JP6035654B2 - Auto body structure - Google Patents

Auto body structure Download PDF

Info

Publication number
JP6035654B2
JP6035654B2 JP2013192605A JP2013192605A JP6035654B2 JP 6035654 B2 JP6035654 B2 JP 6035654B2 JP 2013192605 A JP2013192605 A JP 2013192605A JP 2013192605 A JP2013192605 A JP 2013192605A JP 6035654 B2 JP6035654 B2 JP 6035654B2
Authority
JP
Japan
Prior art keywords
width direction
vehicle width
wall
layers
fiber orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013192605A
Other languages
Japanese (ja)
Other versions
JP2015058763A (en
Inventor
正太郎 鮎澤
正太郎 鮎澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2013192605A priority Critical patent/JP6035654B2/en
Publication of JP2015058763A publication Critical patent/JP2015058763A/en
Application granted granted Critical
Publication of JP6035654B2 publication Critical patent/JP6035654B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Body Structure For Vehicles (AREA)

Description

本発明は、FRP製のサイドシルの車幅方向外壁を、前記サイドシルの長手方向に対する連続繊維の繊維配向角を一致あるいは異ならせた状態で積層した複数の連続繊維層を樹脂で固めた板材で構成した自動車の車体構造に関する。   The present invention is composed of a plate material in which a plurality of continuous fiber layers are laminated with a resin in which the vehicle width direction outer wall of a side sill made of FRP is laminated in a state where fiber orientation angles of continuous fibers with respect to the longitudinal direction of the side sill are matched or different. It relates to the body structure of an automobile.

フロアパネル、ロッカ(サイドシル)、フロントピラーロア、ダッシュパネルロア、リヤピラー等を有する自動車の車体をCFRPで一体に成形し、サイドシルの内部に波型のエネルギー吸収部材を配置することで、サイドシルに入力する側面衝突の衝突荷重を吸収するものが、下記特許文献1により公知である。   A car body with a floor panel, rocker (side sill), front pillar lower, dash panel lower, rear pillar, etc. is molded integrally with CFRP, and a wave-shaped energy absorbing member is placed inside the side sill, allowing input to the side sill. A device that absorbs a collision load of a side collision is known from Patent Document 1 below.

特許第4840072号公報Japanese Patent No. 4840072

ところで、路面に立設したポール等の柱状物がCFRP製のサイドシルに側面衝突した場合、サイドシルの車幅方向外壁に集中的な大荷重が入力するため、車幅方向外壁のCFRPを高強度に設定しても前記集中的な大荷重に耐えきれず、柱状物が衝突した部分が局部的に破断する可能性がある。このように、サイドシルの車幅方向外壁が局部的に破断すると、その内側のエネルギー吸収部材の広い範囲に衝突エネルギーを効率的に伝達することができず、エネルギー吸収部材やサイドシルの車幅方向内壁も局部的に破断して柱状物がフロアパネルに嵌入する虞がある。   By the way, when a columnar object such as a pole standing upright on the road surface collides with the side sill made of CFRP, a concentrated heavy load is input to the outer wall in the vehicle width direction of the side sill, so the CFRP on the outer wall in the vehicle width direction has high strength. Even if it is set, the concentrated heavy load cannot be withstood, and the portion where the columnar object collides may be locally broken. As described above, when the outer wall in the vehicle width direction of the side sill is locally broken, the collision energy cannot be efficiently transmitted to a wide range of the energy absorbing member inside the side sill, and the inner wall in the vehicle width direction of the energy absorbing member or the side sill. There is also a possibility that the columnar object may fit into the floor panel due to local breakage.

本発明は前述の事情に鑑みてなされたもので、自動車のサイドシルに柱状物が側面衝突したときのエネルギー吸収性能を高めることを目的とする。   This invention is made | formed in view of the above-mentioned situation, and it aims at improving energy absorption performance when a columnar object collides with the side sill of a motor vehicle.

上記目的を達成するために、請求項1に記載された発明によれば、FRP製のサイドシルの車幅方向外壁を、前記サイドシルの長手方向に対する連続繊維の繊維配向角を一致あるいは異ならせた状態で積層した複数の連続繊維層を樹脂で固めた板材で構成した自動車の車体構造であって、前記サイドシルは、前記車幅方向外壁の上端から略直線状に延びる上部車幅方向内壁と、前記車幅方向外壁の下端から略直線状に延びる下部車幅方向内壁とを備え、前記車幅方向外壁は、前記複数の連続繊維層のうちの一対の表層の繊維配向角が、それらに挟まれた内層の繊維配向角以上の60°であり、前記上部車幅方向内壁および前記下部車幅方向内壁は、前記サイドシルの長手方向に対する連続繊維の繊維配向角を一致あるいは異ならせた状態で積層した複数の連続繊維層を樹脂で固めた板材からなり、前記複数の連続繊維層のうちの一対の表層の繊維配向角が0°であることを特徴とする自動車の車体構造が提案される。   In order to achieve the above object, according to the invention described in claim 1, the outer wall in the vehicle width direction of the side sill made of FRP is in a state in which the fiber orientation angles of the continuous fibers with respect to the longitudinal direction of the side sill match or differ. A vehicle body structure composed of a plate material obtained by solidifying a plurality of continuous fiber layers laminated with a resin, wherein the side sill extends in a substantially straight line from the upper end of the outer wall in the vehicle width direction, A lower vehicle width direction inner wall extending substantially linearly from the lower end of the vehicle width direction outer wall, and the vehicle width direction outer wall is sandwiched between the fiber orientation angles of a pair of surface layers of the plurality of continuous fiber layers 60 ° which is equal to or more than the fiber orientation angle of the inner layer, and the inner wall in the upper vehicle width direction and the inner wall in the lower vehicle width direction are stacked in a state in which the fiber orientation angles of the continuous fibers with respect to the longitudinal direction of the side sill are equal or different. Becomes a plurality of continuous fiber layer and a plate member made by solidifying a resin, body structure of a motor vehicle, characterized in that the fiber orientation of the pair of the surface layer is 0 ° of the plurality of continuous fibers layers is proposed.

また請求項2に記載された発明によれば、請求項1の構成に加えて、前記上部車幅方向内壁および前記下部車幅方向内壁はフロアパネルの車幅方向外端に連なることを特徴とする自動車の車体構造が提案される。   According to the invention described in claim 2, in addition to the configuration of claim 1, the inner wall in the upper vehicle width direction and the inner wall in the lower vehicle width direction are connected to the outer end in the vehicle width direction of the floor panel. A car body structure is proposed.

また請求項3に記載された発明によれば、請求項1または請求項2の構成に加えて、前記車幅方向外壁は、繊維配向角が0°の0°連続繊維層と、繊維配向角が0°以外の傾斜連続繊維層とを備え、前記0°連続繊維層の外側に積層される前記傾斜連続繊維層の積層数は内側に積層される前記傾斜連続繊維層の積層数よりも多いことを特徴とする自動車の車体構造が提案される。   According to the invention described in claim 3, in addition to the configuration of claim 1 or claim 2, the vehicle width direction outer wall includes a 0 ° continuous fiber layer having a fiber orientation angle of 0 °, and a fiber orientation angle. Is provided with an inclined continuous fiber layer other than 0 °, and the number of the inclined continuous fiber layers laminated on the outside of the 0 ° continuous fiber layer is larger than the number of the inclined continuous fiber layers laminated on the inside. A vehicle body structure characterized by this is proposed.

また請求項4に記載された発明によれば、請求項1〜請求項3の何れかの構成に加えて、前記一対の表層の繊維配向角と、それに隣接する一対の内層の繊維配向角とは長手方向に対して対称であることを特徴とする自動車の車体構造が提案される。   According to the invention described in claim 4, in addition to the structure of any one of claims 1 to 3, the fiber orientation angle of the pair of surface layers and the fiber orientation angle of a pair of inner layers adjacent thereto A vehicle body structure is proposed which is symmetrical with respect to the longitudinal direction.

また請求項5に記載された発明によれば、請求項の構成に加えて、前記フロアパネルはアウタースキンおよびインナースキン間にコア材を挟んで構成され、前記アウタースキンおよび前記インナースキンは、前記サイドシルの長手方向に対する連続繊維の繊維配向角を一致あるいは異ならせた状態で積層した複数の連続繊維層を樹脂で固めた板材からなり、前記アウタースキンの前記複数の連続繊維層のうちの一対の表層の繊維配向角はそれらに挟まれた内層の繊維配向角以上であり、前記インナースキンの前記複数の連続繊維層のうちの一対の表層の繊維配向角は0゜であることを特徴とする自動車の車体構造が提案される。 According to the invention described in claim 5, in addition to the structure of claim 2 , the floor panel is configured by sandwiching a core material between an outer skin and an inner skin, and the outer skin and the inner skin are A pair of the plurality of continuous fiber layers of the outer skin, comprising a plate material obtained by solidifying a plurality of continuous fiber layers laminated in a state in which the fiber orientation angles of the continuous fibers with respect to the longitudinal direction of the side sill are matched or different. The fiber orientation angle of the surface layer is not less than the fiber orientation angle of the inner layer sandwiched between them, and the fiber orientation angle of a pair of surface layers of the plurality of continuous fiber layers of the inner skin is 0 °. A car body structure is proposed.

請求項1の構成によれば、FRP製のサイドシルの車幅方向外壁は、サイドシルの長手方向に対する連続繊維の繊維配向角を一致あるいは異ならせた状態で積層した複数の連続繊維層を樹脂で固めた板材で構成される。車幅方向外壁は、複数の連続繊維層のうちの一対の表層の繊維配向角が、それらに挟まれた内層の繊維配向角以上であるので、サイドシルに道路上の柱状物が衝突して車幅方向外壁に局所的な衝突荷重が入力したときに、表層の繊維配向角が大きいために比較的に強度は低いが延性が高い車幅方向外壁は、車幅方向内側に容易に変形して衝突荷重を他部材に分散して伝達し、前記局所的な衝突荷重を効率的に吸収してサイドシルの破壊を抑制することができる。   According to the configuration of the first aspect, the outer wall in the vehicle width direction of the side sill made of FRP is formed by solidifying a plurality of continuous fiber layers laminated in a state in which the fiber orientation angles of the continuous fibers with respect to the longitudinal direction of the side sill match or differ. It is composed of a sheet material. Since the fiber orientation angle of the pair of surface layers of the plurality of continuous fiber layers is greater than or equal to the fiber orientation angle of the inner layer sandwiched between them, the columnar object on the road collides with the side sill on the road width direction outer wall. When a local collision load is input to the outer wall in the width direction, the outer wall in the vehicle width direction that has a relatively low strength but high ductility due to the large fiber orientation angle of the surface layer is easily deformed inward in the vehicle width direction. The collision load can be distributed and transmitted to other members, and the local collision load can be efficiently absorbed to prevent the side sill from being broken.

また、サイドシルは、車幅方向外壁の上端から略直線状に延びる上部車幅方向内壁と、車幅方向外壁の下端から略直線状に延びる下部車幅方向内壁とを備えるので、サイドシルの車幅方向外壁に入力した衝突荷重を上部車幅方向内壁および下部車幅方向内壁を介してフロアパネルに効率的に伝達することで、車幅方向外壁の変形を促進してエネルギー吸収量を増加することができる。   Further, the side sill includes an upper vehicle width direction inner wall extending substantially linearly from the upper end of the vehicle width direction outer wall and a lower vehicle width direction inner wall extending substantially linearly from the lower end of the vehicle width direction outer wall. By efficiently transmitting the collision load input to the direction outer wall to the floor panel via the inner wall in the upper vehicle width direction and the inner wall in the lower vehicle width direction, the deformation of the outer wall in the vehicle width direction is promoted and the amount of energy absorption is increased. Can do.

また、上部車幅方向内壁および下部車幅方向内壁は、サイドシルの長手方向に対する連続繊維の繊維配向角を一致あるいは異ならせた状態で積層した複数の連続繊維層を樹脂で固めた板材からなり、複数の連続繊維層のうちの一対の表層の繊維配向角が0°であるので、上部車幅方向内壁および下部車幅方向内壁に引張力に対する大きな曲げ強度を持たせ、車幅方向外壁から伝達される衝突荷重を支持して破壊を防止することができる。   Further, the inner wall in the upper vehicle width direction and the inner wall in the lower vehicle width direction are made of a plate material in which a plurality of continuous fiber layers laminated in a state in which the fiber orientation angles of the continuous fibers with respect to the longitudinal direction of the side sill are matched or different are solidified with a resin, Since the fiber orientation angle of the pair of surface layers of the plurality of continuous fiber layers is 0 °, the inner wall in the upper vehicle width direction and the inner wall in the lower vehicle width direction have a large bending strength against the tensile force, and are transmitted from the outer wall in the vehicle width direction. Can be prevented by supporting the impact load.

また請求項2の構成によれば、サイドシルは、上部車幅方向内壁および下部車幅方向内壁はフロアパネルの車幅方向外端に連なるので、サイドシルの車幅方向外壁に入力した衝突荷重を上部車幅方向内壁および下部車幅方向内壁を介してフロアパネルに効率的に伝達することで、車幅方向外壁の変形を促進してエネルギー吸収量を増加することができる。   Further, according to the configuration of the second aspect, the side sill has the inner wall in the upper vehicle width direction and the inner wall in the lower vehicle width direction connected to the outer end in the vehicle width direction of the floor panel. By efficiently transmitting to the floor panel via the inner wall in the vehicle width direction and the inner wall in the lower vehicle width direction, the amount of energy absorption can be increased by promoting the deformation of the outer wall in the vehicle width direction.

また請求項3の構成によれば、車幅方向外壁は、繊維配向角が0°の0°連続繊維層と、繊維配向角が0°以外の傾斜連続繊維層とを備え、0°連続繊維層の外側に積層される傾斜連続繊維層の積層数は内側に積層される傾斜連続繊維層の積層数よりも多いので、車幅方向外壁の延性を確保しながらサイドシルの曲げ強度を高めることができる。   According to the configuration of claim 3, the outer wall in the vehicle width direction includes a 0 ° continuous fiber layer having a fiber orientation angle of 0 °, and an inclined continuous fiber layer having a fiber orientation angle other than 0 °, and includes a 0 ° continuous fiber. Since the number of inclined continuous fiber layers laminated outside the layer is greater than the number of inclined continuous fiber layers laminated inside, it is possible to increase the bending strength of the side sill while ensuring the ductility of the outer wall in the vehicle width direction. it can.

また請求項4の構成によれば、一対の表層の繊維配向角と、それに隣接する一対の内層の繊維配向角とは長手方向に対して対称であるので、車幅方向外壁に衝突荷重が入力したときに、前記一対の表層および前記一対の内層の樹脂に異なる二つの方向の荷重が加わって多数のマイクロクラックが発生し、車幅方向外壁の延性が効率的に高められる。   According to the fourth aspect of the present invention, the fiber orientation angle of the pair of surface layers and the fiber orientation angle of the pair of inner layers adjacent thereto are symmetric with respect to the longitudinal direction, so that a collision load is input to the outer wall in the vehicle width direction. When this is done, loads in two different directions are applied to the resin of the pair of surface layers and the pair of inner layers to generate a large number of microcracks, and the ductility of the outer walls in the vehicle width direction is efficiently increased.

また請求項5の構成によれば、フロアパネルはアウタースキンおよびインナースキン間にコア材を挟んで構成され、アウタースキンおよびインナースキンは、サイドシルの長手方向に対する連続繊維の繊維配向角を一致あるいは異ならせた状態で積層した複数の連続繊維層を樹脂で固めた板材からなる。アウタースキンの複数の連続繊維層のうちの一対の表層の繊維配向角はそれらに挟まれた内層の繊維配向角以上であり、インナースキンの複数の連続繊維層のうちの一対の表層の繊維配向角は0゜であるので、サイドシルから伝達された衝突荷重でフロアパネルに曲げモーメントが作用したときに、引張側のアウタースキンの延性が高まって容易に伸び変形することで、インナースキンに限界荷重以上の圧縮荷重が加わるのを防止して破壊を防止することができる。   According to the configuration of claim 5, the floor panel is configured by sandwiching the core material between the outer skin and the inner skin, and the outer skin and the inner skin have the same or different fiber orientation angles with respect to the longitudinal direction of the side sill. It consists of the board | plate material which hardened the several continuous fiber layer laminated | stacked in the state made by resin. The fiber orientation angle of the pair of surface layers of the plurality of continuous fiber layers of the outer skin is equal to or greater than the fiber orientation angle of the inner layer sandwiched between them, and the fiber orientation of the pair of surface layers of the plurality of continuous fiber layers of the inner skin Since the angle is 0 °, when a bending moment is applied to the floor panel due to a collision load transmitted from the side sill, the ductility of the outer skin on the tension side increases and it easily stretches and deforms. It is possible to prevent breakage by preventing application of the above compressive load.

CFRP製の自動車キャビンの左前部の斜視図。(第1の実施の形態)The perspective view of the left front part of the automobile cabin made from CFRP. (First embodiment) 図1の2A方向矢視図および2B−2B線断面図。(第1の実施の形態)The 2A direction arrow directional view and 2B-2B sectional view taken on the line of FIG. (First embodiment) 図2の3−3線断面図。(第1の実施の形態)FIG. 3 is a sectional view taken along line 3-3 in FIG. 2. (First embodiment) 車幅方向外壁および車幅方向内壁の各連続繊維層の繊維配向角を示す図。(第1の実施の形態)The figure which shows the fiber orientation angle | corner of each continuous fiber layer of a vehicle width direction outer wall and a vehicle width direction inner wall. (First embodiment) 車幅方向外壁および車幅方向内壁の荷重入力時の作用説明図。(第1の実施の形態)Action explanatory drawing at the time of load input of a vehicle width direction outer wall and a vehicle width direction inner wall. (First embodiment) 車幅方向外壁および車幅方向内壁の変形量および曲げ強度の関係を示す図。(第1の実施の形態)The figure which shows the relationship between the deformation of a vehicle width direction outer wall and a vehicle width direction inner wall, and bending strength. (First embodiment) サイドシルにポールが側面衝突したときの作用説明図。(第1の実施の形態)Action | operation explanatory drawing when a pole collides with a side sill. (First embodiment) 車幅方向外壁の各連続繊維層の繊維配向角を示す図。(第2の実施の形態)The figure which shows the fiber orientation angle | corner of each continuous fiber layer of a vehicle width direction outer wall. (Second Embodiment)

第1の実施の形態First embodiment

以下、図1〜図7に基づいて本発明の第1の実施の形態を説明する。尚、本明細書において、前後方向、左右方向(車幅方向)および上下方向とは、運転席に着座した乗員を基準として定義される。   Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. In the present specification, the front-rear direction, the left-right direction (vehicle width direction), and the up-down direction are defined with reference to an occupant seated in the driver's seat.

図1〜図3に示すように、CFRP(カーボン繊維強化樹脂)で一体に成形されたバスタブ状のキャビン11は、フロアパネル12と、フロアパネル12の左右両側部に沿って前後方向に延びる左右一対のサイドシル13,13と、左右のサイドシル13,13の前端から起立する左右一対のフロントピラーロア14,14と、フロアパネル12の前端および左右のフロントピラーロア14,14の前端を接続するダッシュパネルロア15とを備える。   As shown in FIGS. 1 to 3, a bathtub-shaped cabin 11 integrally formed of CFRP (carbon fiber reinforced resin) includes a floor panel 12 and left and right sides extending in the front-rear direction along the left and right sides of the floor panel 12. A pair of side sills 13, 13, a pair of left and right front pillar lowers 14, 14 rising from the front ends of the left and right side sills 13, 13, and a dash connecting the front end of the floor panel 12 and the front ends of the left and right front pillar lowers 14, 14. A panel lower 15.

キャビン11は、車体外側に位置するアウタースキン16と車体内側に位置するインナースキン17とを、それらの外周に形成した接合フランジ16a,17aで接合した中空構造であり、フロアパネル12およびダッシュパネルロア15はアウタースキン16およびインナースキン17間に挟まれた波板状のコア材18を備える。   The cabin 11 has a hollow structure in which an outer skin 16 located outside the vehicle body and an inner skin 17 located inside the vehicle body are joined by joining flanges 16a and 17a formed on the outer periphery thereof, and the floor panel 12 and the dash panel lower 15 includes a corrugated core material 18 sandwiched between an outer skin 16 and an inner skin 17.

サイドシル13の内部は、アウタースキン16およびインナースキン17の接合フランジ16a,17a間に車幅方向外縁を挟持されたCFRP製の仕切り板19で上下に仕切られる。仕切り板19の前部はフロントピラーロア14の内部に延び、その前端はフロントピラーロア14の前壁に接合される。フロントピラーロア14の内部にCFRP製の補強部材20が配置される。側面視でL字状に形成された補強部材20は、下面が仕切り板19の上面に接続され、後部がサイドシル13の前端に嵌合する。   The inside of the side sill 13 is partitioned vertically by a CFRP partition plate 19 having an outer edge in the vehicle width direction sandwiched between the outer flange 16 a and the joint flange 16 a of the inner skin 17. The front portion of the partition plate 19 extends into the front pillar lower 14, and the front end thereof is joined to the front wall of the front pillar lower 14. A CFRP reinforcing member 20 is disposed inside the front pillar lower 14. The reinforcing member 20 formed in an L shape in a side view has a lower surface connected to the upper surface of the partition plate 19 and a rear portion fitted to the front end of the side sill 13.

サイドシル13は、アウタースキン16で構成された下壁13aおよび側壁13bと、インナースキン17で構成された上壁13c、側壁13bおよび側壁13dとを備えており、インナースキン17の上壁13cおよび側壁13bは階段状に屈曲する。サイドシル13の仕切り板19よりも上方の空間には、側面視でジグザグに屈曲するCFRP製の上部エネルギー吸収部材21が配置される。上部エネルギー吸収部材21の上端はサイドシル13の段付きの上壁13cの下面に接続され、下端は仕切り板19の上面に接続されるが、段付きの上壁13cに合わせて、上部エネルギー吸収部材21の上部の車幅方向外端部には切欠き21a…が形成される。またサイドシル13の仕切り板19よりも下方の空間には、側面視でジグザグに屈曲するCFRP製の下部エネルギー吸収部材22が配置される。下部エネルギー吸収部材22の上端は仕切り板19の下面に接続され、下端はサイドシル13の平坦な下壁13aに接続される。   The side sill 13 includes a lower wall 13a and a side wall 13b constituted by an outer skin 16, and an upper wall 13c, a side wall 13b and a side wall 13d constituted by an inner skin 17, and the upper wall 13c and the side wall of the inner skin 17 are provided. 13b bends stepwise. In a space above the partition plate 19 of the side sill 13, an upper energy absorbing member 21 made of CFRP that is bent in a zigzag manner in a side view is disposed. The upper end of the upper energy absorbing member 21 is connected to the lower surface of the stepped upper wall 13c of the side sill 13, and the lower end is connected to the upper surface of the partition plate 19, but the upper energy absorbing member is aligned with the stepped upper wall 13c. Cutouts 21a... Are formed at the outer end in the vehicle width direction at the top of 21. Further, in the space below the partition plate 19 of the side sill 13, a lower energy absorbing member 22 made of CFRP that is bent zigzag in a side view is disposed. The upper end of the lower energy absorbing member 22 is connected to the lower surface of the partition plate 19, and the lower end is connected to the flat lower wall 13 a of the side sill 13.

サイドシル13の仕切り板19よりも下方であってフロアパネル12と接続する部分に、CFRPで台形断面を有するパイプ状に形成した荷重伝達部材23が、アウタースキン16およびインナースキン17間に挟まれるように配置される。   A load transmitting member 23 formed in a pipe shape having a trapezoidal cross section with CFRP is sandwiched between the outer skin 16 and the inner skin 17 below the partition plate 19 of the side sill 13 and connected to the floor panel 12. Placed in.

図3から明らかなように、中空閉断面のサイドシル13の外郭は、車幅方向外側に位置する車幅方向外壁24と、車幅方向内側に位置する上部車幅方向内壁25および下部車幅方向内壁26とからなる。車幅方向外壁24は前記上壁13cおよび前記側壁13bからなり、上部車幅方向内壁25は前記側壁13dからなり、下部車幅方向内壁26は前記下壁13aからなる。車幅方向外壁24の上端部は略直線状の上部車幅方向内壁25を介してフロアパネル12の車幅方向外端部に接続され、車幅方向外壁24の下端部は略直線状の下部車幅方向内壁26を介してフロアパネル12の車幅方向外端部に接続される。   As apparent from FIG. 3, the outer side of the side sill 13 having a hollow closed cross section includes a vehicle width direction outer wall 24 positioned on the outer side in the vehicle width direction, an upper vehicle width direction inner wall 25 positioned on the inner side in the vehicle width direction, and a lower vehicle width direction. And an inner wall 26. The vehicle width direction outer wall 24 is composed of the upper wall 13c and the side wall 13b, the upper vehicle width direction inner wall 25 is composed of the side wall 13d, and the lower vehicle width direction inner wall 26 is composed of the lower wall 13a. The upper end portion of the vehicle width direction outer wall 24 is connected to the vehicle width direction outer end portion of the floor panel 12 via a substantially straight upper vehicle width direction inner wall 25, and the lower end portion of the vehicle width direction outer wall 24 is a substantially straight lower portion. The floor panel 12 is connected to the outer end portion in the vehicle width direction via the inner wall 26 in the vehicle width direction.

CFRP製のアウタースキン16およびインナースキン17は、カーボンの連続繊維を一方向に引き揃えた連続繊維層を複数層に積層して樹脂で固めたものであり、アウタースキン16およびインナースキン17で構成されるサイドシル13の外郭は、車幅方向外壁24と上部、下部車幅方向内壁25,26とで連続繊維層の積層構造が異なっている。   The outer skin 16 and the inner skin 17 made of CFRP are obtained by laminating a plurality of continuous fiber layers in which carbon continuous fibers are aligned in one direction and solidifying them with a resin. The outer skin 16 and the inner skin 17 are composed of an outer skin 16 and an inner skin 17. As for the outer shell of the side sill 13, the laminated structure of the continuous fiber layers is different between the outer wall 24 in the vehicle width direction and the upper and lower inner walls 25, 26 in the lower vehicle width direction.

図4(A)には、サイドシル13の車幅方向外壁24を構成する6層の連続繊維層の、サイドシル13の長手方向(前後方向)に対する連続繊維の繊維配向角が示される。即ち、車幅方向外壁24の6層の連続繊維層のうち、二つの表層は繊維配向角が60°であり、その内側の二つの内層は繊維配向角が−60°であり、その内側の二つの内層は繊維配向角が0°である。つまり表層の繊維配向角は長手方向に対して60°の角度で傾斜しているのに対し、最内層の繊維配向角は長手方向に対して平行である。   FIG. 4A shows the fiber orientation angles of the continuous fibers with respect to the longitudinal direction (front-rear direction) of the side sill 13 of the six continuous fiber layers constituting the vehicle width direction outer wall 24 of the side sill 13. That is, among the six continuous fiber layers of the outer wall 24 in the vehicle width direction, the two surface layers have a fiber orientation angle of 60 °, and the inner two inner layers have a fiber orientation angle of −60 °, The two inner layers have a fiber orientation angle of 0 °. That is, the fiber orientation angle of the surface layer is inclined at an angle of 60 ° with respect to the longitudinal direction, whereas the fiber orientation angle of the innermost layer is parallel to the longitudinal direction.

図4(B)には、上部、下部車幅方向内壁25,26を構成する8層の連続繊維層の、サイドシル13の長手方向(前後方向)に対する連続繊維の繊維配向角が示される。即ち、上部、下部車幅方向内壁25,26の8層の連続繊維層のうち、二つの表層は繊維配向角が0°であり、その内側の二つの内層は繊維配向角が45°であり、その内側の二つの内層は繊維配向角が90°であり、その内側の二つの内層は繊維配向角が−45°である。つまり表層の連続配向角は長手方向に対して平行であるのに対し、全ての内層の繊維配向角は長手方向に対して傾斜している。   FIG. 4B shows the fiber orientation angles of the continuous fibers with respect to the longitudinal direction (front-rear direction) of the side sill 13 of the eight continuous fiber layers constituting the inner walls 25 and 26 in the upper and lower vehicle width directions. That is, among the eight continuous fiber layers of the inner walls 25 and 26 in the upper and lower vehicle width directions, the two surface layers have a fiber orientation angle of 0 °, and the inner two inner layers have a fiber orientation angle of 45 °. The inner two inner layers have a fiber orientation angle of 90 °, and the inner two inner layers have a fiber orientation angle of −45 °. That is, while the continuous orientation angle of the surface layer is parallel to the longitudinal direction, the fiber orientation angles of all inner layers are inclined with respect to the longitudinal direction.

車幅方向外壁24あるいは上部、下部車幅方向内壁25,26が曲げ変形するとき、内層の変形量に比べて表層の変形量が大きくなるため、表層の繊維配向角がアウタースキン16あるいはインナースキン17の強度に大きな影響を及ぼすことになる。   When the vehicle width direction outer wall 24 or the upper and lower vehicle width direction inner walls 25 and 26 are bent and deformed, the deformation amount of the surface layer is larger than the deformation amount of the inner layer, so that the fiber orientation angle of the surface layer is the outer skin 16 or the inner skin. 17 has a great influence on the strength.

またフロアパネル12の外郭を構成するアウタースキン16およびインナースキン17も、連続繊維層の積層構造が異なっている。即ち、フロアパネル12のアウタースキン16は、サイドシル13の車幅方向外壁24と同じ6層の連続繊維層(図4(A)参照)を備える。一方、フロアパネル12のインナースキン17は、サイドシル13の上部、下部車幅方向内壁25,26と同じ8層の連続繊維層(図4(B)参照)を備える。   Further, the outer skin 16 and the inner skin 17 constituting the outer shell of the floor panel 12 also have different laminated structures of continuous fiber layers. That is, the outer skin 16 of the floor panel 12 includes the same six continuous fiber layers (see FIG. 4A) as the outer wall 24 in the vehicle width direction of the side sill 13. On the other hand, the inner skin 17 of the floor panel 12 includes the same eight continuous fiber layers (see FIG. 4B) as the upper and lower vehicle width direction inner walls 25 and 26 of the side sill 13.

次に、上記構成を備えた本発明の実施の形態の作用を説明する。   Next, the operation of the embodiment of the present invention having the above configuration will be described.

図5(A)はサイドシル13の車幅方向外壁24に対応するもので、表層の繊維配向角が0°以外であり、積層方向中央の内層の繊維配向角が0°(長手方向と平行)であるため、表層が大きく圧縮変形あるいは引張変形したとき、繊維配向角が0°以外の連続繊維が周囲の樹脂に対して滑ることで樹脂に細かい亀裂(マイクロクラック)が発生する。その結果、表層が比較的に容易に変形することで急激な破断が回避される。よって、図6に示すように、車幅方向外壁24は全体として強度は低くなるが延性が高くなり、荷重に対して比較的に柔軟な特性を持つことになる。   FIG. 5 (A) corresponds to the outer wall 24 in the vehicle width direction of the side sill 13, the fiber orientation angle of the surface layer is other than 0 °, and the fiber orientation angle of the inner layer at the center in the stacking direction is 0 ° (parallel to the longitudinal direction). Therefore, when the surface layer is greatly compressed or tensile deformed, fine cracks (micro cracks) are generated in the resin due to sliding of continuous fibers having a fiber orientation angle other than 0 ° with respect to the surrounding resin. As a result, the surface layer is relatively easily deformed, so that sudden breakage is avoided. Therefore, as shown in FIG. 6, the vehicle width direction outer wall 24 has a low strength as a whole, but has a high ductility and a relatively flexible characteristic with respect to the load.

一方、図5(B)は上部、サイドシル13の下部車幅方向内壁25,26に対応するもので、表層の繊維配向角が0°(長手方向と平行)であり、内層の繊維配向角が0°以外であるため、表層が大きく圧縮変形あるいは引張変形したとき、表層の繊維配向角が0°の連続繊維が強く抵抗することで強度が高められる。しかしながら、表層の連続繊維の応力が局所的に高まって一気に破断すると、それが内層の連続繊維の破断を誘発してしまう可能性がある。よって、図6に示すように、上部、下部車幅方向内壁25,26は全体として強度は高くなるが延性が低くなり、荷重に対して比較的に脆い特性を持つことになる。   On the other hand, FIG. 5B corresponds to the upper and lower inner walls 25 and 26 of the side sill 13, the fiber orientation angle of the surface layer is 0 ° (parallel to the longitudinal direction), and the fiber orientation angle of the inner layer is Since the angle is other than 0 °, when the surface layer is greatly compressed or tensile deformed, the continuous fiber having a fiber orientation angle of 0 ° on the surface layer strongly resists to increase the strength. However, if the stress of the continuous fibers in the surface layer increases locally and breaks at once, it may induce breakage of the continuous fibers in the inner layer. Therefore, as shown in FIG. 6, the upper and lower inner walls 25 and 26 in the vehicle width direction have high strength as a whole, but have low ductility, and are relatively fragile with respect to the load.

図7(A)に示すように、ポール、電柱あるいは立ち木等の柱状物27に側面衝突してサイドシル13に局部的な衝突荷重が入力したとき、サイドシル13は車幅方向内側に湾曲するように変形して車幅方向外壁24には全体的に圧縮荷重が作用し、上部車幅方向内壁25および下部車幅方向内壁26には全体として引張荷重が作用する。このとき、柱状物27が最初に衝突する車幅方向外壁24は、その一対の表層の繊維配向角が長手方向に対して傾斜しているため、図5(A)で説明したように延性が高くなって破断し難くなり、柱状物27に押されて車幅方向内側に変形する。その結果、車幅方向外壁24が車幅方向内側に変形する荷重は上部エネルギー吸収部材21および下部エネルギー吸収部材22に分散されて上部、下部車幅方向内壁25,26に伝達される。   As shown in FIG. 7A, when a side collision is applied to a columnar object 27 such as a pole, a utility pole, or a standing tree and a local collision load is input to the side sill 13, the side sill 13 is curved inward in the vehicle width direction. The outer wall 24 in the vehicle width direction is deformed, and a compressive load acts on the outer wall 24 in the vehicle width direction, and a tensile load acts on the inner wall 25 in the upper vehicle width direction and the inner wall 26 in the lower vehicle width direction as a whole. At this time, since the fiber orientation angle of the pair of surface layers of the outer wall 24 in the vehicle width direction where the columnar object 27 collides first is inclined with respect to the longitudinal direction, the ductility as described with reference to FIG. It becomes high and it becomes difficult to break, and it is pushed by the columnar object 27 and deformed inward in the vehicle width direction. As a result, the load that deforms the vehicle width direction outer wall 24 inward in the vehicle width direction is distributed to the upper energy absorption member 21 and the lower energy absorption member 22 and transmitted to the upper and lower vehicle width direction inner walls 25 and 26.

サイドシル13の湾曲により引張荷重が作用している上部、下部車幅方向内壁25,26は、一対の表層の繊維配向角が長手方向に対して平行であるため、図5(B)で説明したように車幅方向外壁24に比べて延性が低くなって一気に破断する可能性があるが、車幅方向外壁24に入力した局所的な荷重は、車幅方向外壁24、上部エネルギー吸収部材21および下部エネルギー吸収部材22によって広範囲に分散された状態で上部、下部車幅方向内壁25,26に伝達され、かつ上部、下部車幅方向内壁25,26の破断強度自体が車幅方向外壁24に比べて高いため、上部、下部車幅方向内壁25,26は破断することなく持ちこたえてサイドシル13の破壊が回避される。   The upper and lower vehicle width direction inner walls 25 and 26 where the tensile load is applied due to the curvature of the side sill 13 are described with reference to FIG. 5B because the fiber orientation angles of the pair of surface layers are parallel to the longitudinal direction. Thus, the ductility becomes lower than the outer wall 24 in the vehicle width direction and may break at a stretch. However, local loads input to the outer wall 24 in the vehicle width direction are the outer wall 24 in the vehicle width direction, the upper energy absorbing member 21, and the like. It is transmitted to the upper and lower vehicle width direction inner walls 25, 26 in a state of being widely dispersed by the lower energy absorbing member 22, and the breaking strength itself of the upper and lower vehicle width direction inner walls 25, 26 is compared with the vehicle width direction outer wall 24. Therefore, the upper and lower vehicle width direction inner walls 25 and 26 are held without breaking and the side sill 13 is prevented from being broken.

図7(B)は比較例を示すもので、比較例のサイドシル13は車幅方向外壁24が上部、下部車幅方向内壁25,26と同じ積層構造(表層の繊維配向角が0°)を持つものであり、車幅方向外壁24および上部、下部車幅方向内壁25,26が共に延性が低く強度が高いもので構成される。   FIG. 7B shows a comparative example. The side sill 13 of the comparative example has the same laminated structure (the fiber orientation angle of the surface layer is 0 °) as the outer wall 24 in the vehicle width direction and the inner walls 25 and 26 in the lower vehicle width direction. The outer wall 24 in the vehicle width direction and the upper and lower inner walls 25 and 26 in the vehicle width direction are both made of low ductility and high strength.

従って、サイドシル13に柱状物27が側面衝突した場合、衝突荷重が最初に入力する車幅方向外壁24は延性が低いため、柱状物27から入力する局所的な荷重に耐えきれずに破断してしまい、その荷重は有効に分散されることなく上部、下部エネルギー吸収部材21,22および上部、下部車幅方向内壁25,26に伝達され、それらが一気に破壊に至ることになる。   Accordingly, when the columnar object 27 collides with the side sill 13, the outer wall 24 in the vehicle width direction in which the collision load is first input has low ductility, so that it cannot withstand the local load input from the columnar object 27 and breaks. Therefore, the load is transmitted to the upper and lower energy absorbing members 21 and 22 and the upper and lower vehicle width direction inner walls 25 and 26 without being effectively dispersed, and they are destroyed at once.

以上のように、本実施の形態によれば、サイドシル13の車幅方向外壁24に局所的な衝突荷重が入力したときに、延性が高い車幅方向外壁24が容易に変形することで衝突荷重を強度が高い上部、下部車幅方向内壁25,26に分散して伝達し、前記局所的な衝突荷重を衝突荷重および上部、下部車幅方向内壁25,26の協働で効率的に吸収してサイドシル13の破壊を防止することができる。しかも車幅方向外壁24は、表層の繊維配向角(60゜)と、その表層に隣接する内層の繊維配向角(−60゜)とが長手方向に対して対称であるので、それら表層および内層の繊維配向角が共に大きくなって樹脂にマイクロクラックが発生し易くなり、車幅方向外壁24の延性が更に高められる。   As described above, according to the present embodiment, when a local collision load is input to the vehicle width direction outer wall 24 of the side sill 13, the vehicle width direction outer wall 24 having high ductility is easily deformed, thereby causing the collision load. Are dispersed and transmitted to the upper and lower inner walls 25 and 26 having high strength, and the local collision load is efficiently absorbed by the collision load and the cooperation of the upper and lower inner walls 25 and 26. Thus, the side sill 13 can be prevented from being broken. Moreover, since the fiber orientation angle (60 °) of the surface layer and the fiber orientation angle (−60 °) of the inner layer adjacent to the surface layer are symmetrical with respect to the longitudinal direction, the outer wall 24 in the vehicle width direction is symmetrical to the surface layer and the inner layer. Both of the fiber orientation angles become larger and micro cracks are likely to occur in the resin, and the ductility of the outer wall 24 in the vehicle width direction is further enhanced.

しかも、サイドシル13は、車幅方向外壁24の上端から略直線状に延びる上部車幅方向内壁25と、車幅方向外壁24の下端から略直線状に延びる下部車幅方向内壁26とを備え、上部車幅方向内壁25および下部車幅方向内壁26はフロアパネル12の車幅方向外端に連なるので、車幅方向外壁24に入力した衝突荷重を直線状の上部、下部車幅方向内壁25,26を介してフロアパネル12に効率的に伝達することで、車幅方向外壁24の変形を促進してエネルギー吸収量を増加することができる。   Moreover, the side sill 13 includes an upper vehicle width direction inner wall 25 extending substantially linearly from the upper end of the vehicle width direction outer wall 24, and a lower vehicle width direction inner wall 26 extending substantially linearly from the lower end of the vehicle width direction outer wall 24, Since the upper vehicle width direction inner wall 25 and the lower vehicle width direction inner wall 26 are connected to the outer end in the vehicle width direction of the floor panel 12, the collision load input to the vehicle width direction outer wall 24 is linearly connected to the upper and lower vehicle width direction inner walls 25, By efficiently transmitting to the floor panel 12 via 26, the deformation of the outer wall 24 in the vehicle width direction can be promoted to increase the amount of energy absorption.

また車幅方向外壁24は、一対の表層の繊維配向角(60゜)と、それに隣接する一対の内層の繊維配向角(−60゜)とが対称であるので、そこに衝突荷重が入力したときに、前記一対の表層および前記一対の内層の樹脂に異なる二つの方向の荷重が加わって多数のマイクロクラックが発生し(図5(A)参照)、車幅方向外壁24の延性が効率的に高められる。   In addition, since the fiber orientation angle (60 °) of the pair of surface layers and the fiber orientation angle (−60 °) of the pair of inner layers adjacent to the pair of surface layers are symmetrical, the collision load is input to the outer wall 24 in the vehicle width direction. Sometimes, a load in two different directions is applied to the resin of the pair of surface layers and the pair of inner layers to generate a large number of microcracks (see FIG. 5A), and the ductility of the outer wall 24 in the vehicle width direction is efficient. Enhanced.

また図3において、フロアパネル12よりも高い位置にあるサイドシル13に側面衝突の衝突荷重が入力すると、サイドシル13が車幅方向内向きに倒れようとすることでフロアパネル12が下向きに凸に湾曲し、その下面側のアウタースキン16に引張荷重が作用するとともに、その上面側のインナースキン17に圧縮荷重が作用する。その際に、引張側のアウタースキン16は表層の繊維配向角が60°であるために延性が高まって容易に伸び変形することができる。一方、圧縮側のインナースキン17は表層の繊維配向角が0°であるため圧縮荷重に対する座屈強度が比較的に低くなるが、アウタースキン16が伸び変形することでインナースキン17に作用する圧縮荷重が軽減され、インナースキン17に限界荷重以上の圧縮荷重が加わって一気に破壊するのを防止することができる。   Further, in FIG. 3, when a collision load of a side collision is input to the side sill 13 that is higher than the floor panel 12, the floor sill 13 is curved downward and convex because the side sill 13 tends to fall inward in the vehicle width direction. Then, a tensile load acts on the outer skin 16 on the lower surface side, and a compressive load acts on the inner skin 17 on the upper surface side. At that time, the outer skin 16 on the tension side has a fiber orientation angle of 60 ° on the surface layer, so that the ductility is increased and the outer skin 16 can be easily stretched and deformed. On the other hand, the inner skin 17 on the compression side has a relatively low buckling strength against a compression load because the fiber orientation angle of the surface layer is 0 °. However, the compression acting on the inner skin 17 is caused by the outer skin 16 being stretched and deformed. The load is reduced, and it is possible to prevent the inner skin 17 from being damaged at a stretch due to a compressive load greater than the limit load.

第2の実施の形態Second embodiment

次に、図8に基づいて本発明の第2の実施の形態を説明する。   Next, a second embodiment of the present invention will be described with reference to FIG.

第1の実施の形態のサイドシル13の車幅方向外壁24は、積層方向中心面に対して車体外側の3層と車体内側の3層とが対称に配置されているが(図4(A)参照)、第2の実施の形態のサイドシル13の車幅方向外壁24は、車体外側に繊維配向角が60°の層と−60゜の層とを追加し、積層方向中心面に対して非対称な8層構造としたものである。   In the vehicle width direction outer wall 24 of the side sill 13 of the first embodiment, the three layers on the vehicle body outer side and the three layers on the vehicle body inner side are arranged symmetrically with respect to the center plane in the stacking direction (FIG. 4A). The outer wall 24 in the vehicle width direction of the side sill 13 of the second embodiment is asymmetric with respect to the center plane in the stacking direction by adding a layer having a fiber orientation angle of 60 ° and a layer having a −60 ° to the outside of the vehicle body. This is an eight-layer structure.

車幅方向外壁24は、表層の繊維配向角が0°でないために曲げ強度が低下する可能性があるが、車体外側に繊維配向角が60°および−60゜の2層の傾斜連続繊維層を追加したことで、必要な延性を確保しながら曲げ強度を高めることができる。   The outer wall 24 in the vehicle width direction has a possibility that the bending strength is lowered because the fiber orientation angle of the surface layer is not 0 °, but two inclined continuous fiber layers having a fiber orientation angle of 60 ° and −60 ° on the outside of the vehicle body. The bending strength can be increased while ensuring the required ductility.

以上、本発明の実施の形態を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。   The embodiments of the present invention have been described above, but various design changes can be made without departing from the scope of the present invention.

例えば、車幅方向外壁24あるいは上部、下部車幅方向内壁25,26の連続繊維層の積層数や、その繊維配向角は実施の形態に限定されるものではない。   For example, the number of laminated continuous fiber layers of the vehicle width direction outer wall 24 or the upper and lower vehicle width direction inner walls 25 and 26 and the fiber orientation angle are not limited to those of the embodiment.

またフロアパネル12のアウタースキン16あるいはインナースキン17の連続繊維層の積層数や、その繊維配向角は実施の形態に限定されるものではない。   Further, the number of laminated continuous fiber layers of the outer skin 16 or the inner skin 17 of the floor panel 12 and the fiber orientation angle are not limited to those in the embodiment.

また本発明のFRPは実施の形態のCFRPに限定されるものではなく、ガラス繊維強化樹脂のような他種のFRPであっても良い。   The FRP of the present invention is not limited to the CFRP of the embodiment, and may be another type of FRP such as a glass fiber reinforced resin.

12 フロアパネル
13 サイドシル
16 アウタースキン
17 インナースキン
18 コア材
24 車幅方向外壁
25 上部車幅方向内壁
26 下部車幅方向内壁
12 floor panel 13 side sill 16 outer skin 17 inner skin 18 core material 24 vehicle width direction outer wall 25 upper vehicle width direction inner wall 26 lower vehicle width direction inner wall

Claims (5)

FRP製のサイドシル(13)の車幅方向外壁(24)を、前記サイドシル(13)の長手方向に対する連続繊維の繊維配向角を一致あるいは異ならせた状態で積層した複数の連続繊維層を樹脂で固めた板材で構成した自動車の車体構造であって、
前記サイドシル(13)は、前記車幅方向外壁(24)の上端から略直線状に延びる上部車幅方向内壁(25)と、前記車幅方向外壁(24)の下端から略直線状に延びる下部車幅方向内壁(26)とを備え、
前記車幅方向外壁(24)は、前記複数の連続繊維層のうちの一対の表層の繊維配向角が、それらに挟まれた内層の繊維配向角以上の60°であり、
前記上部車幅方向内壁(25)および前記下部車幅方向内壁(26)は、前記サイドシル(13)の長手方向に対する連続繊維の繊維配向角を一致あるいは異ならせた状態で積層した複数の連続繊維層を樹脂で固めた板材からなり、前記複数の連続繊維層のうちの一対の表層の繊維配向角が0°であることを特徴とする自動車の車体構造。
A plurality of continuous fiber layers obtained by laminating the outer wall (24) in the vehicle width direction of the side sill (13) made of FRP in a state where the fiber orientation angles of the continuous fibers with respect to the longitudinal direction of the side sill (13) are matched or different are made of resin. A vehicle body structure composed of hardened plate materials,
The side sill (13) includes an upper vehicle width direction inner wall (25) extending substantially linearly from the upper end of the vehicle width direction outer wall (24), and a lower portion extending substantially linearly from the lower end of the vehicle width direction outer wall (24). An inner wall (26) in the vehicle width direction,
In the vehicle width direction outer wall (24), the fiber orientation angle of the pair of surface layers of the plurality of continuous fiber layers is 60 ° that is equal to or greater than the fiber orientation angle of the inner layer sandwiched between them.
The upper vehicle width direction inner wall (25) and the lower vehicle width direction inner wall (26) are a plurality of continuous fibers laminated in a state in which the fiber orientation angles of the continuous fibers with respect to the longitudinal direction of the side sill (13) coincide or differ. A body structure of an automobile, comprising a plate material obtained by solidifying a layer with a resin, wherein a fiber orientation angle of a pair of surface layers of the plurality of continuous fiber layers is 0 °.
前記上部車幅方向内壁(25)および前記下部車幅方向内壁(26)はフロアパネル(12)の車幅方向外端に連なることを特徴とする、請求項1に記載の自動車の車体構造。   The vehicle body structure according to claim 1, wherein the inner wall (25) in the upper vehicle width direction and the inner wall (26) in the lower vehicle width direction are connected to an outer end in the vehicle width direction of the floor panel (12). 前記車幅方向外壁(24)は、繊維配向角が0°の0°連続繊維層と、繊維配向角が0°以外の傾斜連続繊維層とを備え、前記0°連続繊維層の外側に積層される前記傾斜連続繊維層の積層数は内側に積層される前記傾斜連続繊維層の積層数よりも多いことを特徴とする、請求項1または請求項2に記載の自動車の車体構造。   The vehicle width direction outer wall (24) includes a 0 ° continuous fiber layer having a fiber orientation angle of 0 ° and an inclined continuous fiber layer having a fiber orientation angle other than 0 °, and is laminated on the outside of the 0 ° continuous fiber layer. 3. The vehicle body structure according to claim 1, wherein the number of the laminated layers of the inclined continuous fiber layers is greater than the number of the laminated layers of the inclined continuous fiber layers laminated on the inside. 前記一対の表層の繊維配向角と、それに隣接する一対の内層の繊維配向角とは長手方向に対して対称であることを特徴とする、請求項1〜請求項3の何れか1項に記載の自動車の車体構造。   4. The fiber orientation angle of the pair of surface layers and the fiber orientation angle of the pair of inner layers adjacent to the pair of surface layers are symmetric with respect to the longitudinal direction. 5. Car body structure. 前記フロアパネル(12)はアウタースキン(16)およびインナースキン(17)間にコア材(18)を挟んで構成され、前記アウタースキン(16)および前記インナースキン(17)は、前記サイドシル(13)の長手方向に対する連続繊維の繊維配向角を一致あるいは異ならせた状態で積層した複数の連続繊維層を樹脂で固めた板材からなり、前記アウタースキン(16)の前記複数の連続繊維層のうちの一対の表層の繊維配向角はそれらに挟まれた内層の繊維配向角以上であり、前記インナースキン(17)の前記複数の連続繊維層のうちの一対の表層の繊維配向角は0゜であることを特徴とする、請求項に記載の自動車の車体構造。
The floor panel (12) is configured by sandwiching a core material (18) between an outer skin (16) and an inner skin (17). The outer skin (16) and the inner skin (17) Of the continuous fibers of the outer skin (16) of the outer skin (16). The fiber orientation angle of the pair of surface layers is equal to or greater than the fiber orientation angle of the inner layer sandwiched between them, and the fiber orientation angle of the pair of surface layers of the plurality of continuous fiber layers of the inner skin (17) is 0 °. The vehicle body structure according to claim 2 , wherein the vehicle body structure is provided.
JP2013192605A 2013-09-18 2013-09-18 Auto body structure Active JP6035654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013192605A JP6035654B2 (en) 2013-09-18 2013-09-18 Auto body structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013192605A JP6035654B2 (en) 2013-09-18 2013-09-18 Auto body structure

Publications (2)

Publication Number Publication Date
JP2015058763A JP2015058763A (en) 2015-03-30
JP6035654B2 true JP6035654B2 (en) 2016-11-30

Family

ID=52816657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013192605A Active JP6035654B2 (en) 2013-09-18 2013-09-18 Auto body structure

Country Status (1)

Country Link
JP (1) JP6035654B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6281588B2 (en) * 2016-03-15 2018-02-21 マツダ株式会社 Vehicle panel structure
JP6281587B2 (en) * 2016-03-15 2018-02-21 マツダ株式会社 Vehicle panel structure
CN111907596A (en) * 2019-05-10 2020-11-10 广州汽车集团股份有限公司 Energy-absorbing standard part, front longitudinal beam and manufacturing method of energy-absorbing standard part

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012105716A1 (en) * 2011-02-03 2012-08-09 帝人株式会社 Vehicle skeleton member
JP5734174B2 (en) * 2011-12-19 2015-06-10 本田技研工業株式会社 Auto body structure
JP5695556B2 (en) * 2011-12-28 2015-04-08 本田技研工業株式会社 Car cabin structure

Also Published As

Publication number Publication date
JP2015058763A (en) 2015-03-30

Similar Documents

Publication Publication Date Title
JP6662331B2 (en) Body structure
JP6176467B2 (en) Manufacturing method of automobile body structure and body floor
JP5768838B2 (en) Vehicle skeleton structure
KR102307638B1 (en) shock absorbing member
TWI652192B (en) Car exterior panel
JP5983583B2 (en) Vehicle skeleton structure
JP6080243B2 (en) Automotive bumper
JP6032629B2 (en) Automobile center pillar structure
WO2019146789A1 (en) Shock-absorbing member
JP5862555B2 (en) Auto body structure
JP2010126067A (en) Shock-absorbing member
JP2018034664A (en) Skeleton structure for vehicle
JP6020381B2 (en) Vehicle skeleton structure
JP6035654B2 (en) Auto body structure
JP6032630B2 (en) Auto body wall structure
US20160059904A1 (en) Crash Structure for a Vehicle
JP6034729B2 (en) Shock absorption mechanism for vehicles
JP2016074269A (en) Vehicle shock absorption structure
JP2019038312A (en) Vehicle body structure
JP2006502047A (en) End wall module
JP6112670B2 (en) Automotive bumper beam structure
JP6057294B2 (en) Auto body structure
US20240097256A1 (en) Battery case of automobile and method for manufacturing the same
JP6523390B2 (en) Energy absorption structure of floor panel
CN112689594B (en) Panel member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161014

R150 Certificate of patent or registration of utility model

Ref document number: 6035654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250