JP6047276B2 - Silver powder for sintered conductive paste - Google Patents

Silver powder for sintered conductive paste Download PDF

Info

Publication number
JP6047276B2
JP6047276B2 JP2011146386A JP2011146386A JP6047276B2 JP 6047276 B2 JP6047276 B2 JP 6047276B2 JP 2011146386 A JP2011146386 A JP 2011146386A JP 2011146386 A JP2011146386 A JP 2011146386A JP 6047276 B2 JP6047276 B2 JP 6047276B2
Authority
JP
Japan
Prior art keywords
silver
silver powder
conductive paste
aqueous solution
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011146386A
Other languages
Japanese (ja)
Other versions
JP2013014790A (en
Inventor
啓祐 宮之原
啓祐 宮之原
松山 敏和
敏和 松山
泰三 森中
泰三 森中
晃祐 織田
晃祐 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2011146386A priority Critical patent/JP6047276B2/en
Priority to KR1020120047319A priority patent/KR102007306B1/en
Publication of JP2013014790A publication Critical patent/JP2013014790A/en
Application granted granted Critical
Publication of JP6047276B2 publication Critical patent/JP6047276B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

本発明は、焼結型導電性ペーストに好適に用いることができる銀粉、中でも太陽電池電極用の焼結型導電性ペーストとして好適に用いることができる銀粉に関する。   The present invention relates to a silver powder that can be suitably used for a sintered conductive paste, and particularly to a silver powder that can be suitably used as a sintered conductive paste for a solar cell electrode.

導電性ペーストは、樹脂系バインダーと溶媒からなるビヒクル中に導電フィラーを分散させた流動性組成物であり、電気回路の形成や、セラミックコンデンサの外部電極の形成などに広く用いられている。
この種の導電性ペーストには、樹脂の硬化によって導電性フィラーが圧着され導通を確保する樹脂硬化型と、高温焼結によって有機成分が揮発し導電性フィラーが焼結して導通を確保する焼結型とがある。
The conductive paste is a fluid composition in which a conductive filler is dispersed in a vehicle composed of a resin binder and a solvent, and is widely used for forming an electric circuit, an external electrode of a ceramic capacitor, and the like.
This type of conductive paste includes a resin-curing type in which conductive fillers are pressure-bonded by hardening of the resin to ensure conduction, and a sintered type in which organic components are volatilized by high-temperature sintering and the conductive filler is sintered to ensure conduction. There is a type.

このうちの焼結型導電性ペーストは、一般に導電フィラー(金属粉末)とガラスフリットとを有機ビヒクル中に分散させてなるペースト状組成物であり、400〜800℃にて焼結することにより、有機ビヒクルが揮発し、さらに導電フィラーが焼結することによって導通を確保するものである。この際、ガラスフリットは、この導電膜を基板に接着させる作用を有し、有機ビヒクルは、金属粉末およびガラスフリットを印刷可能にするための有機液体媒体として作用する。   Of these, the sintered conductive paste is a paste-like composition in which a conductive filler (metal powder) and glass frit are generally dispersed in an organic vehicle. By sintering at 400 to 800 ° C., The organic vehicle is volatilized and the conductive filler is sintered to ensure conduction. At this time, the glass frit has a function of adhering the conductive film to the substrate, and the organic vehicle functions as an organic liquid medium for enabling printing of the metal powder and the glass frit.

このような焼結型導電性ペーストに用いる銀粉として、従来、例えば特許文献1には、銀イオンを含有する水性反応系に還元剤含有水溶液を添加して銀粒子を還元析出させることにより、500℃における熱収縮率が5〜15%、600℃における熱収縮率が10〜20%、平均粒径D50が5μm以下、タップ密度が2g/cm以上、BET比表面積が5m/g以下の球状銀粉が開示されている。 As silver powder used for such a sintered conductive paste, for example, in Patent Document 1, for example, by adding a reducing agent-containing aqueous solution to an aqueous reaction system containing silver ions to reduce and precipitate silver particles, 500 5 to 15% at 600 ° C., 10 to 20% at 600 ° C., average particle diameter D 50 is 5 μm or less, tap density is 2 g / cm 3 or more, and BET specific surface area is 5 m 2 / g or less. A spherical silver powder is disclosed.

また、特許文献2には、410℃での熱収縮率が5〜15%であり、好ましくは、さらに500℃での熱収縮率が10〜20%である銀粉、具体的には平均粒径D50が2μm以下である銀粉が開示されている。 Patent Document 2 discloses that silver powder having a heat shrinkage rate at 410 ° C. of 5 to 15%, more preferably 10 to 20% at 500 ° C., specifically an average particle diameter. D 50 is 2μm or less silver powder is disclosed.

特開2006−2228号公報JP 2006-2228 A 特開2007−270334号公報JP 2007-270334 A

導電性ペーストは、塗布する素地や用いる用途によって様々な温度で焼成されるが、焼成温度での銀の熱収縮率と素地との相性が悪いと、素地と銀膜との間に剥離が生じたり、反りや変形、クラックなどが生じたりするなどの不具合が生じることになる。   Conductive pastes are fired at various temperatures depending on the substrate to be applied and the application used. However, if the thermal contraction rate of silver at the firing temperature is not compatible with the substrate, peeling occurs between the substrate and the silver film. Or problems such as warping, deformation, or cracks.

結晶シリコン型太陽電池は、一般的にシリコン基板(p型)にn型拡散層を形成してpn接合を形成し、シリコン基板(p型)の裏面側に酸化膜を介して裏面電極を積層する一方、n型拡散層の受光面側(表面側)には、反射防止膜を積層すると共に、銀ペーストを印刷及び焼成して銀電極を形成する構成のものが一般的であり、シリコン基板の熱ダメージを考慮して500℃付近で銀ペーストを焼成して電極を形成するのが一般的である。   In a crystalline silicon solar cell, an n-type diffusion layer is generally formed on a silicon substrate (p-type) to form a pn junction, and a back electrode is laminated on the back side of the silicon substrate (p-type) via an oxide film. On the other hand, an antireflection film is laminated on the light-receiving surface side (surface side) of the n-type diffusion layer, and a silver electrode is generally formed by printing and baking a silver paste. In general, an electrode is formed by baking a silver paste at around 500 ° C. in consideration of thermal damage.

このような太陽電池の電極作製に使用する導電性ペースト用銀粉としては、シリコン基板との相性を考慮すると、太陽電池作製時の焼成温度すなわち500℃における銀粉の熱収縮率が8.7〜13.0%であるのが好ましいことが分かってきた。
Examples of such a solar cell silver powder for a conductive paste used for electrode production, considering the compatibility with divorced substrate, the thermal shrinkage of the silver powder in the sintering temperature, ie 500 ° C. at the time of the solar cell produced 8.7~ It has been found that 13.0% is preferred.

そこで本発明は、500℃における熱収縮率が8.7〜13.0%となる新たな銀粉を提供せんとするものである。   Therefore, the present invention provides a new silver powder having a thermal shrinkage rate of 8.7 to 13.0% at 500 ° C.

本発明は、BET法により測定される比表面積から算出される粒子径(「BET径」と称する)が1.10μm〜2.60μmであり、炭素含有量が0.11〜0.22質量%であることを特徴とする焼結型導電性ペースト用銀粉を提案するものである。   In the present invention, the particle diameter (referred to as “BET diameter”) calculated from the specific surface area measured by the BET method is 1.10 μm to 2.60 μm, and the carbon content is 0.11 to 0.22% by mass. The present invention proposes a silver powder for a sintered conductive paste characterized by the above.

BET径及び炭素含有量が所定の範囲である焼結型導電性ペースト用銀粉であれば、500℃における銀粉の熱収縮率が8.7〜13.0%となるため、太陽電池の電極を作製する場合の焼成の際、シリコン基板と銀膜との接着性を高めることができ、太陽電池の電極作製に好適に使用することができる。   If the silver powder for sintered conductive paste has a BET diameter and a carbon content within a predetermined range, the thermal shrinkage rate of the silver powder at 500 ° C. is 8.7 to 13.0%. In the case of firing, the adhesion between the silicon substrate and the silver film can be increased, and it can be suitably used for producing an electrode of a solar cell.

次に、本発明を実施するための形態例に基づいて本発明を説明するが、本発明が次に説明する実施形態に限定されるものではない。   Next, although this invention is demonstrated based on the example for implementing this invention, this invention is not limited to embodiment described next.

<本銀粉>
本実施形態に係る焼結型導電性ペースト用銀粉(以下、「本銀粉」と称する)は、BET径が1.10μm〜2.60μmであり、炭素含有量が0.11〜0.22質量%であることを特徴とする銀粉である。
以下、本銀粉の特徴についてさらに説明する。
<Silver powder>
The silver powder for sintered conductive paste according to this embodiment (hereinafter referred to as “main silver powder”) has a BET diameter of 1.10 μm to 2.60 μm and a carbon content of 0.11 to 0.22 mass. % Silver powder.
Hereinafter, the characteristics of the present silver powder will be further described.

(炭素含有量)
本銀粉は、炭素含有量0.11質量%以上0.20質量%未満であることが重要である。
炭素含有量が0.11質量%未満では、炭素が焼結助剤として有効に作用しなくなるため、熱収縮率に寄与しなくなる可能性がある一方、0.20質量%を超えると、焼結が進み過ぎるだけでなく、焼結時のガス発生が多くなり、導体の膨張などを引き起こすことになるから好ましくない。
このような観点から、本銀粉の炭素含有量は0.11質量%以上0.20質量%未満であるのが好ましく、中でも0.12質量%以上であるのが好ましく、中でも0.13質量%以上であるのがより一層好ましい。
炭素含有量を調整するには、ステアリン酸ナトリウムなどのステアリン酸塩や、ゼラチンなどの凝集抑制剤の種類と量を調整する方法を挙げることができる。但し、凝集抑制剤の種類又は量を変化させると、粒子の比表面積や凝集度、反応液中の親和性などの物性も変化し、その結果、銀粉粒子に含まれる炭素量も変化するため、凝集抑制剤の添加量を増やせばそれだけ炭素含有量が増加するというものではない。
(Carbon content)
It is important that this silver powder has a carbon content of 0.11 % by mass or more and less than 0.20% by mass .
If the carbon content is less than 0.11% by mass, carbon will not effectively act as a sintering aid, and may not contribute to the thermal shrinkage. On the other hand, if the carbon content exceeds 0.20% by mass , sintering will occur. This is not preferable because not only excessively proceeds, but also gas generation during sintering increases, which causes expansion of the conductor.
From such a viewpoint, the carbon content of the silver powder is preferably 0.11 % by mass or more and less than 0.20% by mass, more preferably 0.12% by mass or more, and especially 0.13% by mass. The above is even more preferable.
In order to adjust the carbon content, a method of adjusting the type and amount of a stearate such as sodium stearate or an aggregation inhibitor such as gelatin can be mentioned. However, changing the type or amount of the aggregation inhibitor also changes the physical properties such as the specific surface area and the degree of aggregation of the particles, the affinity in the reaction solution, and as a result, the amount of carbon contained in the silver powder particles also changes. Increasing the addition amount of the aggregation inhibitor does not increase the carbon content accordingly.

なお、本発明が規定する銀粉の炭素含有量は、銀粉粒子の内部に含有されるか、或いは、粒子の表面に物理的或いは化学的に吸着されている炭素の含有量である。より具体的には、銀粉を純水で洗浄したろ液の伝導率が40μS/cm以下になるまで十分に洗浄した際に残存する炭素の量である。このような洗浄によって除去される炭素は、例えば銀粉粒子を還元析出した後に有機物を後混合した場合に、銀粉粒子の表面に付着している炭素である。このような炭素は、焼結助剤として機能せず、銀粉の熱収縮率に寄与しないため、本発明が規定する銀粉の炭素含有量からは除外する必要がある。
したがって、本発明が規定する銀粉の炭素含有量は、銀粉を純水で洗浄したろ液の伝導率が40μS/cm以下になるまで十分に洗浄した後に炭素測定装置で測定される炭素含有量である。
In addition, the carbon content of silver powder prescribed | regulated by this invention is content of the carbon contained in the inside of silver powder particle | grains, or being physically or chemically adsorbed on the particle | grain surface. More specifically, this is the amount of carbon remaining when the silver powder is sufficiently washed until the conductivity of the filtrate obtained by washing with pure water is 40 μS / cm or less. The carbon removed by such washing is, for example, carbon adhering to the surface of the silver powder particles when the organic substance is post-mixed after the silver powder particles are reduced and deposited. Since such carbon does not function as a sintering aid and does not contribute to the thermal shrinkage rate of silver powder, it is necessary to exclude it from the carbon content of silver powder defined by the present invention.
Therefore, the carbon content of the silver powder defined by the present invention is the carbon content measured with a carbon measuring device after thoroughly washing until the conductivity of the filtrate obtained by washing the silver powder with pure water is 40 μS / cm or less. is there.

(BET径)
本銀粉のBET径、すなわち、BET法により測定される比表面積から算出される粒子径が1.10μm〜2.60μmであることが重要である。BET径が1.10μm〜2.60μmの範囲において、炭素含有量を上記範囲に調整することで、500℃における銀粉の熱収縮率を8.7〜13.0%に調整することができる。
さらに、ペーストにしたときの粘性など、ペーストのハンドリングを加味すると、本銀粉のBET径は1.15μm以上或いは2.60μm以下であるのが好ましく、中でも1.30μm以上或いは2.16μm以下であるのがより一層好ましい。
BET径を調整するには、ステアリン酸ナトリウムなどのステアリン酸塩やゼラチンなどの凝集抑制剤の量を調整したり、アンモニア水の添加量を調整したりする方法を挙げることができる。
(BET diameter)
It is important that the BET diameter of the present silver powder, that is, the particle diameter calculated from the specific surface area measured by the BET method is 1.10 μm to 2.60 μm. When the BET diameter is in the range of 1.10 μm to 2.60 μm, the heat shrinkage rate of the silver powder at 500 ° C. can be adjusted to 8.7 to 13.0% by adjusting the carbon content to the above range.
Furthermore, considering the handling of the paste, such as the viscosity when it is made into a paste, the BET diameter of the present silver powder is preferably 1.15 μm or more or 2.60 μm or less, particularly 1.30 μm or more or 2.16 μm or less. Is even more preferable.
In order to adjust the BET diameter, there may be mentioned a method of adjusting the amount of an aggregation inhibitor such as stearate such as sodium stearate or gelatin, or adjusting the amount of ammonia water added.

(D50)
本銀粉のD50、すなわちレーザー回折散乱式粒度分布測定法により測定して得られる体積基準粒度分布によるD50は、1.50μm〜3.40μmであるのが好ましい。
本銀粉のD50が3.40μm以下であれば、ペーストを印刷する際に細線を容易に形成することが可能であり、1.50μm以上であれば、高アスペクト印刷を容易に行うことが可能である。よって、かかる観点から、本銀粉のD50は、特に1.51μm以上、或いは3.36μm以下、中でも2.00μm以上、或いは、3.01μm以下であるのがより一層好ましい。
D50を調整するには、ステアリン酸ナトリウムなどのステアリン酸塩やゼラチンなどの凝集抑制剤の量を調整したり、硝酸銀水溶液の濃度や液量を調整したり、還元剤溶液の濃度や液量を調整したりする方法を挙げることができる。
(D50)
The D50 of the present silver powder, that is, the D50 based on the volume-based particle size distribution obtained by measurement by the laser diffraction / scattering particle size distribution measuring method is preferably 1.50 μm to 3.40 μm.
If D50 of this silver powder is 3.40 μm or less, it is possible to easily form fine lines when printing a paste, and if it is 1.50 μm or more, high aspect printing can be easily performed. is there. Therefore, from this viewpoint, D50 of the present silver powder is particularly preferably 1.51 μm or more, or 3.36 μm or less, and more preferably 2.00 μm or more, or 3.01 μm or less.
To adjust D50, adjust the amount of aggregation inhibitor such as stearates such as sodium stearate and gelatin, adjust the concentration and amount of silver nitrate aqueous solution, and adjust the concentration and amount of reducing agent solution. The method of adjusting can be mentioned.

(粒子形状)
本銀粉は、粒子形状を特に限定するものではないが、球形状或いは略球形状であるのが好ましい。また、導電性ペースト用としては、当該球形状粒子或いは略球形状の粒子を加工してなるフレーク状粒子であるのも好ましいし、また、前記球形状或いは略球形状の粒子と該フレーク状粒子の混合品も好ましい。
(Particle shape)
Although this silver powder does not specifically limit particle shape, it is preferable that it is spherical shape or substantially spherical shape. In addition, for the conductive paste, it is also preferable to use flaky particles obtained by processing the spherical particles or substantially spherical particles, and the spherical or substantially spherical particles and the flaky particles. The mixed product is also preferable.

(比表面積)
本銀粉のBET比表面積(SSA)は、0.60m2/g未満であるのが好ましい。
本銀粉のBET比表面積が0.60m2/g未満であれば、銀粉粒子同士の凝集が比較的弱い傾向にある。他方、ある程度の比表面積を有することで、銀粉粒子同士の接点が多くなるから、焼結後の結合を強くすることができる。よって、かかる観点から、より好ましくは0.22m/g以上或いは0.52m/g以下、その中でも特に0.26m/g以上、或いは、0.50m/g以下である。
(Specific surface area)
The silver powder preferably has a BET specific surface area (SSA) of less than 0.60 m 2 / g.
If the BET specific surface area of the present silver powder is less than 0.60 m 2 / g, the aggregation of silver powder particles tends to be relatively weak. On the other hand, having a certain specific surface area increases the number of contacts between the silver powder particles, so that the bond after sintering can be strengthened. Therefore, from this point of view, more preferably 0.22 m 2 / g or more or 0.52 m 2 / g or less, among the 0.26 m 2 / g or more, or at most 0.50 m 2 / g.

(D50/BET径)
現実の銀粉の粉粒は、個々の粒子が完全に分離した、いわゆる単分散粉ではなく、複数個の粉粒が凝集した状態になっているのが通常である。粉粒の凝集状態が少なく、単分散に近いほど、D50が小さくなり、D50/BET径は1に近づいてくる。
本銀粉は、D50/BET径で表される凝集度が3.00未満であれば、凝集が強くなくて均質なペーストを作製することができるため、3.00未満であるのが好ましく、中でも2.93以下、その中でも1.56以下であるのがさらに好ましい。
(D50 / BET diameter)
The actual silver powder is not a so-called monodispersed powder in which individual particles are completely separated, but is usually in a state where a plurality of powders are aggregated. D50 becomes smaller and the D50 / BET diameter approaches 1 as the aggregated state of the powder particles is smaller and closer to monodispersion.
If the degree of aggregation represented by D50 / BET diameter is less than 3.00, the present silver powder is preferably not less than 3.00 because the aggregation is not strong and a homogeneous paste can be produced. 2.93 or less, more preferably 1.56 or less.

(熱収縮率)
本銀粉は、前述したように、太陽電池に使用するシリコン基板との接着性、より具体的に言えば、500℃で焼成した際に生じる銀粉の収縮によるシリコン基板の剥離などを生じない接着性の観点から、本銀粉の500℃における熱収縮率は8.7〜13.0%であることが重要であり、特に8.90以上、或いは12.42以下、中でも特に10.37以上、或いは11.93以下であるのが好ましい。
BET径及び炭素含有量を所定の範囲に調整することにより、500℃における銀粉の熱収縮率が8.7〜13.0%とすることができる。
(Heat shrinkage)
As described above, the present silver powder has an adhesive property with a silicon substrate used in a solar cell, more specifically, an adhesive property that does not cause peeling of the silicon substrate due to shrinkage of the silver powder that occurs when fired at 500 ° C. From this point of view, it is important that the heat shrinkage rate of the present silver powder at 500 ° C. is 8.7 to 13.0%, particularly 8.90 or more, or 12.42 or less, particularly 10.37 or more, or It is preferably 11.93 or less.
By adjusting the BET diameter and the carbon content within a predetermined range, the thermal shrinkage rate of the silver powder at 500 ° C. can be set to 8.7 to 13.0%.

<製法>
次に、本銀粉の好ましい製造方法について説明する。
<Production method>
Next, the preferable manufacturing method of this silver powder is demonstrated.

本銀粉の製造方法の一例として、硝酸銀などの銀溶液に還元剤を加える前に、ステアリン酸ナトリウムなどのステアリン酸塩を適当な量に加えて還元する方法を挙げることができる。すなわち、還元剤を加える前に、ステアリン酸ナトリウムなどのステアリン酸塩やゼラチンなどの凝集抑制剤を加えてその量を調整することにより、銀粉のBET径を調整することができ、しかも、ステアリン酸やゼラチンなどに起因する炭素量を調整することができる。   As an example of a method for producing the present silver powder, before adding a reducing agent to a silver solution such as silver nitrate, a method of adding a suitable amount of stearate such as sodium stearate to reduce it can be mentioned. That is, before adding the reducing agent, the BET diameter of the silver powder can be adjusted by adding a coagulation inhibitor such as stearic acid salt such as sodium stearate or gelatin and adjusting the amount thereof. It is possible to adjust the amount of carbon caused by gelatin and gelatin.

より具体的に言えば、硝酸銀などの銀水溶液に錯化剤を加えた後、還元剤を添加すると共に、ステアリン酸ナトリウムなどのステアリン酸塩や、ゼラチン水溶液などの凝集抑制剤を適当な量加えて撹拌し、次いで必要に応じて分散剤を添加して撹拌させながら反応させて銀粒子を還元析出させ、その後、ろ過、洗浄、乾燥させて本銀粉を製造することができる。   More specifically, after adding a complexing agent to an aqueous silver solution such as silver nitrate, a reducing agent is added, and an appropriate amount of a stearate such as sodium stearate or an aggregation inhibitor such as an aqueous gelatin solution is added. Then, if necessary, a dispersing agent is added and reacted while stirring to cause silver particles to be reduced and deposited, and then filtered, washed and dried to produce the present silver powder.

この際、ステアリン酸塩やゼラチン水溶液の量が少ないと、炭素含有量を所定範囲に調整することができないばかりか、BET径を所定の範囲に調整することができないため、ステアリン酸塩を加える量は、銀1molに対してステアリン酸塩を1.00×10-3〜4.00×10-3molであるのが好ましい。また、ゼラチン水溶液を加える量は、銀1molに対してゼラチンを0.30g〜0.50gであるのが好ましい。 At this time, if the amount of stearate or gelatin aqueous solution is small, not only the carbon content cannot be adjusted to the predetermined range, but also the BET diameter cannot be adjusted to the predetermined range. Is preferably 1.00 × 10 −3 to 4.00 × 10 −3 mol of stearate per 1 mol of silver. The amount of the gelatin aqueous solution added is preferably 0.30 g to 0.50 g of gelatin with respect to 1 mol of silver.

なお、硝酸銀などの銀水溶液は、硝酸銀、銀塩錯体、及び銀中間体のいずれかを含有する水溶液、又はスラリーを使用することができる。
また、錯化剤としては、例えばアンモニア水、アンモニウム塩、キレート化合物等を挙げることができる。
還元剤としては、例えばアスコルビン酸、亜硫酸塩、アルカノールアミン、過酸化水素水、ギ酸、ギ酸アンモニウム、ギ酸ナトリウム、グリオキサール、酒石酸、次亜燐酸ナトリウム、水素化ホウ素金属塩、ジメチルアミンボラン、ヒドラジン、ヒドラジン化合物、ヒドロキノン、ピロガロール、ぶどう糖、没食子酸、ホルマリン、無水亜硫酸ナトリウム、ロンガリットなどを含む水溶液を挙げることができる。
分散剤としては、例えば脂肪酸、脂肪酸塩、界面活性剤、有機金属、キレート剤、保護コロイド等を挙げることができる。
In addition, silver solution, such as silver nitrate, can use the aqueous solution or slurry containing either silver nitrate, a silver salt complex, and a silver intermediate.
Examples of complexing agents include ammonia water, ammonium salts, chelate compounds and the like.
Examples of the reducing agent include ascorbic acid, sulfite, alkanolamine, hydrogen peroxide, formic acid, ammonium formate, sodium formate, glyoxal, tartaric acid, sodium hypophosphite, metal borohydride, dimethylamine borane, hydrazine, hydrazine. Examples thereof include an aqueous solution containing a compound, hydroquinone, pyrogallol, glucose, gallic acid, formalin, anhydrous sodium sulfite, Rongalite and the like.
Examples of the dispersant include fatty acids, fatty acid salts, surfactants, organic metals, chelating agents, protective colloids and the like.

<用途>
本銀粉は、導電ペースト用、特に焼結型導電性ペースト用の銀粉として好適である。
<Application>
The silver powder is suitable as a silver powder for a conductive paste, particularly for a sintered conductive paste.

焼結型導電性ペーストは、例えば有機ビヒクル中に、本銀粉をガラスフリットと共に混合することで調製することができる。
この際、ガラスフリットとしては、例えば、鉛ボロシリケートガラスや、ジンクボロシリケート等の無鉛ガラスも挙げることができる。
また、樹脂バインダーとしては、例えば任意の樹脂バインダーを使用することができる。例えばエポキシ樹脂、ポリエステル樹脂、ケイ素樹脂、ユリア樹脂、アクリル樹脂、セルロース樹脂から選ばれる1種以上を含む組成を採用するのが望ましい。
The sintered conductive paste can be prepared, for example, by mixing the present silver powder together with glass frit in an organic vehicle.
In this case, examples of the glass frit include lead-free glass such as lead borosilicate glass and zinc borosilicate.
Moreover, as a resin binder, arbitrary resin binders can be used, for example. For example, it is desirable to employ a composition containing at least one selected from an epoxy resin, a polyester resin, a silicon resin, a urea resin, an acrylic resin, and a cellulose resin.

本銀粉は、500℃における銀粉の熱収縮率が8.7〜13.0%であり、太陽電池におけるシリコン基板との相性が極めてよいから、本銀粉を用いた導電ペーストは、太陽電池の電極に用いるのが特に好ましい。   This silver powder has a thermal contraction rate of 8.7 to 13.0% at 500 ° C. and is extremely compatible with a silicon substrate in a solar cell. Therefore, the conductive paste using the silver powder is an electrode of a solar cell. It is particularly preferable to use it.

<語句の説明>
本明細書において「X〜Y」(X,Yは任意の数字)と表現する場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含する。
また、「X以上」(Xは任意の数字)或いは「Y以下」(Yは任意の数字)と表現した場合、「Xより大きいことが好ましい」或いは「Y未満であることが好ましい」旨の意図も包含する。
<Explanation of words>
In the present specification, when expressed as “X to Y” (X and Y are arbitrary numbers), unless otherwise specified, “X is preferably greater than X” or “preferably Y”. It also includes the meaning of “smaller”.
In addition, when expressed as “X or more” (X is an arbitrary number) or “Y or less” (Y is an arbitrary number), it is “preferably greater than X” or “preferably less than Y”. Includes intentions.

以下、本発明を下記実施例及び比較例に基づいてさらに詳述する。
実施例および比較例で得られた銀粉に関して、以下に示す方法で諸特性を評価した。
Hereinafter, the present invention will be further described in detail based on the following examples and comparative examples.
With respect to the silver powder obtained in Examples and Comparative Examples, various characteristics were evaluated by the following methods.

(1)炭素含有量
伝導率40μS/cm以下になるまで純水を用いて洗浄して得られた銀粉(サンプル)を、炭素測定装置(HORIBA社製 EMIA「221V2」)で炭素含有量を測定した。
(1) Carbon content Silver content (sample) obtained by washing with pure water until the conductivity is 40 μS / cm or less is measured with a carbon measuring device (EMIA “221V2” manufactured by HORIBA). did.

(2)BET比表面積(SSA)及びBET径
QUANTACHROME社製のモノソーブ(商品名「MS−18」)を用いて、JIS R 1626-1996(ファインセラミックス粉体の気体吸着BET 法による比表面積の測定方法)の「6.2流動法の(3.5)一点法」に準拠して、BET比表面積(SSA)の測定を行った。その際、キャリアガスであるヘリウムと、吸着質ガスである窒素の混合ガスを使用した。
(2) BET specific surface area (SSA) and BET diameter JIS R 1626-1996 (Measurement of specific surface area of fine ceramic powder by gas adsorption BET method) using monosorb (trade name “MS-18”) manufactured by QUANTACHROME The BET specific surface area (SSA) was measured in accordance with “(3.5) Single point method of 6.2 flow method” of “Method”. At that time, a mixed gas of helium as a carrier gas and nitrogen as an adsorbate gas was used.

BET径は、上記BET比表面積を用いて下記式で算出した。なお、真比重は銀粉であれば10.49である。
BET径=6÷BET比表面積÷真比重
The BET diameter was calculated by the following formula using the BET specific surface area. The true specific gravity is 10.49 for silver powder.
BET diameter = 6 ÷ BET specific surface area ÷ true specific gravity

(3)D50
銀粉(サンプル)0.2gをIPA50mL中に入れて超音波を照射して(3分間)分散させた後、粒度分布測定装置(日機装株式会社製「マイクロトラック(商品名)MT−3000EXII(型番)」)により、体積基準粒度分布によるD50を測定した。
(3) D50
After putting 0.2 g of silver powder (sample) in 50 mL of IPA and irradiating with ultrasonic waves (for 3 minutes), the particle size distribution measuring device (“Microtrack (trade name) MT-3000EXII (model name) manufactured by Nikkiso Co., Ltd.) )) To measure D50 by volume-based particle size distribution.

(4)熱収縮率
銀粉(サンプル)0.2gを用い、493kgの加重をかけてφ3.8mmの円柱状に成形した。この成形体の縦方向の線収縮率(%)を、熱機械分析装置TMA(セイコーインスツルメンツ社製「EXSTAR6000−TMA/SS6200」)を用い、98mNの加重をかけながらAir雰囲気中5℃/分の昇温速度で測定し、500℃における熱収縮率(%)を求めた。
(4) Thermal shrinkage rate Using 0.2 g of silver powder (sample), a weight of 493 kg was applied and molded into a cylindrical shape of φ3.8 mm. Using a thermomechanical analyzer TMA (“EXSTAR6000-TMA / SS6200” manufactured by Seiko Instruments Inc.), the linear shrinkage rate (%) in the longitudinal direction of this molded body was 5 ° C./min in an Air atmosphere while applying a load of 98 mN. The heat shrinkage rate (%) at 500 ° C. was determined by measuring at a rate of temperature increase.

<実施例1>
銀濃度400g/Lの硝酸銀水溶液50mLを純水1Lに溶解させて硝酸銀水溶液を調製し、濃度25質量%のアンモニア水60mLを添加して攪拌することにより、銀アンミン錯体水溶液を得た。
次いで、20℃の銀アンミン錯体水溶液に、濃度11.9g/Lのヒドラジン水溶液1Lと、濃度2.9g/Lのステアリン酸ナトリウム水溶液35mL(銀1molに対して1.76×10-3molに相当)を混合することにより銀粒子を還元析出させた。
次いで、この銀粒子をろ過し、ろ液の伝導率が40μS/cm以下となるまで水洗後、乾燥させることにより銀粉(サンプル)を得た。
<Example 1>
A silver nitrate aqueous solution was obtained by dissolving 50 mL of a silver nitrate aqueous solution having a silver concentration of 400 g / L in 1 L of pure water, adding 60 mL of ammonia water having a concentration of 25% by mass, and stirring.
Next, in a silver ammine complex aqueous solution at 20 ° C., 1 L of a hydrazine aqueous solution with a concentration of 11.9 g / L and 35 mL of a sodium stearate aqueous solution with a concentration of 2.9 g / L (1.76 × 10 −3 mol per 1 mol of silver). Silver particles were reduced and precipitated by mixing.
Then, the silver particles were filtered, washed with water until the filtrate had a conductivity of 40 μS / cm or less, and dried to obtain silver powder (sample).

<実施例2>
銀濃度400g/Lの硝酸銀水溶液50mLを純水1Lに溶解させて硝酸銀水溶液を調製し、濃度25質量%のアンモニア水60mLを添加して攪拌することにより、銀アンミン錯体水溶液を得た。次いで、20℃の銀アンミン錯体水溶液に、濃度11.9g/Lのヒドラジン水溶液1Lと、濃度2.9g/Lのステアリン酸ナトリウム水溶液30mL(銀1molに対して1.50×10-3molに相当)を混合することにより銀粒子を還元析出させた。
次いで、この銀粒子をろ過し、ろ液の伝導率が40μS/cm以下となるまで水洗後、乾燥させることにより銀粉(サンプル)を得た。
<Example 2>
A silver nitrate aqueous solution was obtained by dissolving 50 mL of a silver nitrate aqueous solution having a silver concentration of 400 g / L in 1 L of pure water, adding 60 mL of ammonia water having a concentration of 25% by mass, and stirring. Next, in a silver ammine complex aqueous solution at 20 ° C., 1 L of a hydrazine aqueous solution having a concentration of 11.9 g / L and 30 mL of a sodium stearate aqueous solution having a concentration of 2.9 g / L (1.50 × 10 −3 mol with respect to 1 mol of silver) Silver particles were reduced and precipitated by mixing.
Then, the silver particles were filtered, washed with water until the filtrate had a conductivity of 40 μS / cm or less, and dried to obtain silver powder (sample).

<実施例3>
銀濃度400g/Lの硝酸銀水溶液50mLを純水1.4Lに溶解させて硝酸銀水溶液を調製し、濃度25質量%のアンモニア水60mLを添加して攪拌することにより、銀アンミン錯体水溶液を得た。次いで、20℃の銀アンミン錯体水溶液に、濃度19.6g/Lのヒドラジン水溶液0.6Lと、濃度2.9g/Lのステアリン酸ナトリウム水溶液30mL(銀1molに対して1.50×10-3molに相当)を混合することにより銀粒子を還元析出させた。
次いで、この銀粒子をろ過し、ろ液の伝導率が40μS/cm以下となるまで水洗後、乾燥させることにより銀粉(サンプル)を得た。
<Example 3>
A silver nitrate aqueous solution was obtained by dissolving 50 mL of a silver nitrate aqueous solution with a silver concentration of 400 g / L in 1.4 L of pure water, adding 60 mL of ammonia water with a concentration of 25% by mass, and stirring. Next, in a silver ammine complex aqueous solution at 20 ° C., 0.6 L of a 19.6 g / L hydrazine aqueous solution and 30 mL of a 2.9 g / L sodium stearate aqueous solution (1.50 × 10 −3 per 1 mol of silver). The silver particles were reduced and precipitated by mixing (equivalent to mol).
Then, the silver particles were filtered, washed with water until the filtrate had a conductivity of 40 μS / cm or less, and dried to obtain silver powder (sample).

<実施例4>
銀濃度400g/Lの硝酸銀水溶液50mLを純水1Lに溶解させて硝酸銀水溶液を調製し、濃度25質量%のアンモニア水60mLを添加して攪拌することにより、銀アンミン錯体水溶液を得た。次いで、20℃の銀アンミン錯体水溶液に、濃度11.9g/Lのヒドラジン水溶液1Lと、濃度2.9g/Lのステアリン酸ナトリウム水溶液45mL(銀1molに対して2.30×10-3molに相当)を混合することにより銀粒子を還元析出させた。
次いで、この銀粒子をろ過し、ろ液の伝導率が40μS/cm以下となるまで水洗後、乾燥させることにより銀粉(サンプル)を得た。
<Example 4>
A silver nitrate aqueous solution was obtained by dissolving 50 mL of a silver nitrate aqueous solution having a silver concentration of 400 g / L in 1 L of pure water, adding 60 mL of ammonia water having a concentration of 25% by mass, and stirring. Next, in a silver ammine complex aqueous solution at 20 ° C., 1 L of a hydrazine aqueous solution having a concentration of 11.9 g / L and 45 mL of an aqueous sodium stearate solution having a concentration of 2.9 g / L (2.30 × 10 −3 mol per 1 mol of silver) Silver particles were reduced and precipitated by mixing.
Then, the silver particles were filtered, washed with water until the filtrate had a conductivity of 40 μS / cm or less, and dried to obtain silver powder (sample).

<実施例5>
銀濃度400g/Lの硝酸銀水溶液50mLを純水1Lに溶解させて硝酸銀水溶液を調製し、濃度25質量%のアンモニア水60mLを添加して攪拌することにより、銀アンミン錯体水溶液を得た。次いで、20℃の銀アンミン錯体水溶液に、濃度11.9g/Lのヒドラジン水溶液1Lと、濃度5g/Lのゼラチン水溶液16mL(銀1molに対して0.43gに相当)を混合することにより銀粒子を還元析出させた。
次いで、この銀粒子をろ過し、ろ液の伝導率が40μS/cm以下となるまで水洗後、乾燥させることにより銀粉(サンプル)を得た。
<Example 5>
A silver nitrate aqueous solution was obtained by dissolving 50 mL of a silver nitrate aqueous solution having a silver concentration of 400 g / L in 1 L of pure water, adding 60 mL of ammonia water having a concentration of 25% by mass, and stirring. Next, silver particles were prepared by mixing 1 L of a 11.9 g / L hydrazine aqueous solution and 16 mL of a 5 g / L gelatin aqueous solution (corresponding to 0.43 g with respect to 1 mol of silver) into a 20 ° C. silver ammine complex aqueous solution. Was reduced and precipitated.
Then, the silver particles were filtered, washed with water until the filtrate had a conductivity of 40 μS / cm or less, and dried to obtain silver powder (sample).

<実施例6>
銀濃度400g/Lの硝酸銀水溶液50mLを純水1Lに溶解させて硝酸銀水溶液を調製し、濃度25質量%のアンモニア水50mLを添加して攪拌することにより、銀アンミン錯体水溶液を得た。次いで、20℃の銀アンミン錯体水溶液に、濃度11.9g/Lのヒドラジン水溶液1Lと、濃度5g/Lのゼラチン水溶液16mL(銀1molに対して0.43gに相当)を混合することにより銀粒子を還元析出させた。
次いで、この銀粒子をろ過し、ろ液の伝導率が40μS/cm以下となるまで水洗後、乾燥させることにより銀粉(サンプル)を得た。
<Example 6>
A silver nitrate aqueous solution was obtained by dissolving 50 mL of a silver nitrate aqueous solution having a silver concentration of 400 g / L in 1 L of pure water to prepare a silver nitrate aqueous solution, adding 50 mL of ammonia water having a concentration of 25% by mass and stirring. Next, silver particles were prepared by mixing 1 L of a 11.9 g / L hydrazine aqueous solution and 16 mL of a 5 g / L gelatin aqueous solution (corresponding to 0.43 g with respect to 1 mol of silver) into a 20 ° C. silver ammine complex aqueous solution. Was reduced and precipitated.
Then, the silver particles were filtered, washed with water until the filtrate had a conductivity of 40 μS / cm or less, and dried to obtain silver powder (sample).

<比較例1>
銀濃度400g/Lの硝酸銀水溶液50mLを純水1Lに溶解させて硝酸銀水溶液を調製し、濃度25質量%のアンモニア水50mLを添加して攪拌することにより、銀アンミン錯体水溶液を得た。次いで、20℃の銀アンミン錯体水溶液に、濃度11.9g/Lのヒドラジン水溶液1Lと、濃度100g/Lのステアリン酸ナトリウム水溶液4mL(銀1molに対して7.04×10-3molに相当)を混合することにより銀粒子を還元析出させた。
次いで、この銀スラリーに濃度98質量%の硫酸20mLを添加して攪拌した。
次いで、この銀粒子をろ過し、ろ液の伝導率が40μS/cm以下となるまで水洗後、乾燥させることにより銀粉(サンプル)を得た。
<Comparative Example 1>
A silver nitrate aqueous solution was obtained by dissolving 50 mL of a silver nitrate aqueous solution having a silver concentration of 400 g / L in 1 L of pure water to prepare a silver nitrate aqueous solution, adding 50 mL of ammonia water having a concentration of 25% by mass and stirring. Next, in a silver ammine complex aqueous solution at 20 ° C., 1 L of a hydrazine aqueous solution having a concentration of 11.9 g / L and 4 mL of a sodium stearate aqueous solution having a concentration of 100 g / L (corresponding to 7.04 × 10 −3 mol with respect to 1 mol of silver) The silver particles were reduced and precipitated by mixing.
Subsequently, 20 mL of sulfuric acid having a concentration of 98% by mass was added to the silver slurry and stirred.
Then, the silver particles were filtered, washed with water until the filtrate had a conductivity of 40 μS / cm or less, and dried to obtain silver powder (sample).

<比較例2>
銀濃度400g/Lの硝酸銀水溶液50mLを純水1Lに溶解させて硝酸銀水溶液を調製し、濃度25質量%のアンモニア水60mLを添加して攪拌することにより、銀アンミン錯体水溶液を得た。次いで、20℃の銀アンミン錯体水溶液に、濃度11.9g/Lのヒドラジン水溶液1Lと、濃度100g/Lのステアリン酸ナトリウム水溶液3mL(銀1molに対して5.28×10-3molに相当)を混合することにより銀粒子を還元析出させた。
次いで、この銀スラリーに濃度98質量%の硫酸20mLを添加して攪拌した。
次いで、この銀粒子をろ過し、ろ液の伝導率が40μS/cm以下となるまで水洗後、乾燥させることにより銀粉(サンプル)を得た。
<Comparative example 2>
A silver nitrate aqueous solution was obtained by dissolving 50 mL of a silver nitrate aqueous solution having a silver concentration of 400 g / L in 1 L of pure water, adding 60 mL of ammonia water having a concentration of 25% by mass, and stirring. Next, in a silver ammine complex aqueous solution at 20 ° C., 1 L of a hydrazine aqueous solution having a concentration of 11.9 g / L and 3 mL of a sodium stearate aqueous solution having a concentration of 100 g / L (corresponding to 5.28 × 10 −3 mol per 1 mol of silver) The silver particles were reduced and precipitated by mixing.
Subsequently, 20 mL of sulfuric acid having a concentration of 98% by mass was added to the silver slurry and stirred.
Then, the silver particles were filtered, washed with water until the filtrate had a conductivity of 40 μS / cm or less, and dried to obtain silver powder (sample).

<比較例3>
銀濃度400g/Lの硝酸銀水溶液50mLを純水1Lに溶解させて硝酸銀水溶液を調製し、濃度25質量%のアンモニア水60mLを添加して攪拌することにより、銀アンミン錯体水溶液を得た。次いで、20℃の銀アンミン錯体水溶液に、濃度11.9g/Lのヒドラジン水溶液1Lと、濃度37質量%のホルマリン6mLおよび、濃度5g/Lのゼラチン水溶液16mL(銀1molに対して0.43gに相当)を混合することにより銀粒子を還元析出させた。
次いで、この銀粒子をろ過し、ろ液の伝導率が40μS/cm以下となるまで水洗後、乾燥させることにより銀粉(サンプル)を得た。
<Comparative Example 3>
A silver nitrate aqueous solution was obtained by dissolving 50 mL of a silver nitrate aqueous solution having a silver concentration of 400 g / L in 1 L of pure water, adding 60 mL of ammonia water having a concentration of 25% by mass, and stirring. Next, in a silver ammine complex aqueous solution at 20 ° C., 1 L of a hydrazine aqueous solution having a concentration of 11.9 g / L, 6 mL of formalin having a concentration of 37% by mass, and 16 mL of a gelatin aqueous solution having a concentration of 5 g / L (0.43 g to 1 mol of silver) Silver particles were reduced and precipitated by mixing.
Then, the silver particles were filtered, washed with water until the filtrate had a conductivity of 40 μS / cm or less, and dried to obtain silver powder (sample).

<比較例4>
銀濃度400g/Lの硝酸銀水溶液75mLを純水1Lに溶解させて硝酸銀水溶液を調製し、濃度25質量%のアンモニア水90mLを添加して攪拌することにより、銀アンミン錯体水溶液を得た。
次いで、20℃の銀アンミン錯体水溶液に、濃度11.9g/Lのヒドラジン水溶液1Lと、濃度2.9g/Lのステアリン酸ナトリウム水溶液35mL(銀1molに対して1.76×10-3molに相当)を混合することにより銀粒子を還元析出させた。
次いで、この銀粒子をろ過し、ろ液の伝導率が40μS/cm以下となるまで水洗後、乾燥させることにより銀粉(サンプル)を得た。
<Comparative example 4>
A silver nitrate aqueous solution was prepared by dissolving 75 mL of a silver nitrate aqueous solution having a silver concentration of 400 g / L in 1 L of pure water, adding 90 mL of ammonia water having a concentration of 25% by mass, and stirring.
Next, in a silver ammine complex aqueous solution at 20 ° C., 1 L of a hydrazine aqueous solution with a concentration of 11.9 g / L and 35 mL of a sodium stearate aqueous solution with a concentration of 2.9 g / L (1.76 × 10 −3 mol per 1 mol of silver). Silver particles were reduced and precipitated by mixing.
Then, the silver particles were filtered, washed with water until the filtrate had a conductivity of 40 μS / cm or less, and dried to obtain silver powder (sample).

<比較例5>
銀濃度400g/Lの硝酸銀水溶液50mLを純水0.8Lに溶解させて硝酸銀水溶液を調製し、濃度25質量%のアンモニア水60mLを添加して攪拌することにより、銀アンミン錯体水溶液を得た。
次いで、20℃の銀アンミン錯体水溶液に、濃度11.9g/Lのヒドラジン水溶液0.8Lと、濃度2.9g/Lのステアリン酸ナトリウム水溶液35mL(銀1molに対して1.76×10-3molに相当)を混合することにより銀粒子を還元析出させた。
次いで、この銀粒子をろ過し、ろ液の伝導率が40μS/cm以下となるまで水洗後、乾燥させることにより銀粉(サンプル)を得た。
<Comparative Example 5>
A silver nitrate aqueous solution was obtained by dissolving 50 mL of a silver nitrate aqueous solution having a silver concentration of 400 g / L in 0.8 L of pure water, adding 60 mL of ammonia water having a concentration of 25% by mass and stirring.
Subsequently, 0.8 L of a hydrazine aqueous solution having a concentration of 11.9 g / L and 35 mL of a sodium stearate aqueous solution having a concentration of 2.9 g / L (1.76 × 10 −3 with respect to 1 mol of silver) were added to the 20 ° C. silver ammine complex aqueous solution. The silver particles were reduced and precipitated by mixing (equivalent to mol).
Then, the silver particles were filtered, washed with water until the filtrate had a conductivity of 40 μS / cm or less, and dried to obtain silver powder (sample).

Figure 0006047276
Figure 0006047276

実施例及び比較例で得た銀粉(サンプル)は、いずれも球形状であった。
実施例及びこれまで行った試験結果から、銀に対するステアリン酸塩やゼラチンの添加比率などを調整することにより、BET径を1.10μm〜2.60μmとし、且つ炭素含有量を0.11〜0.22質量%に調整すれば、500℃における銀粉の熱収縮率が8.7〜13.0%とすることが分かった。
The silver powders (samples) obtained in the examples and comparative examples were all spherical.
From the examples and the results of the tests conducted so far, the BET diameter was adjusted to 1.10 μm to 2.60 μm and the carbon content was adjusted to 0.11 to 0 by adjusting the addition ratio of stearate or gelatin to silver. It was found that the heat shrinkage rate of silver powder at 500 ° C. was 8.7 to 13.0% when adjusted to 0.22 mass%.

Claims (8)

シリコン基板上に銀膜を形成するために用いる焼結型導電性ペースト用銀粉であって、BET法により測定される比表面積から算出される粒子径(「BET径」と称する)が1.10μm〜2.60μmであり、炭素含有量が0.11質量%以上0.20質量%未満であることを特徴とする、焼結型導電性ペースト用銀粉。 A silver powder for sintered conductive paste used for forming a silver film on a silicon substrate, and a particle diameter (referred to as “BET diameter”) calculated from a specific surface area measured by the BET method is 1.10 μm Silver powder for sintered conductive paste, characterized in that it is ˜2.60 μm and the carbon content is 0.11 % by mass or more and less than 0.20% by mass . シリコン基板上に銀膜を形成するために用いる焼結型導電性ペースト用銀粉であって、BET法により測定される比表面積から算出される粒子径(「BET径」と称する)が1.10μm〜2.60μmであり、炭素含有量が0.11質量%以上0.20質量%未満であることを特徴とする焼結型導電性ペースト用銀粉(但し、比表面積が0.27mA silver powder for sintered conductive paste used for forming a silver film on a silicon substrate, and a particle diameter (referred to as “BET diameter”) calculated from a specific surface area measured by the BET method is 1.10 μm. Silver powder for sintered conductive paste, wherein the carbon content is 0.11% by mass or more and less than 0.20% by mass (however, the specific surface area is 0.27m) 22 /gであり、炭素含有量が0.16質量%であり、D50が3.1μmであり、D50×BETが0.8である銀粉を除く)。/ G, carbon content is 0.16% by mass, D50 is 3.1 μm, and D50 × BET is 0.8, excluding silver powder). BET径に対する、レーザー回折散乱式粒度分布測定法により測定して得られる体積基準粒度分布によるD50の比率(D50/BET径)が3.00未満であることを特徴とする請求項1又は2に記載の焼結型導電性ペースト用銀粉。 For BET diameter, to claim 1 or 2 ratio of D50 by laser diffraction scattering particle size distribution volume-based particle size distribution obtained by measuring by the measuring method (D50 / BET diameter) and less than 3.00 Silver powder for sintered type conductive paste as described. 500℃における熱収縮率が8.7〜13.0%であることを特徴とする請求項1〜3の何れかに記載の焼結型導電性ペースト用銀粉。 The silver powder for sintered conductive paste according to any one of claims 1 to 3, wherein the thermal shrinkage at 500 ° C is 8.7 to 13.0%. 比表面積が0.60m2/g未満であることを特徴とする請求項1〜4の何れかに記載の焼結型導電性ペースト用銀粉。 The silver powder for sintered conductive paste according to any one of claims 1 to 4 , wherein the specific surface area is less than 0.60 m 2 / g. レーザー回折散乱式粒度分布測定法により測定して得られる体積基準粒度分布によるD50が1.50μm〜3.40μmであることを特徴とする請求項1〜5の何れかに記載の焼結型導電性ペースト用銀粉。 The sintered conductive according to any one of claims 1 to 5 , wherein D50 based on a volume-based particle size distribution obtained by measurement by a laser diffraction / scattering particle size distribution measuring method is 1.50 µm to 3.40 µm. Silver powder for adhesive paste. 請求項1〜6の何れかに記載の銀粉を用いてなる焼結型導電性ペースト。 Sintered conductive paste made by using a silver powder according to any one of claims 1 to 6. 請求項1〜6の何れかに記載の銀粉を用いてなる太陽電池電極用焼結型導電性ペースト。
Any sintered for a solar cell electrode formed by using a silver powder according to imaging-type conductive paste of claims 1 to 6.
JP2011146386A 2011-06-30 2011-06-30 Silver powder for sintered conductive paste Active JP6047276B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011146386A JP6047276B2 (en) 2011-06-30 2011-06-30 Silver powder for sintered conductive paste
KR1020120047319A KR102007306B1 (en) 2011-06-30 2012-05-04 Silver powder for sintered conductive paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011146386A JP6047276B2 (en) 2011-06-30 2011-06-30 Silver powder for sintered conductive paste

Publications (2)

Publication Number Publication Date
JP2013014790A JP2013014790A (en) 2013-01-24
JP6047276B2 true JP6047276B2 (en) 2017-07-05

Family

ID=47687727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011146386A Active JP6047276B2 (en) 2011-06-30 2011-06-30 Silver powder for sintered conductive paste

Country Status (2)

Country Link
JP (1) JP6047276B2 (en)
KR (1) KR102007306B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106356412A (en) * 2015-07-17 2017-01-25 杨振民 Crystalline silicon solar cell grid line, electrode and back surface field manufacturing process

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0845721A (en) * 1994-08-03 1996-02-16 Sumitomo Metal Mining Co Ltd Composition for resin bonded magnetic and manufacture of resin bonded magnet using said composition.
JP6184731B2 (en) * 2013-04-25 2017-08-23 Dowaエレクトロニクス株式会社 Silver-bismuth powder, conductive paste and conductive film
CN105268992B (en) * 2015-11-20 2018-07-31 浙江海洋学院 A kind of netted two-dimensional sheet silver powder and its liquid-phase synthesis process
KR101930285B1 (en) * 2016-10-31 2018-12-19 엘에스니꼬동제련 주식회사 Electrode Paste For Solar Cell's Electrode And Solar Cell using the same
KR102033542B1 (en) * 2017-04-28 2019-10-17 대주전자재료 주식회사 Silver particle containing inner void and method of manufacture thereof
TWI755565B (en) 2017-09-29 2022-02-21 日商同和電子科技有限公司 Silver powder and method for producing same
JP7090511B2 (en) 2017-09-29 2022-06-24 Dowaエレクトロニクス株式会社 Silver powder and its manufacturing method
KR102302205B1 (en) * 2018-10-04 2021-09-16 대주전자재료 주식회사 Silver powder manufacturing method
KR20200038742A (en) * 2018-10-04 2020-04-14 대주전자재료 주식회사 Silver powder manufacturing method
KR20230153015A (en) 2022-04-28 2023-11-06 한국광기술원 sintered adhesive composition for metal and manufacturing method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004047856A (en) * 2002-07-15 2004-02-12 Sumitomo Metal Electronics Devices Inc Conductive paste and printing method as well as manufacturing method of ceramic multilayer circuit board
JP2006002228A (en) 2004-06-18 2006-01-05 Dowa Mining Co Ltd Spherical silver powder and its production method
JP2006161145A (en) * 2004-12-10 2006-06-22 Dowa Mining Co Ltd Silver powder and method for producing the same
JP2007270334A (en) 2006-03-31 2007-10-18 Dowa Holdings Co Ltd Silver powder and its manufacturing method
KR101280489B1 (en) * 2007-05-09 2013-07-01 주식회사 동진쎄미켐 A paste for producing electrode of solar cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106356412A (en) * 2015-07-17 2017-01-25 杨振民 Crystalline silicon solar cell grid line, electrode and back surface field manufacturing process

Also Published As

Publication number Publication date
JP2013014790A (en) 2013-01-24
KR102007306B1 (en) 2019-08-05
KR20130004064A (en) 2013-01-09

Similar Documents

Publication Publication Date Title
JP6047276B2 (en) Silver powder for sintered conductive paste
JP5606421B2 (en) Sinterable bonding material using copper nanoparticles, manufacturing method thereof, and bonding method of electronic member
KR101141839B1 (en) Silver Powder and Method for Producing Same
KR100713241B1 (en) Method of manufacturing silver powder by chemical reduction
JP5922388B2 (en) Silver powder for sintered conductive paste
JP2018523758A (en) Method for producing silver powder for high-temperature sintered conductive paste
JP2011071057A (en) Heating curing type conductive paste composition, electrode using conductive paste composition, and method of forming wiring pattern
JP2016186130A (en) Manufacturing method of silver powder
JP6666723B2 (en) Silver-coated tellurium powder, method for producing the same, and conductive paste
JP2007270334A (en) Silver powder and its manufacturing method
JP2013541640A (en) Silver particles and method for producing the same
CN104801709A (en) Nickel-coated copper clad metal powder and preparation method and application thereof
JP2014098186A (en) Silver powder
JP4666663B2 (en) Silver compound-coated copper powder, method for producing the silver compound-coated copper powder, storage method for the silver compound-coated copper powder, and conductive paste using the silver compound-coated copper powder
CN116890110B (en) Micron silver powder capable of being sintered at low temperature and preparation method
JP2013251608A (en) Antenna device and manufacturing method therefor
JP5985216B2 (en) Silver powder
JP6626572B2 (en) Metal bonding material, method of manufacturing the same, and method of manufacturing metal bonded body using the same
JP2010275578A (en) Silver powder and production method therefor
JP2015096637A (en) Copper-containing fine-particle aggregate and production method thereof
JP6722495B2 (en) Silver-coated copper powder and method for producing the same
CN115026300B (en) Preparation method of spherical gold powder for conductive paste
KR102122317B1 (en) Method for manufacturing silver powder and conducitve paste including silver powder
JP2021161495A (en) Nickel particle and method for producing the same, as well as conductive composition
TW202402678A (en) copper powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150302

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161121

R150 Certificate of patent or registration of utility model

Ref document number: 6047276

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250