外径を仮想線で結んだ円筒体を仮想コイル円筒体とし、仮想コイル円筒体に対する芯線中間細径部の表面積比(芯線中間細径部の表面積/仮想コイル円筒体の表面積)が、0.506以上0.781以下である
画像診断用カテーテルに用いる医療用ガイドワイヤは、少なくとも芯線中間細径部の外周に親水性被膜が形成されている。画像診断用カテーテルは、0.75μm以上1.4μm以下の波長の低干渉光を送信・受信する光プローブを備えた光干渉断層画像診断用カテーテルであることを特徴とする画像診断用カテーテルに用いる医療用ガイドワイヤと画像診断用カテーテルとの組立体である。
The torsional rigidity ratio of the core wire intermediate small diameter part to the core wire rear end large diameter part (torsion rigidity of the core wire intermediate small diameter part / torsion rigidity of the core wire rear end large diameter part) is 0.06565 or more and 0.3735 or less.
A cylindrical body obtained by connecting the maximum outer diameters of the equal-diameter portions of the coil body with a virtual line is defined as a virtual coil cylindrical body, and the surface area ratio of the core intermediate thin diameter portion to the virtual coil cylinder (surface area of the core intermediate thin diameter portion / virtual coil cylinder) The surface area of the body is 0.506 or more and 0.781 or less .
A medical guide wire used for a diagnostic imaging catheter has a hydrophilic film formed on at least the outer periphery of the core intermediate thin diameter portion. The diagnostic imaging catheter is an optical diagnostic tomographic catheter having an optical probe that transmits and receives low interference light having a wavelength of 0.75 μm or more and 1.4 μm or less. It is an assembly of a medical guide wire and a diagnostic imaging catheter .

芯線中間細径部は、横断面が円形で長手方向の全長にわたって等径で、先端接合部の先端から後端側へ、30mm以上200mm以下に位置している。  The core intermediate thin diameter portion has a circular cross section and an equal diameter over the entire length in the longitudinal direction, and is located at 30 mm or more and 200 mm or less from the front end to the rear end side of the front end joint portion.

ガイドワイヤの芯線は、先端側の擬弾性特性を有する第1芯線と、後端側の加工誘起マルテンサイト変態相を有するオーステナイト系ステンレス鋼線の第2芯線径大部を有する第2芯線と、第1芯線の後端側と第2芯線の先端側とを接続した接続部とを備える。  The core wire of the guide wire includes a first core wire having pseudo-elastic characteristics on the front end side, a second core wire having a second core wire diameter large portion of an austenitic stainless steel wire having a work-induced martensitic transformation phase on the rear end side, A connecting portion connecting the rear end side of the first core wire and the front end side of the second core wire;

第1芯線の芯線後端径大部に対する第2芯線の第2芯線径大部のねじり剛性比(第2芯線の第2芯線径大部のねじり剛性/第1芯線の芯線後端径大部のねじり剛性)が1を超え5以下である。  Torsional rigidity ratio of the second core wire diameter large portion of the second core wire to the core wire rear end large diameter portion of the first core wire (torsional rigidity of the second core wire large diameter portion of the second core wire / core wire rear end diameter large portion of the first core wire Torsional rigidity) of more than 1 and 5 or less.

接続部の接続が、第1芯線の後端と第2芯線の先端とをろう付け接合、又は溶接接合による接続である。  The connection of the connecting portion is a connection by brazing or welding joining the rear end of the first core wire and the tip of the second core wire.

第1芯線は、後端に後端接続径小凸部を備え、第2芯線は、先端に先端接続径小凸部を備える。
接続部の接続が、擬弾性特性を有する管状部材の内側に、一方の側から第1芯線の後端接続径小凸部を挿入し、他方の側から第2芯線の先端接続径小凸部を挿入して、管状部材と後端接続径小凸部と先端接続径小凸部とを接着接合、又は溶接接合のいずれか一つ又は双方による接続である。
The first core wire includes a rear end connection diameter small convex portion at the rear end, and the second core wire includes a front end connection diameter small convex portion at the front end.
The connecting portion is connected to the inner side of the tubular member having pseudo-elastic properties by inserting the rear end connecting diameter small convex portion of the first core wire from one side, and the leading end connecting diameter small convex portion of the second core wire from the other side. Is inserted, and the tubular member, the rear end connection diameter small convex portion, and the front end connection diameter small convex portion are connected by either one or both of adhesive bonding and welding bonding.

光干渉断層画像診断装置は、光プローブを回転させながら後退させるスキャナ及びプルバック部と光プローブからの測定データを処理して画像を表示する操作制御装置とを有する。画像診断用カテーテルに用いる医療用ガイドワイヤと画像診断用カテーテルと光干渉断層画像診断装置との組立体である。  The optical coherence tomography diagnostic apparatus has a scanner that pulls back the optical probe while rotating it, a pullback unit, and an operation control device that processes measurement data from the optical probe and displays an image. It is an assembly of a medical guide wire used for an imaging diagnostic catheter, an imaging diagnostic catheter, and an optical coherence tomographic imaging apparatus.

本発明の画像診断用カテーテルに用いるガイドワイヤは、芯線が擬弾性特性を有する第1芯線を備え、第1芯線は、後端から先端へ、芯線後端径大部と芯線中間細径部と芯線先端径小部とを備える。
芯線中間細径部は、芯線後端径大部に対する芯線中間細径部のねじり剛性比(芯線中間細径部のねじり剛性/芯線後端径大部のねじり剛性)が、0.06565以上0.3735以下である。
芯線先端径小部を、等径部を有するコイル体内へ貫挿し、コイル体の等径部の最大外径を仮想線で結んだ円筒体を仮想コイル円筒体とし、仮想コイル円筒体に対する芯線中間細径部の表面積比(芯線中間細径部の表面積/仮想コイル円筒体の表面積)が、0.506以上0.781以下である
の理由は、ガイドワイヤの芯線の機械的強度特性、特にねじり剛性を高くする為には、芯線の外径を太くして断面二次極モーメントを高める必要がある。その一方で、芯線の外径を太くすれば断層画像内にガイドワイヤに起因する明度の低い暗色のバックシャドーがより拡大して現れ、術者の病変部の症状の見落とし、誤診を招き易くなり、相反する技術課題が存在する。
そして、芯線中間細径部の、機械的強度特性については「ねじり剛性比」を、断層画像内のバックシャドーについては「表面積比」に着目して、数多くの実験を重ねた結果、この「ねじり剛性比」と「表面積比」の双方の範囲を満たすことにより、相反する技術課題を克服できることを見出したからである。
そして又、画像診断用カテーテルに用いるガイドワイヤは、少なくとも芯線中間細径部の外周に親水性被膜が形成されている。画像診断用カテーテルは、0.75μm以上1.4μm以下の波長の低干渉光を送信・受信する光プローブを備えた光干渉断層画像診断用カテーテルであることを特徴とする画像診断用カテーテルに用いるガイドワイヤと画像診断用カテーテルとの組立体である。
画像診断用カテーテルを0.75μm以上1.4μm以下の波長を用いた光干渉断層画像診断用カテーテルとしたのは、生体内における水による光吸収が極めて少なく、かつ、生体組織に対する光の侵襲性(光のフォトンエネルギー、X線等)が極めて低いからである。
これにより、芯線中間細径部の外周に形成した親水性被膜が水を吸収して膨潤し、膜厚が増大しても水による光吸収が極めて少ない為、増大した膜厚分が加算されて暗色のバックシャドーが拡張することはない。そして、膨潤した親水性被膜により動摩擦係数を低くして、摺動性を飛躍的に向上させることができる。
The guide wire used for the diagnostic imaging catheter of the present invention includes a first core wire whose core wire has pseudoelastic characteristics, and the first core wire has a large rear end diameter portion and a middle intermediate diameter portion of the core wire from the rear end to the front end. A core wire tip diameter small portion.
The core wire intermediate small diameter portion has a torsional rigidity ratio of the core wire intermediate small diameter portion to the core wire rear end large diameter portion (torsion rigidity of the core wire intermediate thin diameter portion / torsion rigidity of the core wire rear end large portion) of 0.06565 or more. 3735 or less.
A cylindrical body in which the small diameter portion of the core wire is inserted into a coil body having an equal diameter portion, and the maximum outer diameter of the equal diameter portion of the coil body is connected by a virtual line is defined as a virtual coil cylindrical body, and the core wire intermediate to the virtual coil cylindrical body The surface area ratio of the small diameter part (surface area of the core wire intermediate small diameter part / surface area of the virtual coil cylindrical body) is 0.506 or more and 0.781 or less .
The reason for this is, guide the mechanical strength properties of the core wire of the wire, in order to increase the particular torsional rigidity, it is necessary to increase the thickened by secondary section polar moment the outer diameter of the core wire. On the other hand, if the outer diameter of the core wire is increased, a dark back shadow with low brightness due to the guide wire will appear more enlarged in the tomographic image, leading to oversight of the symptom of the surgeon's lesion and misleading diagnosis. There are conflicting technical issues.
As a result of many experiments, we focused on the “torsional rigidity ratio” for the mechanical strength characteristics of the intermediate thin diameter part of the core wire and the “surface area ratio” for the back shadow in the tomographic image. This is because it has been found that the conflicting technical problems can be overcome by satisfying both the ranges of “rigidity ratio” and “surface area ratio”.
Further, the guide wire used for the diagnostic imaging catheter has a hydrophilic film formed on at least the outer periphery of the core wire middle thin diameter portion. The diagnostic imaging catheter is an optical diagnostic tomographic catheter having an optical probe that transmits and receives low interference light having a wavelength of 0.75 μm or more and 1.4 μm or less. It is an assembly of a guide wire and a diagnostic imaging catheter.
An optical coherence tomographic imaging catheter using a wavelength of 0.75 μm or more and 1.4 μm or less is used as the imaging diagnostic catheter because light absorption by water in the living body is extremely small, and the invasiveness of light to living tissue This is because (photon energy of light, X-ray, etc.) is extremely low.
As a result, the hydrophilic coating formed on the outer periphery of the core wire intermediate small diameter portion absorbs water and swells, and even if the film thickness increases, the light absorption by water is very small, so the increased film thickness is added. The dark back shadow never expands. The swellability can be drastically improved by lowering the coefficient of dynamic friction with the swollen hydrophilic coating.

芯線中間細径部は、横断面が円形で長手方向の全長にわたって等径で、先端接合部の先端から後端側へ、30mm以上200mm以下に位置している。
この理由は、プローブが後退する範囲のうち、断層画像を撮影する範囲内に芯線中間細径部を配置させる為であり、かつ、芯線中間細径部の表面積を小さくさせて、ガイドワイヤに起因するバックシャドーの暗色画像を縮小し、かつ低減させる為である。
The core intermediate thin diameter portion has a circular cross section and an equal diameter over the entire length in the longitudinal direction, and is located at 30 mm or more and 200 mm or less from the front end to the rear end side of the front end joint portion.
The reason for this is to arrange the core wire intermediate small diameter portion within the range where the probe is retracted within the range where the tomographic image is taken, and to reduce the surface area of the core wire intermediate small diameter portion, resulting from the guide wire. This is because the dark image of the back shadow is reduced and reduced.

ガイドワイヤの芯線は、先端側の擬弾性特性を有する第1芯線と、後端側の加工誘起マルテンサイト変態相を有するオーステナイト系ステンレス鋼線の第2芯線径大部を有する第2芯線と、第1芯線の後端側と第2芯線の先端側とを接続した接続部とを備える。
第1芯線の芯線後端径大部に対する第2芯線の第2芯線径大部のねじり剛性比(第2芯線の第2芯線径大部のねじり剛性/第1芯線の芯線後端径大部のねじり剛性)が1を超え5以下である。
この理由は、ステンレス鋼線よりも横弾性係数が低く、ねじり剛性の低い第1芯線の後端側に、第1芯線よりも横弾性係数が高く、ねじり剛性の高い加工誘起マルテンサイト変態相を有するオーステナイト系ステンレス鋼線から成る第2芯線を接続することにより、第1芯線の先端側への回転伝達性の向上を補完する為である。
The core wire of the guide wire includes a first core wire having pseudo-elastic characteristics on the front end side, a second core wire having a second core wire diameter large portion of an austenitic stainless steel wire having a work-induced martensitic transformation phase on the rear end side, A connecting portion connecting the rear end side of the first core wire and the front end side of the second core wire;
Torsional rigidity ratio of the second core wire diameter large portion of the second core wire to the core wire rear end large diameter portion of the first core wire (torsional rigidity of the second core wire large diameter portion of the second core wire / core wire rear end diameter large portion of the first core wire Torsional rigidity) of more than 1 and 5 or less.
The reason for this is that a work-induced martensitic transformation phase having a lower transverse elastic modulus than the stainless steel wire and a lower torsional rigidity and a higher torsional rigidity and a higher transverse elastic modulus than the first core wire is provided on the rear end side of the first core wire. This is because the second core wire made of an austenitic stainless steel wire is connected to supplement the improvement of the rotation transmission to the tip side of the first core wire.

接続部の接続が、第1芯線の後端と第2芯線の先端とをろう付け接合、又は溶接接合による接続である。
この理由は、接続部での外径の径大化を防いで、接続部での画像診断用カテーテル等との摺動性を円滑にして、かつ横弾性係数が低くねじり剛性の低い第1芯線の後端側に、横弾性係数が高くねじり剛性の高い第2芯線を接続することにより第1芯線の先端側への回転伝達性の向上を補完する為である。
The connection of the connecting portion is a connection by brazing or welding joining the rear end of the first core wire and the tip of the second core wire.
The reason is that the outer diameter of the connecting portion is prevented from being increased, the slidability with the diagnostic imaging catheter or the like is smoothed at the connecting portion, and the first core wire has a low transverse elastic modulus and low torsional rigidity. This is because the second core wire having a high transverse elastic coefficient and high torsional rigidity is connected to the rear end side of the rear end side to supplement the improvement of the rotation transmission to the front end side of the first core wire.

第1芯線は、後端に後端接続径小凸部を備え、第2芯線は、先端に先端接続径小凸部を備える。
接続部の接続が、擬弾性特性を有する管状部材の内側に、一方の側から第1芯線の後端接続径小凸部を挿入し、他方の側から第2芯線の先端接続径小凸部を挿入して、管状部材と後端接続径小凸部と先端接続径小凸部とを接着接合、又は溶接接合のいずれか一つ又は双方による接続である。
この理由は、ねじり剛性の高い第2芯線からねじり剛性の低い第1芯線への横弾性係数の差に伴う接続部でのねじり応力の集中を防ぐとともに、接続部でのねじり変形を防ぎ、かつ横弾性係数が低く、ねじり剛性の低い第1芯線の後端側に、横弾性係数が高くねじり剛性の高い第2芯線を接続することにより、第1芯線の先端側への回転伝達性の向上を補完する為である。
The first core wire includes a rear end connection diameter small convex portion at the rear end, and the second core wire includes a front end connection diameter small convex portion at the front end.
The connecting portion is connected to the inner side of the tubular member having pseudo-elastic properties by inserting the rear end connecting diameter small convex portion of the first core wire from one side, and the leading end connecting diameter small convex portion of the second core wire from the other side. Is inserted, and the tubular member, the rear end connection diameter small convex portion, and the front end connection diameter small convex portion are connected by either one or both of adhesive bonding and welding bonding.
The reason for this is to prevent the concentration of torsional stress at the connection part due to the difference in the transverse elastic modulus from the second core wire with high torsional rigidity to the first core line with low torsional rigidity, and torsional deformation at the connection part, and By connecting a second core wire having a high transverse elastic modulus and a high torsional rigidity to the rear end side of the first core wire having a low transverse elastic modulus and a low torsional rigidity, the transmission of rotation to the tip side of the first core wire is improved. It is for complementing.

光干渉断層画像診断装置は、光プローブを回転させながら後退させるスキャナ及びプルバック部と光プローブからの測定データを処理して画像を表示する操作制御装置とを有する。画像診断用カテーテルに用いる医療用ガイドワイヤと画像診断用カテーテルと光干渉断層画像診断装置との組立体である。
これにより、生体内の水による光吸収の極めて少ない波長を用いている為、光が生体組織の深部まで到達し易く、又ガイドワイヤの芯線中間細径部の外周に形成された潤滑性物質が親水性被膜であれば、水による光吸収は極めて少なく、その結果、術者は従来品よりも鮮明な断層画像を得て、病変部の症状を認識することができ、病変部の見落とし、誤診等を防ぐことができる。
The optical coherence tomography diagnostic apparatus has a scanner that pulls back the optical probe while rotating it, a pullback unit, and an operation control device that processes measurement data from the optical probe and displays an image. It is an assembly of a medical guide wire used for an imaging diagnostic catheter, an imaging diagnostic catheter, and an optical coherence tomographic imaging apparatus.
As a result, since a wavelength with very little light absorption by water in the living body is used, the light easily reaches the deep part of the living tissue, and the lubricating substance formed on the outer periphery of the core wire intermediate small diameter part of the guide wire With a hydrophilic coating, light absorption by water is extremely low, and as a result, the surgeon can obtain clearer tomographic images than conventional products and recognize the symptoms of the lesion, oversight of the lesion, misdiagnosis Etc. can be prevented.

本発明の画像診断用カテーテルに用いる医療用ガイドワイヤと画像診断用カテーテルとの組立体を示す。1 shows an assembly of a medical guide wire and a diagnostic imaging catheter used in the diagnostic imaging catheter of the present invention. 図1の組立体の使用状態を示す先端部の要部拡大一部切欠き側面図である。It is a principal part expansion partly notched side view of the front-end | tip part which shows the use condition of the assembly of FIG. 本発明の医療用ガイドワイヤの第1実施形態の全体を示す一部切欠き側面図である。1 is a partially cutaway side view showing an entire first embodiment of a medical guidewire of the present invention. 本発明の医療用ガイドワイヤについて、第1芯線の芯線後端径大部に対する芯線中間細径部のねじり剛性比を示す。About the medical guide wire of this invention, the torsional rigidity ratio of the core wire intermediate | middle thin diameter part with respect to the core wire rear end large diameter part of a 1st core wire is shown. 本発明の医療用ガイドワイヤについて、コイル体に対する芯線中間細径部の表面積比を示す。About the medical guidewire of this invention, the surface area ratio of the core wire middle thin diameter part with respect to a coil body is shown. 本発明の医療用ガイドワイヤの他の実施形態の後端側を示す一部切欠き側面図で、図示(イ)は第2実施形態、図示(ロ)は第3実施形態を示す。FIG. 4 is a partially cutaway side view showing a rear end side of another embodiment of the medical guide wire of the present invention, in which (A) shows the second embodiment, and (B) shows the third embodiment. 本発明の画像診断用カテーテルに用いる医療用ガイドワイヤと、光干渉断層画像診断用カテーテルと、光干渉断層画像診断装置との組立体を示す。1 shows an assembly of a medical guide wire, an optical coherence tomographic image diagnostic catheter, and an optical coherence tomographic image diagnostic apparatus used for the diagnostic imaging catheter of the present invention.

以下本発明のガイドワイヤ等の実施形態について説明する。  Hereinafter, embodiments of the guide wire and the like of the present invention will be described.

図1は、本発明の画像診断用カテーテルに用いるガイドワイヤと画像診断用カテーテル(以下カテーテルという)との組立体を示す。図2は、図1の組立体の使用状態を示す先端部の要部拡大一部切欠き側面図である。図3は、本発明のガイドワイヤの第1実施形態の全体を示す一部切欠き側面図である。  FIG. 1 shows an assembly of a guide wire and a diagnostic imaging catheter (hereinafter referred to as a catheter) used in the diagnostic imaging catheter of the present invention. FIG. 2 is an enlarged partial cutaway side view of a main part of a tip portion showing a use state of the assembly of FIG. 1. FIG. 3 is a partially cutaway side view showing the entire first embodiment of the guide wire of the present invention.

図1に示す組立体80は、ガイドワイヤ1とカテーテル10とを備え、これらを組み立てた状態にして生体管腔内で使用される。尚、生体管腔は特に限定しないが、本実施形態では、血管200とする。カテーテル10は、図1に示すように、血管内へ挿入される長尺円筒状のカテーテルシース14と、カテーテルシース14の先端にガイドワイヤ1を挿通する円筒状のガイドワイヤ挿通部12と、術者が操作する為に手元側(後端側)に配置されるコネクタ13から成る。  An assembly 80 shown in FIG. 1 includes a guide wire 1 and a catheter 10 and is used in a living body lumen in an assembled state. Although the living body lumen is not particularly limited, it is assumed to be a blood vessel 200 in this embodiment. As shown in FIG. 1, the catheter 10 includes a long cylindrical catheter sheath 14 to be inserted into a blood vessel, a cylindrical guide wire insertion portion 12 for inserting the guide wire 1 into the distal end of the catheter sheath 14, and a surgical operation. It consists of a connector 13 arranged on the hand side (rear end side) for the user to operate.

カテーテルシース14の管腔内には、超音波を送信・受信するプローブ11bと、プローブ11bの回転力を伝達する駆動シャフト11cとのイメージングコア11がカテーテルシース14の全長にわたって挿通されている。  An imaging core 11 including a probe 11b that transmits and receives ultrasonic waves and a drive shaft 11c that transmits the rotational force of the probe 11b is inserted through the entire length of the catheter sheath 14 into the lumen of the catheter sheath 14.

コネクタ13は、カテーテルシース14と一体接合されたシースコネクタ13aと、駆動シャフト11cを回転可能に保持する駆動シャフトコネクタ13bから成り、駆動シャフトコネクタ13bは、図示矢印で示すように先端のイメージングコア11と共にスキャナ及びプルバック部102(図7)を用いて後退できる構造となっている。  The connector 13 includes a sheath connector 13a integrally joined with the catheter sheath 14 and a drive shaft connector 13b that rotatably holds the drive shaft 11c. The drive shaft connector 13b is formed at the distal end imaging core 11 as indicated by an arrow in the drawing. At the same time, the scanner and pullback unit 102 (FIG. 7) can be used to move backward.

図2は、ガイドワイヤ1とカテーテル10との組立体80の先端部が、血管200で使用される状態を示す。カテーテルシース14の先端に備えられたガイドワイヤ挿通部12へ、ガイドワイヤ1の後端から挿入して、カテーテル10をガイドワイヤ1に沿わせて血管内の病変部へ配置する。  FIG. 2 shows a state in which the distal end portion of the assembly 80 of the guide wire 1 and the catheter 10 is used in the blood vessel 200. The catheter 10 is inserted into the guide wire insertion portion 12 provided at the distal end of the catheter sheath 14 from the rear end of the guide wire 1, and the catheter 10 is disposed along the guide wire 1 at a lesion in the blood vessel.

カテーテルシース14の管腔内のプローブ11bは、超音波振動子11eと、超音波振動子11eを保持するハウジング11dから成る。生体組織の断層画像の撮影は、スキャナ及びプルバック部102を用いて、カテーテル10に備えられたプローブ11bを駆動シャフト11cにより回転させながら後端側へ一定範囲後退させて撮影し、病変部の血管200の断層画像を得ている。かかる場合において、ガイドワイヤ1は、血管200の内壁とカテーテルシース14との間にあり、プローブ11bを回転させながら一定距離後退させる全ての範囲内にガイドワイヤ1が存在する為、断層画像内にガイドワイヤ1に起因する明度の低い暗色のバックシャドーが現れる。  The probe 11b in the lumen of the catheter sheath 14 includes an ultrasonic transducer 11e and a housing 11d that holds the ultrasonic transducer 11e. The tomographic image of the living tissue is imaged by using the scanner and the pullback unit 102 to image the probe 11b provided in the catheter 10 while moving the probe 11b back to the rear end side while rotating it by the drive shaft 11c. 200 tomographic images are obtained. In such a case, the guide wire 1 is between the inner wall of the blood vessel 200 and the catheter sheath 14, and the guide wire 1 exists in the entire range in which the probe 11 b is retracted by a certain distance while being rotated. A dark back shadow of low brightness due to the guide wire 1 appears.

図3は、本発明の第1実施形態のガイドワイヤ1の全体を示し、ガイドワイヤ1は、後端部1Aと中間部1Bと先端部1Cから成り、芯線とコイル体3とふっ素樹脂被膜5と潤滑性被膜6を有する。第1実施形態のガイドワイヤ1の芯線は、先端側の第1芯線2Aと後端の後端接続径小凸部27をさす。  FIG. 3 shows the entire guide wire 1 according to the first embodiment of the present invention. The guide wire 1 includes a rear end portion 1A, an intermediate portion 1B, and a front end portion 1C. The core wire, the coil body 3, and the fluororesin coating 5 And a lubricating coating 6. The core wire of the guide wire 1 of the first embodiment refers to the first core wire 2A on the front end side and the rear end connecting diameter small convex portion 27 on the rear end.

後端部1Aは、接続部7(図6)を設けて長手方向の長さを延長させる後端接続径小凸部27と、後端側に第1芯線2Aの最大外径を備えた芯線後端径大部21を有し、中間部1Bは、第1芯線2Aの中間第1テーパ部22、中間第1等径部23、中間第2テーパ部24、芯線中間細径部25を備え、先端部1Cは、第1芯線2Aの先端第1テーパ部26a、先端第1等径部26bから成る芯線先端径小部26と、コイル体3と、第1芯線2Aとコイル体3とを接合する先端接合部4a及び後端接合部4bとを備えている。  The rear end portion 1A is provided with a connection portion 7 (FIG. 6) to extend the length in the longitudinal direction, and a rear end connection diameter small convex portion 27, and a core wire having the maximum outer diameter of the first core wire 2A on the rear end side. The intermediate portion 1B includes an intermediate first taper portion 22, an intermediate first constant diameter portion 23, an intermediate second taper portion 24, and a core wire intermediate small diameter portion 25 of the first core wire 2A. The tip portion 1C includes a tip end taper portion 26a of the first core wire 2A, a core tip end diameter small portion 26 including a tip first constant diameter portion 26b, the coil body 3, and the first core wire 2A and the coil body 3. A front end joint portion 4a and a rear end joint portion 4b to be joined are provided.

第1芯線2Aは、芯線後端径大部21と芯線中間細径部25と芯線先端径小部26を有し、後端側から先端側へ徐変縮径する部分を有している。コイル体3は、芯線先端径小部26の先端第1テーパ部26aの先端側と先端第1等径部26bが貫挿し、接合部材を用いてコイル体3の先端と先端第1等径部26bの先端とを接合して先端接合部4aを形成し、コイル体3の後端と先端第1テーパ部26aの後端側とを接合して後端接合部4bを形成する。尚、コイル体3の最大外径を仮想線(図示点線)で結んだ円筒体は、後述する仮想コイル円筒体30(図3(ロ))を示す。  The first core wire 2 </ b> A has a core wire rear end large diameter portion 21, a core wire intermediate small diameter portion 25, and a core wire front end diameter small portion 26, and has a portion that gradually changes from the rear end side to the front end side. In the coil body 3, the tip side of the tip first taper portion 26a of the core wire tip diameter small portion 26 and the tip first constant diameter portion 26b are inserted, and the tip of the coil body 3 and the tip first constant diameter portion are joined using a joining member. The tip end of the coil body 3 is joined to the rear end side of the tip first tapered portion 26a to form the tail end joined portion 4b. A cylindrical body in which the maximum outer diameter of the coil body 3 is connected by a virtual line (illustrated dotted line) indicates a virtual coil cylindrical body 30 (FIG. 3 (B)) described later.

ふっ素樹脂被膜5は、後端部1Aの芯線後端径大部21と中間部1Bの中間第1テーパ部22、中間第1等径部23、中間第2テーパ部24の外周に形成されている。潤滑性被膜6は、少なくとも中間部1Bの芯線中間細径部25と先端部1C(先端第1テーパ部26aの後端側とコイル体3と先端接合部4a)の外周に形成されている。  The fluororesin coating 5 is formed on the outer circumference of the core wire rear end large diameter portion 21 of the rear end portion 1A, the intermediate first taper portion 22, the intermediate first equal diameter portion 23, and the intermediate second taper portion 24 of the intermediate portion 1B. Yes. The lubricating coating 6 is formed at least on the outer periphery of the core wire intermediate small diameter portion 25 and the tip portion 1C (the rear end side of the tip first taper portion 26a, the coil body 3, and the tip joint portion 4a) of the intermediate portion 1B.

芯線は、全長L0が1914mm(第1芯線2Aの長手方向の長さは1900mm)、後端部1Aの芯線後端径大部21の外径D1は0.3556mm(0.014インチ)、長手方向の長さL1は1500mmである。
中間部1Bの芯線中間細径部25の外径D2は0.225mm、長手方向の長さL2は100mm、先端接合部4aの先端から芯線中間細径部25の先端端部までの長さL3は50mmである。この芯線中間細径部25は、図2で示すように血管200の断層画像撮影時に、カテーテル10に備えられたプローブ11bが後退する実用範囲(符号L5)に少なくとも位置し、芯線中間細径部25の長さL2は、実用範囲の長さL5を超えている。
中間部1Bの中間第1テーパ部22、中間第1等径部23、中間第2テーパ部24の外径は、0.3556mmから0.225mmへ徐変縮径する。
先端部1Cの先端第1テーパ部26aの長手方向の長さが40mm、外径は0.225mmから0.080mmへ徐変縮径し、先端第1等径部26bの外径D3は0.080mmの等径で長手方向の長さは10mmである。尚、先端第1等径部26bは、外径D3の等径部分に押圧加工を行い、横断面を矩形形状としてもよい。
The core wire has a total length L0 of 1914 mm (the length of the first core wire 2A in the longitudinal direction is 1900 mm), the outer diameter D1 of the core wire rear end large diameter portion 21 of the rear end portion 1A is 0.3556 mm (0.014 inch), and the length The length L1 in the direction is 1500 mm.
The outer diameter D2 of the core wire intermediate small diameter portion 25 of the intermediate portion 1B is 0.225 mm, the length L2 in the longitudinal direction is 100 mm, and the length L3 from the tip of the tip joint portion 4a to the tip end portion of the core wire intermediate thin diameter portion 25. Is 50 mm. As shown in FIG. 2, the core wire intermediate small diameter portion 25 is located at least in a practical range (reference numeral L5) in which the probe 11b provided in the catheter 10 is retracted when taking a tomographic image of the blood vessel 200. The length L2 of 25 exceeds the length L5 in the practical range.
The outer diameters of the intermediate first tapered portion 22, the intermediate first equal diameter portion 23, and the intermediate second tapered portion 24 of the intermediate portion 1B are gradually changed from 0.3556 mm to 0.225 mm.
The length in the longitudinal direction of the tip first taper portion 26a of the tip portion 1C is 40 mm, the outer diameter gradually changes from 0.225 mm to 0.080 mm, and the outer diameter D3 of the tip first constant diameter portion 26b is 0. It has an equal diameter of 080 mm and a length in the longitudinal direction of 10 mm. Note that the first constant diameter portion 26b at the tip may be subjected to a pressing process on an equal diameter portion of the outer diameter D3 and the cross section may be rectangular.

第1芯線2Aは、擬弾性特性を有するNiTi合金、NiTi系合金等を用いる。ここでいう擬弾性特性とは、原子間隔の変化に起因する弾性以外の、例えば双晶変形等の機構で生じる見かけ弾性特性のことをいい、形状記憶効果、及び超弾性(変態擬弾性又は双晶擬弾性)を含む。
具体的には、特公平2−24548号公報等でみられるような超弾性金属(NiTi合金)、特公平6−83726号公報等でみられるような加工硬化型NiTi合金、特開2001−164348号公報等でみられるような広ひずみ範囲弾性NiTi系合金、特開2002−69555号公報等でみられるような線形弾性NiTi系合金等である。
擬弾性特性を有するNiTi合金、NiTi系合金としては、Niが48at%〜52.0at%で残部がTiのNiTi合金、Niが48at%〜52.0at%含有し、さらにCr、Fe、Co、Mo、V、Alの中から1種、又は2種以上を0.05at%〜3.0at%含有し、残部がTiから成るNiTi系合金、Niが36.0at%〜48.0at%含有し、さらにCuが5.0at%〜12.0at%含有し、残部がTiから成るNiTi系合金等である。
For the first core wire 2A, a NiTi alloy, a NiTi alloy or the like having pseudoelastic characteristics is used. The pseudoelastic property here refers to an apparent elastic property generated by a mechanism such as twin deformation other than the elasticity caused by the change in atomic spacing, and includes a shape memory effect and superelasticity (transformation pseudoelasticity or twinning). Crystal pseudoelasticity).
Specifically, a superelastic metal (NiTi alloy) as found in JP-B-2-24548 and the like, a work-hardening type NiTi alloy as found in JP-B-6-83726, and the like, Japanese Patent Application Laid-Open No. 2001-164348 A wide-strain-range elastic NiTi-based alloy such as that disclosed in Japanese Patent Publication No. 2002-69555, and a linear elastic NiTi-based alloy such as that disclosed in Japanese Patent Application Laid-Open No. 2002-69555.
NiTi alloys having pseudoelastic properties, NiTi-based alloys include NiTi alloys with Ni of 48 at% to 52.0 at% and the balance of Ti, Ni containing 48 at% to 52.0 at%, and Cr, Fe, Co, NiTi alloy containing 0.05 at% to 3.0 at% of one or more of Mo, V, and Al with the balance being Ti, and 36.0 at% to 48.0 at% of Ni. Further, NiTi alloy or the like containing 5.0 at% to 12.0 at% of Cu and the balance being Ti.

コイル体3は、線直径t1が0.060mmで一定の線直径をもつ線材を用いて巻回成形されている。コイル体3は、最小外径A1が0.291mm、最大外径A2が0.3556mmで巻回成形し、長手方向の長さは35mmである。また、コイル体3のうち後端側の10mmは先端側へ向かって徐変拡径する密巻きの傾斜部3aで、先端側の25mmは外径A2が0.3556mmの等径で、線間間隙が線直径t1の1.20倍以上1.90倍以下の疎巻きの等径部3bである。
コイル体3は、タングステン、金、白金、又はドープタングステン、金、白金にニッケル等を含む放射線不透過の線材を巻回成形したコイルである。又、先端側が放射線不透過の線材とし、後端側をステンレス鋼線等の放射線透過の線材を用いて巻回成形したコイルとしてもよい。
The coil body 3 is formed by winding using a wire having a constant wire diameter with a wire diameter t1 of 0.060 mm. The coil body 3 is wound and formed with a minimum outer diameter A1 of 0.291 mm and a maximum outer diameter A2 of 0.3556 mm, and the length in the longitudinal direction is 35 mm. In addition, 10 mm on the rear end side of the coil body 3 is a tightly wound inclined portion 3 a that gradually increases and expands toward the front end side, and 25 mm on the front end side has an equal diameter with an outer diameter A2 of 0.3556 mm. The gap is a sparsely wound equal-diameter portion 3b having a wire diameter t1 of 1.20 times to 1.90 times.
The coil body 3 is a coil formed by winding a radiopaque wire containing tungsten, gold, platinum, doped tungsten, gold, platinum, nickel, or the like. Alternatively, the front end may be a radiopaque wire, and the rear end may be a coil formed by using a radiolucent wire such as a stainless steel wire.

潤滑性被膜6は、シリコーンオイルによる被膜、又は湿潤時に潤滑特性を示す親水性物質による親水性被膜としてもよい。
シリコーンオイルとしては、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、反応性シリコーンオイルであり、好ましくは反応性シリコーンオイルである。この理由は、金属線材(芯線中間細径部25、芯線先端径小部26、コイル体3等)との密着性が高いからである。
The lubricating coating 6 may be a coating made of silicone oil or a hydrophilic coating made of a hydrophilic substance that exhibits lubricating properties when wet.
Examples of the silicone oil include dimethyl silicone oil, methylphenyl silicone oil, and reactive silicone oil, preferably reactive silicone oil. This is because the adhesiveness with the metal wire (core wire intermediate small diameter part 25, core wire tip small diameter part 26, coil body 3, etc.) is high.

親水性被膜の親水性物質としては、カルボキシメチルセルロース等のセルロース系高分子物質、メチルビニルエーテル無水マレイン酸共重合体等の無水マレイン酸高分子物質、ポリエチレンオキサイド等のポリエチレンオキサイド系高分子物質、ポリビニルピロリドン等のアクリルアミド系高分子物質等である。又、親水性物質を用いた親水性被膜の膨潤率(膨潤状態の膜厚から乾燥状態の膜厚を差し引いた値の百分率)は20%から500%であり、膨潤率が高い程(親水性物質による水性の膜厚が厚い程)親水性被膜の膜厚は増大し、摺動性は向上する傾向がみられる。  Examples of the hydrophilic substance for the hydrophilic coating include cellulose polymer substances such as carboxymethyl cellulose, maleic anhydride polymer substances such as methyl vinyl ether maleic anhydride copolymer, polyethylene oxide polymer substances such as polyethylene oxide, and polyvinylpyrrolidone. Such as acrylamide polymer materials. In addition, the swelling ratio of the hydrophilic film using a hydrophilic substance (percentage of the value obtained by subtracting the film thickness in the dry state from the film thickness in the swollen state) is 20% to 500%, and the higher the swelling rate (the hydrophilic property) There is a tendency that the thicker the water-based film is, the more the hydrophilic film is thickened and the slidability is improved.

図4は、本発明の第1実施形態のガイドワイヤ1において、芯線後端径大部21に対する芯線の第1芯線2Aの「ねじり剛性比」を示し、図5は、コイル体3に対する芯線中間細径部25の「表面積比」を示す。  4 shows the “torsional rigidity ratio” of the first core wire 2A of the core wire with respect to the core wire rear end large diameter portion 21 in the guide wire 1 of the first embodiment of the present invention, and FIG. The “surface area ratio” of the small diameter portion 25 is shown.

断層画像を得る際には、図2に示すように後退するプローブ11bと血管200の内壁との間にガイドワイヤ1が存在する為、断層画像内のガイドワイヤ1に起因する明度の低い暗色のバックシャドーが現れる。
一般に、ガイドワイヤ1の、病変部での通過性と術者への応答性を高める為には、例えば芯線の第1芯線2Aの機械的強度特性のうち、特にねじり剛性を高くする必要があり、ねじり剛性を高くする為には第1芯線2Aの外径をより太くする必要がある。
その一方で、第1芯線2Aの外径をより太くすれば、これに伴ってコイル体の外径も大きくなり断層画像内にガイドワイヤに起因する明度の低い、強い暗色のバックシャドーがより拡大して現れることとなる。例えば、特許文献2のガイドワイヤは、先端側に外径が約0.360mm、長手方向の長さが300mmの外側コイルが配置されていて、このことは断層画像撮影時に、プローブ11bが後退する実用範囲(図2符号L5)、及び長さL5を超えて外側コイルが配置されていることとなる。これにより、撮影した断層画像内には、外径が約0.360mmの外側コイルに起因する明度の低い、強い暗色のバックシャドーが現れることとなる。
この為、本発明は、機械的強度特性については「ねじり剛性比」を、断層画像内のバックシャドーについては「表面積比」に着目して、数多くの実験を重ねた結果、この「ねじり剛性比」と「表面積比」の双方が後述する所定の範囲を満たすことにより、相反する技術課題を克服できることを見出した発明である。
When obtaining a tomographic image, since the guide wire 1 exists between the probe 11b retracting as shown in FIG. 2 and the inner wall of the blood vessel 200, a dark color with low brightness due to the guide wire 1 in the tomographic image is obtained. A back shadow appears.
In general, in order to improve the passability of the guide wire 1 at the lesioned part and the responsiveness to the surgeon, for example, it is necessary to increase the torsional rigidity among the mechanical strength characteristics of the first core wire 2A of the core wire, for example. In order to increase the torsional rigidity, it is necessary to increase the outer diameter of the first core wire 2A.
On the other hand, if the outer diameter of the first core wire 2A is made larger, the outer diameter of the coil body is increased accordingly, and the strong dark-colored back shadow caused by the guide wire is further enlarged in the tomographic image. Will appear. For example, in the guide wire of Patent Document 2, an outer coil having an outer diameter of about 0.360 mm and a length in the longitudinal direction of 300 mm is arranged on the distal end side, which means that the probe 11b moves backward during tomographic imaging. The outer coil is disposed beyond the practical range (L5 in FIG. 2) and the length L5. As a result, in the photographed tomographic image, a strong dark-colored back shadow with low brightness due to the outer coil having an outer diameter of about 0.360 mm appears.
For this reason, the present invention has focused on the “torsional rigidity ratio” for the mechanical strength characteristics and the “surface area ratio” for the back shadow in the tomographic image. And “surface area ratio” satisfy the predetermined range described later, and the present invention has found that conflicting technical problems can be overcome.

図4は、ガイドワイヤ1について芯線の第1芯線2Aの芯線後端径大部21に対する「ねじり剛性比」を示す。
横軸にガイドワイヤ1の第1芯線2Aの各部位の長手方向の位置を示し、縦軸に第1芯線2Aの芯線後端径大部21に対する「第1芯線2Aの各部位(符号21〜26)のねじり剛性比」を示す。
ここでいう「第1芯線2Aの各部位(符号21〜26)のねじり剛性比」とは、第1芯線2Aの芯線後端径大部21に対する第1芯線2Aの各部位(符号21〜26)のねじり剛性比(各部位のねじり剛性/芯線後端径大部のねじり剛性)のことをいう。
芯線後端径大部21のねじり剛性をK1、横弾性係数をG1、断面二次極モーメントをIp1、外径をD1とすると、芯線後端径大部21の断面二次極モーメントIp1が(π×D1/32)で表されることから、芯線後端径大部21のねじり剛性K1は、
K1=G1×(π×D1/32) ・・・(1)
関係式(1)で表すことができる。
FIG. 4 shows the “torsional rigidity ratio” of the first core wire 2 </ b> A of the guide wire 1 with respect to the core wire rear end large diameter portion 21.
The horizontal axis indicates the position in the longitudinal direction of each part of the first core wire 2A of the guide wire 1, and the vertical axis indicates “each part of the first core wire 2A (reference numerals 21 to 21) relative to the core rear end diameter large portion 21 of the first core wire 2A. 26) ”.
Here, “the torsional rigidity ratio of each part (reference numerals 21 to 26) of the first core wire 2A” means each part (reference numerals 21 to 26) of the first core wire 2A with respect to the core wire rear end large diameter portion 21 of the first core wire 2A. ) Torsional rigidity ratio (torsional rigidity of each part / torsional rigidity of large diameter of rear end of core wire).
When the torsional rigidity of the core wire rear end large portion 21 is K1, the transverse elastic modulus is G1, the cross-sectional secondary pole moment is Ip1, and the outer diameter is D1, the cross-sectional secondary pole moment Ip1 of the core wire rear end large portion 21 is ( since represented by π × D1 4/32), the torsional rigidity K1 of the core rear large-diameter portion 21,
K1 = G1 × (π × D1 4/32) ··· (1)
It can be expressed by the relational expression (1).

次に、芯線中間細径部25のねじり剛性をK2、横弾性係数をG11、断面二次極モーメントをIp2、外径をD2とすると、芯線中間細径部25の断面二次極モーメントIp2が(π×D2/32)で表されることから、前記関係式(1)と同様に芯線中間細径部25のねじり剛性K2は、
K2=G11×(π×D2/32) ・・・(2)
関係式(2)で表すことができる。
Next, assuming that the torsional rigidity of the core wire intermediate small-diameter portion 25 is K2, the transverse elastic modulus is G11, the cross-sectional secondary pole moment is Ip2, and the outer diameter is D2, the cross-sectional secondary pole moment Ip2 of the core wire intermediate thin-diameter portion 25 is from being represented by (π × D2 4/32) , the torsional rigidity K2 of the equation (1) as well as core intermediate small diameter portion 25,
K2 = G11 × (π × D2 4/32) ··· (2)
It can be expressed by the relational expression (2).

そして、芯線後端径大部21のねじり剛性K1に対する芯線中間細径部25のねじり剛性K2のねじり剛性比K2/K1(芯線中間細径部25のねじり剛性/芯線後端経大部21のねじり剛性)は、前記関係式(1)(2)より、
K2/K1=(G11×D2)/(G1×D1)・・・(3)
関係式(3)で表すことができる。
ここで、芯線後端径大部21の横弾性係数G1と芯線中間細径部25の横弾性係数G11とは、同一材質、同一工法で同じ値である為、前記ねじり剛性比K2/K1は、
K2/K1=(D2/D1) ・・・(4)
関係式(4)で表すことができる。
Then, the torsional rigidity ratio K2 / K1 of the torsional rigidity K2 of the core wire intermediate small diameter part 25 to the torsional rigidity K1 of the rear end diameter large part 21 of the core wire (torsional rigidity of the intermediate small diameter part 25 of the core wire / (Torsional rigidity) is obtained from the relational expressions (1) and (2).
K2 / K1 = (G11 × D2 4 ) / (G1 × D1 4 ) (3)
It can be expressed by the relational expression (3).
Here, since the transverse elastic modulus G1 of the core wire rear end large diameter portion 21 and the transverse elastic modulus G11 of the core wire intermediate small diameter portion 25 are the same value with the same material and the same construction method, the torsional rigidity ratio K2 / K1 is ,
K2 / K1 = (D2 / D1) 4 (4)
It can be expressed by the relational expression (4).

図4において、符号21〜26は、第1芯線2Aの芯線後端径大部21から芯線先端径小部26の位置を示す。ねじり剛性比K2/K1は、芯線後端径大部21から芯線中間細径部25までは徐々に緩やかに低下し、芯線中間細径部25を超えて芯線先端径小部26に至ると急激に低下する。外径D2が0.225mm、長手方向の長さL2が100mmの芯線中間細径部25のねじり剛性比K2/K1は、約0.1603である。
そして後述する「表面積比」と併せて、第1芯線2Aの、特に芯線中間細径部25のねじり剛性を最小限に確保しながら断層画像撮影時のガイドワイヤ1に起因するバックシャドーを低減させる為には、芯線後端径大部21に対する芯線中間細径部25のねじり剛性比K2/K1は、0.06565(図示符号X1)以上0.3735(図示符号X2)以下で、好ましくは0.08150以上0.3324以下である。
In FIG. 4, reference numerals 21 to 26 indicate positions from the core wire rear end large diameter portion 21 to the core wire front end small diameter portion 26 of the first core wire 2 </ b> A. The torsional rigidity ratio K2 / K1 gradually decreases gradually from the core wire rear end large diameter portion 21 to the core wire intermediate small diameter portion 25, and suddenly increases beyond the core wire intermediate small diameter portion 25 and reaches the core wire tip small diameter portion 26. To drop. The torsional rigidity ratio K2 / K1 of the core wire intermediate small diameter portion 25 having the outer diameter D2 of 0.225 mm and the longitudinal length L2 of 100 mm is about 0.1603.
In addition to the “surface area ratio” described later, back shadow caused by the guide wire 1 during tomographic imaging is reduced while ensuring the torsional rigidity of the first core wire 2A, in particular, the core wire intermediate small diameter portion 25 to a minimum. Therefore, the torsional rigidity ratio K2 / K1 of the core wire intermediate small diameter portion 25 with respect to the core wire rear end large diameter portion 21 is 0.06565 (reference symbol X1) or more and 0.3735 (display symbol X2) or less, preferably 0. 0.0150 to 0.3324.

図5は、ガイドワイヤ1について芯線の第1芯線2Aのコイル体3に対する「表面積比」を示す。横軸にガイドワイヤ1の第1芯線2Aの各部位の長手方向の位置を示し、縦軸に第1芯線2Aの各部位(符号21〜26a)のコイル体3に対する「表面積比」を示す。
ここでいう「表面積比」とは、コイル体3の最大等径部の外径を仮想線で結んだ円筒体を仮想コイル円筒体30(図3(ロ))とした場合に、仮想コイル円筒体の単位長さ当りの表面積に対する各部位の単位長さ当りの表面積との比(各部位の単位長さ当りの表面積/仮想コイル円筒体の単位長さ当りの表面積)のことであり、以下単に「表面積比」という。コイル体3の最大外径A2は0.3556mm、等径部3bの長手方向の長さは25mmである。そして、仮想コイル円筒体30の外径は、コイル体3の最大外径A2が0.3556mmである為、0.3556mmとなる。
FIG. 5 shows a “surface area ratio” of the first core wire 2 </ b> A of the core wire with respect to the coil body 3 for the guide wire 1. The horizontal axis indicates the longitudinal position of each part of the first core wire 2A of the guide wire 1, and the vertical axis indicates the “surface area ratio” of the respective parts (reference numerals 21 to 26a) of the first core wire 2A with respect to the coil body 3.
The “surface area ratio” referred to here is a virtual coil cylinder when a cylindrical body in which the outer diameter of the maximum equal diameter portion of the coil body 3 is connected by a virtual line is used as the virtual coil cylinder 30 (FIG. 3B). The ratio of the surface area per unit length of each part to the surface area per unit length of the body (surface area per unit length of each part / surface area per unit length of the virtual coil cylinder), and below It is simply called “surface area ratio”. The maximum outer diameter A2 of the coil body 3 is 0.3556 mm, and the length in the longitudinal direction of the equal diameter portion 3b is 25 mm. The outer diameter of the virtual coil cylinder 30 is 0.3556 mm because the maximum outer diameter A2 of the coil body 3 is 0.3556 mm.

仮想コイル円筒体30の単位長さ当りの表面積をSo(以下単に表面積Soという)とし、芯線中間細径部25の単位長さ当りの表面積をS1(以下単に表面積S1という)とすると、仮想コイル円筒体30に対する芯線中間細径部25の表面積比は、S1/Soの関係で表すことができる。
本発明の第1実施形態では、仮想コイル円筒体30と芯線中間細径部25は共に横断面が円形である為、長手方向の単位長さをlとすると、仮想コイル円筒体30の外径がA2で、芯線中間細径部25の外径がD2であることから、仮想コイル円筒体30に対する芯線中間細径部25の表面積比S1/Soは、
S1/So=D2/A2 ・・・(5)
関係式(5)で表すことができる。
本実施形態では、前記表面積比S1/Soが、外径比D2/A2で表すことができる。尚、後述する第2実施形態のガイドワイヤ50、及び第3実施形態のガイドワイヤ60についても、中間部1Bと先端部1Cの構造が同一である為、仮想コイル円筒体30に対する芯線中間細径部25の表面積比S1/Soは、前記関係式(5)で表すことができる。
Assuming that the surface area per unit length of the virtual coil cylindrical body 30 is So (hereinafter simply referred to as surface area So) and the surface area per unit length of the core intermediate thin diameter portion 25 is S1 (hereinafter simply referred to as surface area S1), the virtual coil The surface area ratio of the core wire intermediate small diameter portion 25 to the cylindrical body 30 can be expressed by the relationship of S1 / So.
In the first embodiment of the present invention, since both the virtual coil cylinder 30 and the core wire intermediate small diameter portion 25 have a circular cross section, assuming that the unit length in the longitudinal direction is l, the outer diameter of the virtual coil cylinder 30 is Is A2, and the outer diameter of the core wire intermediate small diameter portion 25 is D2, the surface area ratio S1 / So of the core wire intermediate small diameter portion 25 with respect to the virtual coil cylindrical body 30 is
S1 / So = D2 / A2 (5)
It can be expressed by the relational expression (5).
In the present embodiment, the surface area ratio S1 / So can be expressed by an outer diameter ratio D2 / A2. The guide wire 50 according to the second embodiment and the guide wire 60 according to the third embodiment, which will be described later, have the same structure of the intermediate portion 1B and the tip portion 1C. The surface area ratio S1 / So of the portion 25 can be expressed by the relational expression (5).

図5において、符号21〜26a、3は、第1芯線2Aの芯線後端径大部21から芯線先端径小部26の先端第1テーパ部26a、及びコイル体3の位置を示す。
表面積比は、芯線後端径大部21から芯線中間細径部25まで段階的に減少し、芯線中間細径部25及び芯線先端径小部26の後端側の一部を超えると大きく増大する。外径D2が0.225mm、長手方向の長さL2が100mmの芯線中間細径部25の表面積比S1/Soは、0.633である。この表面積比の値が低い程、暗色のバックシャドーは減少し、断層画像内に現れ難くなる。
そして前述した「ねじり剛性比」と併せて、第1芯線2Aのねじり剛性を最小限に確保しながら断層画像撮影時の断層画像内のガイドワイヤ1に起因するバックシャドーを低減させる為には、仮想コイル円筒体30に対する芯線中間細径部25の表面積比S1/Soは、0.506(図示符号Y1)以上0.781(図示符号Y2)以下で、好ましくは0.534以上0.759以下である。
In FIG. 5, reference numerals 21 to 26 a and 3 indicate the positions of the first core wire 2 </ b> A core wire rear end diameter large portion 21 to the tip first taper portion 26 a of the core wire tip diameter small portion 26 and the coil body 3.
The surface area ratio gradually decreases from the core wire rear end large diameter portion 21 to the core wire intermediate small diameter portion 25 and greatly increases when it exceeds a part of the rear end side of the core wire intermediate small diameter portion 25 and the core wire front end small diameter portion 26. To do. The surface area ratio S1 / So of the core intermediate thin diameter portion 25 having the outer diameter D2 of 0.225 mm and the longitudinal length L2 of 100 mm is 0.633. The lower the surface area ratio is, the darker back shadow is reduced and it is difficult to appear in the tomographic image.
In order to reduce the back shadow caused by the guide wire 1 in the tomographic image at the time of tomographic imaging while ensuring the torsional rigidity of the first core wire 2A to the minimum together with the “torsional rigidity ratio” described above, The surface area ratio S1 / So of the core intermediate thin diameter portion 25 with respect to the virtual coil cylinder 30 is not less than 0.506 (indicated by Y1 in the figure) and not more than 0.781 (indicated by Y2 in the figure), preferably not less than 0.534 and not more than 0.759. It is.

本発明は、図4及び図5で示したように、第1芯線2Aの芯線中間細径部25の、機械的強度特性については「ねじり剛性比」を、断層画像内のバックシャドーについては「表面積比」に着目して、数多くの実験を重ね、その結果に基いて「ねじれ剛性比」と「表面積比」の双方が前述した所定の数値範囲を満たすように構成したことにより、前記相反する技術課題を克服したものである。
即ち、「ねじり剛性比」と「表面積比」の双方が前述した所定の数値範囲を満たすことにより、断層画像撮影時の断層画像内でのガイドワイヤ1に起因するバックシャドーの暗色画像を低減できると同時に、病変部でのガイドワイヤ1の通過性を確保することができる。
In the present invention, as shown in FIGS. 4 and 5, the torsional rigidity ratio of the core wire intermediate small diameter portion 25 of the first core wire 2A is set for the mechanical strength characteristic, and the back shadow in the tomographic image is set for “ By focusing on the “surface area ratio”, a number of experiments were repeated, and based on the results, both the “torsional rigidity ratio” and the “surface area ratio” were configured to satisfy the predetermined numerical range described above. Overcoming technical challenges.
That is, when both the “torsional rigidity ratio” and the “surface area ratio” satisfy the predetermined numerical range described above, the dark image of the back shadow caused by the guide wire 1 in the tomographic image at the time of tomographic imaging can be reduced. At the same time, it is possible to ensure the passage of the guide wire 1 at the lesion.

次に、芯線中間細径部25は、図2で示すように病変部の断層画像撮影時に、カテーテル10に備えられたプローブ11bが断層画像を撮影する為の後退する実用範囲(符号L5)に少なくとも位置し、ガイドワイヤ1の先端接合部4aの先端から後端側へ30mmから200mmの範囲に位置している。例えば、特許文献2のガイドワイヤは、先端から後端側へ外径が約0.360mm、長手方向の長さが300mmの金属製の外側コイルが配置されている。この為、プローブ11bが断層画像を撮影する為の後退する実用範囲のみならずこの範囲を大きく超えて、大きな外径の外側コイル(外径が約0.360mm)が位置し、外側コイルに起因するバックシャドーが強い暗色画像となって断層画像内に現れることとなる。
これに対して本発明のガイドワイヤ1は、断層画像撮影時にプローブ11bが後退する実用範囲内には、特許文献2のような金属製の外側コイル(外径約0.360mm)が位置するのではなく、外径が小さな第1芯線2Aの芯線中間細径部25(外径D2が0.225mm)が位置し、前記特許文献2に対しては、外径が約40%近く下回っている。
この為、ガイドワイヤ1に起因する断層画像内に現れる強い暗色のバックシャドーを大きく低減させることができる。
Next, as shown in FIG. 2, the core wire intermediate small-diameter portion 25 falls within a practical range (reference numeral L <b> 5) in which the probe 11 b included in the catheter 10 is retracted to capture a tomographic image at the time of tomographic imaging of a lesioned portion. It is located at least and is located in the range of 30 mm to 200 mm from the front end to the rear end side of the front end joint portion 4a of the guide wire 1. For example, the guide wire of Patent Document 2 has a metal outer coil having an outer diameter of about 0.360 mm and a length in the longitudinal direction of 300 mm from the front end to the rear end side. For this reason, the outer coil having a large outer diameter (outer diameter is about 0.360 mm) is located not only in the practical range in which the probe 11b takes a tomographic image but also moves backward, and is caused by the outer coil. The back shadow that appears is a strong dark image that appears in the tomographic image.
On the other hand, the guide wire 1 of the present invention has a metal outer coil (outer diameter of about 0.360 mm) as in Patent Document 2 within a practical range where the probe 11b is retracted during tomographic imaging. Rather, the core intermediate thin diameter portion 25 (the outer diameter D2 is 0.225 mm) of the first core wire 2A having a small outer diameter is located, and the outer diameter is about 40% lower than that of Patent Document 2. .
For this reason, the strong dark back shadow which appears in the tomographic image resulting from the guide wire 1 can be greatly reduced.

本発明のガイドワイヤ1の芯線中間細径部25は、外径D2が0.225mm、横断面が円形で、かつ、等径である。この理由は、表面積を小さくして、前記表面積比を低い値とする為である。又、芯線中間細径部25は、先端接合部4aの先端から後端側へ50mmから150mmの範囲に設けられており、長手方向の長さL2が100mmである。この理由は、この範囲であれば断層画像撮影時にカテーテル10に備えられたプローブ11bが後退する実用範囲(L5、図2参照)に、芯線中間細径部25が少なくとも位置するからである。
そして、断層画像撮影時にカテーテル10に備えられたプローブ11bが後退する実用範囲を考慮すると、芯線中間細径部25は、先端接合部4aの先端から後端側へ30mm以上200mm以下に位置していることが好ましい。
従って、芯線中間細径部25は、断層画像撮影時にプローブ11bが後退する実用範囲に少なくとも位置し、断層画像を撮影する為には、プローブ11bが後退する実用範囲を超えて存在していてもよい(図2、符号L2)。又、芯線中間細径部25は、横断面が円形で、長手方向の全長にわたって等径で、先端接合部4aの先端から後端側へ30mm以上200mm以下に位置している。
これにより、断層画像撮影時に、カテーテル10に備えられたプローブ11bが後退する実用範囲に細径で表面積の小さい芯線中間細径部25を配置させ、ガイドワイヤ1に起因するバックシャドーの暗色画像を低減させることができる。尚、ここでいう「中間細径部25の長手方向の全長にわたって等径」とは、公差を含む意味である。具体的には、芯線中間細径部25の長手方向の長さに対して、両端部の外径の許容範囲が基準外径寸法(外径D2)の±3%以内のことをいう。
The core wire intermediate small diameter portion 25 of the guide wire 1 of the present invention has an outer diameter D2 of 0.225 mm, a circular cross section, and an equal diameter. The reason for this is to reduce the surface area and reduce the surface area ratio. Moreover, the core wire intermediate | middle thin diameter part 25 is provided in the range of 50 mm to 150 mm from the front-end | tip end of the front-end | tip junction part 4a, and the length L2 of a longitudinal direction is 100 mm. This is because the core wire intermediate small diameter portion 25 is at least located in a practical range (L5, see FIG. 2) in which the probe 11b provided in the catheter 10 is retracted during tomographic imaging in this range.
Then, considering the practical range in which the probe 11b provided in the catheter 10 is retracted during tomographic imaging, the core wire intermediate small diameter portion 25 is located 30 mm or more and 200 mm or less from the distal end of the distal joint portion 4a to the rear end side. Preferably it is.
Accordingly, the core wire intermediate small diameter portion 25 is located at least in a practical range where the probe 11b is retracted at the time of tomographic imaging, and is present beyond the practical range where the probe 11b is retracted in order to capture a tomographic image. Good (Fig. 2, reference L2). Moreover, the core wire intermediate small diameter portion 25 has a circular cross section, has an equal diameter over the entire length in the longitudinal direction, and is located 30 mm or more and 200 mm or less from the front end to the rear end side of the front end joint portion 4a.
Thereby, at the time of tomographic imaging, the core intermediate thin diameter portion 25 having a small diameter and a small surface area is disposed in a practical range where the probe 11b provided in the catheter 10 is retracted, and a dark image of the back shadow caused by the guide wire 1 is obtained. Can be reduced. The “equal diameter over the entire length in the longitudinal direction of the intermediate small-diameter portion 25” here means that tolerance is included. Specifically, it means that the allowable range of the outer diameter of both end portions is within ± 3% of the reference outer diameter dimension (outer diameter D2) with respect to the length in the longitudinal direction of the core wire intermediate small diameter portion 25.

次に、コイル体3と芯線先端径小部26との接合部の構成について説明する。
芯線中間細径部25の先端側の芯線先端径小部26は、後端外径が0.225mm(外径D2に相当)、先端外径D3が0.080mmで後端側から先端側へ徐変縮径し、断面二次極モーメントもこれに伴って低下する。
図3(ロ)に示すように、コイル体3は、後端が先端第1テーパ部26aの後端側の後端接合部4bで接合され(第1実施形態では、後端接合部4bの先端第1テーパ部26aの外径は約0.171mm)、後端から先端側へ長手方向の長さが10mmの徐変拡径する密巻きの傾斜部3aと、長手方向の長さが25mm、外径0.3556mmで疎巻きの等径部3bから成るコイルである。等径部3bの疎巻きの線間間隙は、線直径t1の1.20倍以上1.90倍以下である。
Next, the structure of the junction part of the coil body 3 and the core wire tip small diameter part 26 is demonstrated.
The core wire tip diameter small portion 26 on the tip side of the core wire intermediate thin diameter portion 25 has a rear end outer diameter of 0.225 mm (corresponding to an outer diameter D2) and a tip outer diameter D3 of 0.080 mm from the rear end side to the tip side. The diameter gradually changes and the cross-sectional secondary pole moment also decreases.
As shown in FIG. 3 (b), the rear end of the coil body 3 is joined at the rear end joining portion 4b on the rear end side of the front end first taper portion 26a (in the first embodiment, the rear end joining portion 4b). The outer diameter of the tip first tapered portion 26a is about 0.171 mm), the closely wound inclined portion 3a having a length of 10 mm in the longitudinal direction from the rear end to the tip side, and the length in the longitudinal direction is 25 mm. This is a coil composed of an equidiameter portion 3b having an outer diameter of 0.3556 mm and a loose winding. The sparsely wound line gap of the equal diameter portion 3b is not less than 1.20 times and not more than 1.90 times the line diameter t1.

そして、本発明のガイドワイヤ1の先端部1Cは、後端接合部4bで接合する芯線先端径小部26の芯線が、後端接合部4bを挟んで後端側から先端側へ徐変縮径するのに伴って、コイル体3の後端側に、後端接合部4bの後端側から先端側へ徐変拡径する密巻きの傾斜部3aを有する。
この理由は、芯線先端径小部26の芯線が後端側から先端側へ徐変縮径するのに伴って、断面二次極モーメントは減少し、先端側のねじり剛性はさらに低下する。この芯線先端径小部26の断面二次極モーメントの低下分を密巻きの傾斜部3aを有するコイル体3で補完する為である。
これにより、芯線先端径小部26のねじり剛性のさらなる低下を防いで、先端側への回転伝達力をコイル体3で補完し、ねじり力による耐疲労特性を向上させることができる。又、断層画像撮影時にコイル体3の後端側の傾斜部3aがガイドワイヤ挿通部12の先端端面に位置する為、屈曲変形時にガイドワイヤ挿通部12との緊密嵌合を可能とし、ガイドワイヤ1の遊動を低減させることができる。
In the distal end portion 1C of the guide wire 1 of the present invention, the core wire of the core wire distal end small portion 26 joined at the rear end joined portion 4b gradually changes from the rear end side to the front end side with the rear end joined portion 4b interposed therebetween. As the diameter increases, the coil body 3 has a tightly wound inclined portion 3a that gradually increases in diameter from the rear end side to the front end side of the rear end joint portion 4b on the rear end side.
This is because, as the core wire of the core wire tip diameter small portion 26 gradually changes in diameter from the rear end side to the tip side, the cross-sectional secondary pole moment decreases, and the torsional rigidity on the tip side further decreases. This is because the coil body 3 having the densely wound inclined portion 3a compensates for the decrease in the cross-sectional secondary pole moment of the core wire tip diameter small portion 26.
As a result, further reduction in the torsional rigidity of the core wire tip diameter small portion 26 can be prevented, the rotational transmission force to the tip side can be supplemented by the coil body 3, and the fatigue resistance characteristics due to the torsion force can be improved. In addition, since the inclined portion 3a on the rear end side of the coil body 3 is located at the tip end face of the guide wire insertion portion 12 at the time of tomographic imaging, the guide wire insertion portion 12 can be closely fitted during bending deformation, and the guide wire 1 idleness can be reduced.

次に図6は、本発明のガイドワイヤの他の実施形態を示し、図示(イ)は第2実施形態のガイドワイヤ50、図示(ロ)は第3実施形態のガイドワイヤ60を示す。
ガイドワイヤ50、60は、第1実施形態のガイドワイヤ1の芯線後端径大部21の後端側に、ステンレス鋼線を用いた第2芯線(2B、2C)を接続部7にて接続して長手方向の長さを延長させた構成から成る。尚、ガイドワイヤ50、60の先端部1Cと中間部1Bとは、ガイドワイヤ1と同一構造である為、図示を省略し、又、後端部1Aと同一構造部材については、同一符号が付してある。
Next, FIG. 6 shows another embodiment of the guide wire according to the present invention. FIG. 6A shows the guide wire 50 of the second embodiment, and FIG. 6B shows the guide wire 60 of the third embodiment.
The guide wires 50 and 60 are connected to the second core wire (2B, 2C) using a stainless steel wire at the rear end side of the large core wire rear end diameter portion 21 of the guide wire 1 according to the first embodiment. Thus, the length of the longitudinal direction is extended. Note that the distal end portion 1C and the intermediate portion 1B of the guide wires 50, 60 have the same structure as that of the guide wire 1, and therefore are not shown. Also, the same reference numerals are assigned to the same structural members as the rear end portion 1A. It is.

ガイドワイヤ50の接続部7は、ガイドワイヤ1の第1芯線2Aの芯線後端径大部21の後端(後端接続径小凸部27を備えていない)と第2芯線2Bの第2芯線径大部21Bの先端とを接合した接合部71を有する。第2実施形態のガイドワイヤ50の芯線は、第1芯線2Aと第2芯線2Bをさす。
第2芯線2Bは、外径D4が0.3556mm(芯線後端径大部21の外径D1と同じ)長さL6が500mm、後端が円弧状の第2芯線径大部21Bと、第2芯線径大部21Bの外周に形成されたふっ素樹脂被膜5を備える。又、潤滑性被膜6は、第1実施形態と同様に、少なくとも中間部1Bの芯線中間細径部25の外周に形成される。好ましくは、中間部1Bと先端部1Cの外周と芯線後端径大部21の外周と接続部7の外周に親水性被膜を用いた潤滑性被膜6を設ける。
この理由は、ガイドワイヤ50の後端から挿入する画像診断用カテーテル10の、特に接続部7での摺動性を向上させる為である。
The connecting portion 7 of the guide wire 50 includes a rear end of the core wire rear end large diameter portion 21 of the first core wire 2A of the guide wire 1 (not provided with the rear end connection diameter small convex portion 27) and a second end of the second core wire 2B. It has the joining part 71 which joined the front-end | tip of the core wire diameter large part 21B. The core wire of the guide wire 50 of the second embodiment indicates the first core wire 2A and the second core wire 2B.
The second core wire 2B has an outer diameter D4 of 0.3556 mm (same as the outer diameter D1 of the core wire rear end large diameter portion 21), a length L6 of 500 mm, and a rear end arc-shaped second core wire large diameter portion 21B, A fluororesin coating 5 is provided on the outer periphery of the two-core wire diameter large portion 21B. Further, the lubricating coating 6 is formed at least on the outer periphery of the core wire intermediate small diameter portion 25 of the intermediate portion 1B, as in the first embodiment. Preferably, the lubricating coating 6 using a hydrophilic coating is provided on the outer periphery of the intermediate portion 1B and the tip portion 1C, the outer periphery of the core wire rear end diameter large portion 21, and the outer periphery of the connection portion 7.
The reason for this is to improve the slidability of the diagnostic imaging catheter 10 inserted from the rear end of the guide wire 50, particularly at the connection portion 7.

ガイドワイヤ50は、擬弾性特性を有する第1芯線2Aの芯線後端径大部21の後端に、第1芯線2Aよりも横弾性係数が大きな加工誘起マルテンサイト変態相を有するオーステナイト系ステンレス鋼線から成る第2芯線2Bを備える。
この理由は、長手方向の長さを延長させた場合であっても、後端側から先端側への回転伝達性の低下を防いで、先端側への回転伝達性を補完する為である。
The guide wire 50 is an austenitic stainless steel having a work-induced martensitic transformation phase having a larger transverse elastic modulus than that of the first core wire 2A at the rear end of the large core wire rear end diameter portion 21 of the first core wire 2A having pseudoelastic properties. A second core wire 2B made of a wire is provided.
The reason is that even if the length in the longitudinal direction is extended, the rotation transmission property from the rear end side to the front end side is prevented from being lowered and the rotation transmission property to the front end side is complemented.

詳しくは、第1芯線2Aの後端側の、加工誘起マルテンサイト変態相を有するオーステナイト系ステンレス鋼線から成る第2芯線2Bの第2芯線径太部21Bのねじり剛性をJ1、横弾性係数をG2、断面二次極モーメントをIp3、外径をD4とすると、断面二次極モーメントIp3が(π×D4/32)で表わされることから、前記関係式(1)と同様に、第2芯線径大部21Bのねじり剛性をJ1は、
J1=G2×(π×D4/32) ・・・(6)
関係式(6)で表すことができる。
そして、第1芯線2Aの芯線後端径大部21のねじり剛性K1が前記関係式(1)で表わされることから、第1芯線2Aの芯線後端径大部21のねじり剛性K1に対する第2芯線2Bの第2芯線径大部21Bのねじり剛性J1のねじり剛性比J1/K1(第2芯線2Bの第2芯線径大部21Bのねじり剛性/第1芯線2Aの芯線後端径大部21のねじり剛性)は、前記関係式(1)(6)より、
J1/K1=(G2×D4)/(G1×D1)・・・(7)
関係式(7)で表すことができる。
Specifically, the torsional rigidity of the second core wire diameter portion 21B of the second core wire 2B made of an austenitic stainless steel wire having a work-induced martensitic transformation phase on the rear end side of the first core wire 2A is J1, and the transverse elastic modulus is G2, sectional secondary polar moment Ip3, when the outer diameter is D4, since the cross-sectional secondary polar moment Ip3 represented by (π × D4 4/32) , similarly to the equation (1), second J1 represents the torsional rigidity of the core wire diameter large portion 21B.
J1 = G2 × (π × D4 4/32) ··· (6)
It can be expressed by the relational expression (6).
Since the torsional rigidity K1 of the large core wire rear end diameter portion 21 of the first core wire 2A is expressed by the relational expression (1), the second to the torsional rigidity K1 of the large core wire rear end diameter portion 21 of the first core wire 2A. Torsional rigidity ratio J1 / K1 of the torsional rigidity J1 of the second core wire diameter large portion 21B of the core wire 2B (torsional rigidity of the second core wire diameter large portion 21B of the second core wire 2B / core wire rear end large diameter portion 21 of the first core wire 2A Torsional rigidity) from the relational expressions (1) and (6),
J1 / K1 = (G2 × D4 4 ) / (G1 × D1 4 ) (7)
It can be expressed by the relational expression (7).

第2実施形態では、第2芯線径大部21Bの外径D4と芯線後端径大部21の外径D1とが共に等しい(外径が共に0.3556mm)ことから、前記関係式(7)は、
J1/K1=G2/G1 ・・・(8)
関係式(8)で表すことができる。
前記関係式(6)等でみられるように、ねじり剛性は横弾性係数に比例し、横弾性係数の値が大きいほどねじり剛性は高くなる。
従って、横弾性係数の低い第1芯線2Aの芯線後端径大部21の長手方向の長さを延長させて用いるよりも、第1芯線2Aよりも大きな横弾性係数をもつオーステナイト系ステンレス鋼線を用いて延長させることのほうが、後端側から先端側への回転伝達性の低下を防ぐことができる。
そしてさらに、オーステナイト系ステンレス鋼線のうち、加工によるマルテンサイト相への変態割合を多くした加工誘起マルテンサイト変態相を有するオーステナイト系ステンレス鋼線からなる第2芯線2Bを用いることにより、後端側から先端側への回転伝達性の低下をより防いで、先端側への回転伝達性の向上を、より補完することができる。
In the second embodiment, since the outer diameter D4 of the second core wire diameter large portion 21B and the outer diameter D1 of the core wire rear end large diameter portion 21 are both equal (both outer diameters are 0.3556 mm), the relational expression (7 )
J1 / K1 = G2 / G1 (8)
It can be expressed by the relational expression (8).
As can be seen from the relational expression (6) and the like, the torsional rigidity is proportional to the transverse elastic modulus, and the torsional rigidity increases as the value of the transverse elastic coefficient increases.
Accordingly, an austenitic stainless steel wire having a larger transverse elastic modulus than the first core wire 2A, rather than extending the length in the longitudinal direction of the core wire rear end large diameter portion 21 of the first core wire 2A having a low transverse elastic modulus. It is possible to prevent a decrease in rotation transmission from the rear end side to the front end side by extending the length using.
Further, by using the second core wire 2B made of an austenitic stainless steel wire having a work-induced martensitic transformation phase in which the transformation ratio to the martensite phase is increased in the austenitic stainless steel wire, the rear end side is obtained. Thus, it is possible to further prevent a decrease in rotation transmission from the tip to the tip side, and to complement the improvement in rotation transmission from the tip side.

そして、加工によるマルテンサイト相への変態割合を多くした加工誘起マルテンサイト変態相を有するオーステナイト系ステンレス鋼線の第2芯線2Bを得る為には、オーステナイト系ステンレス鋼線のNiとCrの化学成分量と縮径伸線加工の加工率(又は総減面率)を特定することにより可能となる。
例えば、SUS304を用いた場合には、NiとCrの添加量をJIS規格の下限値近傍(Niの規格値8.00%〜10.50%に対して8.00%〜8.20%を用いる、又は、Crの規格値18.00%〜20.00%に対して18.0%〜18.20%を用いる、若しくは前記Niが8.00%〜8.20%でCrが18.0%〜18.20%を用いる)とし、かつ、前記加工率を70%以上99.6%以下の縮径伸線加工とする。
これにより、加工によるマルテンサイト相への変態割合を20%以上80%以下にすることができ、横弾性係数を65000Mpaから69500Mpaへ高くすることができる。又、SUS316を用いた場合も同様であり、オーステナイト系ステンレス鋼線については、NiとCrの前記化学成分量と前記加工率とを特定することにより横弾性係数を向上させることができる。
And in order to obtain the 2nd core wire 2B of the austenitic stainless steel wire which has the processing induction martensitic transformation phase which increased the transformation ratio to the martensite phase by processing, the chemical composition of Ni and Cr of an austenitic stainless steel wire It becomes possible by specifying the amount and the processing rate (or total area reduction rate) of the reduced diameter drawing.
For example, when SUS304 is used, the addition amount of Ni and Cr is set near the lower limit of the JIS standard (8.00% to 8.20% compared to the standard value of Ni of 8.00% to 10.50%). Or 18.0% to 18.20% with respect to the standard value of Cr of 18.00% to 20.00%, or the Ni is 8.00% to 8.20% and the Cr is 18. 0% to 18.20% is used), and the reduction rate is 70% or more and 99.6% or less.
Thereby, the transformation rate to the martensite phase by processing can be 20% or more and 80% or less, and the transverse elastic modulus can be increased from 65000 Mpa to 69500 Mpa. The same applies to the case of using SUS316. For the austenitic stainless steel wire, the transverse elastic modulus can be improved by specifying the chemical component amounts of Ni and Cr and the processing rate.

NiとCrの前記化学成分量と前記加工率とを特定したオーステナイト系ステンレス鋼線を用いて、加工によるマルテンサイト相への変態割合を約40%から80%に増大させた場合には、加工誘起マルテンサイト変態相を有するオーステナイト系ステンレス鋼線の第2芯線2Bの横弾性係数G2は、68500Mpaから69500Mpaとなり、平均値は69000Mpaである。
又、擬弾性特性を有する第1芯線2AのNiTi合金等の横弾性係数G1は、40℃でオーステナイト相を示すとき、17650Mpaから21575Mpaで、平均値は19612.5Mpaである。
When the austenitic stainless steel wire in which the chemical component amounts of Ni and Cr and the processing rate are specified is used, the transformation ratio to the martensite phase by processing is increased from about 40% to 80%. The transverse elastic modulus G2 of the second core wire 2B of the austenitic stainless steel wire having an induced martensitic transformation phase is from 68500 Mpa to 69500 Mpa, and the average value is 69000 Mpa.
Further, the transverse elastic modulus G1 of the NiTi alloy or the like of the first core wire 2A having pseudoelasticity is 17650 Mpa to 21575 Mpa when the austenite phase is exhibited at 40 ° C., and the average value is 19612.5 Mpa.

先端側の第1芯線2Aが擬弾性特性を有し、40℃でオーステナイト相を示すNiTi合金等で、後端側の第2芯線2Bが加工誘起マルテンサイト相を有するオーステナイト系ステンレス鋼線である場合に、第1芯線2Aの芯線後端径大部21のねじり剛性K1に対する第2芯線2Bの第2芯線径大部21Bのねじり剛性J1のねじり剛性比J1/K1(第2芯線2Bの第2芯線径大部21Bのねじり剛性/第1芯線の芯線後端径大部21のねじり剛性)は、第2芯線径大部21Bの横弾性係数G2の平均値が69000Mpa、芯線後端径大部21の横弾性係数G1の平均値が19612.5Mpaであることから、前記関係式(8)より、平均値のねじり剛性比J1/K1は、約3.518である。
そして数多くの実験結果から、加工によるマルテンサイト相への変態割合を多くした第2芯線径大部21Bの横弾性係数G2の実用範囲と、擬弾性特性を有する芯線後端径大部21の横弾性係数G1の実用範囲とを併せ考慮すると、第1芯線2Aの芯線後端径大部21に対する第2芯線2Bの第2芯線径大部21Bのねじり剛性比J1/K1は、1を超え5以下である。
この理由は、ねじり剛性比J1/K1が、特に1を下回れば、後端側の第2芯線径大部21Bのねじり剛性が先端側の芯線後端径大部21のねじり剛性よりも低くなり、後端側を回転操作させても回転操作によるねじり溜まりが後端側で発生し易くなり、先端側への回転伝達性が低下する。又、ねじり剛性比J1/K1が5を超えれば、後端側の第2芯線径大部21Bと先端側の芯線後端径大部21とのねじり剛性差が大きくなり、後端側を回転し続けると接続部7を境にして先端側の芯線後端径大部21と芯線後端径大部21よりも細径の中間部1B等にわたって波うち状のうねりが発生し易くなり、このうねりが血管壁、又はカテーテル等のデバイスの内壁と接触して回転抵抗が高くなり、先端側への回転伝達性が低下するからである。
好ましくは、前記ねじり剛性比J1/K1は、1を超え4.5以下で、より好ましくは1を超え4.0以下である。
The first core wire 2A on the front end side is an austenitic stainless steel wire having pseudoelastic properties, such as NiTi alloy showing an austenite phase at 40 ° C., and the second core wire 2B on the rear end side having a work-induced martensite phase. In this case, the torsional rigidity ratio J1 / K1 of the torsional rigidity J1 of the second core wire diameter large portion 21B of the second core wire 2B with respect to the torsional rigidity K1 of the core wire rear end large diameter portion 21 of the first core wire 2A (the second core wire 2B first The torsional rigidity of the two-core-wire-diameter portion 21B / torsional rigidity of the core-wire rear-end large-diameter portion 21 of the first core wire) is 69000 Mpa, the average value of the transverse elastic modulus G2 of the second core-wire-diameter large portion 21B is large. Since the average value of the transverse elastic modulus G1 of the portion 21 is 19612.5 Mpa, the torsional rigidity ratio J1 / K1 of the average value is about 3.518 from the relational expression (8).
Based on many experimental results, the practical range of the transverse elastic modulus G2 of the second core wire diameter large portion 21B, in which the transformation ratio to the martensite phase by processing was increased, and the transverse direction of the core wire rear end large diameter portion 21 having pseudoelastic characteristics. Considering the practical range of the elastic modulus G1 together, the torsional rigidity ratio J1 / K1 of the second core wire diameter large portion 21B of the second core wire 2B to the core wire rear end large diameter portion 21 of the first core wire 2A exceeds 1 and 5 It is as follows.
The reason for this is that if the torsional rigidity ratio J1 / K1 is particularly less than 1, the torsional rigidity of the second core wire large diameter portion 21B on the rear end side becomes lower than the torsional rigidity of the core wire rear end large diameter portion 21 on the front end side. Even if the rear end side is rotated, twist accumulation due to the rotation operation is likely to occur on the rear end side, and the transmission of rotation to the front end side is reduced. If the torsional rigidity ratio J1 / K1 exceeds 5, the difference in torsional rigidity between the second core wire diameter large portion 21B on the rear end side and the core wire rear end large diameter portion 21 on the front end side becomes large, and the rear end side rotates. If it continues, it will become easy to generate | occur | produce a wave-like wave | undulation over the intermediate | middle part 1B etc. of diameter smaller than the core wire rear end diameter large part 21 and the core wire rear end diameter large part 21 on the front end side from the connection part 7. This is because the undulation comes into contact with the blood vessel wall or the inner wall of a device such as a catheter to increase the rotational resistance, and the rotational transmission to the distal end side decreases.
Preferably, the torsional rigidity ratio J1 / K1 is more than 1 and 4.5 or less, more preferably more than 1 and 4.0 or less.

接続部7は、ろう材を用いてろう接接合による接合部71を形成し、又は溶接を用いて接合部71を形成する。ろう材としては、金ろう、銀ろう等の硬ろう、又はSn−Ag系合金等の軟ろう等を用いる。溶接としては、レーザー溶接、電子ビーム溶接等を用いる。又、接合部71の長手方向の長さは、概ね0.1mm〜2mmである。  The connection part 7 forms the joining part 71 by brazing using a brazing material, or forms the joining part 71 using welding. As the brazing material, hard brazing such as gold brazing and silver brazing, or soft brazing such as Sn—Ag alloy is used. As welding, laser welding, electron beam welding or the like is used. Further, the length in the longitudinal direction of the joint portion 71 is approximately 0.1 mm to 2 mm.

ガイドワイヤ60の接続部7は、第1芯線2Aの後端に設けた横断面円形の後端接続径小凸部27と第2芯線2Cの先端に設けた横断面円形の先端接続径小凸部28とを互いに向かい合うように管状部材72の内側へ挿入して接続した管状部材72を備える。第3実施形態のガイドワイヤ60の芯線は、第1芯線2Aと後端接続径小凸部27と第2芯線2Cと先端接続径小凸部28と管状部材72をさす。
第2芯線2Cは、先端に先端接続径小凸部28を備えることを除き、第2実施形態のガイドワイヤ50の第2芯線2Bと寸法(外径D5とD4、長さL7とL6)と材質が同じであり、又第2芯線2Cの第2芯線径大部21Cの外周にふっ素樹脂被膜5を形成する点についても同じである。
後端接続径小凸部27と、先端接続径小凸部28とは、共に寸法と形状は同一で、外径d1、d2が約0.240mm、長さl1、l2は14mmである。
The connecting portion 7 of the guide wire 60 has a small rear end connection diameter convex portion 27 having a circular cross section provided at the rear end of the first core wire 2A and a small front end connection diameter convex portion having a circular cross section provided at the front end of the second core wire 2C. The tubular member 72 is inserted and connected to the inside of the tubular member 72 so as to face each other. The core wire of the guide wire 60 of the third embodiment indicates the first core wire 2A, the rear end connection diameter small convex portion 27, the second core wire 2C, the front end connection diameter small convex portion 28, and the tubular member 72.
The second core wire 2C has dimensions (outer diameters D5 and D4, lengths L7 and L6) and the second core wire 2B of the guide wire 50 of the second embodiment, except that the tip connection diameter small convex portion 28 is provided at the tip. The same is true for the point that the fluororesin coating 5 is formed on the outer periphery of the second core wire diameter large portion 21C of the second core wire 2C.
The rear end connection diameter small convex portion 27 and the front end connection diameter small convex portion 28 have the same size and shape, the outer diameters d1 and d2 are about 0.240 mm, and the lengths l1 and l2 are 14 mm.

接続部7の管状部材72は、外径doが約0.350mm、内径do1が0.250mm、長さL8が30mmで、ステンレス鋼、又はNiTi合金から成る。好ましくは、前記第1芯線2Aと同様に、擬弾性特性を有するNiTi合金、又はNiTi系合金を用いる。
管状部材72と後端接続径小凸部27と先端接続径小凸部28とは、ニトリルゴム系等の接着剤を用い接着接合する。又は、後端接続径小凸部27の外周と先端接続径小凸部28の外周と管状部材72とをレーザー溶接、電子ビーム溶接等の手段を用いて、共に溶接接合する。又、接着接合と溶接接合の双方を用いてもよい。この理由は、管状部材72と後端接続径小凸部27と先端接続径小凸部28とを予め接着接合(仮接着接合で可)することにより、溶接時に後端接続径小凸部27と先端接続径小凸部28と管状部材72との位置ずれを防いで、溶接作業の位置決めを容易にして生産を容易にする為である。
The tubular member 72 of the connecting portion 7 has an outer diameter do of about 0.350 mm, an inner diameter do1 of 0.250 mm, a length L8 of 30 mm, and is made of stainless steel or NiTi alloy. Preferably, similarly to the first core wire 2A, a NiTi alloy or a NiTi alloy having pseudoelastic properties is used.
The tubular member 72, the rear end connection diameter small convex portion 27, and the front end connection diameter small convex portion 28 are adhesively bonded using an adhesive such as a nitrile rubber. Alternatively, the outer periphery of the rear end connection diameter small convex portion 27, the outer periphery of the front end connection diameter small convex portion 28, and the tubular member 72 are welded together using means such as laser welding or electron beam welding. Further, both adhesive bonding and welding bonding may be used. The reason for this is that the tubular member 72, the rear end connection diameter small convex portion 27, and the front end connection diameter small convex portion 28 are bonded and bonded together in advance (possible by temporary bonding), so that the rear end connection diameter small convex portion 27 is welded. This is to prevent misalignment between the small tip connection diameter convex portion 28 and the tubular member 72, facilitate positioning of the welding operation, and facilitate production.

潤滑性被膜6は、前記第2実施形態と同様に、少なくとも中間部1Bの芯線中間細径部25の外周に形成する。又、好ましくは、中間部1Bと先端部1Cの外周と、芯線後端径大部21の外周と、管状部材72を用いた接続部7の外周に潤滑性被膜6(好ましくは親水性被膜)を設ける点についても、前記第2実施形態と同様である。  The lubricating coating 6 is formed at least on the outer periphery of the core wire intermediate small diameter portion 25 of the intermediate portion 1B, as in the second embodiment. Preferably, the lubricating coating 6 (preferably a hydrophilic coating) is formed on the outer periphery of the intermediate portion 1B and the tip portion 1C, the outer periphery of the core wire rear end large diameter portion 21, and the outer periphery of the connecting portion 7 using the tubular member 72. The point of providing is also the same as in the second embodiment.

ガイドワイヤ60の芯線は、前記第2実施形態と同様に、擬弾性特性を有する第1芯線2Aの後端側に、第1芯線2Aよりも横弾性係数が大きな加工誘起マルテンサイト変態相を有するオーステナイト系ステンレス鋼線から成る第2芯線2Cを備える。
この理由は、前記第2実施形態と同様に、長手方向の長さを延長させた場合であっても、後端側から先端側への回転伝達性の低下を防いで、先端側への回転伝達性を補完するためである。
Similar to the second embodiment, the core wire of the guide wire 60 has a work-induced martensitic transformation phase having a larger transverse elastic coefficient than the first core wire 2A on the rear end side of the first core wire 2A having pseudoelastic characteristics. A second core wire 2C made of an austenitic stainless steel wire is provided.
The reason for this is that, as in the second embodiment, even when the length in the longitudinal direction is extended, the rotation transmission from the rear end side to the front end side is prevented from being lowered, and the rotation to the front end side is prevented. This is to complement the transmission.

第1芯線2Aの後端側の、加工誘起マルテンサイト変態相を有するオーステナイト系ステンレス鋼線から成る第2芯線2Cの第2芯線径大部21Cのねじり剛性をJ2、横弾性係数をG3、断面二次極モーメントをIp4、外径をD5とすると、断面二次極モーメントIp4が(π×D4/32)で表わされることから、前記関係式(1)と同様に、第2芯線径大部21Cのねじり剛性をJ2は、
J2=G3×(π×D5/32) ・・・(9)
関係式(9)で表すことができる。
そして、芯線後端径大部21のねじり剛性K1が前記関係式(1)で表すことができることから、前記関係式(7)と同様に、芯線後端径大部21のねじり剛性K1に対する第2芯線径大部21Cのねじり剛性J2のねじり剛性比J2/K1(第2芯線径大部21Cのねじり剛性/芯線後端径大部21のねじり剛性)は、
J2/K1=(G3×D5)/(G1×D1) ・・・(10)
関係式(10)で表すことができる。
ここで、第2芯線径大部21Cの外径D5と芯線後端径大部21の外径D4とが同じであることから、前記ねじり剛性比J2/K1は、
J2/K1=G3/G1 ・・・(11)
関係式(11)で表すことができる。
さらに関係式(11)において、第2芯線径大部21Cの横弾性係数G3と前記第2実施形態の芯線径大部21Bの横弾性係数G2とが同じであることから、前記関係式(11)は、
J2/K1=G2/G1 ・・・(12)
関係式(12)としても表すことができる。
The torsional rigidity of the second core wire diameter portion 21C of the second core wire 2C made of an austenitic stainless steel wire having a work-induced martensitic transformation phase on the rear end side of the first core wire 2A is J2, the transverse elastic modulus is G3, and the cross section secondary polar moment Ip4, when the outer diameter and D5, since the cross-sectional secondary polar moment Ip4 represented by (π × D4 4/32) , similarly to the equation (1), second core large diameter J2 is the torsional rigidity of the part 21C.
J2 = G3 × (π × D5 4/32) ··· (9)
It can be expressed by the relational expression (9).
And since the torsional rigidity K1 of the core wire rear end large diameter portion 21 can be expressed by the relational expression (1), as in the relational expression (7), the torsional rigidity K1 of the core wire rear end large diameter part 21 The torsional rigidity ratio J2 / K1 of the torsional rigidity J2 of the two core wire diameter large portion 21C (the torsional rigidity of the second core wire diameter large portion 21C / the torsional rigidity of the core wire rear end large diameter portion 21) is:
J2 / K1 = (G3 × D5 4 ) / (G1 × D1 4 ) (10)
It can be represented by the relational expression (10).
Here, since the outer diameter D5 of the second core wire diameter large portion 21C and the outer diameter D4 of the core wire rear end large diameter portion 21 are the same, the torsional rigidity ratio J2 / K1 is:
J2 / K1 = G3 / G1 (11)
It can be expressed by the relational expression (11).
Furthermore, in the relational expression (11), since the transverse elastic modulus G3 of the second core wire diameter large portion 21C and the transverse elastic modulus G2 of the core wire diameter large portion 21B of the second embodiment are the same, the relational expression (11 )
J2 / K1 = G2 / G1 (12)
It can also be expressed as a relational expression (12).

従って、第2実施形態と同様に、第1芯線2Aの芯線後端径大部21のねじり剛性K1に対する第2芯線2Cの第2芯線径大部21Cのねじり剛性J2のねじり剛性比J2/K1は、第2芯線径大部21Cの横弾性係数G3(横弾性係数G2と同じ)の平均値が69000Mpa、芯線後端径大部21の横弾性係数G1の平均値が19612.5Mpaであることから、前記関係式(12)より、約3.518である。
そして、数多くの実験結果から、加工によるマルテンサイト相への変態割合を多くした第2芯線径大部21Cの横弾性係数G3の実用範囲と、擬弾性特性を有する芯線後端径大部21の横弾性係数G1との実用範囲とを併せ考慮すると、前記ねじり剛性比J2/K1は、1を超え5以下で、好ましくは1を超え4.5以下で、より好ましくは1を超え4.0以下である。従って、前記第2実施形態と同一となる。
Accordingly, as in the second embodiment, the torsional rigidity ratio J2 / K1 of the torsional rigidity J2 of the second core wire diameter large portion 21C of the second core wire 2C to the torsional rigidity K1 of the core wire rear end large diameter portion 21 of the first core wire 2A. The average value of the transverse elastic modulus G3 (same as the transverse elastic modulus G2) of the second core wire diameter large portion 21C is 69000 Mpa, and the average value of the transverse elastic modulus G1 of the core wire rear end large diameter portion 21 is 19612.5 Mpa. From the relational expression (12), it is about 3.518.
And, from many experimental results, the practical range of the transverse elastic modulus G3 of the second core wire large diameter portion 21C in which the transformation ratio to the martensite phase is increased by processing, and the core wire rear end large diameter portion 21 having pseudoelastic characteristics. Considering the practical range with the transverse elastic modulus G1, the torsional rigidity ratio J2 / K1 is more than 1 and less than or equal to 5, preferably more than 1 and less than or equal to 4.5, more preferably more than 1 and 4.0. It is as follows. Accordingly, this is the same as the second embodiment.

次に、画像診断用カテーテル10等について説明する。
前記した画像診断用カテーテル10は、血管内超音波画像診断装置に用いる超音波画像診断用カテーテルとして説明したが、ここでいう画像診断用カテーテルには、光干渉断層画像診断装置に用いる光干渉断層画像診断用カテーテルも含まれる。
超音波画像診断用カテーテルと光干渉断層画像診断用カテーテルとの主な差は、超音波画像診断用カテーテルが超音波振動子11eを内蔵したプローブ11bをラジアル方向へ走査させるのに対して、光干渉断層画像診断用カテーテルは、光学レンズ及び光学ミラーを内蔵したプローブをラジアル方向へ走査させる点であり、他の基本構造は同じである。
Next, the diagnostic imaging catheter 10 and the like will be described.
The above-described diagnostic imaging catheter 10 has been described as an ultrasonic diagnostic imaging catheter used in an intravascular ultrasonic diagnostic imaging apparatus. The diagnostic imaging catheter here is an optical coherent tomography used in an optical coherent tomographic imaging apparatus. A diagnostic imaging catheter is also included.
The main difference between the ultrasonic diagnostic imaging catheter and the optical coherence tomographic diagnostic catheter is that the ultrasonic diagnostic imaging catheter scans the probe 11b including the ultrasonic transducer 11e in the radial direction, whereas the optical imaging diagnostic catheter is optical. The catheter for coherent tomographic image diagnosis is that a probe incorporating an optical lens and an optical mirror is scanned in the radial direction, and the other basic structure is the same.

画像診断装置として、血管内超音波画像診断装置(IVUS)は、プローブを配置した超音波画像診断用カテーテルを血管内へ挿入し、超音波振動子を内蔵したプローブを回転させながら手元側へ後退させて生体組織で反射された反射波を同じ超音波振動子で受信し、反射波の強度に基づいて血管の断層画像を描出するように構成された装置である。  As an image diagnostic apparatus, an intravascular ultrasound diagnostic apparatus (IVUS) inserts an ultrasound diagnostic imaging catheter with a probe into a blood vessel, and moves backward while rotating a probe containing an ultrasonic transducer. The reflected wave reflected by the living tissue is received by the same ultrasonic transducer, and a tomographic image of the blood vessel is drawn based on the intensity of the reflected wave.

画像診断装置として、光干渉断層画像診断装置(OCT)は、光学レンズ及び光学ミラーを内蔵するプローブを配置した光干渉断層画像診断用カテーテルを血管内へ挿入し、光学レンズ及び光学ミラーを内蔵したプローブを回転させながら手元側へ後退させて生体組織で反射された反射光を受信し、反射光に基づいて血管の断層画像を描出するように構成された装置である。
ここでいう光干渉断層画像診断装置には、波長掃引利用の光干渉断層画像診断装置(SS−OCT)も含まれる。
光干渉断層画像診断装置と波長掃引利用の光干渉断層画像診断装置との主な差は、光干渉断層画像診断装置が低干渉光(数μmから数十μm)を用いるのに対して、波長掃引利用の光干渉断層画像診断装置は、波長の長い(4mmから10mm)光源を用い、波長の異なる光を連続して出射する点であり、他の基本構造は光干渉断層画像診断装置と同じである。
As an image diagnostic apparatus, an optical coherence tomographic image diagnostic apparatus (OCT) has an optical lens and an optical mirror built in by inserting a catheter for optical coherence tomographic imaging in which a probe incorporating an optical lens and an optical mirror is arranged into a blood vessel. The apparatus is configured to receive a reflected light reflected by a living tissue by rotating the probe backward while rotating and drawing a tomographic image of a blood vessel based on the reflected light.
The optical coherence tomography diagnostic apparatus here includes an optical coherence tomography diagnostic apparatus (SS-OCT) using wavelength sweeping.
The main difference between the optical coherence tomography diagnostic apparatus and the optical coherence tomography diagnostic apparatus using the wavelength sweep is that the optical coherence tomography diagnostic apparatus uses low coherent light (several μm to several tens of μm), but the wavelength The optical coherence tomography diagnostic apparatus using sweeping is that a light source having a long wavelength (4 mm to 10 mm) is used and light having different wavelengths is continuously emitted, and other basic structures are the same as those of the optical coherence tomography diagnostic apparatus. It is.

次に、本発明のガイドワイヤ1、50、60と画像診断用カテーテル10との組立体80について説明する。カテーテル10に備えられたプローブ11bが、低干渉光を送信・受信する光学レンズ及び光学ミラーを内蔵した光プローブであり、0.75μm以上1.4μm以下の波長を用いた光干渉断層画像診断用カテーテルである場合には、断層画像撮影時にプローブ11b(光プローブ)を回転させながら後退する実用範囲に少なくとも配置されるガイドワイヤ1の芯線中間細径部25の外周の潤滑性被膜6には、前記親水性物質による親水性被膜を形成することが好ましい。
この理由は、光干渉断層画像診断用カテーテルの波長が0.75μm以上1.4μm以下の場合には、生体内における水による光吸収が極めて少なく、かつ、生体に対する光の侵襲性が極めて低いからである。又、動摩擦係数を低くして摺動性を飛躍的に向上させることができるからである。
従って、芯線中間細径部25の外周に湿潤時に高潤滑特性を示す親水性被膜を形成し、親水性被膜が水を吸収して膨潤率が500%近くまで膨潤して膜厚が増大しても水による光吸収が少ない為に、増大した膜厚分が加算されて暗色のバックシャドーが拡張することはない。
そして、膨潤率を高くして動摩擦係数をより低くして、摺動性を飛躍的に向上させることができる画像診断用カテーテルに用いられるガイドワイヤ1、50、60を提供することができる。尚、親水性被膜は、芯線中間細径部25の外周のみならず、芯線先端径小部26の先端第1テーパ部26aのコイル体3より露出している後端側、及びコイル体3の外周に形成してもよい。
Next, the assembly 80 of the guide wires 1, 50, 60 and the diagnostic imaging catheter 10 of the present invention will be described. The probe 11b provided in the catheter 10 is an optical probe incorporating an optical lens and an optical mirror for transmitting / receiving low-interference light, and for optical coherence tomographic image diagnosis using a wavelength of 0.75 μm to 1.4 μm. In the case of a catheter, the lubricating coating 6 on the outer periphery of the core wire intermediate small diameter portion 25 of the guide wire 1 disposed at least in a practical range where the probe 11b (optical probe) is rotated while rotating tomographic images, It is preferable to form a hydrophilic film made of the hydrophilic substance.
This is because, when the wavelength of the optical coherence tomographic imaging catheter is 0.75 μm or more and 1.4 μm or less, light absorption by water in the living body is extremely small, and light invasiveness to the living body is extremely low. It is. Moreover, it is because a sliding coefficient can be improved remarkably by making a dynamic friction coefficient low.
Accordingly, a hydrophilic film showing high lubrication characteristics when wet is formed on the outer periphery of the core intermediate thin diameter portion 25, and the hydrophilic film absorbs water and swells to near 500% to increase the film thickness. However, since light absorption by water is small, the increased film thickness is not added and the dark back shadow does not expand.
In addition, it is possible to provide guidewires 1, 50 and 60 used for diagnostic imaging catheters that can increase the swelling rate and lower the dynamic friction coefficient to dramatically improve the slidability. The hydrophilic film is not only the outer periphery of the core wire intermediate small diameter portion 25 but also the rear end side exposed from the coil body 3 of the first taper portion 26a of the tip end small diameter portion 26 and the coil body 3. It may be formed on the outer periphery.

本発明のガイドワイヤ1、50、60と画像診断用カテーテル10との組立体80は、少なくとも芯線中間細径部25の外周に親水性被膜が形成されたガイドワイヤ1、50、60と0.75μm以上1.4μm以下の低干渉光を送信・受信する光プローブ11bを備えた光干渉断層画像診断用カテーテルから成り、ガイドワイヤ挿通部に医療用ガイドワイヤを挿入し、生体組織の断層画像を得る為のものである。  The assembly 80 of the guide wire 1, 50, 60 and the diagnostic imaging catheter 10 according to the present invention has at least the guide wire 1, 50, 60, 0,. It consists of an optical coherence tomographic diagnostic catheter provided with an optical probe 11b that transmits and receives low interference light of 75 μm or more and 1.4 μm or less, and a medical guide wire is inserted into the guide wire insertion part to obtain a tomographic image of a living tissue It is for getting.

は、画像診断装置100を示し、基本構造が同じである為、画像診断装置100には、血管内超音波画像診断装置と光干渉断層画像診断装置とを含み、ここでは、画像診断装置100を光干渉断層画像診断装置(100)として説明する。
光干渉断層画像診断装置(100)は、操作制御装置101と、スキャナ及びプルバック部102とを備え、操作制御装置101は、測定データを処理する本体制御部101aと、測定値の入力を行う操作パネル101bと、画像を表示するLCDモニタ101cとを備えている。スキャナ及びプルバック部102は、プローブ11bを備えた光干渉断層画像診断用カテーテル(カテーテル10)と接続され、かつ、信号線101dを用いて操作制御装置101と接続されている。
FIG. 7 shows the diagnostic imaging apparatus 100. Since the basic structure is the same, the diagnostic imaging apparatus 100 includes an intravascular ultrasonic diagnostic imaging apparatus and an optical coherence tomographic diagnostic apparatus. Here, the diagnostic imaging apparatus 100 is described as an optical coherence tomographic image diagnostic apparatus (100).
The optical coherence tomographic image diagnosis apparatus (100) includes an operation control device 101 and a scanner and pullback unit 102. The operation control device 101 and a main body control unit 101a for processing measurement data, and an operation for inputting measurement values. A panel 101b and an LCD monitor 101c for displaying an image are provided. The scanner and pullback unit 102 is connected to an optical coherence tomographic catheter (catheter 10) including a probe 11b, and is connected to the operation control device 101 using a signal line 101d.

本発明のガイドワイヤ1、50、60とカテーテル10と画像診断装置100との組立体は、画像診断用カテーテルに用いるガイドワイヤ1は、少なくとも芯線中間細径部25の外周に親水性被膜(潤滑性被膜6)が形成される。
画像診断用カテーテル10は、低干渉光を送信・受信する光プローブ(プローブ11b)を備え、0.75μm以上1.4μm以下の波長を用いた光干渉断層画像診断用カテーテル(カテーテル10)であって、カテーテルシース14の先端に備えられたガイドワイヤ挿通部12へガイドワイヤ1、50、60の後端から挿入して、ガイドワイヤ1、50、60に沿わせて血管内病変部へ配置する。
光干渉断層画像診断用カテーテル(カテーテル10)は、信号線101dで接続された操作制御装置101とスキャナ及びプルバック部102を備えた光干渉断層画像診断装置(100)の、スキャナ及びプルバック部102と接続する。
操作制御装置101は、測定データを処理する本体制御部101aと、測定値の入力を行う操作パネル101bと、画像を表示するLCDモニタ101cとを備える。
そして、画像診断用カテーテル10に用いる医療用ガイドワイヤ1、50、60と、画像診断用カテーテル(光干渉断層画像診断用カテーテル、カテーテル10)と、光干渉断層画像診断装置(100)との組立体である。
これにより、水による光吸収の少ない波長を用いている為、生体組織の深部まで光が到達し易く、かつ、ガイドワイヤ1、50、60の芯線中間細径部25の外周に形成されている親水性被膜が水を吸収して膨潤し、膜厚が増大しても水による光吸収が少ない為、増大した膜厚分が加算されて暗色のバックシャドーが拡張することはなく、摺動性の高いガイドワイヤ1、50、60を提供することができる。その結果、術者は従来品よりも鮮明な断層画像を得て病変部を確認することができ、病変部の症状の見落とし、誤診等を低減させることができる。
In the assembly of the guide wires 1, 50, 60, the catheter 10 and the diagnostic imaging apparatus 100 according to the present invention, the guide wire 1 used for the diagnostic imaging catheter has a hydrophilic coating (lubricant) on at least the outer periphery of the core wire intermediate small diameter portion 25. A conductive coating 6) is formed.
The imaging diagnostic catheter 10 is an optical coherence tomographic imaging diagnostic catheter (catheter 10) that includes an optical probe (probe 11b) that transmits and receives low-interference light and uses a wavelength of 0.75 μm to 1.4 μm. Then, the guide wire is inserted into the guide wire insertion portion 12 provided at the distal end of the catheter sheath 14 from the rear end of the guide wires 1, 50, 60, and is arranged along the guide wires 1, 50, 60 at the intravascular lesion. .
The optical coherence tomography diagnostic catheter (catheter 10) includes an operation control device 101 connected by a signal line 101d and a scanner and pullback unit 102 of the optical coherence tomography diagnostic device (100) including the scanner and pullback unit 102. Connecting.
The operation control apparatus 101 includes a main body control unit 101a that processes measurement data, an operation panel 101b that inputs measurement values, and an LCD monitor 101c that displays an image.
Then, a set of medical guide wires 1, 50, 60 used for the diagnostic imaging catheter 10, a diagnostic imaging catheter (optical coherence tomographic imaging catheter, catheter 10), and an optical coherent tomographic imaging apparatus (100). It is a solid.
Thereby, since a wavelength with less light absorption by water is used, light easily reaches the deep part of the living tissue and is formed on the outer periphery of the core wire intermediate small diameter part 25 of the guide wires 1, 50, 60. The hydrophilic film absorbs water and swells, and even if the film thickness increases, light absorption by water is small, so the increased thickness is not added and the dark-colored back shadow does not expand. High guidewires 1, 50, 60 can be provided. As a result, the surgeon can obtain a clearer tomographic image than the conventional product to confirm the lesion, and can reduce oversight of symptoms of the lesion, misdiagnosis, and the like.

補足すれば、本発明の画像診断用カテーテルに用いる医療用ガイドワイヤは、第1芯線2Aの芯線後端径大部21と芯線中間細径部25との横弾性係数が同じ場合について述べたが、例えば同一材料であっても部分熱処理、又は表面強化法(ショットッピーニング等)等により横弾性係数を異ならせることができる。
また、第1芯線2Aの後端側と第2芯線2Bの先端側とを接続した接続部7とを備えた場合に、第1芯線2Aの芯線後端径大部21の外径D1と第2芯線2Bの第2芯線径大部21Bの外径D4とが同じ場合について述べたが異ならせる場合がある。
かかる場合を考慮すると、特許請求の範囲の請求項1及び請求項3の画像診断用カテーテルに用いる医療用ガイドワイヤは、以下の内容となる。尚、主な構成部位の符号を括弧内に付記した。
If it supplements, although the medical guidewire used for the catheter for image diagnosis of this invention described the case where the transverse elastic modulus of the core wire rear end large diameter portion 21 and the core wire intermediate thin diameter portion 25 of the first core wire 2A is the same. For example, even if the same material is used, the transverse elastic modulus can be varied by partial heat treatment, surface strengthening (such as shot peening), or the like.
Moreover, when the connection part 7 which connected the rear end side of the 1st core wire 2A and the front end side of the 2nd core wire 2B is provided, the outer diameter D1 of the core wire rear end large diameter portion 21 of the first core wire 2A and the first Although the case where the outer diameter D4 of the second core wire diameter portion 21B of the two-core wire 2B is the same has been described, it may be different.
Considering such a case, the medical guide wire used for the diagnostic imaging catheters of claims 1 and 3 of the claims has the following contents. In addition, the code | symbol of the main components was attached in the parenthesis.

A.請求項1の場合の内容
「管腔内へ配置された医療用ガイドワイヤの後端を、画像診断用カテーテルの先端部に設けられた円筒状のガイドワイヤ挿通部へ挿入して、前記画像診断用カテーテルを前記医療用ガイドワイヤに沿わせて管腔内へ導入した後、前記ガイドワイヤ挿通部よりも後端側で、前記画像診断用カテーテルのシース内に備えられたプローブを回転させながら後端側へ後退させ、生体組織の断層画像を得る為の画像診断用カテーテルに用いる医療用ガイドワイヤであって、
前記医療用ガイドワイヤは、芯線が擬弾性特性を有する第1芯線(2A)を備え、
前記第1芯線(2A)は、後端から先端へ、芯線後端径大部(21)と芯線中間細径部(25)と芯線先端径小部(26)とを備え、後端側から先端側へ徐変縮径する部分を有し、前記芯線先端径小部(26)は、等径部を有するコイル体内に配置され、
前記コイル体の先端と前記芯線先端径小部(26)の先端とを接合した先端接合部と、前記コイル体の後端と前記芯線先端径小部(26)の後端側とを接合した後端接合部とを備え、
前記芯線後端径大部(21)のねじり剛性をK1、横弾性係数をG1、外径をD1、前記芯線中間細径部(25)のねじり剛性をK2、横弾性係数をG11、外径をD2とすると、
前記芯線後端径大部(21)に対する前記芯線中間細径部(25)のねじり剛性比K2/K1{前記芯線中間細径部(25)のねじり剛性/前記芯線後端径大部(21)のねじり剛性}が、
K2/K1=(G11×D2)/(G1×D1)で表すことができ、
0.06565≦(K2/K1)≦0.3735の関係式を満たし、かつ、
前記コイル体の等径部の最大外径を仮想線で結んだ円筒体を仮想コイル円筒体とし、前記仮想コイル円筒体に対する前記芯線中間細径部(25)の表面積比{前記芯線中間細径部(25)の表面積/前記仮想コイル円筒体の表面積}が、
0.506以上0.781以下であることを特徴とする画像診断用カテーテルに用いる医療用ガイドワイヤ。
A. The content of the case of claim 1 "The rear end of the medical guide wire disposed in the lumen is inserted into a cylindrical guide wire insertion portion provided at the distal end of the diagnostic imaging catheter, and the diagnostic imaging is performed. After the catheter for catheter is introduced into the lumen along the medical guide wire, the probe provided in the sheath of the diagnostic imaging catheter is rotated behind the guide wire insertion portion while rotating the probe. A medical guide wire used in a diagnostic imaging catheter for obtaining a tomographic image of a living tissue by retracting to the end side,
The medical guidewire includes a first core wire (2A) in which the core wire has pseudoelastic characteristics,
The first core wire (2A) includes a core wire rear end large diameter portion (21), a core wire intermediate small diameter portion (25), and a core wire front end small diameter portion (26) from the rear end to the front end. A portion that gradually changes in diameter toward the distal end side, and the core wire distal end small diameter portion (26) is disposed in a coil body having an equal diameter portion;
A tip joint portion joining the tip of the coil body and the tip of the core wire tip diameter small portion (26), and a rear end of the coil body and the rear end side of the core wire tip diameter small portion (26) are joined. A rear end joint,
The torsional rigidity of the rear end diameter large portion (21) of the core wire is K1, the lateral elastic modulus is G1, the outer diameter is D1, the torsional rigidity of the intermediate intermediate diameter portion (25) is K2, the lateral elastic modulus is G11, the outer diameter. Let D2 be
Torsional rigidity ratio K2 / K1 of the core wire intermediate small diameter portion (25) to the core wire rear end large diameter portion (21) {Torsion rigidity of the core wire intermediate small diameter portion (25) / the core wire rear end large diameter portion (21 ) Torsional rigidity}
K2 / K1 = (G11 × D2 4 ) / (G1 × D1 4 )
0.065565 ≦ (K2 / K1) ≦ 0.3735 is satisfied, and
A cylindrical body in which the maximum outer diameter of the equal-diameter portion of the coil body is connected with a virtual wire is defined as a virtual coil cylindrical body, and a surface area ratio of the core intermediate thin diameter portion (25) to the virtual coil cylinder {the core intermediate intermediate diameter Surface area of the portion (25) / surface area of the virtual coil cylinder}
A medical guide wire used for a diagnostic imaging catheter, wherein the medical guide wire is 0.506 or more and 0.781 or less.

B.請求項3の場合の内容
前記医療用ガイドワイヤの芯線は、先端側の擬弾性特性を有する第1芯線(2A)と、後端側の加工誘起マルテンサイト変態相を有するオーステナイト系ステンレス鋼線の第2芯線径大部(21B)を有する第2芯線(2B)と、前記第1芯線(2A)の後端側と前記第2芯線(2B)の先端側とを接続した接続部(7)とを備え、
前記第2芯線径大部(21B)のねじり剛性をJ1、横弾性係数をG2、外径をD4とすると、
前記芯線後端径大部(21)に対する前記第2芯線径大部(21B)のねじり剛性比J1/K1{前記第2芯線径大部(21B)のねじり剛性/前記芯線後端径大部(21)のねじり剛性}は、
J1/K1=(G2×D4)/(G1×D1)で表すことができ、
1<(J1/K1)≦5
の関係式を満たすことを特徴とする画像診断用カテーテルに用いる医療用ガイドワイヤである。
B. Content of the Case of Claim 3 The core wire of the medical guide wire is composed of a first core wire (2A) having pseudo-elastic characteristics on the distal end side and an austenitic stainless steel wire having a work-induced martensitic transformation phase on the rear end side. A connecting portion (7) in which a second core wire (2B) having a second core wire diameter large portion (21B), a rear end side of the first core wire (2A) and a front end side of the second core wire (2B) are connected. And
When the torsional rigidity of the second core wire diameter large portion (21B) is J1, the lateral elastic modulus is G2, and the outer diameter is D4,
Torsional rigidity ratio J1 / K1 of the second core wire diameter large portion (21B) with respect to the core wire rear end large diameter portion (21) {Torsion rigidity of the second core wire large diameter portion (21B) / the core wire rear end large diameter portion (21) Torsional rigidity}
J1 / K1 = (G2 × D4 4 ) / (G1 × D1 4 ),
1 <(J1 / K1) ≦ 5
The medical guide wire used for the diagnostic imaging catheter characterized by satisfying the following relational expression:

さらに補足すれば、本発明は、画像診断用カテーテルに用いる医療用ガイドワイヤとして説明したが、画像診断用カテーテルに用いる医療用ガイドワイヤのみとしてではなく、先端側の第1芯線2Aと後端側の第2芯線2Bとを接続部7を用いて接続した医療用ガイドワイヤについても適用することができる。
そして前記内容(横弾性係数と外径が共に異なる場合)を考慮すると、下記の内容となる。尚、前記同様、主な構成部位の符号を括弧内に付記した。
つまり、
「医療用ガイドワイヤは、芯線が先端側の擬弾性特性を有する第1芯線(2A)と、後端側の加工誘起マルテンサイト変態相を有するオーステナイト系ステンレス鋼線の第2芯線径大部(21B)を有する第2芯線(2B)と、前記第1芯線(2A)の後端側と前記第2芯線(2B)の先端側とを接続した接続部7とを備え、
前記第1芯線(2A)は、後端から先端へ芯線後端径大部(21)と芯線先端径小部(26)とを備え、後端側から先端側へ徐変縮径する部分を有し、前記芯線先端径小部(26)は等径部を有するコイル体内に配置され、前記コイル体の先端と前記芯線先端径小部(26)の先端とを接合した先端接合部と、前記コイル体の後端と前記芯線先端径小部(26)の後端側とを接合した後端接合部とを備え、
前記第1芯線(2A)の芯線後端径大部(21)のねじり剛性をK1、横弾性係数をG1、外径をD1とし、前記第2芯線(2B)の芯線径大部(21B)のねじり剛性をJ1、横弾性係数をG2、外径をD4とすると、
前記芯線後端径大部(21)のねじり剛性K1に対する前記第2芯線径大部(21B)のねじり剛性J1のねじり剛性比J1/K1{第2芯線径大部(21B)のねじり剛性/芯線後端径大部(21)のねじり剛性}は、
J1/K1=(G2×D4)/(G1×D1)で表すことができ、
1<(J1/K1)≦5
の関係式を満たすことを特徴とする医療用ガイドワイヤ」である。
又、第3実施形態についても同様である。
In addition, although the present invention has been described as a medical guide wire used for a diagnostic imaging catheter, the first core wire 2A on the distal end side and the rear end side are not limited to a medical guide wire used for a diagnostic imaging catheter. This can also be applied to a medical guide wire that is connected to the second core wire 2 </ b> B using the connecting portion 7.
In consideration of the above contents (when the transverse elastic modulus and the outer diameter are different), the following contents are obtained. In addition, the code | symbol of the main component site was appended in the parenthesis similarly to the above.
That means
“The medical guide wire is composed of a first core wire (2A) having a pseudoelastic property on the front end side and a second core wire diameter large portion of an austenitic stainless steel wire having a work-induced martensitic transformation phase on the rear end side ( 21B), and a connecting portion 7 connecting the rear end side of the first core wire (2A) and the front end side of the second core wire (2B),
The first core wire (2A) includes a core wire rear end large diameter portion (21) and a core wire front end small diameter portion (26) from the rear end to the front end, and a portion that gradually changes in diameter from the rear end side to the front end side. The core wire tip diameter small portion (26) is disposed in a coil body having an equal diameter portion, and a tip joint portion joining the tip of the coil body and the tip of the core wire tip diameter small portion (26); A rear end joint portion that joins the rear end of the coil body and the rear end side of the core wire tip diameter small portion (26);
The torsional rigidity K1 of the core wire rear end large portion 21 of the first core wire 2A, the lateral elastic modulus G1, the outer diameter D1, and the core wire large portion 21B of the second core wire 2B. When the torsional rigidity of J1 is J1, the lateral elastic modulus is G2, and the outer diameter is D4,
Torsional rigidity ratio J1 / K1 of torsional rigidity J1 of the second core wire diameter large part (21B) to torsional rigidity K1 of the rear end diameter large part (21) of the core wire {torsional rigidity of the second core wire diameter large part (21B) / The torsional rigidity of the rear end large diameter portion (21)} is
J1 / K1 = (G2 × D4 4 ) / (G1 × D1 4 ),
1 <(J1 / K1) ≦ 5
Is a medical guide wire characterized by satisfying the relational expression:
The same applies to the third embodiment.

そして、前記第2実施形態において、第1芯線2Aの芯線後端径大部21の長手方向の長さL1が1500mm、第2芯線2Bの第2芯線径大部21Bの長手方向の長さL6が500mmとして説明したが、芯線後端径大部21の長手方向の長さL1を500mm、第2芯線2Bの第2芯線径大部21Bの長手方向の長さL6を1500mmとしてもよく、治療部位に応じて任意に設定する。又、第3実施形態についても前記同様である。  In the second embodiment, the longitudinal length L1 of the core core rear end large portion 21 of the first core wire 2A is 1500 mm, and the longitudinal length L6 of the second core wire large portion 21B of the second core wire 2B. However, the length L1 in the longitudinal direction of the core wire rear end large diameter portion 21 may be 500 mm, and the length L6 in the longitudinal direction of the second core wire large diameter portion 21B of the second core wire 2B may be 1500 mm. Set arbitrarily according to the site. The same applies to the third embodiment.

1 医療用ガイドワイヤ
2A 第1芯線(第1実施形態)
2B 第2芯線(第2実施形態)
2C 第2芯線(第3実施形態)
3 コイル体
3a 傾斜部
3b 等径部
4a 先端接合部
4b 後端接合部
5 ふっ素樹脂被膜
6 潤滑性被膜
7 接続部
10 画像診断用カテーテル
11b プローブ
11c 駆動シャフト
12 ガイドワイヤ挿通部
21 芯線後端径大部
21B 第2芯線径大部(第2実施形態)
21C 第2芯線径大部(第3実施形態)
25 芯線中間細径部
26 芯線先端径小部
71 接合部(第2実施形態)
72 管状部材(第3実施形態)
100 画像診断装置
101 操作制御装置
102 スキャナ及びプルバック部
1 medical guide wire 2A first core wire (first embodiment)
2B 2nd core wire (2nd Embodiment)
2C 2nd core wire (3rd Embodiment)
3 Coil body 3a Inclined portion 3b Equal-diameter portion 4a Tip joint portion 4b Rear end joint portion 5 Fluorine resin coating 6 Lubricating coating 7 Connection portion 10 Diagnostic imaging catheter 11b Probe 11c Drive shaft 12 Guide wire insertion portion 21 Core wire rear end diameter Large part 21B Large part of the second core wire diameter (second embodiment)
21C 2nd core wire diameter large part (3rd Embodiment)
25 Core wire intermediate small diameter part 26 Core wire tip diameter small part 71 Joining part (2nd Embodiment)
72 Tubular member (third embodiment)
DESCRIPTION OF SYMBOLS 100 Image diagnostic apparatus 101 Operation control apparatus 102 Scanner and pull back part

Claims (6)

管腔内へ配置された医療用ガイドワイヤの後端を、画像診断用カテーテルの先端部に設けられた円筒状のガイドワイヤ挿通部へ挿入して、前記画像診断用カテーテルを前記医療用ガイドワイヤに沿わせて管腔内へ導入した後、前記ガイドワイヤ挿通部よりも後端側で、前記画像診断用カテーテルのシース内に備えられたプローブを回転させながら後端側へ後退させ、生体組織の断層画像を得る為の画像診断用カテーテルに用いる医療用ガイドワイヤと画像診断用カテーテルとの組立体であって、
前記医療用ガイドワイヤは、芯線が擬弾性特性を有する第1芯線を備え、
前記第1芯線は、後端から先端へ、芯線後端径大部と芯線中間細径部と芯線先端径小部とを備え、
後嫺則から先端側へ徐変縮径する部分を有し、前記芯線先端径小部は、等径部を有するコイル体内に配置され、
前記コイル体の先端と前記芯線先端径小部の先端とを接合した先端接合部と、前記コイル体の後端と前記芯線先端径小部の後端側とを接合した後端接合部とを備え、
前記芯線後端径大部に対する前記芯線中間細径部のねじり剛性比(前記芯線中間細径部のねじり剛性/前記芯線後端径大部のねじり剛性)が、0.06565以上0.3735以下で、
前記コイル体の等径部の最大外径を仮想線で結んだ円筒体を仮想コイル円筒体とし、前記仮想コイル円筒体に対する前記芯線中間細径部の表面積比(前記芯線中間細径部の表面積/前記仮想コイル円筒体の表面積)が、0.506以上0.781以下であり、
少なくとも前記芯線中間細径部の外周に親水性被膜が形成され、前記画像診断用カテーテルが、0.75μm以上1.4μm以下の波長の低干渉光を送信・受信する光プローブを備えた光干渉断層画像診断用カテーテルであることを特徴とする画像診断用カテーテルに用いる医療用ガイドワイヤと画像診断用カテーテルとの組立体
The medical guide wire disposed in the lumen is inserted into a cylindrical guide wire insertion portion provided at the distal end of the diagnostic imaging catheter, and the diagnostic imaging catheter is inserted into the medical guiding wire. And introduced into the lumen along the back of the guide wire, and retracted toward the rear end side while rotating the probe provided in the sheath of the diagnostic imaging catheter on the rear end side with respect to the guide wire insertion portion. An assembly of a medical guide wire and a diagnostic imaging catheter used in a diagnostic imaging catheter for obtaining a tomographic image of
The medical guide wire includes a first core wire having a pseudo-elastic property as a core wire,
The first core wire includes, from the rear end to the front end, a core wire rear end large diameter portion, a core wire intermediate small diameter portion, and a core wire front end small diameter portion,
Having a portion that gradually changes from the rear rule to the tip side, the core wire tip diameter small portion is disposed in the coil body having an equal diameter portion,
A tip joining portion joining the tip of the coil body and the tip of the core wire tip diameter small portion; and a rear end joint portion joining the rear end of the coil body and the rear end side of the core wire tip diameter small portion. Prepared,
The torsional rigidity ratio of the core wire intermediate small diameter portion to the core wire rear end large diameter portion (torsion rigidity of the core wire intermediate small diameter portion / torsion rigidity of the core wire rear end large diameter portion) is 0.06565 or more and 0.3735 or less. so,
A cylindrical body in which the maximum outer diameter of the equal-diameter portion of the coil body is connected with a virtual wire is defined as a virtual coil cylinder, and a surface area ratio of the core wire intermediate small diameter portion to the virtual coil cylinder (surface area of the core intermediate thin diameter portion) / the surface area of the imaginary coil cylinder) is state, and are 0.506 or 0.781 or less,
An optical interference comprising a hydrophilic coating formed at least on the outer periphery of the intermediate thin diameter portion of the core wire, and the diagnostic imaging catheter having an optical probe for transmitting / receiving low interference light having a wavelength of 0.75 μm or more and 1.4 μm or less assembly of the medical guidewire and imaging catheter used in diagnostic imaging catheter, wherein the catheter der Rukoto tomographic image for diagnosis.
前記芯線中間細径部は、横断面が円形で長手方向の全長にわたって等径で、前記先端接合部の先端から後端側へ、30mm以上200mm以下に位置していることを特徴とする請求項1に記載の画像診断用カテーテルに用いる医療用ガイドワイヤと画像診断用カテーテルとの組立体The said core wire intermediate | middle thin diameter part is located in 30 mm or more and 200 mm or less from the front-end | tip end of the said front-end | tip junction part to the rear end side with the same diameter over the full length of a longitudinal direction with a circular cross section. 2. An assembly of a medical guide wire and a diagnostic imaging catheter used in the diagnostic imaging catheter according to 1. 前記医療用ガイドワイヤの芯線は、先端側の擬弾性特性を有する前記第1芯線と、後端側の加工誘起マルテンサイト変態相を有するオーステナイト系ステンレス鋼線の第2芯線径大部を有する第2芯線と、前記第1芯線の後端側と前記第2芯線の先端側とを接続した接続部とを備え、
前記第1芯線の前記芯線後端径大部に対する前記第2芯線の前記第2芯線径大部のねじり剛性比(前記第2芯線の前記第2芯線径大部のねじり剛性/前記第1芯線の前記芯線後端径大部のねじり剛性)が1を超え5以下であることを特徴とする請求項1〜2のいずれか一つに記載の画像診断用カテーテルに用いる医療用ガイドワイヤと画像診断用カテーテルとの組立体
The core wire of the medical guide wire has a first core wire having pseudo-elastic characteristics on the front end side and a second core wire diameter large portion of an austenitic stainless steel wire having a work-induced martensitic transformation phase on the rear end side. A two-core wire, and a connecting portion connecting the rear end side of the first core wire and the front end side of the second core wire,
Torsional rigidity ratio of the second core wire large diameter portion of the second core wire to the large core rear end diameter portion of the first core wire (torsional rigidity of the second core wire large diameter portion of the second core wire / the first core wire The torsional rigidity of the rear end diameter of the core wire is more than 1 and 5 or less, and the medical guide wire and the image used for the diagnostic imaging catheter according to any one of claims 1 to 2 Assembly with diagnostic catheter .
前記接続部の接続が、前記第1芯線の後端と前記第2芯線の先端とをろう付け接合、又は溶接接合による接続であること特徴とする請求項3に記載の画像診断用カテーテルに用いる医療用ガイドワイヤと画像診断用カテーテルとの組立体4. The diagnostic imaging catheter according to claim 3, wherein the connection portion is connected by brazing or welding joint between a rear end of the first core wire and a front end of the second core wire. 5. An assembly of a medical guide wire and a diagnostic imaging catheter . 前記第1芯線は、後端に後端接続径小凸部を備え、前記第2芯線は、先端に先端接続径小凸部を備え、
前記接続部の接続が、擬弾性特性を有する管状部材の内側に、一方の側から前記第1芯線の後端接続径小凸部を挿入し、他方の側から前記第2芯線の先端接続径小凸部を挿入して、
前記管状部材と前記後端接続径小凸部と前記先端接続径小凸部とを接着接合、又は溶接接合のいずれか一つ又は双方による接続であることを特徴とする請求項3に記載の画像診断用カテーテルに用いる医療用ガイドワイヤと画像診断用カテーテルとの組立体
The first core wire includes a rear end connection diameter small convex portion at the rear end, and the second core wire includes a front end connection diameter small convex portion at the front end,
The connection of the connecting portion is inserted into the inside of the tubular member having pseudo-elastic characteristics by inserting a small convex portion of the rear end connection diameter of the first core wire from one side, and the front end connection diameter of the second core wire from the other side. Insert a small convex part,
4. The connection according to claim 3, wherein the tubular member, the rear end connection diameter small convex portion, and the front end connection diameter small convex portion are connected by any one or both of adhesive bonding and welding bonding. An assembly of a medical guide wire and a diagnostic imaging catheter used for a diagnostic imaging catheter .
請求項1〜5のいずれか一つに記載の画像診断用カテーテルに用いる医療用ガイドワイヤと画像診断用カテーテルとの組立体と、
前記光プローブを回転させながら後退させるスキャナ及びプルバック部と前記光プローブからの測定データを処理して画像を表示する操作制御装置とを有する光干渉断層画像診断装置とを備えたことを特徴とする画像診断用カテーテルに用いる医療用ガイドワイヤと画像診断用カテーテルと光干渉断層画像診断装置との組立体。
An assembly of a medical guide wire and a diagnostic imaging catheter used in the diagnostic imaging catheter according to any one of claims 1 to 5 ;
An optical coherence tomography diagnostic apparatus having a scanner and a pullback unit that rotate the optical probe while rotating and an operation control device that processes measurement data from the optical probe and displays an image is provided. An assembly of a medical guide wire used for a diagnostic imaging catheter, a diagnostic imaging catheter, and an optical coherence tomography diagnostic apparatus.
JP2016018393A 2016-01-15 2016-01-15 Assembly of medical guide wire and layer diagnostic imaging catheter used for diagnostic imaging catheter, and assembly of optical coherence tomographic diagnostic apparatus Active JP6047773B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016018393A JP6047773B1 (en) 2016-01-15 2016-01-15 Assembly of medical guide wire and layer diagnostic imaging catheter used for diagnostic imaging catheter, and assembly of optical coherence tomographic diagnostic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016018393A JP6047773B1 (en) 2016-01-15 2016-01-15 Assembly of medical guide wire and layer diagnostic imaging catheter used for diagnostic imaging catheter, and assembly of optical coherence tomographic diagnostic apparatus

Publications (2)

Publication Number Publication Date
JP6047773B1 true JP6047773B1 (en) 2016-12-21
JP2017124146A JP2017124146A (en) 2017-07-20

Family

ID=57572384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016018393A Active JP6047773B1 (en) 2016-01-15 2016-01-15 Assembly of medical guide wire and layer diagnostic imaging catheter used for diagnostic imaging catheter, and assembly of optical coherence tomographic diagnostic apparatus

Country Status (1)

Country Link
JP (1) JP6047773B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020049661A1 (en) * 2018-09-05 2020-03-12 日本ライフライン株式会社 Medical guide wire

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05253305A (en) * 1992-01-03 1993-10-05 Cook Inc Small diameter superelastic wire guide
JP2010503484A (en) * 2006-09-13 2010-02-04 ボストン サイエンティフィック リミテッド Transverse guide wire
JP2011147573A (en) * 2010-01-21 2011-08-04 Asahi Intecc Co Ltd Medical guidewire
WO2011114600A1 (en) * 2010-03-16 2011-09-22 テルモ株式会社 Guide wire and catheter assembly
JP2012152362A (en) * 2011-01-26 2012-08-16 Asahi Intecc Co Ltd Guide wire
JP2012223206A (en) * 2011-04-14 2012-11-15 Terumo Corp Catheter and catheter assembly
WO2013084599A1 (en) * 2011-12-05 2013-06-13 日本ライフライン株式会社 Medical guide wire
JP5517274B1 (en) * 2013-10-11 2014-06-11 株式会社エフエムディ Medical guidewire
JP5735159B1 (en) * 2014-06-16 2015-06-17 株式会社エフエムディ Medical guidewire
JP5858373B1 (en) * 2015-03-03 2016-02-10 株式会社エフエムディ Assembly with medical guide wire and optical coherence tomography diagnostic catheter used for diagnostic imaging catheter, and assembly with optical coherence tomography diagnostic apparatus

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05253305A (en) * 1992-01-03 1993-10-05 Cook Inc Small diameter superelastic wire guide
JP2010503484A (en) * 2006-09-13 2010-02-04 ボストン サイエンティフィック リミテッド Transverse guide wire
JP2011147573A (en) * 2010-01-21 2011-08-04 Asahi Intecc Co Ltd Medical guidewire
WO2011114600A1 (en) * 2010-03-16 2011-09-22 テルモ株式会社 Guide wire and catheter assembly
JP2012152362A (en) * 2011-01-26 2012-08-16 Asahi Intecc Co Ltd Guide wire
JP2012223206A (en) * 2011-04-14 2012-11-15 Terumo Corp Catheter and catheter assembly
WO2013084599A1 (en) * 2011-12-05 2013-06-13 日本ライフライン株式会社 Medical guide wire
JP5517274B1 (en) * 2013-10-11 2014-06-11 株式会社エフエムディ Medical guidewire
JP5735159B1 (en) * 2014-06-16 2015-06-17 株式会社エフエムディ Medical guidewire
JP5858373B1 (en) * 2015-03-03 2016-02-10 株式会社エフエムディ Assembly with medical guide wire and optical coherence tomography diagnostic catheter used for diagnostic imaging catheter, and assembly with optical coherence tomography diagnostic apparatus

Also Published As

Publication number Publication date
JP2017124146A (en) 2017-07-20

Similar Documents

Publication Publication Date Title
JP5858373B1 (en) Assembly with medical guide wire and optical coherence tomography diagnostic catheter used for diagnostic imaging catheter, and assembly with optical coherence tomography diagnostic apparatus
US5546947A (en) Ultrasonic endoprobe
JP2902076B2 (en) Guide wire
JP5246884B2 (en) Guide wire
EP2361652B1 (en) Guidewire
US10709312B2 (en) Transitional region having cuts and a skive for an imaging catheter
WO2010134364A1 (en) Medical guide wire
JP2015171519A (en) guide wire
JP4354525B1 (en) Medical guidewire
JP2004097286A (en) Catheter
US20160324503A1 (en) Intravascular Device with Captively-Held Filling
JP6061341B2 (en) Guide wire
JP2015073861A (en) Medical guide wire
JP5392787B2 (en) Guide wire
JP6047773B1 (en) Assembly of medical guide wire and layer diagnostic imaging catheter used for diagnostic imaging catheter, and assembly of optical coherence tomographic diagnostic apparatus
JP6007384B1 (en) Assembly with medical guide wire and diagnostic catheter used for diagnostic imaging catheter, and assembly with optical coherence tomography diagnostic apparatus
JP4624019B2 (en) catheter
JP2014023943A (en) Guide wire
JP5408727B2 (en) Medical guidewire
CN219375825U (en) Acoustic energy guidewire system and energy guidewire
CN217066415U (en) Ultrasound catheter
JP5888740B2 (en) Guide wire
JP5424248B2 (en) Medical guidewire
JP3280485B2 (en) Intracavity ultrasound probe
JPH08206114A (en) Ultrasonic catheter

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161025

R150 Certificate of patent or registration of utility model

Ref document number: 6047773

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250