JP6044401B2 - A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting - Google Patents

A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting Download PDF

Info

Publication number
JP6044401B2
JP6044401B2 JP2013053100A JP2013053100A JP6044401B2 JP 6044401 B2 JP6044401 B2 JP 6044401B2 JP 2013053100 A JP2013053100 A JP 2013053100A JP 2013053100 A JP2013053100 A JP 2013053100A JP 6044401 B2 JP6044401 B2 JP 6044401B2
Authority
JP
Japan
Prior art keywords
layer
composite
composite structure
average
carbonitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013053100A
Other languages
Japanese (ja)
Other versions
JP2013237144A (en
Inventor
翔 龍岡
翔 龍岡
五十嵐 誠
誠 五十嵐
直之 岩崎
直之 岩崎
長田 晃
晃 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2013053100A priority Critical patent/JP6044401B2/en
Priority to CN201310106629.XA priority patent/CN103372764B/en
Publication of JP2013237144A publication Critical patent/JP2013237144A/en
Application granted granted Critical
Publication of JP6044401B2 publication Critical patent/JP6044401B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)

Description

この発明は、合金鋼等の高熱発生を伴うとともに、切刃に対して衝撃的な負荷が作用する高速断続切削加工で、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   The present invention is a surface-coated cutting tool that exhibits high chipping resistance with a hard coating layer in high-speed intermittent cutting with high heat generation of alloy steel and the like, and an impact load acting on the cutting edge (hereinafter referred to as “chip coating”). , Referred to as a coated tool).

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金、炭窒化チタン(以下、TiCNで示す)基サーメットあるいは立方晶窒化ホウ素(以下、cBNで示す)基超高圧焼結体で構成された基体(以下、これらを総称して基体という)の表面に、硬質被覆層として、Ti−Al系の複合窒化物層を物理蒸着法により蒸着形成した被覆工具が知られており、これらは、すぐれた耐摩耗性を発揮することが知られている。
ただ、上記従来のTi−Al系の複合窒化物層を蒸着形成した被覆工具は、比較的耐摩耗性に優れるものの、高速断続切削条件で用いた場合にチッピング等の異常損耗を発生しやすいことから、硬質被覆層の改善についての種々の提案がなされている。
Conventionally, generally composed of tungsten carbide (hereinafter referred to as WC) based cemented carbide, titanium carbonitride (hereinafter referred to as TiCN) based cermet or cubic boron nitride (hereinafter referred to as cBN) based ultra high pressure sintered body There is known a coated tool in which a Ti—Al based composite nitride layer is formed by physical vapor deposition on a surface of a formed substrate (hereinafter collectively referred to as a substrate) as a hard coating layer. It is known that it exhibits excellent wear resistance.
However, although the above-mentioned conventional coated tool formed by depositing a Ti-Al composite nitride layer has relatively high wear resistance, it tends to cause abnormal wear such as chipping when used under high-speed intermittent cutting conditions. Therefore, various proposals for improving the hard coating layer have been made.

例えば、特許文献1には、基体の表面に、組成式:(Ti1−XAl)Nで表した場合に、0.35≦X≦0.60(但し、Xは原子比)を満足するTiとAlの複合窒化物からなる硬質被覆層を物理蒸着法で蒸着形成するとともに、硬質被覆層を、上記(Ti,Al)N層の粒状晶組織と柱状晶組織との交互積層構造として構成することが提案されており、そしてこれによって、高硬度鋼の高速断続切削加工において、硬質被覆層がすぐれた耐チッピング性、耐欠損性、耐剥離性を発揮するとされている。
ただ、この被覆工具は、物理蒸着法により硬質被覆層を蒸着形成するため、Alの含有割合Xを0.6以上にはできず、より一段と切削性能を向上させることが望まれている。
For example, Patent Document 1 satisfies 0.35 ≦ X ≦ 0.60 (where X is an atomic ratio) when expressed on the surface of a substrate by a composition formula: (Ti 1-X Al X ) N. A hard coating layer made of a composite nitride of Ti and Al is deposited by physical vapor deposition, and the hard coating layer is formed as an alternating laminated structure of the granular crystal structure and columnar crystal structure of the (Ti, Al) N layer. It has been proposed that it is constructed, and this makes it possible for the hard coating layer to exhibit excellent chipping resistance, chipping resistance, and peeling resistance in high-speed intermittent cutting of high-hardness steel.
However, since this coated tool deposits a hard coating layer by physical vapor deposition, the Al content ratio X cannot be increased to 0.6 or more, and it is desired to further improve the cutting performance.

このような観点から、化学蒸着法で硬質被覆層を形成することで、Alの含有割合Xを、0.9程度にまで高める技術も提案されている。
例えば、特許文献2には、TiCl、AlCl、NHの混合反応ガス中で、650〜900℃の温度範囲において化学蒸着を行うことにより、Alの含有割合Xの値が0.65〜0.95である(Ti1−XAl)N層及び/または、(Ti1−XAl)C層及び/または、(Ti1−XAl)CN層を蒸着形成できることが記載されているが、この文献では、この(Ti1−XAl)N層及び/または、(Ti1−XAl)C層及び/または、(Ti1−XAl)CN層の上にさらにAl層を被覆し、これによって断熱効果を高めることを目的とするものであるから、Xの値を0.65〜0.95まで高めた(Ti1−XAl)N層及び/または、(Ti1−XAl)C層及び/または、(Ti1−XAl)CN層の形成によって、切削性能へ如何なる影響があるかという点についてまでの開示はない。
From such a viewpoint, a technique for increasing the Al content ratio X to about 0.9 by forming a hard coating layer by chemical vapor deposition has also been proposed.
For example, Patent Document 2 discloses that the value of the Al content ratio X is 0.65 by performing chemical vapor deposition in a temperature range of 650 to 900 ° C. in a mixed reaction gas of TiCl 4 , AlCl 3 and NH 3. a 0.95 (Ti 1-X Al X ) N layer and / or, (Ti 1-X Al X ) C layer and / or, it is described that can be deposited forming a (Ti 1-X Al X) CN layer However, in this document, on this (Ti 1-X Al X ) N layer and / or (Ti 1-X Al X ) C layer and / or (Ti 1-X Al X ) CN layer, Furthermore, since the purpose is to cover the Al 2 O 3 layer and thereby enhance the heat insulation effect, the value of X is increased from 0.65 to 0.95 (Ti 1-X Al X ) N layer. And / or (Ti 1-X Al X ) C layer and / or There is no disclosure up to what point the cutting performance is affected by the formation of the (Ti 1-X Al X ) CN layer.

また、例えば、特許文献3には、TiCl、AlCl、NH、Nの混合反応ガス中、700〜900℃の温度でプラズマを用いない化学蒸着を行うことにより、Alの含有割合Xの値が0.75〜0.93である立方晶の(Ti1−XAl)N層からなる硬質被覆層を蒸着形成できることが記載されているが、特許文献2と同様、被覆工具としての適用可能性については何らの開示もない。 Further, for example, Patent Document 3 discloses that Al is contained by performing chemical vapor deposition without using plasma at a temperature of 700 to 900 ° C. in a mixed reaction gas of TiCl 4 , AlCl 3 , NH 3 , and N 2 H 4. It is described that a hard coating layer composed of a cubic (Ti 1-X Al X ) N layer having a ratio X value of 0.75 to 0.93 can be formed by vapor deposition. There is no disclosure of applicability as a tool.

特開2011−224715号公報JP2011-224715A 特表2011−516722号公報Special table 2011-516722 gazette 米国特許第7767320号明細書US Pat. No. 7,767,320

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は一段と高速化、高効率化の傾向にあり、被覆工具には、より一層、耐チッピング性、耐欠損性、耐剥離性等の耐異常損傷性が求められるとともに、長期の使用に亘ってのすぐれた耐摩耗性が求められている。
しかし、上記特許文献1に記載される被覆工具は、(Ti1−XAl)N層からなる硬質被覆層が物理蒸着法で蒸着形成され、硬質被覆層中のAl含有量Xを高めることができないため、例えば、合金鋼の高速断続切削に供した場合には、耐チッピング性が十分であるとは言えない。
一方、上記特許文献2、3に記載される化学蒸着法で蒸着形成した(Ti1−XAl)N層については、Al含有量Xを高めることができ、また、立方晶構造を形成させることができることから、所定の硬さを有し耐摩耗性にはすぐれた硬質被覆層が得られるものの、基体との密着強度は十分でなく、また、靭性に劣ることから、合金鋼の高速断続切削に供する被覆工具として用いた場合には、チッピング、欠損、剥離等の異常損傷が発生しやすく、満足できる切削性能を発揮するとは言えない。
本発明は、合金鋼の高速断続切削等に供した場合であっても、すぐれた耐チッピング性を発揮するとともに、長期の使用に亘ってすぐれた耐摩耗性を発揮する被覆工具を提供することを目的とするものである。
In recent years, the performance of cutting machines has been remarkable. On the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting work.Accordingly, cutting has become a trend toward higher speed and higher efficiency. The coated tool is further required to have abnormal damage resistance such as chipping resistance, chipping resistance, and peel resistance, and excellent wear resistance over a long period of use.
However, in the coated tool described in Patent Document 1, a hard coating layer made of a (Ti 1-X Al X ) N layer is deposited by physical vapor deposition to increase the Al content X in the hard coating layer. Therefore, for example, when it is subjected to high-speed intermittent cutting of alloy steel, it cannot be said that the chipping resistance is sufficient.
On the other hand, it was vapor deposited in a chemical vapor deposition method described in Patent Documents 2 and 3 for (Ti 1-X Al X) N layer can increase the Al content X, also to form a cubic structure Therefore, although a hard coating layer having a predetermined hardness and excellent wear resistance can be obtained, the adhesion strength with the substrate is not sufficient and the toughness is inferior. When used as a coated tool for cutting, abnormal damage such as chipping, chipping and peeling tends to occur, and it cannot be said that satisfactory cutting performance is exhibited.
The present invention provides a coated tool that exhibits excellent chipping resistance and excellent wear resistance over a long period of use even when subjected to high-speed intermittent cutting of alloy steel. It is intended.

本発明者等は、上述の観点から、TiとAlの複合炭窒化物(以下、「(Ti,Al)(C,N)」あるいは「(Ti1−XAl)(C1−Y)」で示すことがある)からなる硬質被覆層を化学蒸着で蒸着形成した被覆工具の耐チッピング性、耐摩耗性の改善をはかるべく、鋭意研究を重ねた結果、次のような知見を得た。 From the above-mentioned viewpoint, the present inventors have developed a composite carbonitride of Ti and Al (hereinafter, “(Ti, Al) (C, N)” or “(Ti 1-X Al X ) (C Y N 1- 1 Y) "is sometimes indicated by) hard layer chipping resistance of the coated tool was vapor deposited by chemical vapor deposition consisting of, in order improve the abrasion resistance, the results of extensive studies, the following findings Obtained.

炭化タングステン基超硬合金(以下、「WC基超硬合金」で示す)、炭窒化チタン基サーメット(以下、「TiCN基サーメット」で示す)、または立方晶窒化ホウ素基超高圧焼結体(以下、「cBN基超高圧焼結体」で示す)のいずれかで構成された基体の表面に、
例えば、トリメチルアルミニウム(Al(CH)を反応ガス成分として含有する化学蒸着法により、硬質被覆層として、立方晶構造の(Ti1−XAl)(C1−Y)結晶粒組織と、該結晶粒の周囲に存在するTi、Al、CおよびNのうちの1種または2種以上を含むアモルファス相組織からなる複合組織層を少なくとも蒸着形成するとともに、複合組織層の基体側から、複合組織層の表層側に向かうにしたがって、上記立方晶構造の(Ti1−XAl)(C1−Y)結晶粒の平均粒子幅が漸次増加する粒子幅分布を形成することによって、少なくとも前記複合組織層を含む硬質被覆層は耐摩耗性を維持しつつ、靱性が向上しかつ基体とのすぐれた密着性を有するようになることを見出したのである。
Tungsten carbide-based cemented carbide (hereinafter referred to as “WC-based cemented carbide”), titanium carbonitride-based cermet (hereinafter referred to as “TiCN-based cermet”), or cubic boron nitride-based ultrahigh pressure sintered body (hereinafter referred to as “TiCN-based cemented carbide”) On the surface of the substrate composed of any one of “cBN-based ultra-high pressure sintered body”
For example, by a chemical vapor deposition method containing trimethylaluminum (Al (CH 3 ) 3 ) as a reactive gas component, a (Ti 1-X Al X ) (C Y N 1-Y ) crystal having a cubic structure is formed as a hard coating layer. And forming at least a composite structure layer comprising a grain structure and an amorphous phase structure containing one or more of Ti, Al, C and N present around the crystal grains, and a substrate of the composite structure layer A particle width distribution is formed in which the average particle width of the (Ti 1-X Al X ) (C Y N 1-Y ) crystal grains of the cubic structure gradually increases from the side toward the surface side of the composite structure layer. As a result, it was found that the hard coating layer including at least the composite structure layer has improved wear resistance and excellent adhesion to the substrate while maintaining wear resistance.

なお、上記(Ti1−XAl)(C1−Y)層において、X、Yは何れも原子比であって、0.60≦X≦0.90、0.0005≦Y≦0.005を満足するものであるから、従来のPVD法では蒸着形成することができない高Al含有割合Xの立方晶構造の(Ti,Al)(C,N)結晶粒組織とアモルファス相組織とを、トリメチルアルミニウム(Al(CH)を反応ガス成分として含有する化学蒸着法により蒸着形成し得たことがわかる。 In the (Ti 1-X Al X ) (C Y N 1-Y ) layer, X and Y are atomic ratios, and 0.60 ≦ X ≦ 0.90, 0.0005 ≦ Y ≦ Since 0.005 is satisfied, a cubic structure (Ti, Al) (C, N) grain structure and amorphous phase structure with a high Al content ratio X that cannot be formed by conventional PVD method. It can be seen that can be deposited by chemical vapor deposition using trimethylaluminum (Al (CH 3 ) 3 ) as a reaction gas component.

また、本発明者等は化学蒸着法により蒸着形成した上記立方晶構造の(Ti1−XAl)(C1−Y)結晶粒によれば、該結晶粒のAl含有割合は、複合組織層の基体側から、複合組織層の表層側に向かうにしたがって漸次増加する組成傾斜構造を形成し、これによって、表層側の複合組織層は、すぐれた耐摩耗性を発揮することを見出したのである。 Further, according to the present invention have found that the cubic structure was deposited formed by chemical vapor deposition (Ti 1-X Al X) (C Y N 1-Y) crystal grains, Al content of the crystal grains, A composition gradient structure that gradually increases from the substrate side of the composite structure layer toward the surface layer side of the composite structure layer is formed, and as a result, the composite structure layer on the surface layer side exhibits excellent wear resistance. It was.

したがって、上記のような複合組織層を備えた被覆工具を、例えば、合金鋼の高速断続切削等に用いた場合には、チッピング、欠損、剥離等の発生が抑えられるとともに、長期の使用にわたってすぐれた耐摩耗性を発揮することができるのである。   Therefore, when a coated tool having a composite structure layer as described above is used for, for example, high-speed intermittent cutting of alloy steel, the occurrence of chipping, chipping, peeling, etc. can be suppressed, and excellent over a long period of use. The wear resistance can be exhibited.

この発明は、上記の研究結果に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金、炭窒化チタン基サーメット、または立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された基体の表面に、硬質被覆層が形成されている表面被覆切削工具において、
(a)上記硬質被覆層は、少なくとも、平均層厚1〜20μmの立方晶構造のTiとAlの複合炭窒化物結晶粒組織と、該結晶粒の周囲に存在するTi、Al、CおよびNのうちの1種または2種以上を含むアモルファス相組織とからなる複合組織層を含み、
(b)前記複合組織層は、その平均組成を、
組成式:(Ti1−XAl)(C1−Y
で表した場合、Al含有割合XおよびC含有割合Y(但し、X、Yは何れも原子比)は、それぞれ、0.60≦X≦0.90、0.0005≦Y≦0.005を満足し、
(c)前記複合組織層の基体側から、0.3μm複合組織層の内部に入った位置Lにおける立方晶構造のTiとAlの複合炭窒化物結晶粒の基体表面と平行な面内の粒子幅の平均値を平均粒子幅Dとすると、該平均粒子幅Dは0.1μm以下であり、また、複合組織層の表層から、0.3μm複合組織層の内部に入った位置Hにおける基体表面と平行な面内の粒子幅の平均値を平均粒子幅Dとすると、該平均粒子幅Dは0.3〜2μmであり、さらに、立方晶構造のTiとAlの複合炭窒化物結晶粒の平均粒子幅は、複合組織層の基体側から、複合組織層の表層側に向かうにしたがって漸次増加する粒子幅分布を形成していることを特徴とする表面被覆切削工具。
(2) 前記(1)に記載の表面被覆切削工具において、前記複合組織層の基体側から、0.3μm複合組織層の内部に入った位置Lを中心に組成分析を行い、立方晶構造のTiとAlの複合炭窒化物結晶粒のAl含有割合を求め、その平均値をX(但し、原子比)とすると、該Al含有割合Xは、0.55≦X≦0.70であり、また、複合組織層の表層から、0.3μm複合組織層の内部に入った位置Hを中心に組成分析を行い、立方晶構造のTiとAlの複合炭窒化物結晶粒のAl含有割合を求め、その平均値をX(但し、原子比)とすると、該Al含有割合Xは、0.80≦X≦0.95であり、さらに、立方晶構造のTiとAlの複合炭窒化物結晶粒のAl含有割合は、複合組織層の基体側から、複合組織層の表層側に向かうにしたがって漸次増加する組成傾斜構造を有していることを特徴とする前記(1)に記載の表面被覆切削工具。
(3) 前記炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体と、前記複合組織層の間にTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、かつ、0.1〜20μmの合計平均層厚を有するTi化合物層が存在することを特徴とする前記(1)または(2)に記載の表面被覆切削工具。
(4) 前記硬質被覆層は、1〜25μmの平均層厚を有する酸化アルミニウム層を含むことを特徴とする前記(1)乃至(3)のいずれか一項に記載の表面被覆切削工具。
(5) 前記複合組織層は、少なくとも、トリメチルアルミニウムを反応ガス成分として含有する化学蒸着法により蒸着形成ることを特徴とする前記(1)乃至(4)のいずれか一項に記載の表面被覆切削工具の製造方法。」
に特徴を有するものである。
なお、“中心に組成分析を行う”とは、後述する電子線マイクロアナライザ装置を用いて求められた組成を言う。
また、本発明における硬質被覆層は、前述のような前記複合組織層をその本質的構成とするが、さらに、従来より知られている下部層や上部層などと併用することにより、一層すぐれた特性を創出することができる。
This invention was made based on the above research results,
"(1) a tungsten-based cemented carbide carbide, titanium carbonitride based cermet or cubic configured the surface of the substrate with either the boron nitride based ultra-high-pressure sintered material, the surface of the hard coating layer is made form In coated cutting tools,
(A) the hard coating layer comprises at least a complex carbonitride grain structure of Ti and Al on cubic flat HitoshisoAtsu 1 to 20 [mu] m, Ti present in around the crystal grains, Al, C and Including a composite structure layer composed of an amorphous phase structure including one or more of N,
(B) The composite tissue layer has an average composition,
Formula: (Ti 1-X Al X ) (C Y N 1-Y)
In this case, the Al content ratio X and the C content ratio Y (where X and Y are atomic ratios) satisfy 0.60 ≦ X ≦ 0.90 and 0.0005 ≦ Y ≦ 0.005, respectively. Satisfied,
(C) Particles in a plane parallel to the substrate surface of the composite carbonitride crystal grains of Ti and Al having a cubic structure at a position L entering the 0.3 μm composite structure layer from the substrate side of the composite structure layer When the average value of the width and the average particle width D L, the average particle width D L is at 0.1μm or less, also from the surface layer of the composite structure layers, at position H, which has entered the interior of 0.3μm composite structure layer Assuming that the average value of the particle width in the plane parallel to the substrate surface is the average particle width DH , the average particle width DH is 0.3 to 2 μm. Further, the composite carbonitriding of cubic structure Ti and Al The surface-coated cutting tool, wherein the average grain width of the product crystal grains forms a grain width distribution that gradually increases from the substrate side of the composite structure layer toward the surface layer side of the composite structure layer.
(2) In the surface-coated cutting tool according to (1), a composition analysis is performed centering on a position L that enters the 0.3 μm composite structure layer from the substrate side of the composite structure layer, and a cubic structure is formed. seeking Al content of composite carbonitride grains of Ti and Al, when the average value X L (provided that the atomic ratio), the Al content ratio X L is, 0.55 ≦ X L ≦ 0.70 In addition, from the surface layer of the composite structure layer, the composition analysis is performed centering on the position H entering the inside of the 0.3 μm composite structure layer, and the Al content of the composite carbonitride crystal grains of Ti and Al having a cubic structure When the ratio is obtained and the average value is X H (wherein the atomic ratio), the Al content ratio X H is 0.80 ≦ X H ≦ 0.95, and further, Ti and Al of cubic structure The Al content of the composite carbonitride crystal grains is determined from the surface of the composite structure layer from the substrate side of the composite structure layer. The surface-coated cutting tool according to (1), characterized in that it has a composition gradient structure gradually increases towards the side.
(3) A Ti carbide layer between a tool base composed of any one of the tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultrahigh pressure sintered body, and the composite structure layer, There is a Ti compound layer composed of one or more of a nitride layer, a carbonitride layer, a carbonate layer and a carbonitride layer, and having a total average layer thickness of 0.1 to 20 μm. The surface-coated cutting tool according to (1) or (2), wherein
(4) The surface-coated cutting tool according to any one of (1) to (3), wherein the hard coating layer includes an aluminum oxide layer having an average layer thickness of 1 to 25 μm.
(5) the composite tissue layer, at least the surface of any one of (1) to (4), characterized that you vapor deposited by chemical vapor deposition containing trimethyl aluminum as a reaction gas component Manufacturing method of coated cutting tool. "
It has the characteristics.
“Perform composition analysis at the center” refers to a composition determined using an electron beam microanalyzer described later.
In addition, the hard coating layer in the present invention has the above-mentioned composite structure layer as its essential structure, but is further improved by using in combination with a conventionally known lower layer or upper layer. A characteristic can be created.

つぎに、この発明の被覆工具の硬質被覆層について、より具体的に説明する。   Next, the hard coating layer of the coated tool of the present invention will be described more specifically.

この発明の硬質被覆層は、少なくとも、TiとAlの立方晶複合炭窒化物(Ti1−XAl)(C1−Y)結晶粒と、該結晶粒の間隙を埋めるTi、Al、CおよびNのうちの1種または2種以上を含むアモルファス相組織とからなる複合組織層を含んでいるが、まず、(Ti1−XAl)(C1−Y)結晶粒について説明する。
(Ti1−XAl)(C1−Y)結晶粒において、その平均組成を、
組成式:(Ti1−XAl)(C1−Y
で表した場合、Alの含有割合X(原子比)の値が0.60未満になると、高温硬さが不足し耐摩耗性が低下するようになり、一方、X(原子比)の値が0.90を超えると、相対的なTi含有割合の減少により、(Ti1−XAl)(C1−Y)層自体の高温強度が低下し、チッピング、欠損を発生しやすくなることから、X(原子比)の値は、0.60以上0.90以下とすることが必要である。
なお、PVD法によって上記組成の(Ti1−XAl)(C1−Y)層を蒸着形成した場合には、結晶構造は六方晶であるが、本発明では、後記する化学蒸着法によって蒸着形成していることから、立方晶構造を維持したままで上記組成の(Ti1−XAl)(C1−Y)結晶粒を得ることができるので、皮膜硬さの低下はない。
また、上記(Ti1−XAl)(C1−Y)結晶粒において、C成分には硬さを向上させ、一方、N成分には高温強度を向上させる作用があるが、C成分の含有割合Y(原子比)が0.0005未満となると高硬度が得られなくなり、一方、Y(原子比)が0.005を超えると、高温強度が低下してくることから、Y(原子比)の値は、0.0005以上0.005以下と定めた。
次に、上記(Ti1−XAl)(C1−Y)結晶粒の周囲に存在するTi、Al、CおよびNのうちの1種または2種以上を含むアモルファス相組織であるが、このようなアモルファス相は、反応ガス成分としてトリメチルアルミニウム(Al(CH)を含有する化学蒸着法によって形成される。そして、(Ti1−XAl)(C1−Y)結晶粒の周囲に上記アモルファス相組織が形成されることによって、少なくとも複合組織層を含む硬質被覆層の靱性を高められる。
なお、形成されるアモルファス相組織の平均厚さは、成膜条件によって変化するが5〜30nmであり、また、複合組織層の縦断面における平均面積割合は、5〜20面積%であることが望ましい。
上記(Ti1−XAl)(C1−Y)結晶組織と上記アモルファス相組織から構成される複合組織層は、その平均層厚が1μm未満では、基体との密着性を十分確保することができず、一方、その平均層厚が20μmを越えると、高熱発生を伴う高速断続切削で熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その合計平均層厚は1〜20μmと定めた。
The hard coating layer of the present invention includes at least Ti and Al cubic composite carbonitride (Ti 1-X Al X ) (C Y N 1-Y ) crystal grains and Ti, Al filling the gaps between the crystal grains. , C and N are included, and a composite structure layer composed of an amorphous phase structure including one or more of C and N is included. First, (Ti 1-X Al X ) (C Y N 1-Y ) crystal grains Will be described.
In (Ti 1-X Al X) (C Y N 1-Y) crystal grains, the average composition,
Formula: (Ti 1-X Al X ) (C Y N 1-Y)
When the value of the Al content ratio X (atomic ratio) is less than 0.60, the high temperature hardness is insufficient and the wear resistance is lowered, while the X (atomic ratio) value is When it exceeds 0.90, the high temperature strength of the (Ti 1-X Al X ) (C Y N 1-Y ) layer itself is lowered due to a decrease in the relative Ti content, and chipping and defects are likely to occur. Therefore, the value of X (atomic ratio) needs to be 0.60 or more and 0.90 or less.
When the (Ti 1-X Al X ) (C Y N 1-Y ) layer having the above composition is formed by vapor deposition by the PVD method, the crystal structure is a hexagonal crystal. since it is deposited formed by law, it is possible to obtain a cubic structure while maintaining the above composition (Ti 1-X Al X) (C Y N 1-Y) crystal grains, coating hardness of There is no decline.
Further, in the above (Ti 1-X Al X ) (C Y N 1-Y ) crystal grains, the C component has the effect of improving the hardness while the N component has the effect of improving the high temperature strength. When the component content Y (atomic ratio) is less than 0.0005, high hardness cannot be obtained. On the other hand, when Y (atomic ratio) exceeds 0.005, the high-temperature strength decreases, so Y ( The value of (atomic ratio) was determined to be 0.0005 or more and 0.005 or less.
Next, it is an amorphous phase structure containing one or more of Ti, Al, C and N existing around the above (Ti 1-X Al X ) (C Y N 1-Y ) crystal grains. However, such an amorphous phase is formed by a chemical vapor deposition method containing trimethylaluminum (Al (CH 3 ) 3 ) as a reaction gas component. And the toughness of the hard coating layer including at least the composite structure layer can be increased by forming the amorphous phase structure around the (Ti 1-X Al X ) (C Y N 1-Y ) crystal grains.
In addition, although the average thickness of the amorphous phase structure | tissue formed changes with film-forming conditions, it is 5-30 nm, and the average area ratio in the longitudinal cross-section of a composite structure layer is 5-20 area%. desirable.
The composite structure layer composed of the (Ti 1-X Al X ) (C Y N 1-Y ) crystal structure and the amorphous phase structure ensures sufficient adhesion to the substrate when the average layer thickness is less than 1 μm. On the other hand, if the average layer thickness exceeds 20 μm, it becomes easy to cause thermoplastic deformation in high-speed intermittent cutting with high heat generation, and this causes uneven wear, so the total average layer thickness is It was determined to be 1 to 20 μm.

この発明では、複合組織層を構成する(Ti1−XAl)(C1−Y)結晶粒の平均粒子幅について、基体側の複合組織層ではその平均粒子幅Dを相対的に小さな値(D≦0.1μm)とし、一方、複合組織層の表層側ではその平均粒子幅Dを相対的に大きな値(0.3μm≦D≦2μm)とする。
即ち、複合組織層の基体側から、0.3μm複合組織層の内部に入った位置Lにおける平均粒子幅Dは、0.1μm以下とし、また、複合組織層の表面から、0.3μm複合組織層の内部に入った表層部の位置Hにおける平均粒子幅Dを、0.3μm≦D≦2μmとし、複合組織層の基体側から、複合組織層の表層側に向かって、謂わば、平均粒子幅が漸次増大する層厚方向粒子幅分布を形成する。
この発明は、上記のような層厚方向粒子幅分布を形成することによって、複合組織層の基体側では、複合組織層の密着性を高めることができ、また、表層側の複合組織層は、すぐれた耐摩耗性を具備するようになる。
In the present invention, with respect to the average particle width of the (Ti 1-X Al X ) (C Y N 1-Y ) crystal grains constituting the composite structure layer, the average particle width DL is relative to the base structure-side composite structure layer. small value and (D L ≦ 0.1μm), whereas, the relatively large value and the average particle width D H in the surface layer side of the composite structure layer (0.3μm ≦ D H ≦ 2μm) to.
That is, from the substrate side of the composite structure layers, an average particle width D L at position L that has entered the interior of the 0.3 [mu] m composite tissue layer, and 0.1μm or less, from the surface of the composite structure layers, 0.3 [mu] m combined the average particle width D H at position H of the surface layer portion which has entered the interior of the tissue layer, a 0.3 [mu] m ≦ D H ≦ 2 [mu] m, from the substrate side of the composite structure layers, toward the surface layer side of the composite structure layers,-called if A layer thickness direction particle width distribution in which the average particle width gradually increases is formed.
In the present invention, by forming the layer thickness direction particle width distribution as described above, on the substrate side of the composite tissue layer, the adhesiveness of the composite tissue layer can be enhanced. It has excellent wear resistance.

また、この発明では、上記平均組成を有する(Ti1−XAl)(C1−Y)結晶粒は、層全体にわたって均一組成にするのではなく、複合組織層の基体側から、複合組織層の表層側に向かって、上記(Ti1−XAl)(C1−Y)結晶粒を構成するAl含有割合が連続的に増加する組成傾斜構造を形成することが望ましい。
即ち、複合組織層の基体側から、0.3μm複合組織層の内部に入った位置Lにおける上記(Ti1−XAl)(C1−Y)結晶粒のAl含有割合X(原子比)を0.55以上0.70以下とし、また、複合組織層の表面から、0.3μm複合組織層の内部に入った表層部の位置HにおけるAl含有割合X(原子比)を、0.80以上0.95以下とし、複合組織層の基体側から、複合組織層の表層側に向かって、Al含有割合が漸次増加するAlの組成傾斜構造を構成することが望ましい。
このような組成傾斜構造によって、複合組織層内には、表層側に向かって、その組成に応じた結晶格子定数の違いによる格子ひずみが導入され、その結果として、複合組織層の耐チッピング性が向上する。
Further, in the present invention, the (Ti 1-X Al X ) (C Y N 1-Y ) crystal grains having the above average composition are not made to have a uniform composition over the entire layer, but from the substrate side of the composite structure layer, It is desirable to form a composition gradient structure in which the Al content constituting the (Ti 1-X Al X ) (C Y N 1-Y ) crystal grains continuously increases toward the surface layer side of the composite structure layer. .
That is, the Al content ratio X L of the (Ti 1-X Al X ) (C Y N 1-Y ) crystal grains at a position L entering the 0.3 μm composite structure layer from the substrate side of the composite structure layer ( The atomic ratio is 0.55 or more and 0.70 or less, and the Al content ratio X H (atomic ratio) at the position H of the surface layer portion that enters the 0.3 μm composite structure layer from the surface of the composite structure layer is It is desirable that an Al composition gradient structure in which the Al content ratio gradually increases from the substrate side of the composite structure layer to the surface layer side of the composite structure layer is set to 0.80 or more and 0.95 or less.
With such a composition gradient structure, lattice strain due to the difference in crystal lattice constant depending on the composition is introduced into the composite layer toward the surface layer side, and as a result, the chipping resistance of the composite layer is improved. improves.

また、この発明では、複合組織層を構成する(Ti1−XAl)(C1−Y)結晶粒および該結晶粒の粒間を埋めるTi、Al、CおよびNのうちの1種または2種以上を含むアモルファス相組織を、化学蒸着法によって蒸着形成するが、化学蒸着法による成膜条件は、概ね、次のとおりである。
反応ガス組成(容量%):
TiCl 5.0 〜 7.5%、Al(CH0 〜 12%、
AlCl 6 〜 12%、NH 10 〜 15 %、
0〜 15%、C 0 〜 5 %、Ar 0〜 5%、残りH
反応雰囲気温度: 700〜 850℃、
反応雰囲気圧力: 6〜 10kPa、
上記条件の化学蒸着法によって、平均組成が、0.60≦X≦0.90、0.0005≦Y≦0.005(但し、X、Yは何れも原子比)を満足し、
組成式:(Ti1−XAl)(C1−Y
で表されるTiとAlの立方晶複合炭窒化物結晶粒が蒸着形成され、また、該粒子間隙を埋め込むようにTi、Al、CおよびNのうちの1種または2種以上を含むアモルファス相組織が形成される。
Further, in this invention, the composite structure layer (Ti 1-X Al X) (C Y N 1-Y) 1 of the crystal grains and Ti buried between the crystal grains of the grain, Al, C and N An amorphous phase structure including seeds or two or more kinds is deposited by chemical vapor deposition, and the film forming conditions by chemical vapor deposition are generally as follows.
Reaction gas composition (volume%):
TiCl 4 5.0 ~ 7.5%, Al (CH 3) 3 0 ~ 12%,
AlCl 3 6-12%, NH 3 10-15%,
N 2 0~ 15%, C 2 H 4 0 ~ 5%, Ar 0~ 5%, the remainder H 2,
Reaction atmosphere temperature: 700-850 ° C.,
Reaction atmosphere pressure: 6-10 kPa,
By the chemical vapor deposition method under the above conditions, the average composition satisfies 0.60 ≦ X ≦ 0.90, 0.0005 ≦ Y ≦ 0.005 (where X and Y are atomic ratios),
Formula: (Ti 1-X Al X ) (C Y N 1-Y)
And an amorphous phase containing one or more of Ti, Al, C and N so as to fill the gap between the grains. An organization is formed.

また、上記の化学蒸着法によって蒸着形成される(Ti1−XAl)(C1−Y)結晶粒の層厚方向粒子幅分布については、蒸着形成の進行とともに反応ガス成分である塩化アルミニウム(AlCl)及び/又はトリメチルアルミニウム(Al(CH)の添加量を成膜工程中に変化させることによって、複合組織層の基体側から、複合組織層の表層側に向かうにしたがって、平均粒子幅が漸次増大する層厚方向粒子幅分布を形成する。 Further, the layer thickness direction particle width distribution of the above are vapor deposited by chemical vapor deposition (Ti 1-X Al X) (C Y N 1-Y) crystal grains is a reactive gas component with the progress of the vapor deposited By changing the addition amount of aluminum chloride (AlCl 3 ) and / or trimethylaluminum (Al (CH 3 ) 3 ) during the film forming process, the composite structure layer is moved from the substrate side toward the surface layer side of the composite structure layer. Accordingly, a layer thickness direction particle width distribution in which the average particle width gradually increases is formed.

また、上記の化学蒸着法によって蒸着形成される(Ti1−XAl)(C1−Y)結晶粒のAlの組成傾斜については、上記層厚方向粒子幅分布についてと同様に、上記Al含有割合が、複合組織層の表層側に向かうにしたがって漸次増加し、また、複合組織層の位置LにおけるAl含有割合X(原子比)が、0.55≦X≦0.70を満足し、また、位置HにおけるAl含有割合X(原子比)が、0.80≦X≦0.95を満足する組成傾斜構造を形成するためには、上記反応ガス成分である塩化アルミニウム(AlCl)及び/又はトリメチルアルミニウム(Al(CH)、の添加量を蒸着形成の進行とともに調整することによって行われる。
したがって、反応ガス成分である塩化アルミニウム(AlCl)及び/又はトリメチルアルミニウム(Al(CH)の添加量は、所望のX値、平均粒子幅、粒子幅分布とともに、Alの組成傾斜等に応じて調整する。
In addition, as for the Al composition gradient of the (Ti 1-X Al X ) (C Y N 1-Y ) crystal grains formed by the above-described chemical vapor deposition method, similarly to the layer thickness direction particle width distribution, The Al content ratio gradually increases toward the surface of the composite structure layer, and the Al content ratio X L (atomic ratio) at the position L of the composite structure layer is 0.55 ≦ X L ≦ 0.70. In addition, in order to form a composition gradient structure in which the Al content ratio X H (atomic ratio) at the position H satisfies 0.80 ≦ X H ≦ 0.95, the reaction gas component is chloride. This is performed by adjusting the amount of aluminum (AlCl 3 ) and / or trimethylaluminum (Al (CH 3 ) 3 ) as the deposition process proceeds.
Therefore, the addition amount of aluminum chloride (AlCl 3 ) and / or trimethylaluminum (Al (CH 3 ) 3 ), which are reaction gas components, is not limited to the desired X value, average particle width, particle width distribution, Al composition gradient, etc. Adjust according to.

本発明の被覆工具は、例えば、トリメチルアルミニウム(Al(CH)を反応ガス成分として含有する化学蒸着法により、硬質被覆層として、立方晶構造の(Ti1−XAl)(C1−Y)結晶粒とTi、Al、CおよびNのうちの1種または2種以上を含むアモルファス相組織からなる複合組織層が、少なくとも蒸着形成され、該硬質被覆層においては、複合組織層の基体側から、複合組織層の表層側に向かうにしたがって、平均粒子幅が漸次増加する粒子幅分布が形成され、また、Al含有割合が漸次増加する組成傾斜構造が形成されることによって、すぐれた密着性、耐チッピング性、耐摩耗性を備え、合金鋼の高速断続切削に用いた場合でも、長期の使用にわたってすぐれた切削性能を発揮することができるのである。 The coated tool of the present invention is obtained by, for example, using a chemical vapor deposition method that contains trimethylaluminum (Al (CH 3 ) 3 ) as a reaction gas component, as a hard coating layer, (Ti 1-X Al X ) (C Y N 1-Y ) crystal grains and a composite structure layer composed of an amorphous phase structure containing one or more of Ti, Al, C and N are formed by vapor deposition, and in the hard coating layer, a composite structure is formed. A particle width distribution in which the average particle width gradually increases from the substrate side of the tissue layer to the surface layer side of the composite tissue layer is formed, and a composition gradient structure in which the Al content rate gradually increases is formed. It has excellent adhesion, chipping resistance, and wear resistance, and even when used for high-speed intermittent cutting of alloy steel, it can demonstrate excellent cutting performance over a long period of use. A.

本発明被覆工具の硬質被覆層縦断面の概略説明図を示す。The schematic explanatory drawing of the hard coating layer longitudinal cross-section of this invention coated tool is shown.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、TaC粉末、NbC粉末、Cr32粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったWC基超硬合金製の基体A〜Dをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, ZrC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and Co powder all having an average particle diameter of 1 to 3 μm were prepared. Then, after adding wax, ball mill mixing in acetone for 24 hours, drying under reduced pressure, press-molding into a green compact of a predetermined shape at a pressure of 98 MPa. Substrates A to D made of WC-base cemented carbide having an ISO standard SEEN1203AFSN insert shape after vacuum sintering under vacuum at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour. Were manufactured respectively.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったTiCN基サーメット製の基体a〜dを作製した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after sintering, a substrate made of TiCN-based cermet having an insert shape of ISO standard SEEN1203AFSN d was produced.



つぎに、これらの工具基体A〜Dおよび工具基体a〜dの表面に、通常の化学蒸着装置を用い、表4に示される条件で、本発明の(Ti1−XAl)(C1−Y)結晶粒とアモルファス相とを目標層厚となるように蒸着形成することにより、表7に示される本発明被覆工具1〜15を製造した。
なお、本発明被覆工具11〜15については、表3に示される形成条件で、表6に示される下部層および/または上部層を形成した。
Next, on the surfaces of these tool bases A to D and tool bases a to d, an ordinary chemical vapor deposition apparatus is used, and the conditions (shown in Table 4) of (Ti 1-X Al X ) (C Y The present invention coated tools 1 to 15 shown in Table 7 were manufactured by vapor-depositing N 1-Y ) crystal grains and an amorphous phase so as to have a target layer thickness.
In addition, about this invention coated tools 11-15, the lower layer and / or the upper layer which were shown in Table 6 were formed on the formation conditions shown in Table 3.

また、比較の目的で、同じく工具基体A〜Dおよび工具基体a〜dの表面に、通常の化学蒸着装置を用い、表5に示される条件で、比較例の(Ti1−xAl)(C1−y)層を目標層厚で蒸着形成することにより、表8に示される比較例被覆工具1〜13を製造した。
なお、本発明被覆工具11〜15と同様に、比較被覆工具9〜13については、表3に示される形成条件で、表6に示される下部層および/または上部層を形成した。
Further, for the purpose of comparison, an ordinary chemical vapor deposition apparatus was used on the surfaces of the tool bases A to D and the tool bases a to d, and under the conditions shown in Table 5, (Ti 1-x Al x ) of the comparative example. Comparative example-coated tools 1 to 13 shown in Table 8 were manufactured by vapor-depositing (C y N 1-y ) layers at a target layer thickness.
In addition, similarly to this invention coated tool 11-15, about the comparative coated tools 9-13, the lower layer and / or the upper layer which were shown in Table 6 were formed on the formation conditions shown in Table 3.

参考のため、工具基体Aおよび工具基体aの表面に、従来の物理蒸着装置を用いて、アークイオンプレーティングにより、参考例の(Ti1−xAl)(C1−y)層を目標層厚で蒸着形成することにより、表8に示される参考例被覆工具14、15を製造した。
なお、アークイオンプレーティングの条件は、次のとおりである。
(a)上記工具基体Aおよびaを、アセトン中で超音波洗浄し、乾燥した状態で、アークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、また、カソード電極(蒸発源)として、所定組成のAl−Ti合金を配置し、
(b)まず、装置内を排気して10−2Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加し、かつAl−Ti合金からなるカソード電極とアノード電極との間に200Aの電流を流してアーク放電を発生させ、装置内にAlおよびTiイオンを発生させ、もって工具基体表面をボンバード洗浄し、
(c)次に、装置内に反応ガスとして窒素ガスを導入して4Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−50Vの直流バイアス電圧を印加し、かつ、上記Al−Ti合金からなるカソード電極(蒸発源)とアノード電極との間に120Aの電流を流してアーク放電を発生させ、前記工具基体の表面に、表6に示される目標平均組成、目標平均層厚の(Al,Ti)N層を蒸着形成し、
参考例被覆工具14、15を製造した。
For reference, the (Ti 1-x Al x ) (C y N 1-y ) layer of the reference example is formed on the surfaces of the tool base A and the tool base a by arc ion plating using a conventional physical vapor deposition apparatus. Were formed by vapor deposition with a target layer thickness to produce reference example coated tools 14 and 15 shown in Table 8.
The conditions for arc ion plating are as follows.
(A) The tool bases A and a are ultrasonically cleaned in acetone and dried, and in the outer peripheral portion at a predetermined distance in the radial direction from the central axis on the rotary table in the arc ion plating apparatus. Along with this, an Al-Ti alloy having a predetermined composition is arranged as a cathode electrode (evaporation source),
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 10 −2 Pa or less, the inside of the apparatus is heated to 500 ° C. with a heater, and then the tool base that rotates while rotating on the rotary table is −1000 V. A DC bias voltage is applied, and a current of 200 A is passed between a cathode electrode and an anode electrode made of an Al—Ti alloy to generate an arc discharge, thereby generating Al and Ti ions in the apparatus, thereby providing a tool base. Clean the surface with bombard,
(C) Next, nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 4 Pa, a DC bias voltage of −50 V is applied to the tool base that rotates while rotating on the rotary table, and A current of 120 A is passed between the cathode electrode (evaporation source) made of the Al—Ti alloy and the anode electrode to generate arc discharge, and the target average composition and target shown in Table 6 are formed on the surface of the tool base. (Al, Ti) N layer having an average layer thickness is formed by vapor deposition.
Reference Example Coated tools 14 and 15 were produced.

また、本発明被覆工具1〜15、比較例被覆工具1〜13および参考例被覆工具14、15の各構成層の断面を、走査電子顕微鏡を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表7および表8に示される目標平均層厚と実質的に同じ平均層厚を示した。
ついで、上記の本発明被覆工具1〜15の複合組織層について、複合組織層の平均Al含有割合X、平均C含有割合Y、平均粒子幅D,平均粒子幅D、Alの含有割合X,Xについて測定した。
なお、具体的な測定は次のとおりである。
蛍光X線分析装置を用い、複合組織層表面にスポット径100μmのX線を照射し、得られた特性X線の解析結果から平均Al含有割合X、平均C含有割合Yを求めた。
ついで、ダイヤモンド研磨盤を用い基体表面に対し垂直な断面を作成し、電子線マイクロアナライザ装置を用い、複合組織層の基体側から0.3μm複合組織層の内部に入った位置Lをスポットの中心とし、スポット径0.2μmの電子線を照射し、すなわち位置Lを中心とし複合組織層の基体側から0.2μm複合組織層の内部に入った位置から0.4μm複合組織層の内部に入った位置まで電子線を照射し、得られた特性X線の解析結果の10点平均からAlの含有割合Xを求めた。なお、本発明で言う「中心に組成分析を行う」とは、該位置を中心に上記スポット径0.2μmの電子線を照射し、得られた特性X線の解析結果の10点平均から求められた組成を意味する。
また、走査電子顕微鏡(倍率20000倍及び50000倍)を用いて、複合組織層の断面研磨面を工具基体と垂直方向は複合組織層の層厚分の厚さにわたって、工具基体と水平方向は長さ合計10μmに亘って複数視野観察し、水平方向10μmに亘る視野の最左端における複合組織層の基体側から0.3μm複合組織層の内部に入った位置Lにおいて基体表面と平行方向に幅10μmの線Lを引き、線Lの横切る結晶粒について、該結晶粒の粒界と線Lの交点を端点とする線分の長さを該結晶粒の粒子幅として求め、幅10μmの線Lに亘って、結晶粒の粒子幅を求め、平均することで平均粒子幅Dを求めた。なお、本発明で言う「平均粒子幅」は、上記手法で求められた平均粒子幅を意味する。
複合組織層の表面から0.3μm複合組織層の内部に入った位置Hを中心にスポット径0.2μmの電子線を照射し、すなわち位置Hを中心とし複合組織層の表面から0.2μm複合組織層の内部に入った位置から0.4μm複合組織層の内部に入った位置まで電子線を照射し、得られた特性X線の解析結果の10点平均からAlの含有割合Xを求めた。
また、走査電子顕微鏡(倍率20000倍及び50000倍)を用いて、複合組織層の断面研磨面を工具基体と垂直方向は複合組織層の層厚分の厚さにわたって、工具基体と水平方向は長さ合計10μmに亘って複数視野観察し、水平方向10μmに亘る視野の最左端における複合組織層の表面から0.3μm複合組織層の内部に入った位置Hにおいて基体表面と平行方向に幅10μmの線Lを引き、線Lの横切る結晶粒について、該結晶粒の粒界と線Lの交点を端点とする線分の長さを該結晶粒の粒子幅として求め、幅10μmの線Lに亘って、結晶粒の粒子幅を求め、平均することで平均粒子幅Dを求めた。
さらに、複合組織層の結晶構造については、X線回折装置を用い、Cu−Kα線を線源としてX線回折を行った場合、JCPDS00−038−1420立方晶TiNとJCPDS00−046−1200立方晶AlN、各々に示される同一結晶面の回折角度の間(例えば、36.66〜38.53°、43.59〜44.77°、61.81〜65.18°)に回折ピークが現れることを確認することによって調査した。
なお、(Ti1−XAl)(C1−Y)結晶粒の周囲に存在するTi、Al、CおよびNのうちの1種または2種以上を含むアモルファス相組織の平均的な厚さは5〜30nmであり、また、複合組織層縦断面に占める平均面積割合5〜20面積%であった。
なお、アモルファス相組織の平均的な厚さ及び平均面積割合は走査電子顕微鏡(倍率20000倍及び50000倍)を用いて、複合組織層の断面研磨面を工具基体と垂直方向は複合組織層の層厚分の厚さにわたって、工具基体と水平方向は長さ合計10μmに亘って複数視野観察することにより求めた。本発明被覆工具1〜10の複合組織層については、立方晶構造のTiとAlの複合炭窒化物結晶粒組織と、該結晶粒の周囲に存在するアモルファス相組織との複合組織からなり、上記二つの組織は走査電子顕微鏡で観察をするとコントラストの違いとして区別でき、水平方向10μmに亘る視野の最左端における複合組織層の基体側から0.3μm複合組織層の内部に入った位置Lにおいて基体表面と平行方向に幅10μmの線Lを引き、また、水平方向10μmに亘る視野の最左端における複合組織層の表面から0.3μm複合組織層の内部に入った位置Hにおいて基体表面と平行方向に幅10μmの線Lを引き、線L及び線Lの横切るアモルファス相組織について、該アモルファス相組織の結晶との界面と線L及び線Lの交点を端点とする線分の長さを該アモルファス相組織の厚さとして求め、幅10μmの線L及び線Lに亘って、アモルファス相組織の厚さを求め、平均することでアモルファス相組織の平均的な厚さを求めた。さらに、視野観察の結果から、立方晶構造のTiとAlの複合炭窒化物結晶粒組織と、該結晶粒の周囲に存在するアモルファス相組織のコントラストの違いを利用した画像処理により平均面積割合を算出した。また、走査電子顕微鏡による観察でコントラストの異なる二つの組織について、透過電子顕微鏡を用いて電子線回折を行った結果、立方晶構造のTiとAlの複合炭窒化物結晶粒組織では、立方晶結晶格子を有するTiとAlの複合炭窒化物結晶の回折像が観察され、アモルファス相組織では、回折像が観察されないことを確認した。
表7に、その結果を示す。
Moreover, the cross section of each component layer of this invention coated tool 1-15, comparative example coated tool 1-13, and reference example coated tool 14,15 is measured using a scanning electron microscope, and five layers in an observation visual field When the thickness was measured and averaged to determine the average layer thickness, both showed the same average layer thickness as the target average layer thickness shown in Tables 7 and 8.
Next, for the composite structure layers of the above-described coated tools 1 to 15 of the present invention, the average Al content ratio X, average C content ratio Y, average particle width D L , average particle width D H , and Al content ratio X of the composite structure layer L and XH were measured.
The specific measurement is as follows.
Using a fluorescent X-ray analyzer, the surface of the composite tissue layer was irradiated with X-rays having a spot diameter of 100 μm, and the average Al content ratio X and average C content ratio Y were determined from the analysis results of the obtained characteristic X-rays.
Next, a cross section perpendicular to the surface of the substrate is prepared using a diamond polishing machine, and a position L that enters the 0.3 μm composite tissue layer from the substrate side of the composite tissue layer is set at the center of the spot using an electron beam microanalyzer. Irradiate an electron beam with a spot diameter of 0.2 μm, that is, enter the inside of the 0.4 μm composite tissue layer from the position centering on the position L from the base side of the composite tissue layer into the 0.2 μm composite tissue layer. An electron beam was irradiated up to the position, and the Al content ratio XL was determined from the average of 10 points of the analysis results of the characteristic X-rays obtained. In the present invention, “composition analysis is performed at the center” is obtained by irradiating the electron beam having the spot diameter of 0.2 μm centered on the position and obtaining an average of 10 points of the analysis result of the characteristic X-ray obtained. Means the obtained composition.
In addition, using a scanning electron microscope (magnification 20000 times and 50000 times), the cross-section polished surface of the composite structure layer extends over the thickness of the composite structure layer in the direction perpendicular to the tool base, and the tool base and horizontal direction are long. A plurality of visual fields are observed over a total of 10 μm, and a width of 10 μm in the direction parallel to the surface of the base body is located at a position L entering the inside of the composite tissue layer of 0.3 μm from the base side of the composite tissue layer at the leftmost end of the visual field extending in the horizontal direction of 10 μm. draw a line L L, the crystal grains crossing the line L L, determine the length of a line to an end point of intersection of the grain boundary and the line L L of the crystal grains as particles width of the crystal grains, the width of 10μm The average grain width D L was obtained by obtaining and averaging the grain width of the crystal grains over the line L L. The “average particle width” in the present invention means the average particle width obtained by the above method.
An electron beam having a spot diameter of 0.2 μm is irradiated from the surface of the composite tissue layer to the inside of the composite tissue layer of 0.3 μm from the surface, that is, 0.2 μm composite from the surface of the composite tissue layer centering on the position H. The electron beam is irradiated from the position inside the tissue layer to the position inside the 0.4 μm composite tissue layer, and the Al content ratio X H is obtained from the average of 10 points of the analysis result of the characteristic X-ray obtained. It was.
In addition, using a scanning electron microscope (magnification 20000 times and 50000 times), the cross-section polished surface of the composite structure layer extends over the thickness of the composite structure layer in the direction perpendicular to the tool base, and the tool base and horizontal direction are long. A plurality of fields of view are observed over a total of 10 μm, and a width of 10 μm in the direction parallel to the substrate surface is located at a position H entering the interior of the 0.3 μm composite tissue layer from the surface of the composite tissue layer at the leftmost end of the visual field extending in the horizontal direction of 10 μm. draw a line L H, the crystal grains crossing the line L H, obtains the length of the line segment and end points of intersection of the grain boundary and the line L H of the crystal grains as particles width of the crystal grains, the line width 10μm over L H, seek particle width of the crystal grains, to obtain an average particle width D H by averaging.
Further, regarding the crystal structure of the composite structure layer, when X-ray diffraction is performed using an X-ray diffractometer and Cu—Kα ray as a radiation source, JCPDS00-038-1420 cubic TiN and JCPDS00-046-1200 cubic crystal A diffraction peak appears between the diffraction angles of the same crystal plane shown in each of AlN (for example, 36.66 to 38.53 °, 43.59 to 44.77 °, 61.81 to 65.18 °). Investigated by confirming.
Note that an average of an amorphous phase structure containing one or more of Ti, Al, C, and N present around (Ti 1-X Al X ) (C Y N 1-Y ) crystal grains. The thickness was 5 to 30 nm, and the average area ratio in the longitudinal section of the composite tissue layer was 5 to 20 area%.
The average thickness and the average area ratio of the amorphous phase structure are determined by using a scanning electron microscope (magnification 20000 times and 50000 times), and the cross-sectional polished surface of the composite structure layer is perpendicular to the tool substrate in the direction of the composite structure layer. Over the thickness, the tool base and the horizontal direction were obtained by observing a plurality of fields over a total length of 10 μm. The composite structure layers of the present coated tools 1 to 10 are composed of a composite structure of a Ti-Al composite carbonitride crystal grain structure having a cubic structure and an amorphous phase structure present around the crystal grain, When the two tissues are observed with a scanning electron microscope, they can be distinguished as a difference in contrast. At the position L that enters the inside of the 0.3 μm composite tissue layer from the base side of the composite tissue layer at the leftmost end of the visual field extending in the horizontal direction of 10 μm. A line L L having a width of 10 μm is drawn in a direction parallel to the surface, and parallel to the surface of the substrate at a position H entering the interior of the 0.3 μm composite tissue layer from the surface of the composite tissue layer at the leftmost end of the visual field extending in the horizontal direction of 10 μm. draw a line L H in the width 10μm direction, the amorphous phase structure across the line L L and the line L H, exchange of the interface and the line L L and the line L H of the crystal of the amorphous phase structure The calculated length of the line segment and end points as the thickness of the amorphous phase structure, over the line L L and the line L H of width 10 [mu] m, determined the thickness of the amorphous phase structure, an amorphous phase structure by averaging The average thickness of was determined. Furthermore, from the results of visual field observation, the average area ratio was determined by image processing using the difference in contrast between the Ti-Al composite carbonitride crystal grain structure having a cubic structure and the amorphous phase structure existing around the crystal grain. Calculated. In addition, as a result of electron beam diffraction using a transmission electron microscope for two structures having different contrasts as observed by a scanning electron microscope, a cubic crystal structure of Ti and Al having a cubic structure has a cubic crystal structure. A diffraction image of a Ti-Al composite carbonitride crystal having a lattice was observed, and it was confirmed that no diffraction image was observed in the amorphous phase structure.
Table 7 shows the results.

ついで、比較例被覆工具1〜13および参考例被覆工具14、15のそれぞれについても、本発明被覆工具1〜15と同様にして、複合組織層の平均Al含有割合x、平均C含有割合y、平均粒子幅d,平均粒子幅d、Alの含有割合x,xについて測定した。
また、複合組織層の結晶構造についても、本発明被覆工具1〜15と同様にして、調査した。
表8に、その結果を示す。
Next, for each of the comparative example coated tools 1 to 13 and the reference example coated tools 14 and 15, as in the present invention coated tools 1 to 15, the average Al content ratio x, the average C content ratio y of the composite structure layer, The average particle width d L , the average particle width d H , and the Al content ratios x L and x H were measured.
Further, the crystal structure of the composite structure layer was also investigated in the same manner as the coated tools 1 to 15 of the present invention.
Table 8 shows the results.







つぎに、上記の各種の被覆工具をいずれもカッタ径125mmの工具鋼製カッタ先端部に固定治具にてクランプした状態で、本発明被覆工具1〜15、比較例被覆工具1〜13および参考例被覆工具14、15について、以下に示す、合金鋼の高速断続切削の一種である乾式高速正面フライス、センターカット切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。
被削材: JIS・SCM440幅97mm、長さ400mmのブロック材
回転速度: 930min−1
切削速度: 360m/min、
切り込み: 1mm、
一刃送り量: 0.1mm/刃、
切削時間: 8分、
表9に、上記切削試験の結果を示す。
Next, in the state where each of the above various coated tools is clamped to the tool steel cutter tip portion having a cutter diameter of 125 mm by a fixing jig, the present coated tools 1 to 15, the comparative coated tools 1 to 13, and the reference Example For the coated tools 14 and 15, the following dry high-speed face milling, which is a kind of high-speed intermittent cutting of alloy steel, and a center-cut cutting test were performed, and the flank wear width of the cutting edge was measured.
Work material: Block material of JIS / SCM440 width 97mm, length 400mm
Rotational speed: 930 min −1 ,
Cutting speed: 360 m / min,
Cutting depth: 1mm,
Single-blade feed rate: 0.1 mm / tooth,
Cutting time: 8 minutes,
Table 9 shows the results of the cutting test.


原料粉末として、いずれも0.5〜4μmの範囲内の平均粒径を有するcBN粉末、TiN粉末、TiCN粉末、TiC粉末、Al粉末、Al粉末を用意し、これら原料粉末を表10に示される配合組成に配合し、ボールミルで80時間湿式混合し、乾燥した後、120MPaの圧力で直径:50mm×厚さ:1.5mmの寸法をもった圧粉体にプレス成形し、ついでこの圧粉体を、圧力:1Paの真空雰囲気中、900〜1300℃の範囲内の所定温度に60分間保持の条件で焼結して切刃片用予備焼結体とし、この予備焼結体を、別途用意した、Co:8質量%、WC:残りの組成、並びに直径:50mm×厚さ:2mmの寸法をもったWC基超硬合金製支持片と重ね合わせた状態で、通常の超高圧焼結装置に装入し、通常の条件である圧力:4GPa、温度:1200〜1400℃の範囲内の所定温度に保持時間:0.8時間の条件で超高圧焼結し、焼結後上下面をダイヤモンド砥石を用いて研磨し、ワイヤー放電加工装置にて所定の寸法に分割し、さらにCo:5質量%、TaC:5質量%、WC:残りの組成およびISO規格CNGA120412の形状(厚さ:4.76mm×内接円直径:12.7mmの80°菱形)をもったWC基超硬合金製インサート本体のろう付け部(コーナー部)に、体積%で、Zr:37.5%、Cu:25%、Ti:残りからなる組成を有するTi合金のろう材を用いてろう付けし、所定寸法に外周加工した後、切刃部に幅:0.13mm、角度:25°のホーニング加工を施し、さらに仕上げ研摩を施すことによりISO規格CNGA120412のインサート形状をもった工具基体イ〜ニをそれぞれ製造した。 As the raw material powder, cBN powder, TiN powder, TiCN powder, TiC powder, Al powder, and Al 2 O 3 powder each having an average particle diameter in the range of 0.5 to 4 μm are prepared. The mixture is blended in the composition shown in FIG. 1, wet mixed with a ball mill for 80 hours, dried, and then pressed into a green compact having a diameter of 50 mm × thickness: 1.5 mm under a pressure of 120 MPa. The green compact is sintered in a vacuum atmosphere at a pressure of 1 Pa at a predetermined temperature within a range of 900 to 1300 ° C. for 60 minutes to obtain a presintered body for a cutting edge piece. In addition, Co: 8% by mass, WC: remaining composition, and diameter: 50 mm × thickness: 2 mm, superposed on a WC-based cemented carbide support piece with a normal super-high pressure Insert into the sintering machine, normal conditions A certain pressure: 4 GPa, temperature: 1200 ° C. to 1400 ° C. within a predetermined temperature, holding time: 0.8 hour sintering, and after sintering, the upper and lower surfaces are polished with a diamond grindstone, and wire discharge It is divided into predetermined dimensions by a processing device, and further Co: 5 mass%, TaC: 5 mass%, WC: remaining composition and ISO standard CNGA1204112 shape (thickness: 4.76 mm × inscribed circle diameter: 12. The brazing part (corner part) of the insert body made of a WC-based cemented carbide with a 7 mm 80 ° rhombus) has a composition consisting of Zr: 37.5%, Cu: 25%, Ti: the rest in volume%. After brazing using a brazing material of Ti alloy and having a predetermined dimension, the cutting edge is subjected to honing with a width of 0.13 mm and an angle of 25 °, and then subjected to final polishing to ISO standards. CNGA1 The tool substrate (a) to (k) two with a 0412 of insert shape were produced, respectively.


つぎに、これらの工具基体イ〜ニの表面に、通常の化学蒸着装置を用い、表4に示される条件で、本発明の(Ti1−XAl)(C1−Y)層を目標層厚で蒸着形成することにより、表12に示される本発明被覆工具16〜25を製造した。
なお、本発明被覆工具21〜25については、表3に示される形成条件で、表11に示される下部層および/または上部層を形成した。
Then, these tool substrate i ~ the surface of the two, using a conventional chemical vapor deposition apparatus under the conditions shown in Table 4, (Ti 1-X Al X) of the present invention (C Y N 1-Y) layer The present invention coated tools 16 to 25 shown in Table 12 were manufactured by vapor-depositing with a target layer thickness.
In addition, about this invention coated tools 21-25, the lower layer and / or the upper layer which were shown in Table 11 were formed on the formation conditions shown in Table 3.

また、比較の目的で、同じく工具基体イ〜ニの表面に、通常の化学蒸着装置を用い、表5に示される条件で、比較例の(Ti1−XAl)(C1−Y)層を目標層厚で蒸着形成することにより、表13に示される比較例被覆工具16〜24を製造した。
なお、本発明被覆工具21〜25と同様に、比較被覆工具20〜24については、表3に示される形成条件で、表11に示される下部層および/または上部層を形成した。
For the purpose of comparison, the same tool substrate i ~ the surface of the two, using a conventional chemical vapor deposition apparatus under the conditions shown in Table 5, (Ti 1-X Al X) of Comparative Example (C Y N 1- The comparative example coated tools 16-24 shown in Table 13 were manufactured by vapor-depositing a Y ) layer with target layer thickness.
In addition, similarly to this invention coated tools 21-25, about the comparative coated tools 20-24, the lower layer and / or the upper layer which were shown in Table 11 on the formation conditions shown in Table 3 were formed.

参考のため、工具基体の表面に、従来の物理蒸着装置を用いて、アークイオンプレーティングにより、参考例の(Ti1−XAl)(C1−Y)層を目標層厚で蒸着形成することにより、表13に示される参考例被覆工具25を製造した。
なお、アークイオンプレーティングの条件は、実施例1に示される条件と同様の条件を用い、前記工具基体の表面に、表13に示される目標平均組成、目標平均層厚の(Al,Ti)CN層を蒸着形成し、参考例被覆工具25を製造した。
For reference, the (Ti 1-X Al X ) (C Y N 1-Y ) layer of the reference example is formed with a target layer thickness on the surface of the tool base by arc ion plating using a conventional physical vapor deposition apparatus. A reference example-coated tool 25 shown in Table 13 was manufactured by vapor deposition.
The arc ion plating conditions were the same as those shown in Example 1, and the target average composition and target average layer thickness (Al, Ti) shown in Table 13 were formed on the surface of the tool base. A CN layer was deposited and a reference example-coated tool 25 was manufactured.

また、本発明被覆工具16〜25、比較例被覆工具16〜24および参考例被覆工具25の各構成層の断面を、走査電子顕微鏡を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表12および表13に示される目標平均層厚と実質的に同じ平均層厚を示した。
ついで、上記の本発明被覆工具16〜25の複合組織層について、複合組織層の平均Al含有割合X、平均C含有割合Y、平均粒子幅D,平均粒子幅D、Alの含有割合X,X、結晶構造について、実施例1に示される方法と同様の方法を用い測定した。
表12に、その結果を示す。
Moreover, the cross section of each component layer of this invention coated tool 16-25, comparative example coated tool 16-24, and reference example coated tool 25 is measured using a scanning electron microscope, and the layer thickness of five points in an observation visual field is measured. When the average layer thickness was measured and averaged, the average layer thickness was substantially the same as the target average layer thickness shown in Tables 12 and 13.
Next, for the composite structure layers of the above-described coated tools 16 to 25 of the present invention, the average Al content ratio X, average C content ratio Y, average particle width D L , average particle width D H , and Al content ratio X of the composite structure layer L 1 , X H , and crystal structure were measured using the same method as shown in Example 1.
Table 12 shows the results.

ついで、比較例被覆工具16〜24および参考例被覆工具25のそれぞれについても、本発明被覆工具16〜25と同様にして、複合組織層の平均Al含有割合x、平均C含有割合y、平均粒子幅d,平均粒子幅d、Alの含有割合x,x、結晶構造について測定した。
表13に、その結果を示す。
Next, for each of the comparative example coated tools 16 to 24 and the reference example coated tool 25, the average Al content ratio x, the average C content ratio y, and the average particle of the composite structure layer are the same as in the present invention coated tools 16 to 25. The width d L , the average particle width d H , the Al content ratio x L , x H , and the crystal structure were measured.
Table 13 shows the results.




つぎに、上記の各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具16〜25、比較例被覆工具16〜24および参考例被覆工具25について、以下に示す、浸炭焼入れ合金鋼の乾式高速断続切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。
被削材: JIS・SCM415(硬さ:HRC62)の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 220 m/min、
切り込み: 0.15mm、
送り: 0.12mm/rev、
切削時間: 5分、
表14に、上記切削試験の結果を示す。
Next, the present coated tools 16 to 25, the comparative coated tools 16 to 24, and the reference example coated with the above various coated tools screwed to the tip of the tool steel tool with a fixing jig. The tool 25 was subjected to the following dry high-speed intermittent cutting test of carburized and quenched alloy steel, and the flank wear width of the cutting edge was measured.
Work material: JIS SCM415 (Hardness: HRC62) lengthwise equidistant four round grooved round bars,
Cutting speed: 220 m / min,
Cutting depth: 0.15mm,
Feed: 0.12mm / rev,
Cutting time: 5 minutes
Table 14 shows the results of the cutting test.


表7〜9および表12〜14に示される結果から、本発明被覆工具1〜25は、硬質被覆層として、少なくとも、立方晶構造の(Ti1−XAl)(C1−Y)結晶粒と、該結晶粒の周囲に存在するアモルファス相組織からなる複合組織層が形成され、該複合組織層は、複合組織層の基体側から、複合組織層の表層側に向かうにしたがって、平均粒子幅が漸次増加する粒子幅分布が形成され、また、Al含有割合が漸次増加する組成傾斜構造を有することによって、合金鋼の高速ミーリング切削加工または高速断続切削加工ですぐれた密着性、耐チッピング性、耐摩耗性を発揮する。
これに対して、比較例被覆工具1〜13、16〜24、参考例被覆工具14、15、25については、いずれも、硬質被覆層にチッピング、欠損、剥離等の異常損傷が発生するばかりか、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Tables 7-9 and Table 12-14, the present invention coated tool 1 to 25, as a hard coating layer, at least, (Ti 1-X Al X ) of the cubic structure (C Y N 1-Y ) A composite structure layer composed of crystal grains and an amorphous phase structure existing around the crystal grains is formed, and the composite structure layer moves from the substrate side of the composite structure layer toward the surface layer side of the composite structure layer. By having a compositional gradient structure in which the average particle width gradually increases and the Al content ratio gradually increases, excellent adhesion and resistance to high-speed milling or high-speed intermittent cutting of alloy steel are achieved. Demonstrates chipping and wear resistance.
On the other hand, all of the comparative example coated tools 1 to 13 and 16 to 24 and the reference example coated tools 14, 15, and 25 not only cause abnormal damage such as chipping, chipping, and peeling on the hard coating layer. It is clear that the service life is reached in a relatively short time.

上述のように、この発明の被覆工具は、合金鋼の高速断続切削加工ばかりでなく、各種の被削材の被覆工具として用いることができ、しかも、長期の使用に亘ってすぐれた耐摩耗性を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。









As described above, the coated tool of the present invention can be used not only for high-speed intermittent cutting of alloy steel but also as a coated tool for various work materials, and has excellent wear resistance over a long period of use. Therefore, it is possible to satisfactorily meet the demands for higher performance of the cutting device, labor saving and energy saving of cutting, and cost reduction.









Claims (5)

炭化タングステン基超硬合金、炭窒化チタン基サーメット、または立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された基体の表面に、硬質被覆層が形成されている表面被覆切削工具において、
(a)上記硬質被覆層は、少なくとも、平均層厚1〜20μmの立方晶構造のTiとAlの複合炭窒化物結晶粒組織と、該結晶粒の周囲に存在するTi、Al、CおよびNのうちの1種または2種以上を含むアモルファス相組織とからなる複合組織層を含み、
(b)前記複合組織層は、その平均組成を、
組成式:(Ti1−XAl)(C1−Y
で表した場合、Al含有割合XおよびC含有割合Y(但し、X、Yは何れも原子比)は、それぞれ、0.60≦X≦0.90、0.0005≦Y≦0.005を満足し、
(c)前記複合組織層の基体側から、0.3μm複合組織層の内部に入った位置Lにおける立方晶構造のTiとAlの複合炭窒化物結晶粒の基体表面と平行な面内の粒子幅の平均値を平均粒子幅Dとすると、該平均粒子幅Dは0.1μm以下であり、また、複合組織層の表層から、0.3μm複合組織層の内部に入った位置Hにおける基体表面と平行な面内の粒子幅の平均値を平均粒子幅Dとすると、該平均粒子幅Dは0.3〜2μmであり、さらに、立方晶構造のTiとAlの複合炭窒化物結晶粒の平均粒子幅は、複合組織層の基体側から、複合組織層の表層側に向かうにしたがって漸次増加する粒子幅分布を形成していることを特徴とする表面被覆切削工具。
Tungsten carbide based cemented carbide, titanium carbonitride based cermet or cubic either configured substrate surface of the boron nitride based ultra-high-pressure sintered material, the surface-coated cutting tool hard layer is made form ,
(A) the hard coating layer comprises at least a complex carbonitride grain structure of Ti and Al on cubic flat HitoshisoAtsu 1 to 20 [mu] m, Ti present in around the crystal grains, Al, C and Including a composite structure layer composed of an amorphous phase structure including one or more of N,
(B) The composite tissue layer has an average composition,
Formula: (Ti 1-X Al X ) (C Y N 1-Y)
In this case, the Al content ratio X and the C content ratio Y (where X and Y are atomic ratios) satisfy 0.60 ≦ X ≦ 0.90 and 0.0005 ≦ Y ≦ 0.005, respectively. Satisfied,
(C) Particles in a plane parallel to the substrate surface of the composite carbonitride crystal grains of Ti and Al having a cubic structure at a position L entering the 0.3 μm composite structure layer from the substrate side of the composite structure layer When the average value of the width and the average particle width D L, the average particle width D L is at 0.1μm or less, also from the surface layer of the composite structure layers, at position H, which has entered the interior of 0.3μm composite structure layer Assuming that the average value of the particle width in the plane parallel to the substrate surface is the average particle width DH , the average particle width DH is 0.3 to 2 μm. Further, the composite carbonitriding of cubic structure Ti and Al The surface-coated cutting tool, wherein the average grain width of the product crystal grains forms a grain width distribution that gradually increases from the substrate side of the composite structure layer toward the surface layer side of the composite structure layer.
請求項1に記載の表面被覆切削工具において、前記複合組織層の基体側から、0.3μm複合組織層の内部に入った位置Lを中心に組成分析を行い、立方晶構造のTiとAlの複合炭窒化物結晶粒のAl含有割合を求め、その平均値をX(但し、原子比)とすると、該Al含有割合Xは、0.55≦X≦0.70であり、また、複合組織層の表層から、0.3μm複合組織層の内部に入った位置Hを中心に組成分析を行い、立方晶構造のTiとAlの複合炭窒化物結晶粒のAl含有割合を求め、その平均値をX(但し、原子比)とすると、該Al含有割合Xは、0.80≦X≦0.95であり、さらに、立方晶構造のTiとAlの複合炭窒化物結晶粒のAl含有割合は、複合組織層の基体側から、複合組織層の表層側に向かうにしたがって漸次増加する組成傾斜構造を有していることを特徴とする請求項1に記載の表面被覆切削工具。 2. The surface-coated cutting tool according to claim 1, wherein composition analysis is performed centering on a position L that enters the 0.3 μm composite structure layer from the substrate side of the composite structure layer, and Ti and Al having a cubic structure are formed. When the Al content ratio of the composite carbonitride crystal grains is determined and the average value is X L (where the atomic ratio), the Al content ratio X L is 0.55 ≦ X L ≦ 0.70, and From the surface of the composite structure layer, composition analysis is performed centering on the position H entering the 0.3 μm composite structure layer, and the Al content ratio of the composite carbonitride crystal grains of Ti and Al having a cubic structure is obtained. Assuming that the average value is X H (however, the atomic ratio), the Al content ratio X H is 0.80 ≦ X H ≦ 0.95, and further, a composite carbonitride of Ti and Al having a cubic structure The Al content ratio of the crystal grains is from the substrate side of the composite structure layer to the surface layer side of the composite structure layer. Uni thus surface-coated cutting tool according to claim 1, characterized in that it has a composition gradient structure gradually increases. 前記炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体と、前記複合組織層の間にTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、かつ、0.1〜20μmの合計平均層厚を有するTi化合物層が存在することを特徴とする請求項1または2に記載の表面被覆切削工具。 Ti carbide layer, nitride layer between a tool base composed of any of the tungsten carbide-based cemented carbide, titanium carbonitride-based cermet or cubic boron nitride-based ultra-high pressure sintered body, and the composite structure layer A Ti compound layer consisting of one or more of carbonitride layer, carbonitride layer and carbonitride oxide layer and having a total average layer thickness of 0.1 to 20 μm The surface-coated cutting tool according to claim 1 or 2. 前記硬質被覆層は、1〜25μmの平均層厚を有する酸化アルミニウム層を含むことを特徴とする請求項1乃至3のいずれか一項に記載の表面被覆切削工具。 The surface-coated cutting tool according to any one of claims 1 to 3, wherein the hard coating layer includes an aluminum oxide layer having an average layer thickness of 1 to 25 µm. 前記複合組織層は、少なくとも、トリメチルアルミニウムを反応ガス成分として含有する化学蒸着法により蒸着形成ることを特徴とする請求項1乃至4のいずれか一項に記載の表面被覆切削工具の製造方法The composite tissue layer, at least, the manufacturing method of the surface-coated cutting tool according to any one of claims 1 to 4, characterized that you vapor deposited by chemical vapor deposition containing trimethyl aluminum as a reaction gas component .
JP2013053100A 2012-04-20 2013-03-15 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting Active JP6044401B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013053100A JP6044401B2 (en) 2012-04-20 2013-03-15 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
CN201310106629.XA CN103372764B (en) 2012-04-20 2013-03-29 Hard coating layer plays the excellent resistance to surface-coated cutting tool collapsing knife

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012097127 2012-04-20
JP2012097127 2012-04-20
JP2013053100A JP6044401B2 (en) 2012-04-20 2013-03-15 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting

Publications (2)

Publication Number Publication Date
JP2013237144A JP2013237144A (en) 2013-11-28
JP6044401B2 true JP6044401B2 (en) 2016-12-14

Family

ID=49762642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013053100A Active JP6044401B2 (en) 2012-04-20 2013-03-15 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting

Country Status (1)

Country Link
JP (1) JP6044401B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6344602B2 (en) * 2014-06-17 2018-06-20 住友電工ハードメタル株式会社 Hard coating, cutting tool, and manufacturing method of hard coating
JP6344601B2 (en) * 2014-06-17 2018-06-20 住友電工ハードメタル株式会社 Hard coating, cutting tool, and manufacturing method of hard coating
JP6781954B2 (en) * 2017-01-25 2020-11-11 三菱マテリアル株式会社 Surface coating cutting tool with excellent chipping resistance and peeling resistance with a hard coating layer
JP6796257B2 (en) * 2017-03-01 2020-12-09 三菱マテリアル株式会社 Surface coating cutting tool with excellent chipping resistance and peeling resistance with a hard coating layer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008013965A1 (en) * 2008-03-12 2009-09-17 Kennametal Inc. Hard material coated body

Also Published As

Publication number Publication date
JP2013237144A (en) 2013-11-28

Similar Documents

Publication Publication Date Title
JP6024981B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6090063B2 (en) Surface coated cutting tool
JP5946017B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP5939508B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6402662B2 (en) Surface-coated cutting tool and manufacturing method thereof
JP5939509B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6391045B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6150109B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6344040B2 (en) Surface-coated cutting tool with excellent chipping resistance
JP6296294B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5946016B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4748450B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6296298B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6233575B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2009056538A (en) Surface-coated cutting tool of which hard coating layer achieves excellent chipping resistance
JP5935479B2 (en) Surface-coated cutting tool with excellent chipping resistance with a hard coating layer in high-speed milling and high-speed intermittent cutting
JP6044401B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2009090395A (en) Surface-coated cutting tool having hard coated layer exhibiting excellent chipping resistance in heavy cutting
JP6171800B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP2013094853A (en) Surface coated cutting tool including hard coating layer which exhibits excellent peel resistance in high-speed intermittent cutting
JP2009090396A (en) Surface-coated cutting tool having hard coated layer exhibiting excellent chipping resistance in heavy cutting
JP2006000970A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent abrasion resistance in high-speed cutting
JP6213066B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4747338B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP2009142972A (en) Surface coated cutting tool with hard coating layer having improved chipping resistance during heavy cutting work

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160923

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161031

R150 Certificate of patent or registration of utility model

Ref document number: 6044401

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150