JP6038564B2 - Semiconductor laminate bonding substrate and manufacturing method thereof - Google Patents

Semiconductor laminate bonding substrate and manufacturing method thereof Download PDF

Info

Publication number
JP6038564B2
JP6038564B2 JP2012206937A JP2012206937A JP6038564B2 JP 6038564 B2 JP6038564 B2 JP 6038564B2 JP 2012206937 A JP2012206937 A JP 2012206937A JP 2012206937 A JP2012206937 A JP 2012206937A JP 6038564 B2 JP6038564 B2 JP 6038564B2
Authority
JP
Japan
Prior art keywords
substrate
semiconductor
layer
bonding
semiconductor laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012206937A
Other languages
Japanese (ja)
Other versions
JP2014063816A (en
Inventor
豊田 達憲
達憲 豊田
嘉孝 門脇
嘉孝 門脇
憲亮 岡本
憲亮 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2012206937A priority Critical patent/JP6038564B2/en
Publication of JP2014063816A publication Critical patent/JP2014063816A/en
Application granted granted Critical
Publication of JP6038564B2 publication Critical patent/JP6038564B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Devices (AREA)

Description

本発明は、半導体積層体接合用基板およびその製造方法、ならびに、この半導体積層体接合用基板を支持基板として用いた半導体素子およびその製造方法に関する。   The present invention relates to a semiconductor laminated body bonding substrate and a manufacturing method thereof, and a semiconductor element using the semiconductor laminated body bonding substrate as a support substrate and a manufacturing method thereof.

半導体素子には、電界効果トランジスタ(FET)、発光ダイオード(LED)などの各種デバイスがある。これらの半導体素子の作製方法として、近年リフトオフ法が研究されている。リフトオフ法は、サファイア基板などの成長用基板上に、活性層または発光層を含む半導体積層体を形成し、この半導体積層体上に支持基板を形成または接合した後、成長用基板を剥離(リフトオフ)することにより、半導体積層体が支持基板に接合(成長用基板から支持基板に転写)された半導体積層体接合ウエハ、および、接合後に個々に分離した半導体素子を作製するものである。   Semiconductor devices include various devices such as field effect transistors (FETs) and light emitting diodes (LEDs). In recent years, a lift-off method has been studied as a method for manufacturing these semiconductor elements. In the lift-off method, a semiconductor stacked body including an active layer or a light emitting layer is formed on a growth substrate such as a sapphire substrate, a support substrate is formed on or bonded to the semiconductor stacked body, and then the growth substrate is peeled off (lift-off). ), A semiconductor laminate bonded wafer in which the semiconductor laminate is bonded to the support substrate (transferred from the growth substrate to the support substrate), and the semiconductor elements individually separated after the bonding are manufactured.

これまで特に、III族元素としてAl,Ga,In等を用い、V族元素としてNを用いたIII族窒化物半導体により素子部分を形成したIII族窒化物半導体素子の製造において、リフトオフ法が研究されてきた。これは以下の理由による。III族窒化物半導体は、高融点で窒素の解離圧が高くバルク単結晶成長が困難であり、大口径で安価な導電性単結晶基板が無いという理由から、サファイア基板などの異種基板上に成長させるのが一般的である。しかし、サファイア基板は絶縁性であって電流が流れない。   In particular, the lift-off method has been studied in the manufacture of group III nitride semiconductor devices in which element portions are formed of group III nitride semiconductors using Al, Ga, In, etc. as group III elements and N as group V elements. It has been. This is due to the following reason. Group III nitride semiconductors grow on dissimilar substrates such as sapphire substrates because they have a high melting point, high dissociation pressure of nitrogen, and bulk single crystal growth is difficult, and there is no large-diameter and inexpensive conductive single crystal substrate. It is common to make it. However, the sapphire substrate is insulative and no current flows.

特許文献1には、支持基板を導電性シリコン基板や金属基板として、リフトオフ法により縦型構造のIII族窒化物半導体素子を作製する方法が記載されている。   Patent Document 1 describes a method of manufacturing a group III nitride semiconductor device having a vertical structure by a lift-off method using a support substrate as a conductive silicon substrate or a metal substrate.

国際公開第2011/055462号International Publication No. 2011/055462

一方、本発明者らは、支持基板としてAlN焼結基板を用いて、リフトオフ法により半導体素子を作製することを検討した。すなわち、成長用基板上に半導体積層体を形成し、半導体積層体の上にAlN焼結基板を接合し、その後成長用基板を剥離して、AlN焼結基板上に半導体積層体を転写する試みを行なった。これは、サファイア基板などの成長用基板が一般的に放熱性に劣るため、より放熱性の高いAlN焼結基板を放熱性基台として用い、これに半導体積層体を移し替えることにより、放熱性の高い半導体素子を得ることを意図するものである。さらには、活性層の位置が放熱性基台と近くなること(ジャンクションダウン)をも意図するものである。   On the other hand, the present inventors examined the production of a semiconductor element by a lift-off method using an AlN sintered substrate as a support substrate. That is, an attempt is made to transfer a semiconductor laminate onto an AlN sintered substrate by forming a semiconductor laminate on the growth substrate, bonding an AlN sintered substrate on the semiconductor laminate, and then peeling off the growth substrate. Was done. This is because a growth substrate such as a sapphire substrate is generally inferior in heat dissipation, so a heat dissipating base is used as a heat dissipation base, and an AlN sintered substrate with higher heat dissipation is used. It is intended to obtain a semiconductor device having a high value. Furthermore, it is intended that the position of the active layer is close to the heat dissipating base (junction down).

しかしながら、本発明者らの検討によれば、この場合AlN焼結基板が半導体積層体に接合できないことや、接合できたとしても一部分に剥離が生じることがあり、AlN焼結基板の良好な接合ができないことが判明した。この接合は、2インチ以上の基板サイズ同士での接合であり、サブマウントへの素子の接合と異なり、基板の広い面内のどの部分においてもムラ無く接合できる必要があった。   However, according to studies by the present inventors, in this case, the AlN sintered substrate cannot be bonded to the semiconductor laminate, and even if bonded, peeling may occur in part, and the AlN sintered substrate can be bonded well. Turned out to be impossible. This bonding is a bonding between substrate sizes of 2 inches or more, and unlike the bonding of elements to the submount, it is necessary to be able to bond evenly in any part of the wide surface of the substrate.

そこで本発明は、上記課題に鑑み、リフトオフ法において半導体積層体と良好な接合が可能な、AlN焼結基板を含む半導体積層体接合用基板およびその製造方法を提供することを目的とする。また、本発明は、この半導体積層体接合用基板を支持基板として用いた半導体素子およびその製造方法を提供することも目的とする。   In view of the above problems, an object of the present invention is to provide a semiconductor laminate bonding substrate including an AlN sintered substrate that can be satisfactorily bonded to a semiconductor laminate in a lift-off method, and a method for manufacturing the same. Another object of the present invention is to provide a semiconductor element using the semiconductor laminate bonding substrate as a support substrate and a method for manufacturing the same.

上記目的を達成するため、本発明の要旨構成は以下のとおりである。
本発明の半導体積層体接合用基板は、表面粗さRaが50nm超のAlN焼結基板と、該AlN焼結基板上に接する金属膜と、を有し、該金属膜の表面粗さRaが50nm以下であることを特徴とする。
In order to achieve the above object, the gist of the present invention is as follows.
The semiconductor laminate bonding substrate of the present invention has an AlN sintered substrate having a surface roughness Ra of more than 50 nm and a metal film in contact with the AlN sintered substrate, and the surface roughness Ra of the metal film is It is 50 nm or less.

この発明において、前記金属膜は、融点が430℃以下の金属からなることが好ましく、特に、SnまたはZnからなることが好ましい。   In the present invention, the metal film is preferably made of a metal having a melting point of 430 ° C. or less, and particularly preferably made of Sn or Zn.

本発明の半導体積層体接合用基板の製造方法は、表面粗さRaが50nm超のAlN焼結基板上に接して金属材料を配置し、該金属材料を加熱および加圧することにより、前記AlN焼結基板上に、表面粗さRaが50nm以下の金属膜を形成することを特徴とする。 In the method for manufacturing a semiconductor laminate bonding substrate according to the present invention, a metal material is disposed on an AlN sintered substrate having a surface roughness Ra of more than 50 nm , and the metal material is heated and pressurized to thereby form the AlN sintered substrate. A metal film having a surface roughness Ra of 50 nm or less is formed on the bonded substrate.

この発明において、前記金属膜は、融点が430℃以下の金属からなることが好ましく、特にSnまたはZnからなることが好ましい。   In the present invention, the metal film is preferably made of a metal having a melting point of 430 ° C. or less, and particularly preferably made of Sn or Zn.

本発明の半導体素子の製造方法は、成長用基板上に、第2導電型半導体層、活性層、および第1導電型半導体層を順次形成する工程と、前記第1導電型半導体層上に第1電極層を形成する工程と、該第1電極層上に、上記の半導体積層体接合用基板を接合する工程と、前記成長用基板を除去する工程と、前記第2導電型半導体層上に第2電極層を形成する工程と、を有することを特徴とする。   The method of manufacturing a semiconductor device according to the present invention includes a step of sequentially forming a second conductive semiconductor layer, an active layer, and a first conductive semiconductor layer on a growth substrate, and a first conductive semiconductor layer on the first conductive semiconductor layer. A step of forming one electrode layer, a step of bonding the semiconductor laminate bonding substrate on the first electrode layer, a step of removing the growth substrate, and on the second conductive semiconductor layer Forming a second electrode layer.

本発明の半導体素子は、上記の半導体積層体接合用基板と、該半導体積層体接合用基板上の第1電極層と、該第1電極層上に順次位置する第1導電型半導体層、活性層、および第2導電型半導体層と、該第2導電型半導体層上の第2電極層と、を有することを特徴とする。   The semiconductor element of the present invention includes a semiconductor laminate bonding substrate, a first electrode layer on the semiconductor laminate bonding substrate, a first conductivity type semiconductor layer sequentially disposed on the first electrode layer, an active layer And a second conductivity type semiconductor layer, and a second electrode layer on the second conductivity type semiconductor layer.

本発明によれば、リフトオフ法において半導体積層体と良好な接合が可能な、AlN焼結基板を含む半導体積層体接合用基板およびその製造方法を提供することができる。また、本発明によれば、この半導体積層体接合用基板を支持基板として用いた半導体素子およびその製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the board | substrate for semiconductor laminated body joining containing an AlN sintered substrate which can be favorably joined with a semiconductor laminated body in the lift-off method, and its manufacturing method can be provided. Moreover, according to this invention, the semiconductor element which used this board | substrate for semiconductor laminated body joining as a support substrate, and its manufacturing method can be provided.

本発明の一実施形態による半導体積層体接合用基板10の模式断面図である。It is a schematic cross section of the board | substrate 10 for semiconductor laminated body joining by one Embodiment of this invention. (A)〜(C)は、本発明の一実施形態による半導体積層体接合用基板10の製造方法を説明する模式断面図である。(A)-(C) are typical sectional drawings explaining the manufacturing method of the board | substrate 10 for semiconductor laminated body joining by one Embodiment of this invention. (A)〜(E)は、本発明の一実施形態による半導体素子50の製造方法を説明する模式断面図である。(A)-(E) are schematic cross sections explaining the manufacturing method of the semiconductor element 50 by one Embodiment of this invention.

以下、図面を参照しつつ本発明の実施形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(半導体積層体接合用基板)
図1を参照して、本発明の一実施形態による半導体積層体接合用基板10を説明する。半導体積層体接合用基板10は、図1に示すように、AlN焼結基板12と、AlN焼結基板12上の金属膜14と、を有し、金属膜14の表面粗さRaが50nm以下であることを特徴とする。
(Substrate for bonding semiconductor laminates)
With reference to FIG. 1, a semiconductor laminate bonding substrate 10 according to an embodiment of the present invention will be described. As shown in FIG. 1, the semiconductor laminate bonding substrate 10 includes an AlN sintered substrate 12 and a metal film 14 on the AlN sintered substrate 12, and the surface roughness Ra of the metal film 14 is 50 nm or less. It is characterized by being.

AlN焼結基板12は、AlN粉末を焼結剤とともにプレス成形し、熱処理することにより得られる厚み100〜800μm程度の多結晶AlNのセラミックス基板である。AlN焼結基板は、絶縁性が高く、高熱伝導性を有する一方で、焼結体であることからその表面には多数のボイドが存在し、表面粗さRaは一般に100nm以上である。焼結基板は焼結材等の不純物を含むことが一般的であり、本発明におけるAlN焼結基板はAlNを主成分とする焼結基板を含む。   The AlN sintered substrate 12 is a polycrystalline AlN ceramic substrate having a thickness of about 100 to 800 μm obtained by press-molding AlN powder together with a sintering agent and heat-treating it. The AlN sintered substrate has high insulation and high thermal conductivity, but since it is a sintered body, there are many voids on its surface, and the surface roughness Ra is generally 100 nm or more. The sintered substrate generally contains impurities such as a sintered material, and the AlN sintered substrate in the present invention includes a sintered substrate containing AlN as a main component.

本発明者らが鋭意検討した結果、AlN焼結基板が半導体積層体と良好な接合が形成できないことは、AlN焼結基板の表面状態に起因するとの着想を得た。ボイドの大きさは様々であるが、触診式段差計で測定したプロファイルでは、大きいもので5μm程度の横幅を持つボイドも存在する。これらのボイドを埋め、AlN焼結基板12の全面を金属膜14で覆い、結果として金属膜14の表面を平坦とすることで接合に適した半導体積層体接合用基板10を得ることができる。そして、図1に示すように、AlN焼結基板12上に、表面14Aの表面粗さRaが50nm以下の金属膜14を設けた半導体積層体接合用基板10によれば、リフトオフ法において半導体積層体と良好な接合が可能であることを見出し、本発明を完成するに至った。すなわち、半導体積層体接合用基板の表面粗さRaが50nm超えの場合、リフトオフ法において半導体積層体接合用基板と半導体積層体との良好な接合ができなかった。   As a result of intensive studies by the present inventors, the idea that the AlN sintered substrate cannot form a good bond with the semiconductor laminate is attributed to the surface state of the AlN sintered substrate. There are various sizes of voids, but there are also large voids having a width of about 5 μm in the profile measured with a palpation type step gauge. By filling these voids, covering the entire surface of the AlN sintered substrate 12 with the metal film 14 and flattening the surface of the metal film 14 as a result, the semiconductor laminate bonding substrate 10 suitable for bonding can be obtained. As shown in FIG. 1, according to the semiconductor laminate bonding substrate 10 in which the metal film 14 having the surface roughness Ra of the surface 14A of 50 nm or less is provided on the AlN sintered substrate 12, the semiconductor laminate is formed by the lift-off method. The present inventors have found that good bonding to the body is possible and have completed the present invention. That is, when the surface roughness Ra of the semiconductor laminate bonding substrate exceeds 50 nm, the semiconductor laminate bonding substrate and the semiconductor laminate cannot be bonded satisfactorily by the lift-off method.

半導体積層体接合用基板と半導体積層体との良好な接合という観点から、金属膜14の表面粗さRaは50nm以下とする。信頼性の観点から、より好ましくは10nm以下である。また、金属膜14の表面粗さRaの下限は特に限定されないが、0.2nmとすることができる。   From the viewpoint of good bonding between the semiconductor laminate bonding substrate and the semiconductor laminate, the surface roughness Ra of the metal film 14 is set to 50 nm or less. From the viewpoint of reliability, it is more preferably 10 nm or less. The lower limit of the surface roughness Ra of the metal film 14 is not particularly limited, but can be 0.2 nm.

本明細書における「表面粗さRa」とは、ISO4288に規定される算術平均粗さを意味し、触針式表面粗さ測定により、基準長さ80μmで測定することにより得られる値である。   “Surface roughness Ra” in the present specification means an arithmetic average roughness defined in ISO4288, and is a value obtained by measuring at a reference length of 80 μm by stylus type surface roughness measurement.

また、AlN焼結基板12と金属膜14との間に密着層があってもよい。密着層を入れることにより、AlN焼結基板12と金属膜14の間の密着性が高まり、金属膜の剥離の発生を抑えることができる。密着層の材料としてはTi/Au、Ti/Pt、Ti/Cuなどを用いることができる。また、金属膜14をめっき法によって成膜する場合は、密着層がシード層を兼ねることもできる。   Further, an adhesion layer may be provided between the AlN sintered substrate 12 and the metal film 14. By including the adhesion layer, the adhesion between the AlN sintered substrate 12 and the metal film 14 is enhanced, and the occurrence of peeling of the metal film can be suppressed. Ti / Au, Ti / Pt, Ti / Cu, etc. can be used as the material for the adhesion layer. Further, when the metal film 14 is formed by a plating method, the adhesion layer can also serve as the seed layer.

(半導体積層体接合用基板の製造方法)
次に、図2を参照して、本発明の一実施形態による半導体積層体接合用基板10の製造方法を説明する。本発明の半導体積層体接合用基板の製造方法は、AlN焼結基板12上に、表面粗さRaが50nm以下の金属膜14を形成することを特徴とする。
(Manufacturing method of semiconductor laminate bonding substrate)
Next, with reference to FIG. 2, the manufacturing method of the board | substrate 10 for semiconductor laminated body joining by one Embodiment of this invention is demonstrated. The method for producing a semiconductor laminate bonding substrate according to the present invention is characterized in that a metal film 14 having a surface roughness Ra of 50 nm or less is formed on an AlN sintered substrate 12.

図2は、図1に示す半導体積層体接合用基板10の製造方法の一例を示す模式断面図である。この製造方法では、図2(A)に示すように、AlN焼結基板12上に金属材料18を配置する。例えば、金属材料18は、AlN焼結基板12上にめっき法、蒸着法などにより成膜することができる。また、金属材料18としての金属箔をAlN焼結基板12上に配置することもできる。   FIG. 2 is a schematic cross-sectional view showing an example of a method for manufacturing the semiconductor laminate bonding substrate 10 shown in FIG. In this manufacturing method, as shown in FIG. 2A, a metal material 18 is disposed on the AlN sintered substrate 12. For example, the metal material 18 can be formed on the AlN sintered substrate 12 by plating, vapor deposition, or the like. Also, a metal foil as the metal material 18 can be disposed on the AlN sintered substrate 12.

次に、図2(A)から(B)に示すように、金属材料18を加熱および加圧する。つまり、金属材料18をサファイア基板22とAlN焼結基板12で挟み込み、加熱状態で加圧する。例えば、圧力0.5〜2.5×10−3Pa程度の真空下において、ホットプレス装置内で基板を挟み込む冶具を金属材料が加圧時にボイドを埋めて平坦化するのに必要な軟性となる温度、好ましくは融点付近の温度(例えば温度250〜450℃程度)に加熱して、サファイア基板22を加圧力2〜10MPa程度で金属材料18に押しあて、加圧すればよい。サファイア基板22の表面粗さRaは、0.5〜5nm程度とすればよい。また、加圧するための基板は、サファイア基板に限定されず、高硬度で金属材料18と接着したり反応したりせず剥離が容易な材料で表面粗さの小さい基板あればよく、例えば石英でもよい。ホットプレス装置の挟み込むための冶具にサファイア基板22の機能を具備させることもできる。なお、金属材料18の酸化を抑制できれば真空である必要はなく不活性雰囲気下でのホットプレスでもよい。 Next, as shown in FIGS. 2A to 2B, the metal material 18 is heated and pressurized. That is, the metal material 18 is sandwiched between the sapphire substrate 22 and the AlN sintered substrate 12 and pressed in a heated state. For example, under a vacuum of a pressure of about 0.5 to 2.5 × 10 −3 Pa, the jig that sandwiches the substrate in a hot press apparatus is soft enough to fill the void when the metal material is pressed and flatten it. The sapphire substrate 22 may be pressed against the metal material 18 with a pressure of about 2 to 10 MPa and pressurized. The surface roughness Ra of the sapphire substrate 22 may be about 0.5 to 5 nm. Further, the substrate for pressurization is not limited to a sapphire substrate, and may be any substrate that has high hardness and does not adhere to or react with the metal material 18 and can be easily peeled and has a small surface roughness. Good. The jig for sandwiching the hot press apparatus can be provided with the function of the sapphire substrate 22. In addition, if the oxidation of the metal material 18 can be suppressed, it is not necessary to be in a vacuum, and hot pressing in an inert atmosphere may be used.

このような工程により、図2(C)に示すように、金属膜14の表面粗さRaを50nm以下とした半導体積層体接合用基板10を得ることができる。なお、本実施形態において、金属材料18を形成する前に、AlN焼結基板12の表面を研磨して、ある程度表面粗さRaを低下させてもよいが、必須ではない。AlN焼結基板12上に金属材料18を配してホットプレスすることによって、当該研磨がなくとも金属膜14の表面粗さRaを50nm以下とすることができる。なお、蒸着法、スパッタ法またはメッキ法などにより金属膜を形成しただけでは、金属膜14は下地の基板表面の形状を追従するため、ホットプレスをする前の金属膜14の表面粗さはAlN焼結基板12の表面粗さとほぼ同じである。すなわち、金属膜14を形成しただけでは、ボイドは埋まらない。   By such a process, as shown in FIG. 2C, the semiconductor laminated body bonding substrate 10 in which the surface roughness Ra of the metal film 14 is 50 nm or less can be obtained. In this embodiment, before the metal material 18 is formed, the surface of the AlN sintered substrate 12 may be polished to reduce the surface roughness Ra to some extent, but this is not essential. By placing the metal material 18 on the AlN sintered substrate 12 and performing hot pressing, the surface roughness Ra of the metal film 14 can be reduced to 50 nm or less without the polishing. Note that the surface roughness of the metal film 14 before hot pressing is AlN because the metal film 14 follows the shape of the underlying substrate surface only by forming a metal film by vapor deposition, sputtering, plating, or the like. The surface roughness of the sintered substrate 12 is almost the same. That is, the void is not filled only by forming the metal film 14.

なお、AlN焼結基板12の表面は、その製造方法に起因して、均一に荒れているのではなく、大きなボイドが点在する。研磨ではRaは低下しても大きなボイドを消すことは難しい。一方、当該ホットプレスによれば研磨よりも効率よくボイドを埋めて、基板間の接合に適した表面を有する半導体積層体接合用基板10を提供することができる。さらに、当該研磨にかかる工数と費用はホットプレスよりも大きいため、製造上のメリットが大きい。   In addition, the surface of the AlN sintered substrate 12 is not uniformly rough due to the manufacturing method, but is dotted with large voids. In polishing, it is difficult to eliminate large voids even if Ra decreases. On the other hand, according to the hot press, it is possible to provide the semiconductor laminate bonding substrate 10 having a surface suitable for bonding between the substrates by filling the voids more efficiently than polishing. Further, since the man-hours and costs for the polishing are larger than those of the hot press, the merit in manufacturing is great.

なお、AlN焼結基板12の表面12Aを研磨する場合、例えば、不繊布タイプの研磨パットとコロイダルシリカスラリーを使用することができる。なお、当該研磨により、AlN焼結基板12の表面12Aの表面粗さRaは、50nm超え70nm以下程度にまで低下するが、この段階では表面のRaを50nm以下とはすることは困難である。   When polishing the surface 12A of the AlN sintered substrate 12, for example, a non-woven cloth type polishing pad and a colloidal silica slurry can be used. Note that the surface roughness Ra of the surface 12A of the AlN sintered substrate 12 is reduced to about 50 nm to about 70 nm or less by the polishing, but at this stage, it is difficult to make the surface Ra 50 nm or less.

また、AlN焼結基板にSOG溶液を塗布、加熱して酸化シリコン膜を形成することでもある程度表面粗さを低下することができるが、研磨と同様に必須ではない。SOG溶液による酸化シリコン膜の形成により、表面粗さRaは、50nmを超え70nm以下程度まで低下するが、ボイドを埋める効果がホットプレスに比べて弱いため、酸化シリコン膜の形成のみでは表面のRaを50nm以下にすることは困難である。SOG溶液は、シルセスキオキサン、シリケート、およびシロキサンのいずれか含む溶液としてよい。また、酸化シリコン膜の熱伝導性は小さいため、発熱する半導体素子のAlN焼結基板による放熱を弱めるという別の問題もある。   Also, the surface roughness can be reduced to some extent by applying a SOG solution to an AlN sintered substrate and heating to form a silicon oxide film, but it is not essential as in the case of polishing. By forming the silicon oxide film with the SOG solution, the surface roughness Ra is reduced to more than 50 nm and about 70 nm or less. However, since the effect of filling the void is weaker than that of the hot press, the surface Ra can be formed only by forming the silicon oxide film. Is less than 50 nm. The SOG solution may be a solution containing any of silsesquioxane, silicate, and siloxane. Further, since the thermal conductivity of the silicon oxide film is small, there is another problem that heat dissipation by the AlN sintered substrate of the semiconductor element that generates heat is weakened.

半導体積層体接合用基板10において、金属膜14は融点が430℃以下の金属からなることが好ましい。比較的低温で処理できるため、低コストであることと、高温で加熱、加圧すると基板に割れが生じるおそれがあるからである。   In the semiconductor laminate bonding substrate 10, the metal film 14 is preferably made of a metal having a melting point of 430 ° C. or lower. This is because it can be processed at a relatively low temperature, so that the cost is low, and if the substrate is heated and pressurized at a high temperature, the substrate may be cracked.

また、金属膜14の材質としては、例えば、Sn,Zn,Bi,Inやこれらを含む合金などを挙げることができるが、特に、SnまたはZnからなることが好ましい。SnおよびZnは、材料として安価であり、さらにAuを接合層とした際に接合時にAuと合金化することで、ケミカルリフトオフで用いるエッチング液に対して耐食性を有するからである。   Further, examples of the material of the metal film 14 include Sn, Zn, Bi, In, and alloys containing these, but it is particularly preferable that the metal film 14 is made of Sn or Zn. This is because Sn and Zn are inexpensive materials, and furthermore, when Au is used as a bonding layer, it is alloyed with Au at the time of bonding, thereby having corrosion resistance to an etching solution used for chemical lift-off.

金属膜14の膜厚は特に限定されないが、ホットプレス前の膜厚で0.2〜5μmとすることが好ましく、0.4〜5μmとすることがより好ましい。膜厚が0.4μm以上あれば、ホットプレスによって、研磨がなくとも金属膜14の表面粗さRaを50nm以下とすることができる。膜厚が薄すぎると、基板の表面粗さによってはホットプレス後でも十分に平坦な表面が得られず、部分的に焼結基板の凹凸の凸の一部が露出して全面が金属膜で覆われなくなる。また、必要以上に厚くしても平坦性の向上が得られないからである。なお、本明細書において、「金属膜の膜厚」は、基板を分割し、断面をSEMで観察して、ボイドのない基板の個所において測定した値の平均とする。   Although the film thickness of the metal film 14 is not specifically limited, It is preferable to set it as 0.2-5 micrometers by the film thickness before a hot press, and it is more preferable to set it as 0.4-5 micrometers. If the film thickness is 0.4 μm or more, the surface roughness Ra of the metal film 14 can be reduced to 50 nm or less by hot pressing without polishing. If the film thickness is too thin, a sufficiently flat surface may not be obtained even after hot pressing depending on the surface roughness of the substrate, and a part of the projections and depressions of the sintered substrate is partially exposed and the entire surface is a metal film. It will not be covered. Moreover, even if it is made thicker than necessary, the flatness cannot be improved. In this specification, the “film thickness of the metal film” is an average of values obtained by dividing a substrate and observing a cross section with an SEM and measuring a portion of the substrate without a void.

(半導体素子およびその製造方法)
図3を参照して、本発明の一実施形態による半導体素子50およびその製造方法を説明する。まず、図3(A)に示すように、成長用基板30上に、リフトオフ層32を形成し、その上に第2導電型半導体層34、活性層36、および第1導電型半導体層38を順次形成する。
(Semiconductor element and manufacturing method thereof)
With reference to FIG. 3, a semiconductor device 50 and a method for manufacturing the same according to an embodiment of the present invention will be described. First, as shown in FIG. 3A, a lift-off layer 32 is formed on a growth substrate 30, and a second conductive type semiconductor layer 34, an active layer 36, and a first conductive type semiconductor layer 38 are formed thereon. Sequentially formed.

成長用基板30は、特に限定されないが、サファイア基板またはサファイア基板上にAlN膜を形成したAlNテンプレート基板を用いることができる。   The growth substrate 30 is not particularly limited, but a sapphire substrate or an AlN template substrate in which an AlN film is formed on the sapphire substrate can be used.

リフトオフ層32は、エッチング液で溶解できる材料またはレーザーリフトオフ可能な材料であれば特に限定されず、CrNやScNなどの、III族以外の金属や金属窒化物バッファ層を挙げることができる。   The lift-off layer 32 is not particularly limited as long as it is a material that can be dissolved in an etching solution or a material that can be laser lift-off, and examples thereof include metals other than Group III such as CrN and ScN and metal nitride buffer layers.

第2導電型半導体層34、活性層36、および第1導電型半導体層38は、例えばMOCVD法によりリフトオフ層104上に順次エピタキシャル成長させることができる。第2導電型半導体層34および第1導電型半導体層38は、AlInGaN系など任意のIII族窒化物半導体や、その他の半導体層とすることができ、第2導電型をp型、第1導電型をn型としても、その逆でもよい。活性層36は、例えばIII族窒化物半導体により多重量子井戸(MQW)構造を形成した発光層とすることができる。これらの層をIII族窒化物半導体から形成する場合、n型半導体層、活性層およびp型半導体層のそれぞれの膜厚は、例えば1〜4μm、1〜100nm、0.1〜1μm程度とすることができる。   The second conductive semiconductor layer 34, the active layer 36, and the first conductive semiconductor layer 38 can be sequentially epitaxially grown on the lift-off layer 104 by, for example, MOCVD. The second conductivity type semiconductor layer 34 and the first conductivity type semiconductor layer 38 can be any group III nitride semiconductor such as AlInGaN, or other semiconductor layers. The second conductivity type is p-type, and the first conductivity type. The type may be n-type or vice versa. The active layer 36 can be a light emitting layer in which a multiple quantum well (MQW) structure is formed of, for example, a group III nitride semiconductor. When these layers are formed of a group III nitride semiconductor, the thicknesses of the n-type semiconductor layer, the active layer, and the p-type semiconductor layer are, for example, about 1 to 4 μm, 1 to 100 nm, and 0.1 to 1 μm. be able to.

なお、図には示されないが、この後、積層した半導体層34,36,38に対して成長用基板30が底面で露出する格子状の溝を形成し、互いに独立した複数の半導体構造部を形成する。   Although not shown in the drawing, a plurality of semiconductor structure portions independent from each other are formed by forming a lattice-like groove in which the growth substrate 30 is exposed at the bottom surface of the stacked semiconductor layers 34, 36, and 38. Form.

次に、図3(B)に示すように、第1導電型半導体層38上に第1電極層40を形成する。第1導電型半導体層38がp型III族窒化物半導体層の場合、第1電極層はp側電極として機能し、材質としては、Ni,Au,Ptなどを挙げることができ、蒸着法またはスパッタ法などにより形成することができる。   Next, as shown in FIG. 3B, the first electrode layer 40 is formed on the first conductivity type semiconductor layer 38. When the first conductivity type semiconductor layer 38 is a p-type group III nitride semiconductor layer, the first electrode layer functions as a p-side electrode, and examples of the material include Ni, Au, and Pt. It can be formed by sputtering or the like.

次に、図3(C)に示すように、第1電極層40上に、図1に示す半導体積層体接合用基板10を接合する。第1電極層40上に半導体層側接合層42Aを形成し、半導体積層体接合用基板10上に基板側接合層42Bを形成する。これらの接合層42A,42Bは、真空蒸着法、イオンプレーティング法、スパッタリング法などの乾式成膜法により形成する。半導体層側接合層42Aは、例えばTi/Au,Ti/Pt/Au,Ti/Pt/Au/Sn/Auのような積層構造とすることができ、厚みは、0.5〜2.0μm程度とすることができる。また、基板側接合層42Bは、例えばAu、Ti/Au,Ti/Pt/Au,Ti/Pt/Au/Sn/Auのような積層構造とすることができ、厚みは、0.5〜2.0μm程度とすることができる。図3(C)および(D)に示すように、これら接合層42A,42B同士を加熱圧着することにより、第1電極層40上に半導体積層体接合用基板10を接合する。加熱圧着は、温度が200〜450℃で10〜60分間程度、2〜10MPa程度の圧力で加圧して行う。これにより、接合層42A,42Bは圧着され、一体の接合層42となる。   Next, as shown in FIG. 3C, the semiconductor laminate bonding substrate 10 shown in FIG. 1 is bonded onto the first electrode layer 40. The semiconductor layer side bonding layer 42A is formed on the first electrode layer 40, and the substrate side bonding layer 42B is formed on the semiconductor laminate bonding substrate 10. These bonding layers 42A and 42B are formed by a dry film forming method such as a vacuum deposition method, an ion plating method, or a sputtering method. The semiconductor layer side bonding layer 42A can have a laminated structure such as Ti / Au, Ti / Pt / Au, Ti / Pt / Au / Sn / Au, and has a thickness of about 0.5 to 2.0 μm. It can be. The substrate-side bonding layer 42B can have a laminated structure such as Au, Ti / Au, Ti / Pt / Au, Ti / Pt / Au / Sn / Au, and has a thickness of 0.5-2. It can be about 0.0 μm. As shown in FIGS. 3C and 3D, the semiconductor laminate bonding substrate 10 is bonded onto the first electrode layer 40 by thermocompression bonding the bonding layers 42 </ b> A and 42 </ b> B. The thermocompression bonding is performed by applying a pressure of about 2 to 10 MPa at a temperature of 200 to 450 ° C. for about 10 to 60 minutes. As a result, the bonding layers 42A and 42B are pressure-bonded to form an integrated bonding layer 42.

次に、図3(D)に示すように、ケミカルリフトオフ法によってリフトオフ層32を除去することで、成長用基板30を剥離する。ケミカルリフトオフ法に使用可能なエッチング液は特に限定されない。リフトオフ層がCrNの場合、硝酸第二セリウムアンモン溶液や過マンガン酸カリウム系の溶液などのCrNに対して選択性のあるエッチング液を用いることができる。リフトオフ層がScNやHf、Zrの場合、選択性のある酸性のエッチング液を用いることができる。また、成長用基板30を除去方法はこれに限定されず、レーザーリフトオフ法によって剥離してもよい。また、成長用基板30を研削等により除去してもよい。   Next, as shown in FIG. 3D, the growth substrate 30 is peeled off by removing the lift-off layer 32 by a chemical lift-off method. The etching solution that can be used for the chemical lift-off method is not particularly limited. When the lift-off layer is CrN, an etchant having selectivity with respect to CrN such as ceric ammonium nitrate solution or potassium permanganate solution can be used. When the lift-off layer is ScN, Hf, or Zr, a selective acidic etching solution can be used. The method for removing the growth substrate 30 is not limited to this, and the growth substrate 30 may be peeled off by a laser lift-off method. Further, the growth substrate 30 may be removed by grinding or the like.

次に、図3(E)に示すように、露出した第2導電型半導体層34上に第2電極層44を形成する。第2導電型半導体層34がn型III族窒化物半導体層の場合、第2電極層はn側電極として機能し、材質としてはAl,Cr,Ti,Ni,Pt,Auなどを挙げることができるが、安定したオーミック特性を得やすいため、Ti/Al電極とすることが好ましく、例えば蒸着法またはスパッタ法により形成することができる。第2導電型半導体層34と第2電極層44との良好なオーミック接触形成のため、真空中で、400〜600℃程度の温度でアニール処理を行う。   Next, as shown in FIG. 3E, the second electrode layer 44 is formed on the exposed second conductive type semiconductor layer 34. When the second conductivity type semiconductor layer 34 is an n-type group III nitride semiconductor layer, the second electrode layer functions as an n-side electrode, and examples of the material include Al, Cr, Ti, Ni, Pt, and Au. However, since it is easy to obtain stable ohmic characteristics, a Ti / Al electrode is preferable. For example, it can be formed by a vapor deposition method or a sputtering method. In order to form a good ohmic contact between the second conductivity type semiconductor layer 34 and the second electrode layer 44, annealing is performed at a temperature of about 400 to 600 ° C. in a vacuum.

図には示されないが、一部露出させた半導体積層体接合用基板10上の基板側接合層42Bの表面にp側電極への外部からの電気的接続を行うためのp電極パッドを形成する。その後、支持基板となった半導体積層体接合用基板10を複数の半導体構造部間でダイシングすることにより、複数個の半導体素子50を得る。   Although not shown in the drawing, a p-electrode pad for externally connecting to the p-side electrode is formed on the surface of the substrate-side bonding layer 42B on the partially exposed semiconductor laminate bonding substrate 10. . Thereafter, the semiconductor laminated body bonding substrate 10 serving as a support substrate is diced between a plurality of semiconductor structure portions, whereby a plurality of semiconductor elements 50 are obtained.

このようにして得られる半導体素子50は、半導体積層体接合用基板10と、この半導体積層体接合用基板10上の第1電極層40と、この第1電極層40上に順次位置する第1導電型半導体層38、活性層36、および第2導電型半導体層34と、この第2導電型半導体層34上の第2電極層44と、を有する。そして、半導体積層体接合用基板10は、支持基板として、接合層42を介して半導体積層体38,36,34と良好に接合している。   The semiconductor element 50 thus obtained includes a semiconductor laminate bonding substrate 10, a first electrode layer 40 on the semiconductor laminate bonding substrate 10, and a first electrode positioned sequentially on the first electrode layer 40. The semiconductor device includes a conductive semiconductor layer 38, an active layer 36, a second conductive semiconductor layer 34, and a second electrode layer 44 on the second conductive semiconductor layer 34. The semiconductor laminate bonding substrate 10 is well bonded to the semiconductor laminates 38, 36, and 34 via the bonding layer 42 as a support substrate.

以下の手順で、実施例または比較例にかかる半導体積層体接合用基板を作製し、これらの基板を用いてリフトオフ法によってIII族窒化物半導体素子を作製した。そして、半導体積層体接合用基板の接合状態を評価した。基板の構成と接合状態の評価結果を後述の表1に示す。   The semiconductor laminate bonding substrate according to the example or the comparative example was manufactured by the following procedure, and a group III nitride semiconductor device was manufactured by a lift-off method using these substrates. And the joining state of the board | substrate for semiconductor laminated body joining was evaluated. The evaluation results of the substrate configuration and bonding state are shown in Table 1 described later.

(比較例1)
AlN焼結基板(厚み:635μm、Ra:100nm)を半導体積層体接合用基板とした。
(Comparative Example 1)
An AlN sintered substrate (thickness: 635 μm, Ra: 100 nm) was used as a substrate for bonding a semiconductor laminate.

(比較例2)
比較例1のAlN焼結基板の表面をコロイダルシリカ(平均粒子径:75nm)のスラリーを用いて研磨した、研磨後AlN焼結基板(Ra:60nm)を半導体積層体接合用基板とした。
(Comparative Example 2)
The surface of the AlN sintered substrate of Comparative Example 1 was polished using a slurry of colloidal silica (average particle size: 75 nm), and the post-polishing AlN sintered substrate (Ra: 60 nm) was used as the semiconductor laminate bonding substrate.

(比較例3)
比較例1のAlN焼結基板の表面にシルセスキオキサンを含む溶液をスピンコーティング法により塗布し、ホットプレート上で200℃にベーク後に、N雰囲気において400℃で焼成した。その結果、SiO膜(膜厚:0.5μm)が成膜された。この半導体積層体接合用基板の表面粗さは、Ra=60nmであった。
(Comparative Example 3)
A solution containing silsesquioxane was applied to the surface of the AlN sintered substrate of Comparative Example 1 by a spin coating method, baked at 200 ° C. on a hot plate, and fired at 400 ° C. in an N 2 atmosphere. As a result, a SiO 2 film (film thickness: 0.5 μm) was formed. The surface roughness of this semiconductor laminate bonding substrate was Ra = 60 nm.

(比較例4)
比較例1のAlN焼結基板の表面に、スパッタ法を用いてTi/Au(10nm/100nm)を成膜した後、電気めっきによりSn膜(0.2μm)を形成した。特開2011−171725号公報に記載の基板接合装置を用いて、圧力2×10−3Pa程度の真空下において、サファイア基板(Ra:0.5nm)とAlN焼結基板とでSn膜を挟み込み、ヒーターによって挟み込むための上部冶具と下部冶具とを300℃まで昇温した状態で、加圧力6MPaで加圧してホットプレスした。その結果、AlN焼結基板上にSn膜(Ra:74nm)が形成された半導体積層体接合用基板を得た。
(Comparative Example 4)
A Ti / Au (10 nm / 100 nm) film was formed on the surface of the AlN sintered substrate of Comparative Example 1 by sputtering, and then an Sn film (0.2 μm) was formed by electroplating. Using a substrate bonding apparatus described in JP2011-171725A, a Sn film is sandwiched between a sapphire substrate (Ra: 0.5 nm) and an AlN sintered substrate under a vacuum of about 2 × 10 −3 Pa. The upper jig and the lower jig to be sandwiched between the heaters were hot-pressed by applying a pressure of 6 MPa while the temperature was raised to 300 ° C. As a result, a semiconductor laminate bonding substrate having an Sn film (Ra: 74 nm) formed on an AlN sintered substrate was obtained.

(比較例5)
比較例2の研磨したAlN焼結基板(Ra:60nm)の表面に、スパッタ法を用いてTi/Au(10nm/100nm)を成膜した後、電気めっきによりSn膜(0.2μm)を形成し、ホットプレスせずにそのまま半導体積層体接合用基板とした。Sn膜の表面粗さの値は基板表面の値と変わっておらず、AlN焼結基板上にSn膜(Ra:60nm)が形成された半導体積層体接合用基板を得た。
(Comparative Example 5)
A Ti / Au (10 nm / 100 nm) film was formed by sputtering on the surface of the polished AlN sintered substrate (Ra: 60 nm) of Comparative Example 2, and then a Sn film (0.2 μm) was formed by electroplating. And it was set as the board | substrate for semiconductor laminated body as it was, without hot-pressing. The value of the surface roughness of the Sn film was not changed from the value of the substrate surface, and a semiconductor laminated body bonding substrate in which an Sn film (Ra: 60 nm) was formed on an AlN sintered substrate was obtained.

(実施例1)
Sn膜の膜厚を0.4μmとした以外は比較例4と同様にして、半導体積層体接合用基板を得た。
Example 1
A semiconductor laminate bonding substrate was obtained in the same manner as in Comparative Example 4 except that the thickness of the Sn film was 0.4 μm.

(実施例2)
Sn膜の膜厚を1.0μmとした以外は比較例4と同様にして、半導体積層体接合用基板を得た。
(Example 2)
A semiconductor laminate bonding substrate was obtained in the same manner as in Comparative Example 4 except that the thickness of the Sn film was 1.0 μm.

(実施例3)
Sn膜の膜厚を5.0μmとした以外は比較例4と同様にして、半導体積層体接合用基板を得た。
Example 3
A semiconductor laminate bonding substrate was obtained in the same manner as in Comparative Example 4 except that the thickness of the Sn film was 5.0 μm.

(実施例4)
比較例2の研磨後AlN焼結基板を使用した以外は、比較例4と同様にして半導体素子接合用基板を得た。
Example 4
A semiconductor element bonding substrate was obtained in the same manner as in Comparative Example 4 except that the AlN sintered substrate after polishing in Comparative Example 2 was used.

(実施例5)
Sn膜厚を0.4μmとした以外は実施例4と同様にして、半導体積層体接合用基板を得た。
(Example 5)
A semiconductor laminated body bonding substrate was obtained in the same manner as in Example 4 except that the Sn film thickness was 0.4 μm.

(実施例6)
Sn膜厚を1.0μmとした以外は実施例4と同様にして、半導体積層体接合用基板を得た。
(Example 6)
A semiconductor laminated body bonding substrate was obtained in the same manner as in Example 4 except that the Sn film thickness was 1.0 μm.

(実施例7)
Sn膜厚を5.0μmとした以外は実施例4と同様にして、半導体積層体接合用基板を得た。
(Example 7)
A semiconductor laminate bonding substrate was obtained in the same manner as in Example 4 except that the Sn film thickness was 5.0 μm.

参考例8)
比較例3のSiO2膜形成後のAlN焼結基板を使用した以外は比較例4と同様にして、半導体積層体接合用基板を得た。
( Reference Example 8)
A semiconductor laminate bonding substrate was obtained in the same manner as in Comparative Example 4 except that the AlN sintered substrate after the formation of the SiO 2 film in Comparative Example 3 was used.

(実施例9)
比較例1のAlN焼結基板の表面に、スパッタ法を用いてTi/Cu(10nm/100nm)を成膜した後、電気めっきによりZn膜(0.4μm)を形成した。特開2011−171725号公報に記載の基板接合装置を用いて、圧力1×10−3Pa程度の真空下において、サファイア基板(Ra:0.5nm)とAlN焼結基板とでZn膜を挟み込み、挟み込むための上部冶具と下部冶具とを430℃まで昇温した状態で、加圧力6MPaで加圧してホットプレスした。その結果、AlN焼結基板上にZn膜(Ra:40nm)が形成された半導体積層体接合用基板を得た。
Example 9
A Ti / Cu (10 nm / 100 nm) film was formed on the surface of the AlN sintered substrate of Comparative Example 1 by sputtering, and then a Zn film (0.4 μm) was formed by electroplating. Using a substrate bonding apparatus described in JP 2011-171725 A, a Zn film is sandwiched between a sapphire substrate (Ra: 0.5 nm) and an AlN sintered substrate under a vacuum of about 1 × 10 −3 Pa. The upper jig and the lower jig for sandwiching were hot-pressed by applying a pressure of 6 MPa while the temperature was raised to 430 ° C. As a result, a semiconductor laminate bonding substrate in which a Zn film (Ra: 40 nm) was formed on an AlN sintered substrate was obtained.

(実施例10)
Zn膜厚を1.0μmとした以外は実施例9と同様にして、半導体積層体接合用基板を得た。
(Example 10)
A semiconductor laminated body bonding substrate was obtained in the same manner as in Example 9 except that the Zn film thickness was 1.0 μm.

(半導体素子の作製)
これらの半導体接合用素子を用いて、図3に示す方法で半導体素子を作製した。具体的には、まず、成長用のサファイア基板上に、スパッタ法により金属Cr層を形成しアンモニア雰囲気中で熱処理することによりリフトオフ層(CrN層、厚み:18nm)を形成した。その後、リフトオフ層上にIII族窒化物半導体層として、バッファ層(組成:AlN、厚み:1μm)、n−AlGaN層(厚み:2μm)、発光層(AlInGaN系MQW層、厚み:0.2μm、発光波長340nm)、p−AlGaN層(0.4μm)、およびp−GaN層(厚み:0.05μm)を順次積層した。
(Production of semiconductor elements)
Using these semiconductor bonding elements, semiconductor elements were produced by the method shown in FIG. Specifically, first, a lift-off layer (CrN layer, thickness: 18 nm) was formed on a growth sapphire substrate by forming a metal Cr layer by sputtering and performing heat treatment in an ammonia atmosphere. Thereafter, as a group III nitride semiconductor layer on the lift-off layer, a buffer layer (composition: AlN, thickness: 1 μm), an n-AlGaN layer (thickness: 2 μm), a light emitting layer (AlInGaN-based MQW layer, thickness: 0.2 μm), An emission wavelength of 340 nm), a p-AlGaN layer (0.4 μm), and a p-GaN layer (thickness: 0.05 μm) were sequentially laminated.

その後、サファイア基板の一部が露出するよう、半導体層の一部をRIEにより除去して格子状の溝を形成することで、横断面の形状が正方形の互いに独立した複数個の半導体構造部を形成した。   Thereafter, a part of the semiconductor layer is removed by RIE to form a lattice-shaped groove so that a part of the sapphire substrate is exposed, thereby forming a plurality of independent semiconductor structures having a square cross-sectional shape. Formed.

p−GaN層上に、スパッタ法により、p側電極としてNi/Au(厚み:10/20nm)を形成した。   Ni / Au (thickness: 10/20 nm) was formed as a p-side electrode on the p-GaN layer by sputtering.

p側電極上にスパッタ法により半導体層側接合層(材質:Ti/Pt/Au、厚み:10/200/700nm)を形成した。また、半導体積層体接合用基板上にスパッタ法により基板側接合層(材質:Ti/Au、厚み:10/700nm)を形成した。これらの接合層同士を、基板接合装置を用いて300℃で60分間加熱圧着することにより、半導体積層体接合用基板を半導体構造部に接合した。   A semiconductor layer side bonding layer (material: Ti / Pt / Au, thickness: 10/200/700 nm) was formed on the p-side electrode by sputtering. A substrate-side bonding layer (material: Ti / Au, thickness: 10/700 nm) was formed on the semiconductor laminate bonding substrate by sputtering. The bonding layers were bonded to the semiconductor structure portion by thermocompression bonding the bonding layers at 300 ° C. for 60 minutes using a substrate bonding apparatus.

その後、CrN選択エッチング液(硝酸セリウムアンモニウム溶液)を用いて、ケミカルリフトオフ法によりリフトオフ層を除去し、サファイア基板を剥離した。さらに、RIE装置を用いてドライエッチングを行い、バッファ層を除去してn−AlGaN層を露出させた。   Thereafter, the lift-off layer was removed by a chemical lift-off method using a CrN selective etching solution (cerium ammonium nitrate solution), and the sapphire substrate was peeled off. Further, dry etching was performed using an RIE apparatus, and the buffer layer was removed to expose the n-AlGaN layer.

n−AlGaN層上に、スパッタ法によりn側電極としてTi/Al(厚み:20nm/600nm)を形成した。真空中で、400℃でアニール処理を行った。最後に、支持基板となった半導体積層体接合用基板を複数の半導体構造部間でダイシングすることにより、複数個の半導体素子を得た。   Ti / Al (thickness: 20 nm / 600 nm) was formed as an n-side electrode on the n-AlGaN layer by sputtering. Annealing treatment was performed at 400 ° C. in a vacuum. Finally, the semiconductor laminate bonding substrate serving as the support substrate was diced between the plurality of semiconductor structure portions, thereby obtaining a plurality of semiconductor elements.

Figure 0006038564
Figure 0006038564

<接合状態の評価>
実施例1〜7,9〜10、参考例8および比較例1〜4の半導体積層体接合用基板をそれぞれ用いた場合において、半導体積層体接合用基板と半導体構造部との接合状態を以下の基準により評価し、結果を表1に示した。接合状態の評価はサファイア基板を剥離したあとで行った。接合が不十分な場合は、半導体層側接合層と基板側接合層との間で、サファイア基板を剥離したときの内部応力の変化によっておのずと剥離が発生する。半導体積層体接合用基板全体を顕微鏡で観察し、剥離の発生の有無を検査した。
<Evaluation of bonding state>
In the case where the semiconductor laminate bonding substrates of Examples 1 to 7, 9 to 10 , Reference Example 8 and Comparative Examples 1 to 4 are used, the bonding state between the semiconductor laminate bonding substrate and the semiconductor structure is as follows. The results were shown in Table 1. The evaluation of the bonding state was performed after the sapphire substrate was peeled off. When the bonding is insufficient, peeling occurs naturally due to a change in internal stress when the sapphire substrate is peeled between the semiconductor layer side bonding layer and the substrate side bonding layer. The entire substrate for bonding semiconductor laminates was observed with a microscope and examined for the occurrence of peeling.

表1から明らかなように、金属膜の表面粗さRaが50nm以下である実施例の半導体積層体接合用基板においては、半導体層側接合層と基板側接合層との間の良好な接合が実現できた。しかし、表面粗さRaが50nm超えの比較例の半導体積層体接合用基板においては、剥離面を観察すると点接触していたと考えられる接合の跡が点在して観察され、半導体層側接合層と基板側接合層との間の良好な接合が実現できなかった。   As is clear from Table 1, in the semiconductor laminate bonding substrate of the example in which the surface roughness Ra of the metal film is 50 nm or less, good bonding between the semiconductor layer side bonding layer and the substrate side bonding layer is achieved. Realized. However, in the semiconductor laminated body bonding substrate of the comparative example having a surface roughness Ra exceeding 50 nm, when the peeled surface is observed, spots of bonding considered to be in point contact are observed, and the semiconductor layer side bonding layer is observed. Good bonding between the substrate and the substrate side bonding layer could not be realized.

本発明によれば、リフトオフ法において半導体積層体と良好な接合が可能な、AlN焼結基板を含む半導体積層体接合用基板およびその製造方法を提供することができる。また、本発明によれば、この半導体積層体接合用基板を支持基板として用いた半導体素子およびその製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the board | substrate for semiconductor laminated body joining containing an AlN sintered substrate which can be favorably joined with a semiconductor laminated body in the lift-off method, and its manufacturing method can be provided. Moreover, according to this invention, the semiconductor element which used this board | substrate for semiconductor laminated body joining as a support substrate, and its manufacturing method can be provided.

10,20 半導体積層体接合用基板
12 AlN焼結基板
14 金属膜
16 酸化シリコン膜
18 金属材料
22 サファイア基板
30 成長用基板
32 リフトオフ層
34 第2導電型半導体層
36 活性層
38 第1導電型半導体層
40 第1電極層
42 接合層
42A 半導体層側接合層
42B 基板側接合層
44 第2電極層
50 半導体素子
10, 20 Semiconductor laminate bonding substrate 12 AlN sintered substrate 14 Metal film 16 Silicon oxide film 18 Metal material 22 Sapphire substrate 30 Growth substrate 32 Lift-off layer 34 Second conductivity type semiconductor layer 36 Active layer 38 First conductivity type semiconductor Layer 40 First electrode layer 42 Bonding layer 42A Semiconductor layer side bonding layer 42B Substrate side bonding layer 44 Second electrode layer 50 Semiconductor element

Claims (8)

表面粗さRaが50nm超のAlN焼結基板と、該AlN焼結基板上に接する金属膜と、を有し、
該金属膜の表面粗さRaが50nm以下であることを特徴とする半導体積層体接合用基板。
An AlN sintered substrate having a surface roughness Ra of more than 50 nm , and a metal film in contact with the AlN sintered substrate,
A substrate for bonding semiconductor laminates, wherein the metal film has a surface roughness Ra of 50 nm or less.
前記金属膜は、融点が430℃以下の金属からなる請求項1に記載の半導体積層体接合用基板。   The semiconductor laminate bonding substrate according to claim 1, wherein the metal film is made of a metal having a melting point of 430 ° C. or less. 前記金属膜が、SnまたはZnからなる請求項2に記載の半導体積層体接合用基板。   The semiconductor laminate bonding substrate according to claim 2, wherein the metal film is made of Sn or Zn. 表面粗さRaが50nm超のAlN焼結基板上に接して金属材料を配置し、該金属材料を加熱および加圧をすることにより、前記AlN焼結基板上に、表面粗さRaが50nm以下の金属膜を形成することを特徴とする半導体積層体接合用基板の製造方法。 Surface roughness Ra in contact with the 50nm than the AlN sintered substrate placing a metal material, by heat and pressure to the metal material, the AlN sintered substrate, the surface roughness Ra of 50nm or less A method for producing a semiconductor laminate bonding substrate, comprising: forming a metal film. 前記金属膜は、融点が430℃以下の金属からなる請求項4に記載の半導体積層体接合用基板の製造方法。   The method for manufacturing a substrate for bonding a semiconductor laminate according to claim 4, wherein the metal film is made of a metal having a melting point of 430 ° C. or less. 前記金属膜が、SnまたはZnからなる請求項5に記載の半導体積層体接合用基板の製造方法。   The method for manufacturing a semiconductor laminate bonding substrate according to claim 5, wherein the metal film is made of Sn or Zn. 成長用基板上に、第2導電型半導体層、活性層、および第1導電型半導体層を順次形成する工程と、
前記第1導電型半導体層上に第1電極層を形成する工程と、
該第1電極層上に、請求項1〜3のいずれか1項に記載の半導体積層体接合用基板を接合する工程と、
前記成長用基板を除去する工程と、
前記第2導電型半導体層上に第2電極層を形成する工程と、
を有することを特徴とする半導体素子の製造方法。
Sequentially forming a second conductive semiconductor layer, an active layer, and a first conductive semiconductor layer on a growth substrate;
Forming a first electrode layer on the first conductivity type semiconductor layer;
A step of bonding the semiconductor laminate bonding substrate according to any one of claims 1 to 3 on the first electrode layer;
Removing the growth substrate;
Forming a second electrode layer on the second conductive semiconductor layer;
A method for manufacturing a semiconductor device, comprising:
請求項1〜3のいずれか1項に記載の半導体積層体接合用基板と、
該半導体積層体接合用基板上の第1電極層と、
該第1電極層上に順次位置する第1導電型半導体層、活性層、および第2導電型半導体層と、
該第2導電型半導体層上の第2電極層と、
を有することを特徴とする半導体素子。
The semiconductor laminate bonding substrate according to any one of claims 1 to 3,
A first electrode layer on the semiconductor laminate bonding substrate;
A first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer sequentially disposed on the first electrode layer;
A second electrode layer on the second conductivity type semiconductor layer;
A semiconductor device comprising:
JP2012206937A 2012-09-20 2012-09-20 Semiconductor laminate bonding substrate and manufacturing method thereof Active JP6038564B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012206937A JP6038564B2 (en) 2012-09-20 2012-09-20 Semiconductor laminate bonding substrate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012206937A JP6038564B2 (en) 2012-09-20 2012-09-20 Semiconductor laminate bonding substrate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2014063816A JP2014063816A (en) 2014-04-10
JP6038564B2 true JP6038564B2 (en) 2016-12-07

Family

ID=50618812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012206937A Active JP6038564B2 (en) 2012-09-20 2012-09-20 Semiconductor laminate bonding substrate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6038564B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6440392B2 (en) * 2014-07-10 2018-12-19 シャープ株式会社 Semiconductor light emitting device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4551536B2 (en) * 2000-06-02 2010-09-29 株式会社東芝 AlN substrate and laser diode element using the same
US7722962B2 (en) * 2000-12-21 2010-05-25 Renesas Technology Corp. Solder foil, semiconductor device and electronic device
JP3912130B2 (en) * 2002-02-18 2007-05-09 住友電気工業株式会社 Submount
JP4572597B2 (en) * 2003-06-20 2010-11-04 日亜化学工業株式会社 Nitride semiconductor device
JP2007123565A (en) * 2005-10-28 2007-05-17 Kyocera Corp Light emitting element mounting board and light emitting device
JP2007273590A (en) * 2006-03-30 2007-10-18 Rohm Co Ltd Nitride semiconductor element and its manufacturing method
JP2007294899A (en) * 2006-03-31 2007-11-08 Dowa Electronics Materials Co Ltd Solder layer, and electronic device bonding substrate and submount using same
JP5407385B2 (en) * 2009-02-06 2014-02-05 住友電気工業株式会社 Composite substrate, epitaxial substrate, semiconductor device and composite substrate manufacturing method
JP2010192835A (en) * 2009-02-20 2010-09-02 Showa Denko Kk Light emitting diode, method for manufacturing the same, and light emitting diode lamp
JP5246199B2 (en) * 2010-03-31 2013-07-24 豊田合成株式会社 Group III nitride semiconductor light emitting device

Also Published As

Publication number Publication date
JP2014063816A (en) 2014-04-10

Similar Documents

Publication Publication Date Title
JP2020161833A (en) Polycrystalline ceramic substrate
US8664086B2 (en) Semiconductor wafer, semiconductor thin film, and method for manufacturing semiconductor thin film devices
EP2600389B1 (en) Method for bonding semiconductor substrates
WO2012147436A1 (en) MANUFACTURING METHOD FOR GaN SEMICONDUCTOR DEVICE
TW200849678A (en) III-V nitride semiconductor layer-bonded substrate and semiconductor device
JP5983125B2 (en) Manufacturing method of semiconductor light emitting device
JP5847732B2 (en) Semiconductor device and manufacturing method thereof
TW201036211A (en) Method of producing thin semiconductor structures
JP5077068B2 (en) Nitride semiconductor device and manufacturing method thereof
JPWO2013038964A1 (en) Clad material for LED light-emitting element holding substrate and manufacturing method thereof
JP5792694B2 (en) Semiconductor light emitting device
JP2013171978A (en) Semiconductor element and method for manufacturing the same
TW201838194A (en) Vertical gallium nitride schottky diode
JP5471485B2 (en) Nitride semiconductor device and pad electrode manufacturing method for nitride semiconductor device
US8597969B2 (en) Manufacturing method for optical semiconductor device having metal body including at least one metal layer having triple structure with coarse portion sandwiched by tight portions of a same material as coarse portion
TWI392107B (en) Compound semiconductor luminescent device
JP5879964B2 (en) Composite substrate manufacturing method and semiconductor device manufacturing method
JP6038564B2 (en) Semiconductor laminate bonding substrate and manufacturing method thereof
KR20090105462A (en) Vertical structured group 3 nitride-based light emitting diode and its fabrication methods
JP5167831B2 (en) Group III nitride semiconductor device and manufacturing method thereof
CN106531861A (en) Semiconductor light emitting device
JP6912716B2 (en) Semiconductor devices and their manufacturing methods
JP2009176966A5 (en)
JP5289791B2 (en) Nitride semiconductor light emitting device and manufacturing method thereof
EP2642515A2 (en) Semiconductor element and method of manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161102

R150 Certificate of patent or registration of utility model

Ref document number: 6038564

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250