JP6033750B2 - Abrasive material, method for producing the same, and abrasive slurry containing the same - Google Patents

Abrasive material, method for producing the same, and abrasive slurry containing the same Download PDF

Info

Publication number
JP6033750B2
JP6033750B2 JP2013208660A JP2013208660A JP6033750B2 JP 6033750 B2 JP6033750 B2 JP 6033750B2 JP 2013208660 A JP2013208660 A JP 2013208660A JP 2013208660 A JP2013208660 A JP 2013208660A JP 6033750 B2 JP6033750 B2 JP 6033750B2
Authority
JP
Japan
Prior art keywords
abrasive
core material
coating layer
abrasive grains
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013208660A
Other languages
Japanese (ja)
Other versions
JP2015071715A (en
Inventor
純和 尾形
純和 尾形
成紀 徳地
成紀 徳地
陽兵 丸山
陽兵 丸山
元己 大鹿
元己 大鹿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2013208660A priority Critical patent/JP6033750B2/en
Priority to PCT/JP2014/072781 priority patent/WO2015049942A1/en
Priority to EP14850862.5A priority patent/EP3053980B1/en
Priority to US15/021,434 priority patent/US9873824B2/en
Priority to TW103131795A priority patent/TWI628271B/en
Publication of JP2015071715A publication Critical patent/JP2015071715A/en
Application granted granted Critical
Publication of JP6033750B2 publication Critical patent/JP6033750B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/06Treatment with inorganic compounds
    • C09C3/063Coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1436Composite particles, e.g. coated particles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1436Composite particles, e.g. coated particles
    • C09K3/1445Composite particles, e.g. coated particles the coating consisting exclusively of metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1212Zeolites, glasses
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02024Mirror polishing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other

Description

本発明は、金属酸化物を含む研摩砥粒を含有する研摩材に関する。また本発明は、該研摩砥粒の製造方法及び該研摩材を含む研摩スラリーに関する。   The present invention relates to an abrasive containing abrasive grains containing a metal oxide. The present invention also relates to a method for producing the abrasive grains and an abrasive slurry containing the abrasive.

研摩材粒子の表面に被覆層を設けて、該研摩材粒子の特性を向上させる技術が知られている。例えば特許文献1及び2には、平均粒子径が5〜300nmの範囲にあるコア・シェル構造を有する研摩材粒子が提案されている。このコア・シェル構造におけるシェル部は、その厚さが1〜50nmの範囲であり、かつシリカを主成分とするシリカ系複合酸化物から構成されている。コア部は、MnO、SiO2 、Al2 3 、ZrO2 、SnO2 、ZnO、CeO2 又はTiO2 からなる。これらの文献に記載の技術は、コア部に含まれているアルカリ金属をシェル部によってトラップすることで、アルカリ金属が研磨基板に残存することを防止したり、シェル部を設けてあるいはシェル部の成分を変えることによって研磨特性を調整したりすることを目的としている。 A technique for improving the characteristics of abrasive particles by providing a coating layer on the surface of the abrasive particles is known. For example, Patent Documents 1 and 2 propose abrasive particles having a core-shell structure with an average particle diameter in the range of 5 to 300 nm. The shell part in this core-shell structure has a thickness in the range of 1 to 50 nm and is composed of a silica-based composite oxide containing silica as a main component. Core portion, MnO, SiO 2, Al 2 O 3, ZrO 2, SnO 2, ZnO, consisting of CeO 2 or TiO 2. The techniques described in these documents can prevent alkali metal from remaining on the polishing substrate by trapping the alkali metal contained in the core portion by the shell portion, or provide a shell portion or the shell portion. The purpose is to adjust the polishing characteristics by changing the components.

特開2003−277732号公報JP 2003-277732 A 特開2004−2723号公報JP 2004-2723 A

上述した各特許文献に記載の技術では、MnO等からなるコア部に含まれているアルカリ金属をシェル部によってトラップするために、コア部の大きさに対するシェル部の厚みを相対的に大きくしている。つまり、シェル部を厚く形成している。その結果、研摩材としての主たる機能を有する部位であるコア部の該機能が減殺されてしまい、研摩レートが劣り満足すべき研摩性能を得られない場合がある。   In the technique described in each patent document described above, in order to trap the alkali metal contained in the core portion made of MnO or the like by the shell portion, the thickness of the shell portion relative to the size of the core portion is relatively increased. Yes. That is, the shell part is formed thick. As a result, the function of the core part, which is a part having the main function as an abrasive, is diminished, and the polishing rate is inferior and satisfactory polishing performance may not be obtained.

上述した技術とは別に本発明者は、研摩材として酸化マンガン系の化合物を用いた場合、該酸化マンガン系の研摩材をスラリー化して長期間保存すると、デンドライト状の酸化マンガンの結晶が意図せず析出することを見いだした。そして、このデンドライト状の結晶は研摩性能の低下の一因となることが本発明者らの検討の結果判明した。   In addition to the technique described above, the present inventor intended that when a manganese oxide compound is used as an abrasive, the manganese oxide abrasive is slurried and stored for a long period of time to form dendritic manganese oxide crystals. It was found that it precipitated. As a result of investigations by the present inventors, it has been found that this dendrite-like crystal contributes to a decrease in polishing performance.

したがって本発明の課題は、研摩材の研摩性能を一層向上させることにある。   Accordingly, an object of the present invention is to further improve the polishing performance of the abrasive.

本発明は、芯材に二酸化マンガンを含有し、前記芯材の表面にケイ素の酸化物を含む被覆層が存在する研摩砥粒を含む研摩材であって、
前記研摩砥粒のレーザー回折散乱式粒度分布測定法による累積体積50容量%における体積累積粒径D 50 が0.3μm以上3.0μmであり、
前記研摩砥粒は、該研摩砥粒を含むスラリーを5時間煮沸した後に、該研摩砥粒を走査型電子顕微鏡により観察したとき、縦軸と横軸との比が1.0以上1.5未満である、研摩材を提供するものである。
The present invention is an abrasive containing abrasive grains containing manganese dioxide in the core material, and a coating layer containing a silicon oxide on the surface of the core material,
The abrasive grains volume cumulative particle diameter D 50 in the cumulative volume 50% by volume by laser diffraction scattering particle size distribution measurement method is 3.0μm or 0.3 [mu] m,
The abrasive grains have a ratio of the vertical axis to the horizontal axis of 1.0 to 1.5 when the slurry containing the abrasive grains is boiled for 5 hours and the abrasive grains are observed with a scanning electron microscope. It provides an abrasive that is less than.

本発明によれば、研摩レートが向上した研摩材が提供される。かつ、研摩材に含まれる研摩砥粒中に酸化マンガンが含有される場合には、デンドライト状の酸化マンガンの結晶の生成を効果的に防止することができる。   According to the present invention, an abrasive having an improved polishing rate is provided. In addition, when the polishing abrasive grains contained in the polishing material contain manganese oxide, it is possible to effectively prevent the formation of dendritic manganese oxide crystals.

図1は、実施例1で得られた研摩材の電子顕微鏡像である。1 is an electron microscope image of the abrasive obtained in Example 1. FIG. 図2は、実施例2で得られた研摩材の電子顕微鏡像である。FIG. 2 is an electron microscopic image of the abrasive obtained in Example 2. 図3は、比較例1で得られた研摩材の電子顕微鏡像である。FIG. 3 is an electron microscopic image of the abrasive obtained in Comparative Example 1.

以下本発明を、その好ましい実施形態に基づき説明する。本発明の研摩材は、芯材と、その表面を被覆する被覆層とを有する研摩砥粒を含んだ構成を具備している。芯材は、研摩砥粒が研摩機能を発現するための主要部位であり、研摩砥粒の中心域に位置している。一方、被覆層は、研摩砥粒の最表面に位置している。芯材と被覆層とは直接に接していることが好ましいが、場合によっては芯材と被覆層との間に別の層が1層又は2層以上介在していてもよい。   Hereinafter, the present invention will be described based on preferred embodiments thereof. The abrasive of the present invention has a configuration including abrasive grains having a core material and a coating layer covering the surface thereof. The core material is a main part for the polishing abrasive grains to exhibit the polishing function, and is located in the central region of the polishing abrasive grains. On the other hand, the coating layer is located on the outermost surface of the abrasive grain. Although it is preferable that the core material and the coating layer are in direct contact with each other, in some cases, one layer or two or more layers may be interposed between the core material and the coating layer.

芯材は金属酸化物、例えば酸化マンガンや酸化セリウムを含む。本明細書において酸化マンガンとは、マンガンの酸化物を広く包含する。酸化マンガンの具体例としては、酸化マンガン(II)MnO、三酸化二マンガン(III)Mn、二酸化マンガンMnO、四酸化三マンガンMn等が挙げられる。これらマンガンの酸化物は1種を単独で、又は2種以上を組み合わせて用いることができる。これらマンガンの酸化物のうち、特に酸化力が高い化合物である二酸化マンガンMnOを用いると、化学機械研摩(CMP)を効率的に行うことができるので好適である。二酸化マンガンを用いる場合は、該二酸化マンガンは、β型結晶構造を有するもの、λ型結晶構造を有するもの及びγ型結晶構造を有するもののうち、いずれを用いてもよいし、それらを併用してもよい。芯材は金属酸化物以外の酸化物を含んでいても良く、また金属酸化物からなっていても良い。 The core material contains a metal oxide such as manganese oxide or cerium oxide. In this specification, manganese oxide includes a wide range of manganese oxides. Specific examples of manganese oxide include manganese oxide (II) MnO, dimanganese trioxide (III) Mn 2 O 3 , manganese dioxide MnO 2 , trimanganese tetroxide Mn 3 O 4 and the like. These manganese oxides can be used alone or in combination of two or more. Among these manganese oxides, it is preferable to use manganese dioxide MnO 2 which is a compound having a particularly high oxidizing power because chemical mechanical polishing (CMP) can be performed efficiently. When manganese dioxide is used, the manganese dioxide may be any of those having a β-type crystal structure, those having a λ-type crystal structure, and those having a γ-type crystal structure, or a combination thereof. Also good. The core material may contain oxides other than metal oxides, and may consist of metal oxides.

マンガンの酸化物として二酸化マンガンを用いる場合、該二酸化マンガンは、電解反応によって陽極表面に二酸化マンガンを生成・析出させることで得ることができる。また、このようにして生成した二酸化マンガンを200℃以上600℃以下の熱雰囲気で加熱してもよい。別法として、マンガン酸リチウム(LiMn)又はマンガン酸亜鉛(ZnMn)を、高濃度の酸を用いて処理することにより、リチウム又は亜鉛を溶出させて、二酸化マンガンを得る方法を採用することもできる。 When manganese dioxide is used as an oxide of manganese, the manganese dioxide can be obtained by producing and depositing manganese dioxide on the anode surface by an electrolytic reaction. Moreover, you may heat the manganese dioxide produced | generated in this way in 200 degreeC or more and 600 degreeC or less of hot atmosphere. Alternatively, lithium manganese or zinc manganate (ZnMn 2 O 4 ) or zinc manganate (ZnMn 2 O 4 ) is treated with a high concentration of acid to elute lithium or zinc to obtain manganese dioxide. Can also be adopted.

芯材の形状は、研摩砥粒の形状に影響を及ぼすことがある。この理由は、後述するとおり、研摩砥粒における被覆層の厚みは、芯材の大きさに対して相対的に小さいので、芯材の形状が研摩砥粒の形状に反映されやすいからである。芯材の形状は研摩砥粒の形状としては、角状又は球状のものを用いることができる。   The shape of the core material may affect the shape of the abrasive grains. The reason for this is that, as will be described later, since the thickness of the coating layer in the abrasive grains is relatively small with respect to the size of the core material, the shape of the core material is easily reflected in the shape of the abrasive grains. As for the shape of the core material, a square or spherical shape can be used as the shape of the abrasive grains.

芯材の大きさは、研摩砥粒の研摩性能に影響を及ぼすことがある。この観点から、芯材の平均粒径は、レーザー回折散乱式粒度分布測定法による累積体積50容量%における体積累積粒径D50で表して、0.08μm以上3.0μm以下であることが好ましく、0.3μmを超え1.0μm以下であることが更に好ましい。芯材の平均粒径を調整する手段としては、例えば乾式粉砕が挙げられる。乾式粉砕の具体例としては、高圧気流どうしを衝突させて粒子を粉砕するジェットミル、回転刃とスクリーンとの間のせん断力で粒子を粉砕するアトマイザー、粒子を2つのローラー間で粉砕するローラーミルなどの粉砕機が挙げられる。 The size of the core material may affect the polishing performance of the abrasive grains. From this viewpoint, the average particle diameter of the core material is preferably 0.08 μm or more and 3.0 μm or less, expressed by a volume cumulative particle diameter D 50 at a cumulative volume of 50 vol% by a laser diffraction scattering type particle size distribution measurement method. More preferably, it is more than 0.3 μm and 1.0 μm or less. Examples of means for adjusting the average particle diameter of the core material include dry pulverization. Specific examples of dry pulverization include jet mills that pulverize particles by colliding high-pressure air currents, atomizers that pulverize particles with a shearing force between a rotating blade and a screen, and roller mills that pulverize particles between two rollers. And the like.

芯材の表面に位置する被覆層は、芯材と異なる金属又は半金属の酸化物を含んでいる。この酸化物を構成する金属としては、例えばアルミニウム、チタン、ジルコニウム、鉄、バナジウム、クロム、イットリウム、セリウム、ランタンなどが挙げられる。一方、半金属としては、例えばホウ素、ケイ素、ゲルマニウム、ヒ素、アンチモンなどが挙げられる。具体的な酸化物の例としては、シリカ、アルミナ、チタニア、ジルコニア又は酸化鉄などが挙げられる。これらの酸化物は1種を単独で又は2種以上を組み合わせて用いることができる。芯材として酸化マンガンを用いた場合には、マンガンの酸化物のデンドライトの発生を特に効果的に防止でき、かつ研摩レートを特に向上させ得る点から、酸化物としてシリカを用いることが好ましい。   The coating layer located on the surface of the core material contains a metal or metalloid oxide different from the core material. Examples of the metal constituting the oxide include aluminum, titanium, zirconium, iron, vanadium, chromium, yttrium, cerium, and lanthanum. On the other hand, examples of the semimetal include boron, silicon, germanium, arsenic, and antimony. Specific examples of the oxide include silica, alumina, titania, zirconia, and iron oxide. These oxides can be used alone or in combination of two or more. When manganese oxide is used as the core material, it is preferable to use silica as the oxide from the viewpoint that generation of dendrites of manganese oxide can be particularly effectively prevented and the polishing rate can be particularly improved.

被覆層は、芯材の表面の全域を満遍なく連続して被覆していてもよく、あるいは芯材の表面が一部露出した状態で不連続に被覆していてもよい。芯材として金属酸化物を用いた場合に、該金属酸化物のデンドライトの発生を特に効果的に防止する観点からは、被覆層は、芯材の表面の全域を満遍なく被覆しており、芯材の表面が外部に露出していないことが好ましい。被覆層による芯材の被覆の程度は、例えば研摩材の電子顕微鏡観察による元素マッピングで測定することができる。   The coating layer may cover the entire surface of the core material uniformly and continuously, or may cover the core material discontinuously with a part of the surface of the core material exposed. In the case of using a metal oxide as the core material, from the viewpoint of effectively preventing the generation of dendrites of the metal oxide, the coating layer uniformly covers the entire surface of the core material. It is preferable that the surface of is not exposed to the outside. The degree of coating of the core material with the coating layer can be measured, for example, by element mapping by observation of the abrasive with an electron microscope.

被覆層を構成する酸化物は微細な粒子からなり、該粒子が緻密に集合した集合体から該被覆層が形成されていることが好ましい。具体的には、被覆層を構成する酸化物は、0.5nm以上500nm以下、特に2.0nm以上300nm以下の平均粒径を有する微細な粒子であることが好ましい。このような微細な粒子の集合体から被覆層が形成されていることで、芯材の金属酸化物を用いた場合に、該金属酸化物のデンドライトが生成することを効果的に防止することができる。また本発明の研摩材の研摩レートを向上させることができる。被覆層を構成する酸化物の粒子の大きさは、研摩砥粒を電子顕微鏡で拡大観察して測定する。測定する粒子の数は20個以上とし、測定個数の平均値を以て粒子の大きさとする。   The oxide constituting the coating layer is preferably composed of fine particles, and the coating layer is preferably formed from an aggregate in which the particles are densely assembled. Specifically, the oxide constituting the coating layer is preferably fine particles having an average particle diameter of 0.5 nm to 500 nm, particularly 2.0 nm to 300 nm. By forming the coating layer from such an aggregate of fine particles, it is possible to effectively prevent the formation of dendrites of the metal oxide when the metal oxide of the core material is used. it can. Moreover, the polishing rate of the polishing material of this invention can be improved. The size of the oxide particles constituting the coating layer is measured by magnifying the abrasive grains with an electron microscope. The number of particles to be measured is 20 or more, and the average value of the measured numbers is the particle size.

被覆層の厚みは、研摩砥粒の特性に影響を及ぼす一因となり得る。具体的には、被覆層の厚みが過度に小さいと、本発明の所期の目的を達成しづらくなる。一方、被覆層の厚みが過度に大きいと、芯材の特性が発現しづらくなり、研摩特性が低下する傾向にある。これらの観点から、被覆層の平均の厚み、すなわち被覆がされた表面とされていない表面の双方を含めた被覆層の厚み平均値は0.2nm以上500nm以下であることが好ましく、1.0nm以上300nm以下であることがより好ましい。被覆層の厚みは、研摩砥粒を電子顕微鏡で拡大観察して直接測定することができる。あるいは研摩砥粒の電子顕微鏡観察による元素マッピングで測定することができる。いずれの方法によっても視野内の粒子1つについて3か所での厚みを測定し、測定個数の平均値を以て被覆層の厚みとする。   The thickness of the coating layer can contribute to the characteristics of the abrasive grains. Specifically, when the thickness of the coating layer is excessively small, it is difficult to achieve the intended purpose of the present invention. On the other hand, when the thickness of the coating layer is excessively large, it is difficult to develop the characteristics of the core material and the polishing characteristics tend to deteriorate. From these viewpoints, the average thickness of the coating layer, that is, the average thickness value of the coating layer including both the coated surface and the non-coated surface is preferably 0.2 nm or more and 500 nm or less, and 1.0 nm More preferably, it is 300 nm or less. The thickness of the coating layer can be directly measured by magnifying the abrasive grains with an electron microscope. Or it can measure by the element mapping by the electron microscope observation of an abrasive grain. In any method, the thickness at three positions is measured for one particle in the field of view, and the average value of the measured number is used as the thickness of the coating layer.

被覆層の厚みは、芯材の大きさとも関連している。芯材の大きさに対して被覆層の厚みが過度に小さいと、本発明の所期の目的を達成しづらくなる。一方、芯材の大きさに対して被覆層の厚みが過度に大きいと、芯材の特性が発現しづらくなり、研摩特性が低下する傾向にある。これらの観点から、芯材の大きさ(nm)に対する被覆層の厚み(nm)の比である〔被覆層の厚み(nm)/芯材の大きさ(nm)〕の値が、0.002以上2.5以下であることが好ましく、0.005以上0.5以下であることが更に好ましい。   The thickness of the coating layer is also related to the size of the core material. If the thickness of the coating layer is excessively small with respect to the size of the core material, it is difficult to achieve the intended object of the present invention. On the other hand, if the thickness of the coating layer is excessively large with respect to the size of the core material, the characteristics of the core material are difficult to develop, and the polishing characteristics tend to deteriorate. From these viewpoints, the ratio of the thickness (nm) of the coating layer to the size (nm) of the core material [the thickness of the coating layer (nm) / the size of the core material (nm)] is 0.002. It is preferably 2.5 or more and more preferably 0.005 or more and 0.5 or less.

被覆層の厚みと関連して、研摩砥粒において被覆層が占める質量の割合も、研摩材の特性に影響を及ぼす一因となり得る。具体的には、芯材の質量に対する被覆層の質量の比率が過度に小さいと、本発明の所期の目的を達成しづらくなる。一方、芯材の質量に対する被覆層の質量の比率が過度に大きいと、芯材の特性が発現しづらくなり、研摩特性が低下する傾向にある。これらの観点から、芯材の質量に対する被覆層の質量の比率である〔被覆層の質量/芯材の質量〕の値が0.3質量%以上30質量%以下であることが好ましく、0.5質量%以上8質量%以下であることが更に好ましい。〔被覆層の質量/芯材の質量〕の値をこの範囲内に設定することで、研摩砥粒に占める被覆層の質量が相対的に低くなり、芯材の機能が十分に発現する。また、金属酸化物として酸化マンガンを用いた場合に、被覆層を設けたことに起因する酸化マンガンのデンドライトの発生も効果的に防止される。   In relation to the thickness of the coating layer, the proportion of the mass occupied by the coating layer in the abrasive grain can also contribute to the properties of the abrasive. Specifically, if the ratio of the mass of the coating layer to the mass of the core material is excessively small, it is difficult to achieve the intended object of the present invention. On the other hand, if the ratio of the mass of the coating layer to the mass of the core material is excessively large, the properties of the core material are difficult to develop, and the polishing characteristics tend to deteriorate. From these viewpoints, the ratio of the mass of the coating layer to the mass of the core material [the mass of the coating layer / the mass of the core material] is preferably 0.3% by mass or more and 30% by mass or less. More preferably, it is 5 mass% or more and 8 mass% or less. By setting the value of [mass of coating layer / mass of core material] within this range, the mass of the coating layer in the abrasive grains becomes relatively low, and the function of the core material is sufficiently exhibited. In addition, when manganese oxide is used as the metal oxide, generation of manganese oxide dendrites due to the provision of the coating layer is also effectively prevented.

前記の〔被覆層の質量/芯材の質量〕の値は、例えば次の方法で測定される。ひとつは原料である芯材の平均粒径と密度から芯材の平均質量を算出し、被覆層を付着させた量(質量)から求める方法である。あるいは、研摩砥粒を透過型電子顕微鏡で観察し、断面をランダムに5点測定して粒径と被覆層の厚さの平均値を求める。この測定を研摩砥粒20個について行い、平均粒径と平均の被覆層の厚さを算出する。また芯材と被覆層の組成をEDXで同定し得られた結果と、芯材と被覆層の比重と前記平均粒径と平均の被覆層の厚さから、被覆層と芯材の質量を算出することで、前記の値を得ることができる。   The value of [mass of coating layer / mass of core material] is measured, for example, by the following method. One is a method of calculating the average mass of the core material from the average particle diameter and density of the core material, which is a raw material, and determining the amount (mass) of the coating layer attached. Alternatively, the abrasive grains are observed with a transmission electron microscope, and the cross section is randomly measured at five points to determine the average value of the particle diameter and the thickness of the coating layer. This measurement is performed on 20 abrasive grains, and the average particle diameter and average coating layer thickness are calculated. The mass of the coating layer and the core material is calculated from the results obtained by identifying the composition of the core material and the coating layer by EDX, the specific gravity of the core material and the coating layer, the average particle diameter, and the average thickness of the coating layer. By doing so, the above value can be obtained.

研摩砥粒は、その平均粒径D50が0.08μm以上3.0μm以下であることが好ましく、0.3μm以上1.0μm以下であることが更に好ましい。研摩砥粒の平均粒径をこの範囲に設定することで、研摩対象物を高研摩レートで研摩することが可能になる。研摩砥粒の平均粒径D50とは、レーザー回折散乱式粒度分布測定法による累積体積50容量%における体積累積粒径のことである。 Abrasive abrasive preferably has an average particle diameter D 50 is 3.0μm or less than 0.08 .mu.m, and more preferably 0.3μm or 1.0μm below. By setting the average particle size of the abrasive grains within this range, it becomes possible to polish the object to be polished at a high polishing rate. The abrasive grains average particle diameter D 50 of is that the volume cumulative particle diameter in cumulative volume 50% by volume by laser diffraction scattering particle size distribution measuring method.

研摩砥粒は、該研摩砥粒を含むスラリーを5時間煮沸した後に、該研摩砥粒を走査型電子顕微鏡(以下「SEM」とも言う。)により観察したとき、縦軸と横軸との比である縦軸/横軸の値が1.0以上1.5未満である非針状形態を有している。つまり、縦軸と横軸との比であるアスペクト比が1に近い等方性形態を有している。煮沸後の研摩砥粒が非針状形態を有していることで、該研摩砥粒を含む本発明の研摩材は、研摩レートが向上したものとなる。また、研摩砥粒の芯材として酸化マンガンを用いた場合には、デンドライト状の酸化マンガンの結晶の生成を効果的に防止できる。本発明において「研摩砥粒が非針状形態を有している」とは、煮沸後の研摩砥粒を20個以上SEM観察して、個数基準で70%以上の研摩砥粒が非針状形態を有していることを言う。したがって、煮沸後の研摩砥粒のなかに、非針状形態以外の形態を有する研摩砥粒が存在していることは許容される。研摩砥粒の煮沸には純水が用いられる。   Abrasive abrasive is a ratio of the vertical axis to the horizontal axis when the slurry containing the abrasive abrasive is boiled for 5 hours and then observed with a scanning electron microscope (hereinafter also referred to as “SEM”). The value of the vertical / horizontal axis is a non-acicular shape having a value of 1.0 or more and less than 1.5. That is, it has an isotropic form in which the aspect ratio, which is the ratio between the vertical axis and the horizontal axis, is close to 1. Since the abrasive grains after boiling have a non-needle shape, the polishing material of the present invention containing the abrasive grains has an improved polishing rate. In addition, when manganese oxide is used as the core material of the abrasive grains, it is possible to effectively prevent the formation of dendritic manganese oxide crystals. In the present invention, “the abrasive grains have a non-needle shape” means that 20 or more of the boiled abrasive grains are observed by SEM, and 70% or more of the abrasive grains are non-needle-shaped on a number basis. Says having a form. Therefore, it is allowed that the abrasive grains having a form other than the non-acicular form exist in the polished abrasive grains after boiling. Pure water is used for boiling abrasive grains.

前記の縦軸とは、煮沸後の研摩砥粒の長手軸のことであり、横軸とは、縦軸と直交する軸のことである。長手軸とは、煮沸後の研摩砥粒を横切る線分のうち、最も長い線分のことである。   The vertical axis is the longitudinal axis of the abrasive grain after boiling, and the horizontal axis is the axis orthogonal to the vertical axis. The longitudinal axis is the longest line segment among the line segments crossing the abrasive grain after boiling.

本発明の研摩材は、これを水又は水性液に分散させて、研摩スラリーとして用いることができる。水性液とは、水と水溶性有機溶媒との混合液のことである。水溶性有機溶媒としては、例えばアルコールやケトンを用いることができる。研摩スラリーに含まれる研摩材の割合は、0.2質量%以上30.0質量%以下とすることが好ましく、0.5質量%以上20.0質量%以下とすることが更に好ましい。   The abrasive of the present invention can be dispersed in water or an aqueous liquid and used as an abrasive slurry. An aqueous liquid is a mixed liquid of water and a water-soluble organic solvent. As the water-soluble organic solvent, for example, alcohol or ketone can be used. The ratio of the abrasive contained in the polishing slurry is preferably 0.2% by mass or more and 30.0% by mass or less, and more preferably 0.5% by mass or more and 20.0% by mass or less.

研摩スラリーには、本発明の研摩材に加えて他の成分を添加することもできる。そのような成分としては、例えば酸化剤や、研摩材の分散剤などを挙げることができる。尤も本発明で用いられる研摩砥粒は、芯材の表面が酸化物の被覆層で被覆されているので、分散剤を添加しなくても液媒体中に高度に分散する。したがって、研摩スラリーは分散剤を非含有であることが好ましい。   In addition to the abrasive of the present invention, other components can be added to the polishing slurry. Examples of such components include oxidants and abrasive dispersants. However, the abrasive grains used in the present invention are highly dispersed in the liquid medium without adding a dispersant because the surface of the core material is coated with an oxide coating layer. Accordingly, it is preferable that the polishing slurry does not contain a dispersant.

以上の研摩スラリーによれば、炭化珪素(SiC)のような高硬度で、難削材料である研摩対象を高い研摩速度で、良好な面精度に研摩処理することが可能である。   According to the above polishing slurry, it is possible to polish an object to be polished, which is a hard material such as silicon carbide (SiC), which is a difficult-to-cut material, at a high polishing speed and with good surface accuracy.

次に、本発明に用いられる研摩砥粒の好適な製造方法を、芯材として酸化マンガンを用いた場合を例にとり説明する。研摩砥粒は、被覆層の原料となる原料化合物を含む水溶液中に、酸化マンガンからなる芯材が分散してなる分散液に、酸又は塩基を添加して該原料化合物の加水分解を生じさせて、該芯材の表面に酸化物を析出させることで好適に製造される。以下の説明では、被覆層がシリカである場合を例にとる。   Next, a preferred method for producing abrasive grains used in the present invention will be described by taking as an example the case of using manganese oxide as a core material. Abrasive abrasives add acid or base to a dispersion in which a core material made of manganese oxide is dispersed in an aqueous solution containing a raw material compound that is a raw material for the coating layer, thereby causing hydrolysis of the raw material compound. Thus, it is preferably produced by precipitating an oxide on the surface of the core material. In the following description, the case where the coating layer is silica is taken as an example.

シリカからなる被覆層を形成するときには、シリカ源として例えばケイ酸又はケイ酸塩を用いることができる。ケイ酸塩としては、例えばケイ酸ナトリウムなどのアルカリ金属のケイ酸塩を用いることができる。シリカ源としてケイ酸のアルカリ金属塩を用いる場合には、これを含む水溶液中に酸化マンガンからなる芯材を分散させて分散液を得る。この分散液に酸を加えpHを調整して、ケイ酸を加水分解させて芯材の表面にシリカを析出させる。   When forming the coating layer made of silica, for example, silicic acid or silicate can be used as a silica source. As the silicate, for example, an alkali metal silicate such as sodium silicate can be used. When an alkali metal salt of silicic acid is used as the silica source, a dispersion liquid is obtained by dispersing a core material made of manganese oxide in an aqueous solution containing this. Acid is added to this dispersion to adjust the pH, hydrolyzing silicic acid and precipitating silica on the surface of the core material.

シリカ源としてケイ酸(HSiO)を用いる場合には、これを含む水溶液中に酸化マンガンからなる芯材を分散させて分散液を得る。この分散液に塩基を加えpHを調整して、ケイ酸を加水分解させて芯材の表面にシリカを析出させる。 When silicic acid (H 2 SiO 3 ) is used as a silica source, a dispersion liquid is obtained by dispersing a core material made of manganese oxide in an aqueous solution containing the silica. A base is added to this dispersion to adjust the pH, thereby hydrolyzing silicic acid and precipitating silica on the surface of the core material.

被覆層がシリカに加えて例えばアルミナを含む場合には、シリカ源のほかにアルミナ源も前記水溶液中に溶解させておけばよい。アルミナ源としては例えばアルミン酸ナトリウム、塩化アルミニウムなどが挙げられる。   When the coating layer contains, for example, alumina in addition to silica, an alumina source may be dissolved in the aqueous solution in addition to the silica source. Examples of the alumina source include sodium aluminate and aluminum chloride.

上述したいずれの方法を採用する場合であっても、被覆層の厚みを調整するには、例えば添加するシリカ源の濃度や液温、保持時間を増減すればよい。また、被覆層を構成するシリカの微粒子の粒径を調整するには、例えば酸又はアルカリを加え液のpHを調整すればよい。   Regardless of which method described above is employed, in order to adjust the thickness of the coating layer, for example, the concentration, liquid temperature, and holding time of the silica source to be added may be increased or decreased. In order to adjust the particle size of the silica fine particles constituting the coating layer, for example, acid or alkali may be added to adjust the pH of the liquid.

以上の製造方法は被覆層がシリカからなる場合のものであったが、被覆層がそれ以外の酸化物、例えばチタニアやジルコニア又は酸化鉄を含む場合にも同様の手順で研摩砥粒を製造することができる。被覆層がチタニアを含む場合には、その原料化合物として例えば四塩化チタンなどを用いればよく、被覆層がジルコニアを含む場合には、その原料化合物として例えばオキシ塩化ジルコニウムなどを用いればよく、被覆層が酸化鉄を含む場合には、その原料化合物として例えば硫酸鉄などを用いればよい。   The above manufacturing method was a case where the coating layer was made of silica, but when the coating layer contains other oxides such as titania, zirconia, or iron oxide, abrasive grains are manufactured in the same procedure. be able to. When the coating layer contains titania, titanium tetrachloride or the like may be used as the raw material compound, and when the coating layer contains zirconia, zirconium oxychloride or the like may be used as the raw material compound. When iron contains iron oxide, for example, iron sulfate may be used as the raw material compound.

以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。特に断らない限り、「%」は「質量%」を意味する。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited to such examples. Unless otherwise specified, “%” means “mass%”.

〔実施例1〕
(1)研摩砥粒の製造
硫酸マンガン水溶液の電解分解によって陽極上に二酸化マンガンを析出させた。この二酸化マンガンを解砕機((株)パウレック製、アトマイザー)によって解砕した後、ジェットミル(日本ニューマチック社製、PJM−200SP)によって粉砕し、平均粒径D50が0.463μmの二酸化マンガン粒子を得た。この粒子を芯材として用いた。Siに換算して0.0079mol/Lのケイ酸ナトリウムを含む水溶液に、芯材を分散させて分散液とした。分散液中の芯材の割合は5%とした。この分散液に酸として硫酸を添加して、該分散液のpHを6.7に調整し、芯材の表面にシリカからなる被覆層を形成して、目的とする研摩砥粒を得た。この研摩砥粒における諸物性を以下の表1に示す。なお、レーザー回折散乱式粒度分布測定には、(株)堀場製作所のLA920を用いた。
[Example 1]
(1) Production of abrasive grains Manganese dioxide was deposited on the anode by electrolytic decomposition of an aqueous manganese sulfate solution. The manganese dioxide disintegrator (Co. Powrex Co., atomizer) was disintegrated by a jet mill (Japan Pneumatic Co., PJM-200SP) was pulverized by an average particle diameter D 50 of 0.463μm manganese dioxide Particles were obtained. These particles were used as a core material. The core material was dispersed in an aqueous solution containing 0.0079 mol / L sodium silicate in terms of Si to obtain a dispersion. The ratio of the core material in the dispersion was 5%. Sulfuric acid was added to the dispersion as an acid to adjust the pH of the dispersion to 6.7, and a coating layer made of silica was formed on the surface of the core material to obtain the intended abrasive grains. Various physical properties of the abrasive grains are shown in Table 1 below. In addition, LA920 of Horiba Ltd. was used for the laser diffraction scattering type particle size distribution measurement.

(2)研摩スラリーの製造
得られた研摩砥粒を、純水に分散させて研摩スラリーを得た。スラリー中の研摩材の割合は2%とした。スラリー中には分散剤は含まれていなかった。
(2) Production of polishing slurry The obtained polishing abrasive grains were dispersed in pure water to obtain a polishing slurry. The proportion of the abrasive in the slurry was 2%. No dispersant was contained in the slurry.

〔実施例2〕
実施例1で用いた芯材と同様のものを用いた。Siに換算して0.0079mol/Lのケイ酸(HSiO)を含む水溶液に、芯材を分散させて分散液とした。分散液中の芯材の割合は5%とした。この分散液に塩基として水酸化ナトリウムを添加して、該分散液のpHを6.1に調整し、芯材の表面にシリカからなる被覆層を形成して、目的とする研摩砥粒を得た。この研摩砥粒における諸物性を以下の表1に示す。これ以外は実施例1と同様にして研摩スラリーを得た。
[Example 2]
The same core material used in Example 1 was used. A core material was dispersed in an aqueous solution containing 0.0079 mol / L of silicic acid (H 2 SiO 3 ) in terms of Si to obtain a dispersion. The ratio of the core material in the dispersion was 5%. Sodium hydroxide is added as a base to this dispersion, the pH of the dispersion is adjusted to 6.1, and a coating layer made of silica is formed on the surface of the core material to obtain the intended abrasive grain. It was. Various physical properties of the abrasive grains are shown in Table 1 below. A polishing slurry was obtained in the same manner as in Example 1 except for this.

〔実施例3〕
実施例1で用いた芯材と同様のものを用いた。Siに換算して0.0040mol/Lのケイ酸(HSiO)を含む水溶液に、芯材を分散させて分散液とした。分散液中の芯材の割合は5%とした。この分散液に塩基として水酸化ナトリウムを添加して、該分散液のpHを6.1に調整し、芯材の表面にシリカからなる被覆層を形成して、目的とする研摩砥粒を得た。この研摩砥粒における諸物性を以下の表1に示す。これ以外は実施例1と同様にして研摩スラリーを得た。
Example 3
The same core material used in Example 1 was used. The core material was dispersed in an aqueous solution containing 0.0040 mol / L of silicic acid (H 2 SiO 3 ) in terms of Si to obtain a dispersion. The ratio of the core material in the dispersion was 5%. Sodium hydroxide is added as a base to this dispersion, the pH of the dispersion is adjusted to 6.1, and a coating layer made of silica is formed on the surface of the core material to obtain the intended abrasive grain. It was. Various physical properties of the abrasive grains are shown in Table 1 below. A polishing slurry was obtained in the same manner as in Example 1 except for this.

〔実施例4〕
実施例1で用いた芯材と同様のものを用いた。Siに換算して0.0119mol/Lのケイ酸(HSiO)を含む水溶液に、芯材を分散させて分散液とした。分散液中の芯材の割合は5%とした。この分散液に塩基として水酸化ナトリウムを添加して、該分散液のpHを6.1に調整し、芯材の表面にシリカからなる被覆層を形成して、目的とする研摩砥粒を得た。この研摩砥粒における諸物性を以下の表1に示す。これ以外は実施例1と同様にして研摩スラリーを得た。
Example 4
The same core material used in Example 1 was used. The core material was dispersed in an aqueous solution containing 0.0119 mol / L of silicic acid (H 2 SiO 3 ) in terms of Si to obtain a dispersion. The ratio of the core material in the dispersion was 5%. Sodium hydroxide is added as a base to this dispersion, the pH of the dispersion is adjusted to 6.1, and a coating layer made of silica is formed on the surface of the core material to obtain the intended abrasive grain. It was. Various physical properties of the abrasive grains are shown in Table 1 below. A polishing slurry was obtained in the same manner as in Example 1 except for this.

〔実施例5〕
実施例1で用いた芯材と同様の工程で製造し、平均粒径D50が0.447μmの二酸化マンガン粒子を芯材として用いた。Siに換算して0.0079mol/Lのケイ酸ナトリウム、及びAlに換算して0.0012mol/Lのケイ酸アルミニウムを含む水溶液に、芯材を分散させて分散液とした。分散液中の芯材の割合は5%とした。この分散液に酸として硫酸を添加して、該分散液のpHを6.8に調整し、芯材の表面にシリカ及びアルミナからなる被覆層を形成して、目的とする研摩材を得た。この研摩材における諸物性を以下の表1に示す。これ以外は実施例1と同様にして研摩スラリーを得た。シリカとアルミナとの割合は、Si換算のシリカに対するAl換算のアルミナの割合が25%であった。
Example 5
Prepared in the same process as the core material used in Example 1, the average particle diameter D 50 was used manganese dioxide particles 0.447μm as the core material. The core material was dispersed in an aqueous solution containing 0.0079 mol / L sodium silicate in terms of Si and 0.0012 mol / L aluminum silicate in terms of Al to obtain a dispersion. The ratio of the core material in the dispersion was 5%. Sulfuric acid was added to the dispersion as an acid to adjust the pH of the dispersion to 6.8, and a coating layer made of silica and alumina was formed on the surface of the core material to obtain the intended abrasive. . Various physical properties of this abrasive are shown in Table 1 below. A polishing slurry was obtained in the same manner as in Example 1 except for this. As for the ratio of silica and alumina, the ratio of alumina in terms of Al to silica in terms of Si was 25%.

〔実施例6〕
実施例5で用いた芯材と同様のものを用いた。Siに換算して0.0079mol/Lのケイ酸(HSiO)、及びAlに換算して0.0012mol/Lのケイ酸アルミニウムを含む水溶液に、芯材を分散させて分散液とした。分散液中の芯材の割合は5%とした。この分散液に塩基として水酸化ナトリウムを添加して、該分散液のpHを6.5に調整し、芯材の表面にシリカ及びアルミナからなる被覆層を形成して、目的とする研摩材を得た。この研摩材における諸物性を以下の表1に示す。これ以外は実施例1と同様にして研摩スラリーを得た。シリカとアルミナとの割合は、Si換算のシリカに対するAl換算のアルミナの割合が25%であった。
Example 6
The same core material used in Example 5 was used. A core material is dispersed in an aqueous solution containing 0.0079 mol / L of silicic acid (H 2 SiO 3 ) in terms of Si and 0.0012 mol / L of aluminum silicate in terms of Al to obtain a dispersion. . The ratio of the core material in the dispersion was 5%. Sodium hydroxide is added as a base to this dispersion, the pH of the dispersion is adjusted to 6.5, a coating layer made of silica and alumina is formed on the surface of the core, and the desired abrasive is obtained. Obtained. Various physical properties of this abrasive are shown in Table 1 below. A polishing slurry was obtained in the same manner as in Example 1 except for this. As for the ratio of silica and alumina, the ratio of alumina in terms of Al to silica in terms of Si was 25%.

〔比較例1〕
実施例1で用いた芯材に被覆層を形成せず、該芯材をそのまま研摩砥粒として用いた。これ以外は実施例1と同様にして研摩スラリーを得た。
[Comparative Example 1]
A coating layer was not formed on the core material used in Example 1, and the core material was directly used as an abrasive grain. A polishing slurry was obtained in the same manner as in Example 1 except for this.

〔評価1〕
実施例及び比較例で得られた研摩スラリーを用い、SiCウエハーの研摩を行った。研摩対象は直径2インチのラッピングされた4H−SiC基板を用いた。研摩は基板のSi面に対して行った。研摩装置として、エム・エー・ティー社製片面研摩機BC−15を用いた。定盤に取り付ける研摩パッドには、ニッタ・ハース社製SUBA#600を用いた。定盤の回転数は60rpm、外周部速度は7163cm/minに設定した。またキャリア回転数は60rpm、外周部速度は961cm/minに設定した。研摩スラリーを0.2L/minの速度で供給し、その状態下に3psiの荷重を加えて化学機械研摩(CMP)を行った。研摩時間は2時間とした。研摩レート(nm/min)は、研摩前後のウエハーの質量差とSiCの密度(3.10g/cm)とから算出した。結果を表1に示す。
[Evaluation 1]
The SiC wafer was polished using the polishing slurry obtained in the examples and comparative examples. The object to be polished was a lapped 4H—SiC substrate having a diameter of 2 inches. Polishing was performed on the Si surface of the substrate. As a polishing apparatus, a single-side polishing machine BC-15 manufactured by MT Corporation was used. SUBA # 600 manufactured by Nitta Haas was used as the polishing pad attached to the surface plate. The rotation speed of the platen was set to 60 rpm, and the outer peripheral speed was set to 7163 cm / min. The carrier rotation speed was set to 60 rpm, and the outer peripheral speed was set to 961 cm / min. The polishing slurry was supplied at a rate of 0.2 L / min, and a 3 psi load was applied under the condition to perform chemical mechanical polishing (CMP). The polishing time was 2 hours. The polishing rate (nm / min) was calculated from the mass difference between the wafers before and after polishing and the density of SiC (3.10 g / cm 3 ). The results are shown in Table 1.

〔評価2〕
実施例1及び2並びに比較例1で得られた研摩スラリーを、50℃に保たれた恒温槽中で21日間保存した。保存後の研摩スラリー中の研摩砥粒の状態を走査型電子顕微鏡で観察してデンドライトの発生の有無を調べた。結果を表1及び図1ないし3に示す。
表1におけるデンドライトの発生の評価については、研摩砥粒をSEM観察して縦軸と横軸との比を測定した際に、デンドライトが4μm×3μm中の1つの視野中にいくつ見られるかで判定した。
[Evaluation 2]
The polishing slurry obtained in Examples 1 and 2 and Comparative Example 1 was stored for 21 days in a thermostatic bath maintained at 50 ° C. The state of the abrasive grains in the polishing slurry after storage was observed with a scanning electron microscope to examine whether dendrites were generated. The results are shown in Table 1 and FIGS.
Regarding the evaluation of dendrite generation in Table 1, when the abrasive grains are observed by SEM and the ratio of the vertical axis to the horizontal axis is measured, how many dendrites are seen in one field of view of 4 μm × 3 μm. Judged.

表1に示す結果から明らかなとおり、各実施例で得られた研摩材を含む研摩スラリーを用いてSiCウエハーを研摩すると、比較例で得られた研摩材を含む研摩スラリーを用いて研摩した場合に比べて、研摩レートが高くなることが判る。また、図1に示す結果から明らかなとおり、実施例1及び2で得られた研摩材では、デンドライト状の結晶が観察されないか、又は僅かに観察される程度である。   As is clear from the results shown in Table 1, when a SiC wafer was polished using the polishing slurry containing the abrasive obtained in each example, the polishing was performed using the polishing slurry containing the abrasive obtained in the comparative example. It can be seen that the polishing rate is higher than that. Further, as is apparent from the results shown in FIG. 1, in the abrasives obtained in Examples 1 and 2, dendritic crystals are not observed or are only slightly observed.

以上の評価とは別に、実施例1及び比較例1で用いた研摩砥粒について5時間の煮沸を行った後に、該研摩砥粒をSEM観察して縦軸と横軸との比を測定したところ、実施例1では、当該比が1.5以上である針状形態を有するものが、4μm×3μm中の視野10か所において1視野当たり5個以下観察された。観察した研摩砥粒の個数に対する非針状形態の研摩砥粒の個数は74%以上であった。これに対して比較例1では、当該比が1.5以上である針状形態を有するものが、4μm×3μm中の視野10か所において1視野当たり9個以上観察された。すなわち比較例1では、針状形態の研摩砥粒が数多く観察され、観察した研摩砥粒の個数に対する非針状形態の研摩砥粒の個数は57%以下であった。またSiCウエハーを研摩した際の研摩レートは比較例1に対し、実施例1は明確に高い値を示した。   Apart from the above evaluation, the abrasive grains used in Example 1 and Comparative Example 1 were boiled for 5 hours, and then the abrasive grains were observed by SEM to measure the ratio between the vertical axis and the horizontal axis. However, in Example 1, no more than 5 needles having a needle-like shape with a ratio of 1.5 or more were observed per visual field at 10 visual fields in 4 μm × 3 μm. The number of non-acicular abrasive grains was 74% or more with respect to the number of abrasive grains observed. On the other hand, in Comparative Example 1, 9 or more needles having a needle-like shape with a ratio of 1.5 or more were observed per field of view in 10 fields of view of 4 μm × 3 μm. That is, in Comparative Example 1, many needle-shaped abrasive grains were observed, and the number of non-needle-shaped abrasive grains was 57% or less with respect to the observed number of abrasive grains. Further, the polishing rate when polishing the SiC wafer was clearly higher in Example 1 than in Comparative Example 1.

Claims (10)

芯材に二酸化マンガンを含有し、前記芯材の表面にケイ素の酸化物を含む被覆層が存在する研摩砥粒を含む研摩材であって、
前記研摩砥粒のレーザー回折散乱式粒度分布測定法による累積体積50容量%における体積累積粒径D 50 が0.3μm以上3.0μmであり、
前記研摩砥粒は、該研摩砥粒を含むスラリーを5時間煮沸した後に、該研摩砥粒を走査型電子顕微鏡により観察したとき、縦軸と横軸との比が1.0以上1.5未満である、研摩材。
Abrasive material containing abrasive grains containing manganese dioxide in the core material, and having a coating layer containing a silicon oxide on the surface of the core material,
The abrasive grains volume cumulative particle diameter D 50 in the cumulative volume 50% by volume by laser diffraction scattering particle size distribution measurement method is 3.0μm or 0.3 [mu] m,
The abrasive grains have a ratio of the vertical axis to the horizontal axis of 1.0 to 1.5 when the slurry containing the abrasive grains is boiled for 5 hours and the abrasive grains are observed with a scanning electron microscope. Abrasive that is less than.
前記研摩砥粒は、芯材の質量に対する被覆層の質量の比率である〔被覆層の質量/芯材の質量〕の値が0.3質量%以上30質量%以下である請求項1に記載の研摩材。   2. The polishing abrasive according to claim 1, wherein the value of [mass of coating layer / mass of core material], which is a ratio of the mass of the coating layer to the mass of the core material, is 0.3% by mass or more and 30% by mass or less. Abrasive material. 前記被覆層の厚さが0.2nm以上500nm以下である請求項1又は2に記載の研摩材。   The abrasive according to claim 1 or 2, wherein the coating layer has a thickness of 0.2 nm to 500 nm. 前記芯材のレーザー回折散乱式粒度分布測定法による累積体積50容量%における体積累積粒径D 50 が0.08μm以上1.0μm以下である請求項1ないし3のいずれか一項に記載の研摩材。 Abrasive according to any one of to a volume cumulative particle diameter D 50 in the cumulative volume 50% by volume by laser diffraction scattering particle size distribution measuring method of the core material claims 1 or less 1.0μm or 0.08 .mu.m 3 Wood. 〔被覆層の厚み(nm)/芯材の大きさ(nm)〕の値が0.002以上0.0074以下である請求項1ないし4のいずれか一項に記載の研摩材。 The abrasive according to any one of claims 1 to 4, wherein a value of [thickness of coating layer (nm) / size of core material (nm)] is 0.002 or more and 0.0074 or less . 前記被覆層がアルミニウムの酸化物を更に含む請求項1ないし5のいずれか一項に記載の研摩材。 The abrasive according to any one of claims 1 to 5, wherein the coating layer further contains an oxide of aluminum . SiCの研摩に用いられる請求項1ないし6のいずれか一項に記載の研摩材。   The abrasive according to any one of claims 1 to 6, which is used for polishing SiC. 請求項1ないし7のいずれか一項に記載の研摩材を含む研摩スラリー。   A polishing slurry comprising the abrasive according to any one of claims 1 to 7. 請求項1に記載の研摩材に含まれる研摩砥粒の製造方法であって、
ケイ酸のアルカリ金属塩を含む水溶液中に二酸化マンガンからなる芯材が分散してなる分散液に酸を添加して、該芯材の表面にSiOを析出させる、研摩砥粒の製造方法。
It is a manufacturing method of the abrasive grain contained in the abrasive of Claim 1 ,
A method for producing abrasive grains, wherein an acid is added to a dispersion obtained by dispersing a core material composed of manganese dioxide in an aqueous solution containing an alkali metal salt of silicic acid, and SiO 2 is deposited on the surface of the core material.
請求項1に記載の研摩材に含まれる研摩砥粒の製造方法であって、
ケイ酸を含む水溶液中に二酸化マンガンからなる芯材が分散してなる分散液に、塩基を添加して、該芯材の表面にSiOを析出させる、研摩砥粒の製造方法。
It is a manufacturing method of the abrasive grain contained in the abrasive of Claim 1 ,
A method for producing abrasive grains, wherein a base is added to a dispersion obtained by dispersing a core material composed of manganese dioxide in an aqueous solution containing silicic acid, and SiO 2 is precipitated on the surface of the core material.
JP2013208660A 2013-10-03 2013-10-03 Abrasive material, method for producing the same, and abrasive slurry containing the same Active JP6033750B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013208660A JP6033750B2 (en) 2013-10-03 2013-10-03 Abrasive material, method for producing the same, and abrasive slurry containing the same
PCT/JP2014/072781 WO2015049942A1 (en) 2013-10-03 2014-08-29 Abrasive material, method for producing same, and abrasive slurry containing same
EP14850862.5A EP3053980B1 (en) 2013-10-03 2014-08-29 Abrasive material, method for producing same, and abrasive slurry containing same
US15/021,434 US9873824B2 (en) 2013-10-03 2014-08-29 Abrasive material, method for producing same, and abrasive slurry containing same
TW103131795A TWI628271B (en) 2013-10-03 2014-09-15 Abrasive material, method for producing the same, and polishing slurry containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013208660A JP6033750B2 (en) 2013-10-03 2013-10-03 Abrasive material, method for producing the same, and abrasive slurry containing the same

Publications (2)

Publication Number Publication Date
JP2015071715A JP2015071715A (en) 2015-04-16
JP6033750B2 true JP6033750B2 (en) 2016-11-30

Family

ID=52778537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013208660A Active JP6033750B2 (en) 2013-10-03 2013-10-03 Abrasive material, method for producing the same, and abrasive slurry containing the same

Country Status (5)

Country Link
US (1) US9873824B2 (en)
EP (1) EP3053980B1 (en)
JP (1) JP6033750B2 (en)
TW (1) TWI628271B (en)
WO (1) WO2015049942A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3014000A4 (en) * 2013-06-28 2017-04-12 Saint-Gobain Ceramics & Plastics Inc. Nickel coated diamond particles and method of making said particles
CN106645249A (en) * 2016-11-16 2017-05-10 上海大学 Method for representing stereo-morphology of solidified dendritic crystal
EP3561858B1 (en) * 2016-12-26 2022-10-19 Fujimi Incorporated Polishing composition and polishing method
CN112945688B (en) * 2021-02-20 2022-08-09 唐山钢铁集团有限责任公司 Method for displaying silicon-rich phase three-dimensional structure in aluminum-silicon coating by metallographic method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4152712A (en) * 1977-09-19 1979-05-01 Texas Instruments Incorporated Optoelectronic displays using uniformly spaced arrays of semisphere light emitting diodes and method of fabricating same
US6652967B2 (en) * 2001-08-08 2003-11-25 Nanoproducts Corporation Nano-dispersed powders and methods for their manufacture
JP4190198B2 (en) * 2002-03-27 2008-12-03 日揮触媒化成株式会社 Abrasive particles and abrasives
US6827639B2 (en) 2002-03-27 2004-12-07 Catalysts & Chemicals Industries Co., Ltd. Polishing particles and a polishing agent
CN1784292A (en) * 2003-05-09 2006-06-07 戴蒙得创新股份有限公司 Abrasive particles having coatings with tortuous surface topography
US9368367B2 (en) * 2009-04-13 2016-06-14 Sinmat, Inc. Chemical mechanical polishing of silicon carbide comprising surfaces
JP4940289B2 (en) * 2009-12-11 2012-05-30 三井金属鉱業株式会社 Abrasive
WO2013035545A1 (en) * 2011-09-09 2013-03-14 旭硝子株式会社 Abrasive grains, manufacturing process therefor, polishing slurry and process for manufacturing glass products

Also Published As

Publication number Publication date
WO2015049942A1 (en) 2015-04-09
EP3053980A1 (en) 2016-08-10
JP2015071715A (en) 2015-04-16
EP3053980B1 (en) 2020-10-21
TWI628271B (en) 2018-07-01
US9873824B2 (en) 2018-01-23
EP3053980A4 (en) 2017-05-17
US20160222265A1 (en) 2016-08-04
TW201520324A (en) 2015-06-01

Similar Documents

Publication Publication Date Title
TWI573863B (en) Polishing slurry including zirconia particles and a method of using the polishing slurry
JP6033750B2 (en) Abrasive material, method for producing the same, and abrasive slurry containing the same
CN101909816A (en) Polishing slurry, process for producing same, method of polishing, and process for producing glass substrate for magnetic disk
JP2012011526A (en) Abrasive and manufacturing method thereof
JP6130316B2 (en) Polishing composition, polishing method, and method for producing polishing composition
JPWO2006123562A1 (en) Method for producing polishing composition
JP5979340B1 (en) Composite particle for polishing, method for producing composite particle for polishing, and slurry for polishing
JP2013111725A (en) Abrasive and method of manufacturing the same
KR102395418B1 (en) Polishing composition and polishing method
JP2017001927A (en) Composite particle for polishing, manufacturing method of composite particle for polishing and slurry for polishing
JP2019127405A (en) Ceria-based composite hollow microparticle dispersion, production method thereof, and polishing abrasive grain dispersion comprising ceria-based composite hollow microparticle dispersion
CN107075345B (en) Sapphire plate grinding Liquid composition
JP6460090B2 (en) Method for producing composite metal oxide polishing material and composite metal oxide polishing material
Fu et al. Surface charge tuning of ceria particles by titanium doping: Towards significantly improved polishing performance
JP5248096B2 (en) Polishing liquid composition
TWI705947B (en) Grinding method of negatively charged substrate and manufacturing method of negatively charged substrate with high surface smoothness
TW201533184A (en) Polishing agent, polishing method, and manufacturing method of semiconductor integrated circuit device
JP2020050571A (en) Ceria-based composite fine particle dispersion, method for producing the same, and abrasive grain dispersion for polishing containing the same
JP5861277B2 (en) Zirconia abrasive
JP2007116081A (en) Ternary composite oxide abrasive and method of polishing substrate
JP2015140402A (en) Free abrasive grain, abrasive material for polishing free abrasive grain and manufacturing method therefor
JP2004315246A (en) Partially stabilized zinc oxide spherical body and method of manufacturing the same
JP2012236273A (en) Polishing agent for polishing free abrasive grain and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150527

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161026

R150 Certificate of patent or registration of utility model

Ref document number: 6033750

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250