JP6045438B2 - 固体高分子型燃料電池用の膜電極接合体の製造方法 - Google Patents

固体高分子型燃料電池用の膜電極接合体の製造方法 Download PDF

Info

Publication number
JP6045438B2
JP6045438B2 JP2013101764A JP2013101764A JP6045438B2 JP 6045438 B2 JP6045438 B2 JP 6045438B2 JP 2013101764 A JP2013101764 A JP 2013101764A JP 2013101764 A JP2013101764 A JP 2013101764A JP 6045438 B2 JP6045438 B2 JP 6045438B2
Authority
JP
Japan
Prior art keywords
diffuser
frame
polymer electrolyte
electrode assembly
resin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013101764A
Other languages
English (en)
Other versions
JP2014222610A (ja
Inventor
治人 高尾
治人 高尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tigers Polymer Corp
Original Assignee
Tigers Polymer Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tigers Polymer Corp filed Critical Tigers Polymer Corp
Priority to JP2013101764A priority Critical patent/JP6045438B2/ja
Publication of JP2014222610A publication Critical patent/JP2014222610A/ja
Application granted granted Critical
Publication of JP6045438B2 publication Critical patent/JP6045438B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、固体高分子型燃料電池に使用される膜電極接合体の製造方法に関する。特に燃料電池の発電領域に供給される反応ガスを分配するためのディフューザを備える膜電極接合体の成形方法に関するものである。
固体高分子型燃料電池は、イオン導電性を有するイオン交換樹脂等の膜を高分子電解質膜として用い、この高分子電解質膜を挟んでその両側にカソード電極(正極)とアノード電極(負極)の両電極を配置して膜電極接合体(MEA)を構成し、例えば負極側に水素ガス等の燃料ガスを、一方正極側には酸素ガス又は空気等の酸化ガスを供給して電気化学反応を起こさせることにより、燃料ガスのもつ化学エネルギーを電気量に変換して電気を発生させるものである。通常、MEAの両側にセパレータが配設されて、単セルが構成される。
そして、固体高分子型燃料電池は、通常、上記MEAを含む単セルを複数積層して構成される。各単セルにおいて、MEAとセパレータの間は、燃料ガスや酸化ガスが漏れ出さないようにシールされている。これら反応ガスは、電池の発電効率を高めるために、MEAの発電領域の全体に行き渡らせる必要がある。また、積層された単セルの間には、冷却液が循環され、燃料電池を冷却する。
反応ガスを、効率的にMEAの発電領域全体に行き渡らせるために、ディフューザやガス分配部などと呼ばれる、反応ガスを分散させるための部材が、反応ガスの流路中に設けられることがある。ディフューザは、セパレータに形成されることがあり、MEAに形成されることもある。好ましくは、ディフューザはセパレータやMEAに一体となるように形成される。
そのような反応ガスの分配を行うディフューザを、セパレータやMEAに一体に成形する技術として、種々のものが開発されている。
例えば、特許文献1には、ガス供給マニフォールドと発電領域の間に、ガス入口分配部(ディフューザ)を設け、ガス分配部を、発電領域のガス流れ方向と垂直方向に延在し、2つ以上のスリットを有するn個の分配リブにより構成する技術が開示されている。当該ガス入口分配部によれば、反応ガスを発電領域に均等に分配することができる。
再公表特許 WO2011/033745号公報
ディフューザをセパレータやMEAに一体に形成する際には、例えば、いわゆるインサート成形を応用して、ゴム材料を射出成形してディフューザの形成を行う技術が知られている。しかしながら、ディフューザは、微細な形状を有する部材であるため、その成形はたやすいものではなかった。例えば、ディフューザの平面パターンがドットが散在する形態である場合には、射出成形の金型が非常に複雑なものとなってしまう。特に、ディフューザの平面パターンが微細化する一方で、ディフューザには所定の高さ(MEAの法線方向の高さ)が求められるため、従来知られた製造技術では、このような微細でありながらも所定の高さのある部材を形成することは容易ではなかった。
本発明の目的は、微細な平面パターンを持ちながらも、所定の高さを有するディフューザを効率的に製造可能な製造方法を提供することにある。
発明者は、鋭意検討の結果、液状ゴム材料のスクリーン印刷によりディフューザの平面パターンを形成し、その後、液状ゴム材料を発泡させて架橋すると、上記目的が達成できることを知見し、本発明を完成させた。
本発明は、樹脂フィルムを額縁状に形成したフレームに、高分子電解質膜を一体化し、固体高分子型燃料電池の膜電極接合体を製造する方法であって、反応ガスを分配するためのディフューザを高分子電解質膜に隣接するフレーム上の一部の領域に形成する工程を有しており、前記ディフューザ形成工程は、発泡材料を配合した未架橋の液状ゴム材料を準備する工程と、前記液状ゴム材料を前記樹脂フィルムにスクリーン印刷して、ディフューザの平面パターンを有するディフューザ前駆体を前記樹脂フィルム上に形成する行程と、スクリーン印刷工程に引き続いて、ディフューザ前駆体の未架橋液状ゴム材料を発泡させて架橋する工程と、を含む膜電極接合体の製造方法である(第1発明)。
本発明においては、ディフューザの平面パターンの最小幅寸法をWm、ディフューザの最小幅部分における高さ寸法をHmとして、0.1*Wm≦Hm≦0.8*Wmとなるようにディフューザを形成することが好ましい(第2発明)。さらに、第2発明においては、1平方センチメートル当たり20個〜200個のドットを散在させたパターンに、ディフューザの平面パターンが形成されることが好ましい(第3発明)。また、本発明においては、樹脂フィルムに対しディフューザを形成した後に、樹脂フィルムを額縁状に加工してフレームを得て、フレームに高分子電解質膜を一体化することが好ましい(第4発明)。
本発明の膜電極接合体の製造方法(第1発明)によれば、微細な平面パターンを持ちながらも、所定の高さを有するディフューザを、MEAに対し一体に効率的に形成できる。
さらに、第2発明や第3発明のようにした場合には、他の製造方法に比べて特に効率的にディフューザを効率的に形成できるとともに、形成されたディフューザの反応ガスの分配機能も高いものとなる。また、第4発明の製造方法によれば、ディフューザが一体化されたフレームの製造を連続的に行うことができ、製造の効率性が特に高められる。
固体高分子型燃料電池を構成する単セルの概略縦断面図。 膜電極接合体の外観を示す斜視図。 膜電極接合体の外観を示す平面図。 膜電極接合体の構成を示す分解図。 ディフューザの平面パターンの例を示す図。 フレームに一体成形されたディフューザの断面の例を示す図。 フレームにディフューザを一体成形する工程を示す模式図。 膜電極接合体を製造する工程の例を示す概念図。
以下図面を参照しながら、本発明の実施形態について説明する。なお、本発明は以下に示す個別の実施形態に限定されるものではなく、その形態を変更して実施することもできる。
まず、燃料電池の構成から説明する。図1は、固体高分子型燃料電池を構成する単セル1の概略縦断面図であり、通常、燃料電池はこの単セル1を複数積層した積層体(図示せず)として構成されている。
図1において、単セル1は、膜電極接合体(Membrene Electrode Assembly:MEA)2とセパレータ5,6とにより構成されている。膜電極接合体(MEA)2は、高分子電解質膜21とこの高分子電解質膜21を挟んで両側に配設されるカソード電極24およびアノード電極25とを有する。図1は、燃料電池の単セルの、反応ガスの流れ方向に対し直角な面における断面である。単セル1において、カソード電極24およびアノード電極25は、それぞれ、カソード電極側セパレータ5、アノード電極側セパレータ6に当接するように設けられる。また、カソード電極側セパレータ5の電極24側には酸化ガス供給用の溝7が設けられ、アノード電極側セパレータ6の電極25側には燃料ガス供給用の溝8が設けられ、溝7は酸化ガス供給マニフォールドに、溝8は燃料ガス供給マニフォールドにそれぞれ連通している。
上記単セル1において、高分子電解質膜21、カソード電極24およびアノード電極25で構成された膜電極接合体(MEA)2の周囲に燃料ガスおよび酸化ガスが漏洩するのを防止するため、MEA2とセパレータ5,6との間に額縁状(ループ状)のパッキン(シール)9,9が介在している。図3や図5には、パッキン9のシールラインの例を破線で示している。本実施形態においては、上記パッキン9は、あらかじめセパレータ5,6の周縁部表面に額縁状に成形され、一体化されたものである。したがって、図1に示す燃料電池組み立て状態において、パッキン9,9は、セパレータ5,6とは接着一体化されることにより、膜電極接合体2とは接触・押圧されることにより、その周縁部をガスシールする。なお、シールの具体的様態については、公知の技術により行えばよい。
図2ないし図4により、膜電極接合体(MEA)2の構成をより詳細に説明する。図2はMEAの斜視図、図3は正面図、図4はMEAを分解した図である。MEA2は、高分子電解質膜21、フレーム22、カソード電極24、アノード電極25、ディフューザ23を有するように構成されている。フレーム22は、額縁状に形成された樹脂フィルム製の部材である。フレーム22の中央部に設けられた穴の部分に高分子電解質膜21が取り付けられ、高分子電解質膜21の両側に、カソード電極24、アノード電極25が設けられて、MEA2の本体が構成されている。
本実施形態においては、フレーム22が2枚設けられ、その間に高分子電解質膜21の周縁部が挟み込まれるようにして両者が一体化されている。また、電極24,25と高分子電解質膜21の間には触媒層が設けられる。高分子電解質膜21としてはいわゆるナフィオン膜(NAFIONはデュポン社の登録商標)が利用でき、電極24,25としては、カーボンフェルトなどが利用できる。高分子電解質膜21と、フレーム22、電極24,25の一体化や、触媒層の形成については、公知の技術により行うことができる。
フレーム22は樹脂フィルム製である。樹脂フィルムの材料となる合成樹脂としては、ポリエチレンテレフタレート樹脂(PET樹脂)、ポリエチレンナフタレート樹脂(PEN樹脂)、ポリイミド樹脂(PI樹脂)、ポリフェニレンサルファイド樹脂(PPS樹脂)などの熱可塑性樹脂が例示される。フレームの樹脂材料には、燃料電池の動作温度や、シール材やディフューザの一体化工程の加工温度で変形しない程度の耐熱性が要求される。フレーム22は、中央部に高分子電解質膜21が取り付けられる大きな穴が設けられた額縁状に形成されている。この穴の部分が、燃料電池の発電領域となる。フレーム22の両側部には、反応ガスマニフォールド221、221と冷却水マニフォールド222,222が設けられている。複数のMEAが積層された際に、これらマニフォールド221,222は積層方向に連通した通路となり、マニフォールドに反応ガスや冷却水が流れる。各単セルにおいては、略長方形状のフレーム22の対角線状に配置された反応ガスマニフォールドの間に、反応ガスが流れて、発電領域に反応ガスが供給される。
フレーム22上には、ディフューザ23が形成されている。ディフューザ23は、フレームがMEAや単セルに組み込まれた際に、セパレータ5,6と対向するよう、フレーム上の一部の領域に設けられている。そして、ディフューザ23は、反応ガスマニフォールド221と、発電領域の間の部分に設けられている。即ち、ディフューザ23は、フレーム22とセパレータ5,6の間に形成された反応ガスの通路部分に、発電領域(高分子電解質膜)に隣接するように設けられていて、ディフューザ23により、反応ガスが発電領域の全体に向けて分配される。
本実施形態では、ディフューザ23は、発電領域の上流側にも下流側にも設けられている。上流側のみあるいは下流側のみにディフューザ23を設けても良いが、反応ガスの分配の均一性を高める観点からは、両側に設けることが好ましい。
ディフューザ23の形態は、棒状またはドット状の形状の微細なディフューザ要素を、特定の平面パターンで分散配置したものである。本実施形態においては、図3や図5(a)に示すように、反応ガスマニフォールド221から発電領域に向かって、棒状のディフューザ要素が放射状に分散配置されている。反応ガスは、フレーム22とセパレータ5,6の間を、ディフューザ要素を避けるように流れる。そのため、各ディフューザ要素の大きさや間隔、配置などを調整することにより、発電領域に対し、反応ガスマニフォールド221から均一に反応ガスを分配することができるようになる。具体的には、反応ガスをより流したい部分では、ディフューザ要素の間の流路部分が、比較的広く、直線的になるようにし、反応ガスをあまり流したくない部分では、ディフューザ要素の間の流路部分が、比較的狭く、屈曲した迷路状になるようにして、反応ガスの分配性を調整する。
図6には、ディフューザ23とフレーム22の断面を示す。それぞれのディフューザ要素は、フレーム22の表面から、高さHmで突出するように設けられる。ディフューザ要素の高さHmは、単セル1におけるフレーム22とセパレータ5,6の間の隙間よりも大きくなるように、好ましくは隙間寸法よりも5〜50%程度大きくなるように設定することが好ましい。そのようにすれば、それぞれのディフューザ要素が、フレーム22とセパレータ5,6の間に柱や壁のように設けられることになって、ディフューザ23の反応ガスの分配機能がより確実なものとなる。なお、ディフューザ要素の高さは、単セル1におけるフレーム22とセパレータ5,6の間の隙間よりも小さいものであっても良い。
ディフューザ23の平面パターンは他のパターンであっても良い。例えば、図5(b)に示すディフューザ23bのように、多数のドット状のディフューザ要素を散在させたような形態であっても良い。ドット状のディフューザ要素は、円形、楕円、四角、三角などといった形態としても良い。あるいは、図5(c)に示すディフューザ23cように、複数の棒状のディフューザ要素を、反応ガスの全体的な流れ方向に対し垂直方向に延在するように並べ、ディフューザ要素の間の空間が迷路(ラビリンス)状になるようにした形態であっても良い。また、棒状のディフューザ要素は、直線状の要素であってもよく、湾曲した形状の要素であっても良い。
ディフューザ23の平面パターンにおける最小幅寸法Wm(図5(a)、(c)のような棒状のディフューザ要素であれば、棒状要素の幅寸法Wm、図5(b)のようなドット状のディフューザ要素であれば、ドット状要素の短径寸法Wm)は、好ましくは、0.2mm〜3mmとされ、典型的には0.3mm〜1mmとされる。
また、好ましくは、ディフューザ23の平面パターンの最小幅寸法Wmと、ディフューザの高さ(特に最小幅部分における高さ)Hmとが、0.1*Wm≦Hm≦0.8*Wmとなるようにディフューザが形成されることが好ましく、このように形成されたディフューザは、反応ガスの分配機能が高い。
ディフューザの高さHmは好ましくは0.05mm〜0.8mmに設けられ、より好ましくは0.1mm〜0.6mmに設けられる。
ディフューザが図5(a)、(c)のような棒状のディフューザ要素を分散配置したものである場合には、ディフューザ要素が延在する方向と略直交する方向に測ったディフューザ要素の数が、4個/cm〜15個/cmとなるようにすることが好ましい。また、ディフューザが図5(b)のようなドット状のディフューザ要素を集合配置したものである場合には、ディフューザ要素の数が、20個/平方cm〜200個/平方cmとなるようにすることが好ましく、40個/平方cm〜120個/平方cmとなるようにすることが特に好ましい。ディフューザ要素が微細であり、高密度に配置される方が、反応ガスの分配機能が高められて好ましい。
また、ディフューザ要素は、ディフューザが設けられるフレーム上の一部領域の面積に対するディフューザ要素が占める面積の割合が、5%〜50%、より好ましくは10%〜30%となるように設けられる。ディフューザ要素が占める面積の割合が大きい方が、反応ガスの分配機能が高められる傾向があるが、割合が大きすぎると、反応ガスの流れが悪くなる。
ディフューザ23は、弾力性を有するエラストマー、特に架橋された発泡ゴム材料により形成されている。ディフューザを構成する材料のゴム硬度は、硬度50以下であることが好ましい。ディフューザの硬度が低ければ、ディフューザ部分の反力によってディフューザ付近のシール性が悪化するといった問題が発生しにくくなって、好ましい。
ディフューザを形成するゴム材料としては、イソプレンゴム、水添イソプレンゴム、エチレンプロピレンゴム、ブタジエンゴム、ブチルゴム、ウレタンゴム、シリコーンゴムなどが例示される。特に水添イソプレンゴムが好ましい。ゴム材料は好ましくはイソシアネート化合物や有機過酸化物により架橋されている。ディフューザを形成するゴム材料を発泡ゴムとするための発泡材料としては、熱膨張性マイクロカプセル(例えば、エクスパンセルやマイクロスフィアといった商品名で販売されている、加熱により膨張する液体をポリマー殻で包んだマイクロカプセル)や、アゾジカルボンアミド(ADCA)、オキシビスベンゼンスルホニルヒドラジド(OBSH)、ジニトロソペンタメチレンテトラミン(DPT)、炭酸水素ナトリウムなどの化学発泡剤が例示される。特に熱膨張性マイクロカプセルにより発泡させると、発泡材料の残滓が燃料電池の使用時に溶出して触媒が被毒することがないので好ましい。発泡材料から分解ガスや分解残滓などが発生する場合には、それらを除去してから燃料電池に組み込むようにすることが好ましい。
本実施形態においては、発泡材料として熱膨張性マイクロカプセルを配合した水添イソプレンゴムをイソシアネート化合物で架橋して、ディフューザ23を形成している。
上記したディフューザを備える膜電極接合体の製造方法について説明する。図7にディフューザ23をフレーム22(もしくはフレームに加工される樹脂フィルムPF)上に一体成形する一連の工程(ディフューザ形成工程)を示している。
まず、発泡材料を配合した未架橋の液状ゴム材料を準備する。使用する未架橋ゴムに発泡材料や架橋剤等を配合し、粘度を調整し、後述するスクリーン印刷に適用可能な未架橋の液状ゴム材料とする。粘度は、いわゆるペースト状や液状の程度に、充填材や溶剤の量を調整するなどして行われる。充填材としては、ファーネスブラック、アセチレンブラック、サーマルブラック等のカーボンブラックや、シリカ、タルク、クレー、等の白色充填材が使用できる。本実施形態においては、好ましくはカーボンブラックが使用される。
形成されるべきディフューザの平面パターンに対応する開孔が設けられた、スクリーン印刷用のマスクMを準備する。マスクの開孔パターンは、発泡の程度を考慮して、ディフューザのディフューザ要素の大きさよりもやや小さめにされることが好ましい。
フレーム22の所定位置に、スクリーン印刷を利用して、ディフューザ23を形成する。なお、スクリーン印刷工程は、すでに額縁状に加工されたフレーム22に対し行っても良いし、フレームに加工される前の樹脂フィルムPFに対し行っても良い。
まず、図7(a)のように、フレーム22(樹脂フィルムPF)のディフューザが形成されるべき位置に、マスクMを重ね合わせ、密着させる。
その状態で、図7(b)のように、発泡材料を配合した未架橋の液状ゴム材料をマスクM上に置いて、スキージSQによりマスクに対し液状ゴム材料を押し付けて、マスクMの開孔に液状ゴム材料が充填されるようにする。その後、図7(c)のように、マスクMをフレーム22(樹脂フィルムPF)から取り外すと、マスクMの開孔に充填されていた液状ゴム材料が、フレーム22(樹脂フィルムPF)の側に残って、ディフューザの平面パターンを有するディフューザ前駆体23Pが未架橋ゴムによって形成される。即ち、スクリーン印刷によって、未架橋かつ未発泡のゴム材料により、所定パターンのディフューザ前駆体23Pが形成される。
ディフューザ前駆体23Pは未発泡であるため、その高さHsは、最終的に形成されるディフューザ23の高さHmよりも小さい。ディフューザ前駆体の高さHsは、マスクMの厚みの設定により調整することができる。Hsに対するHmの比は、1.2〜3倍、より好ましくは1.3〜2倍となるようにされる。
その後、ディフューザ前駆体23Pを発泡させて架橋する。発泡は、典型的には、発泡材料の発泡温度まで加熱することにより行われる。架橋は、有機過酸化物架橋であれば過酸化物の分解温度まで加熱することにより、放射線架橋であれば放射線の照射により、紫外線架橋であれば紫外線の照射により行われる。発泡材の配合量や、発泡と架橋の開始条件等を調整することにより、ディフューザ前駆体の高さHsとディフューザの高さHmの比を調整できる。本実施形態においては、発泡・架橋は、1次架橋が120℃で20分間、2次架橋が100℃で2時間行われている。
発泡と架橋が行われることにより、ディフューザ前駆体23Pが膨張して、高さHmを有するディフューザ23となり、ディフューザ23が一体成形されたフレーム22(樹脂フィルムPF)が得られる。
図8には、膜電極接合体(MEA)2が製造される製造工程の例を示す。この例では、樹脂フィルムに連続的にスクリーン印刷をしてディフューザを形成した後に、フレームを製造する例を示している。
樹脂フィルムPFは、フィルムの供給ロールから、連続的にスクリーン印刷装置に供給される。スクリーン印刷工程では、上述したように、発泡材料を配合した未架橋液状ゴム材料によって、ディフューザ前駆体23Pが樹脂フィルムPF上に形成される。
ディフューザ前駆体23Pが形成された状態で、樹脂フィルムPFは、発泡・架橋装置に供給され、ディフューザ前駆体23Pは発泡し架橋されてディフューザ23となる。
その後、ディフューザ23が形成された樹脂フィルムPFを額縁状に打ち抜き加工すれば、ディフューザ23が一体成形されたフレーム22が得られる。フレームにアノード側フレームとカソード側フレームの区別がある場合には、それぞれのフレームを個別に準備する。
高分子電解質膜の原反を所定の寸法にカットして、高分子電解質膜21を準備し、カーボンフェルトなどを所定の寸法にカットして、電極24,25を準備する。高分子電解質膜21の表面に触媒層を形成しながら、電極24,25を一体化し、高分子電解質膜21をフレーム22,22で挟み込むようにして、フレームと高分子電解質膜、電極を一体化し、膜電極接合体(MEA)2を得る。図8には、高分子電解質膜21と電極24,25を一体化してから、フレーム22に一体化する例を示している。高分子電解質膜21とフレーム22を一体化した後に電極24,25を一体化するようにしても良い。なお、触媒層の形成やフレーム・電極の一体化については、公知の製造方法が利用できる。
上記膜電極接合体の製造方法によれば、そのディフューザ形成工程において、発泡性の未架橋液状ゴムをスクリーン印刷してディフューザ前駆体を形成し、その後ディフューザ前駆体を発泡させて架橋し、ディフューザを形成するようにしているため、微細な平面パターンを持ちながらも、所定の高さを有するディフューザを効率的に製造することができる。すなわち、スクリーン印刷を利用してディフューザ前駆体を形成すれば、ディフューザの平面パターンが微細なものであっても、効率的にパターンを形成できる。特に、微細なドット状の平面パターンを有するディフューザのような、射出成形ではおよそ成形不可能な形態のディフューザであっても、スクリーン印刷を利用すれば、そのような平面パターンが形成できる。
また、ディフューザ前駆体を発泡させてディフューザを得るようにしているため、所定の高さを有するディフューザ要素を効率的に製造できる。ゴム材料を発泡させない場合には、所定の高さを出すために、スクリーン印刷工程を多数回行う必要が生ずるなどして、ディフューザ形成工程が煩雑で非効率なものとなりやすい。
ディフューザの平面パターンの最小幅寸法をWm、ディフューザの最小幅部分における高さ寸法をHmとして、0.1*Wm≦Hm≦0.8*Wmとなるようなディフューザを形成する際に、上記膜電極接合体の製造方法は特に効果的である。また、1平方センチメートル当たり20個〜200個のドットを散在させたパターンに、ディフューザの平面パターンが形成されるよう、ディフューザを形成する際に、上記膜電極接合体の製造方法は特に効果的である。このような微細な平面パターンを有しながら所定の高さを有するようなディフューザは、他の製造方法では効率的に製造することは難しい。そして、このようなディフューザは、反応ガスの流れの分配の機能も高い。
また、上記膜電極接合体の製造方法で説明したように、フレームとなるべき樹脂フィルムに対しディフューザを形成した後に、樹脂フィルムを額縁状に加工してフレームを得て、フレームに高分子電解質膜を一体化するようにすれば、ディフューザの形成工程を、樹脂フィルムが連続した状態で行うことができて、スクリーン印刷工程や発泡・架橋工程を連続式の工程とすることができる。このような連続式の工程は、印刷工程や架橋工程等における部材のハンドリングの手間が不要であり、製造効率を高め、大量生産する上で特に好都合である。
本発明は、上記実施形態に限定されるものではなく、種々の改変をして実施することができる。以下に本発明の他の実施形態について説明するが、以下の説明においては、上記実施形態と異なる部分を中心に説明し、同様である部分についてはその詳細な説明を省略する。また、以下に示す実施形態は、その一部を互いに組み合わせて、あるいは、その一部を置き換えて実施できる。
フレーム上に形成されるディフューザの平面パターンは、図5に例示した形態に限定されず、他の形態であっても良い。棒状要素やドット状要素の間隔等は、反応ガスの分配性を高めるよう、適宜調整されうる。ドット状要素を分散させた平面パターンのディフューザは、ドットの追加やドットの大きさの変更により、簡単に反応ガスの分配性を調整できて好ましい。ディフューザの各部分によって、ディフューザ要素の大きさや形状、間隔を異ならせても良い。
フレーム22や樹脂フィルムPF上にディフューザ前駆体23Pをスクリーン印刷により形成する際のバリエーションを説明する。ディフューザ前駆体23Pは複数回のスクリーン印刷工程を経て形成されるものであっても良い。例えば、ベース層として、非発泡性の液状ゴム材料により、所定の平面パターンをスクリーン印刷した上に、発泡層として、発泡性の液状ゴム材料により、所定の平面パターンをスクリーン印刷し、ディフューザ前駆体23Pを形成しても良い。この場合、ベース層を形成した後に、ベース層の溶剤を揮発させたり、ベース層を部分架橋したりしてから、発泡層のスクリーン印刷を行うことが好ましい。もちろん、上記実施形態で説明したように、スクリーン印刷工程を1回にすることが、製造効率を高める観点から特に好ましい。
スクリーン印刷を複数回行う場合には、少なくとも最上層が発泡層となるようにすることが特に好ましい。最上層が発泡層となったディフューザは、セパレータとの当接が低加重で行われ、付近のシール性に悪影響を及ぼしにくい。
また、スクリーン印刷を複数回行う場合に、少なくとも最下層が非発泡層となるようにすると、ディフューザの平面パターンの要素の幅が広がってしまうことが予防され、微細なディフューザ要素の形状の正確さを高める上で、効果的である。
また、上記実施形態の説明では、セパレータ5,6にシール材が一体化されている場合について説明したが、MEAにシールが一体化されていても良い。その場合には、MEAの製造工程において、シール材を形成するもしくは取り付ける工程を追加すればよい。
また、上記実施形態においては、フレームの形成工程や、フレームと高分子電解質膜の一体化工程に先行して、ディフューザ形成工程を行う例について説明したが、これら工程の順序は、変更してもよい。例えば、フレームの打ち抜き工程を先行させ、その後、ディフューザ形成工程を行い、その後高分子電解質膜の一体化工程に進むようにしても良い。あるいは、フレームと高分子電解質膜を一体化した後に、ディフューザ成形工程を行うようにしても良い。
また、燃料電池の利用分野は、自動車用に限定されるものではなく、家庭用発電機など、自動車以外の他の技術分野にも応用できる。
本発明の燃料電池の膜電極接合体の製造方法によれば、微細な形状のディフューザを効率的に製造し、膜電極接合体に一体化することができ、産業上の利用価値が高い。
1 燃料電池の単セル
2 膜電極接合体(MEA)
21 高分子電解質膜
22 フレーム
23 ディフューザ
24 カソード電極
25 アノード電極
5 カソード電極側セパレータ
6 アノード電極側セパレータ
7,8 溝
9 パッキン

Claims (4)

  1. 樹脂フィルムを額縁状に形成したフレームに、高分子電解質膜を一体化し、固体高分子型燃料電池の膜電極接合体を製造する方法であって、
    反応ガスを分配するためのディフューザを高分子電解質膜に隣接するフレーム上の一部の領域に形成する工程を有しており、
    前記ディフューザ形成工程は、
    発泡材料を配合した未架橋の液状ゴム材料を準備する工程と、
    前記液状ゴム材料を前記樹脂フィルムにスクリーン印刷して、ディフューザの平面パターンを有するディフューザ前駆体を前記樹脂フィルム上に形成する行程と、
    スクリーン印刷工程に引き続いて、ディフューザ前駆体の未架橋液状ゴム材料を発泡させて架橋する工程と、を含む膜電極接合体の製造方法。
  2. ディフューザの平面パターンの最小幅寸法をWm、ディフューザの最小幅部分における高さ寸法をHmとして、0.1*Wm≦Hm≦0.8*Wmとなるようにディフューザを形成する請求項1に記載の膜電極接合体製造方法。
  3. 1平方センチメートル当たり20個〜200個のドットを散在させたパターンに、ディフューザの平面パターンが形成された請求項2に記載の膜電極接合体製造方法。
  4. 樹脂フィルムに対しディフューザを形成した後に、樹脂フィルムを額縁状に加工してフレームを得て、フレームに高分子電解質膜を一体化する請求項1に記載の膜電極接合体製造方法。
JP2013101764A 2013-05-14 2013-05-14 固体高分子型燃料電池用の膜電極接合体の製造方法 Expired - Fee Related JP6045438B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013101764A JP6045438B2 (ja) 2013-05-14 2013-05-14 固体高分子型燃料電池用の膜電極接合体の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013101764A JP6045438B2 (ja) 2013-05-14 2013-05-14 固体高分子型燃料電池用の膜電極接合体の製造方法

Publications (2)

Publication Number Publication Date
JP2014222610A JP2014222610A (ja) 2014-11-27
JP6045438B2 true JP6045438B2 (ja) 2016-12-14

Family

ID=52122036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013101764A Expired - Fee Related JP6045438B2 (ja) 2013-05-14 2013-05-14 固体高分子型燃料電池用の膜電極接合体の製造方法

Country Status (1)

Country Link
JP (1) JP6045438B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101822246B1 (ko) * 2015-12-23 2018-01-26 현대자동차주식회사 연료전지 스택
JP6521912B2 (ja) * 2016-07-25 2019-05-29 トヨタ自動車株式会社 燃料電池単セルおよびその製造方法
JP6834737B2 (ja) * 2017-04-17 2021-02-24 トヨタ自動車株式会社 燃料電池
DE102021214194A1 (de) * 2021-12-13 2023-06-15 Robert Bosch Gesellschaft mit beschränkter Haftung Brennstoffzellensystem und Bipolarplatte für ein Brennstoffzellensystem

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09199138A (ja) * 1996-01-19 1997-07-31 Toyota Motor Corp 燃料電池用の電極または電極・電解質膜接合体の製造方法および燃料電池用の電極
JP2001253016A (ja) * 2000-03-10 2001-09-18 Mitsubishi Plastics Ind Ltd 弾性ゴム被覆複合体及びその製造方法
JP5130688B2 (ja) * 2006-09-29 2013-01-30 株式会社日立製作所 燃料電池用セパレータ
US8053140B2 (en) * 2009-09-16 2011-11-08 Panasonic Corporation Solid polymer fuel cell
CA2802412C (en) * 2010-06-15 2015-04-07 Nissan Motor Co., Ltd. Fuel cell with improved contact surface pressure
JP5422700B2 (ja) * 2011-06-16 2014-02-19 本田技研工業株式会社 燃料電池

Also Published As

Publication number Publication date
JP2014222610A (ja) 2014-11-27

Similar Documents

Publication Publication Date Title
JP5238117B2 (ja) 端部シールを有する燃料電池スタック組立体
KR101226122B1 (ko) 고체 고분자형 연료 전지
KR101714361B1 (ko) 프레임형 쌍극 플레이트에 기초하는 연료 전지 디자인
EP2851986B1 (en) Fuel cell and method for producing same
JP6045438B2 (ja) 固体高分子型燃料電池用の膜電極接合体の製造方法
CN102906919B (zh) 燃料电池层、燃料电池***和制造燃料电池层的方法
CN108232270B (zh) 燃料电池堆
JP2008112604A (ja) 燃料電池及び燃料電池用ガスケット
JP6709053B2 (ja) 樹脂枠付き段差meaの製造方法及び製造装置
US9705139B2 (en) Printed multi-function seals for fuel cells
US20100159362A1 (en) Method of producing separator plate for fuel cell and fuel cell utilizing the same
JP6271360B2 (ja) 燃料電池部材用のシート材料ロール
US20130101917A1 (en) Polymer electrolyte fuel cell and method of fabricating the same
JP6345014B2 (ja) 燃料電池用ディフューザ
US9362574B2 (en) PEM fuel cell seal design and method for manufacture
JP2016018587A (ja) 固体高分子型燃料電池用のセパレータの製造方法
US20160172692A1 (en) Diffusion medium for use in fuel cell, fuel cell and method of making the diffusion medium
JP2014026799A (ja) 燃料電池用電解質膜・電極構造体
JP4676191B2 (ja) 燃料電池用セパレータ
JP2016018703A (ja) 燃料電池用シール部材及びシール部材が一体化されたセパレータもしくは膜電極接合体の製造方法
JP2019033000A (ja) 燃料電池
JP2005135708A (ja) 燃料電池
JP2021099953A (ja) 燃料電池単位セル
JP2009099402A (ja) 燃料電池
KR102034458B1 (ko) 연료전지 스택

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161115

R150 Certificate of patent or registration of utility model

Ref document number: 6045438

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees