JP6032622B2 - Colloidal gold solution and method for producing the same - Google Patents

Colloidal gold solution and method for producing the same Download PDF

Info

Publication number
JP6032622B2
JP6032622B2 JP2014503878A JP2014503878A JP6032622B2 JP 6032622 B2 JP6032622 B2 JP 6032622B2 JP 2014503878 A JP2014503878 A JP 2014503878A JP 2014503878 A JP2014503878 A JP 2014503878A JP 6032622 B2 JP6032622 B2 JP 6032622B2
Authority
JP
Japan
Prior art keywords
gold
solution
colloid
colloidal
carboxylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014503878A
Other languages
Japanese (ja)
Other versions
JPWO2013133315A1 (en
Inventor
宏昭 櫻井
宏昭 櫻井
健司 古賀
健司 古賀
木内 正人
正人 木内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Publication of JPWO2013133315A1 publication Critical patent/JPWO2013133315A1/en
Application granted granted Critical
Publication of JP6032622B2 publication Critical patent/JP6032622B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0545Dispersions or suspensions of nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/05Submicron size particles
    • B22F2304/054Particle size between 1 and 100 nm

Description

本発明は、安定な金コロイド溶液及びその製造方法に関する。   The present invention relates to a stable colloidal gold solution and a method for producing the same.

近年、金ナノ粒子は触媒、医薬、センシング、エレクトロニクス、色材、塗料など多くの分野で用いられている。これらの用途では、水などの溶媒中に金ナノ粒子を安定に分散した金コロイド溶液を原料として用いることが多い。金コロイド溶液は塩化金酸(HAuCl4)を原料として製造する場合がほとんどであり、塩化金酸を還元して金ナノ粒子を得た段階では、多量の塩化物イオンが溶液中に残存している。In recent years, gold nanoparticles have been used in many fields such as catalysts, medicine, sensing, electronics, color materials, paints and the like. In these applications, a gold colloid solution in which gold nanoparticles are stably dispersed in a solvent such as water is often used as a raw material. Most colloidal gold solutions are produced using chloroauric acid (HAuCl 4 ) as a raw material, and a large amount of chloride ions remain in the solution when gold nanoparticles are obtained by reducing chloroauric acid. Yes.

金ナノ粒子は導電性ペーストや触媒としての利用が検討されているが、金コロイド溶液中に塩化物イオンが残存すると、腐食、触媒毒等の原因となり好ましくない。そこで、脱塩処理のための方法が開発されている。しかしながら、例えばイオン交換樹脂を用いて脱塩する場合、塩化物イオンと同様に負の表面電荷を有する金コロイドも相当量吸着されるため、コロイド中の金ナノ粒子濃度が顕著に低下するという弊害が指摘されている(例えば、特許文献1を参照)。   Gold nanoparticles have been studied for use as conductive pastes and catalysts. However, if chloride ions remain in the gold colloid solution, it is not preferable because it causes corrosion, catalyst poisoning, and the like. Therefore, a method for desalting treatment has been developed. However, when desalting using, for example, an ion exchange resin, a considerable amount of gold colloid having a negative surface charge is adsorbed in the same manner as chloride ions, so that the concentration of gold nanoparticles in the colloid is significantly reduced. Has been pointed out (see, for example, Patent Document 1).

以上のような塩化物イオンの問題を避けるため、塩化物イオン等のハロゲン化物イオンを含まない金属塩から金属コロイドを製造する方法が提案されている(例えば、特許文献2を参照)。しかしながら、特許文献2をはじめ一般的な貴金属コロイド調製法においては、金属塩または金属錯体を水に溶解させた後、保護剤及び還元剤を加える手順となっているため、水に完全に溶解しない金属塩または金属錯体を使用することは考慮されていない。   In order to avoid the above-mentioned problem of chloride ions, a method of producing a metal colloid from a metal salt that does not contain halide ions such as chloride ions has been proposed (see, for example, Patent Document 2). However, in general precious metal colloid preparation methods including Patent Document 2, the metal salt or metal complex is dissolved in water, and then a protective agent and a reducing agent are added. The use of metal salts or metal complexes is not considered.

また、酢酸金をアルキルジオールの液中に加え、オレイン酸とオレイルアミンを加えて180℃に加熱することにより金ナノ粒子を得た例がある(例えば、非特許文献1を参照)。しかしながら、酢酸金は水に溶けにくく、水系コロイドの原料としては使用できないと認識されているため、酢酸金を原料とし、水を溶媒とするコロイドについては未だ報告されていない。このような背景から、金コロイドの原料としては塩化金酸以外殆ど用いられていないのが現状である。   In addition, there is an example in which gold nanoparticles are obtained by adding gold acetate to an alkyldiol solution, adding oleic acid and oleylamine, and heating to 180 ° C. (see, for example, Non-Patent Document 1). However, it is recognized that gold acetate is hardly soluble in water and cannot be used as a raw material for aqueous colloids. Therefore, a colloid using gold acetate as a raw material and water as a solvent has not yet been reported. Under such circumstances, the gold colloid material is rarely used except for chloroauric acid.

特開2009−120901号公報JP 2009-120901 A 特開平11−151436号公報Japanese Patent Laid-Open No. 11-151436

Monodispersed Core−Shell Fe3O4@Au Nanoparticles,L.Wan et al.,J.Phys.Chem.B,109(2005)21593−21601.Monodispersed Core-Shell Fe3O4 @ Au Nanoparticles, L. Wan et al. , J .; Phys. Chem. B, 109 (2005) 21593-21601.

本発明は、水を溶媒とする安定な金コロイド溶液を提供することを主な目的とする。また、本発明はこのような金コロイド溶液を簡便に調製することが可能な方法を提供することを主な目的とする。   The main object of the present invention is to provide a stable colloidal gold solution using water as a solvent. Another object of the present invention is to provide a method by which such a colloidal gold solution can be easily prepared.

本発明者らは、上記課題を解決すべく鋭意検討を行った結果、酢酸金の水分散液にエタノールを加えると、室温下で数分後に赤色の金コロイド溶液が得られることを見出した。本発明は、このような知見に基づいて更に研究を重ねた結果完成されたものである。即ち、本発明は下記態様の金コロイド溶液及び金コロイド溶液の製造方法を提供する。
項1.水中に粒子径100nm以下の金ナノ粒子と、下記一般式(a)で表わされる陰イオン
R−COO- (a)
(式中、Rは炭素数1〜4の直鎖状又は分岐鎖状アルキル基を示す)
を含む、金コロイド溶液。
項2.前記陰イオンが酢酸イオンである、項1に記載の金コロイド溶液。
項3.更に、保護コロイドを含む項1又は2に記載の金コロイド溶液。
項4.前記保護コロイドがポリビニルピロリドン、ポリエチレングリコール、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリビニルアルコール及びカルボキシメチルセルロースからなる群より選択される少なくとも1種である、項1〜3のいずれかに記載の金コロイド溶液。
項5.更に、1級水酸基及び/又は2級水酸基を有するアルコールからなる還元剤を含む項1〜4のいずれかに記載の金コロイド溶液。
項6.前記金ナノ粒子の濃度が0.0001〜50重量%である、項1〜5のいずれかに記載の金コロイド溶液。
項7.塩化物イオンを実質的に含まない、請求項1〜6のいずれかに記載の金コロイド溶液。
項8.下記工程を含む金コロイド溶液の製造方法:
(i)金カルボキシラートを水に分散させて分散液を調製する工程;及び
(ii)前記工程(i)で得られた分散液において、金カルボキシラートに還元剤を作用させて還元することにより金コロイド溶液を得る工程。
項9.前記還元が、1級水酸基及び/又は2級水酸基を有するアルコール、ポリビニルピロリドン、ポリビニルアルコール、ポリエチレングリコール、ゼラチン、デンプン、デキストリン、カルボキシメチルセルロース、メチルセルロース並びにエチルセルロースからなる群より選択される少なくとも1種を用いて行われる、項8に記載の金コロイド溶液の製造方法。
項10.前記金カルボキシラートが酢酸金である、項8又は9に記載の方法。
項11.前記分散液が保護コロイドを含む、項8〜10のいずれかに記載の方法。
項12.前記保護コロイドがポリビニルピロリドン、ポリエチレングリコール、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリビニルアルコール及びカルボキシメチルセルロースからなる群より選択される少なくとも1種である、項8〜11のいずれかに記載の方法。
As a result of intensive studies to solve the above problems, the present inventors have found that when ethanol is added to a gold acetate aqueous dispersion, a red colloidal gold solution can be obtained after several minutes at room temperature. The present invention has been completed as a result of further research based on such knowledge. That is, the present invention provides a colloidal gold solution and a method for producing the colloidal gold solution of the following modes.
Item 1. Gold nanoparticles having a particle diameter of 100 nm or less in water and an anion R—COO (a) represented by the following general formula (a)
(Wherein R represents a linear or branched alkyl group having 1 to 4 carbon atoms)
A colloidal gold solution.
Item 2. Item 2. The colloidal gold solution according to Item 1, wherein the anion is an acetate ion.
Item 3. Item 3. The colloidal gold solution according to Item 1 or 2, further comprising a protective colloid.
Item 4. Item 4. The colloidal gold solution according to any one of Items 1 to 3, wherein the protective colloid is at least one selected from the group consisting of polyvinylpyrrolidone, polyethylene glycol, polyacrylic acid, sodium polyacrylate, polyvinyl alcohol, and carboxymethylcellulose. .
Item 5. Item 5. The colloidal gold solution according to any one of Items 1 to 4, further comprising a reducing agent comprising an alcohol having a primary hydroxyl group and / or a secondary hydroxyl group.
Item 6. Item 6. The colloidal gold solution according to any one of Items 1 to 5, wherein the concentration of the gold nanoparticles is 0.0001 to 50% by weight.
Item 7. The gold colloid solution in any one of Claims 1-6 which does not contain a chloride ion substantially.
Item 8. A method for producing a colloidal gold solution comprising the following steps:
(I) a step of preparing a dispersion by dispersing gold carboxylate in water; and (ii) by reducing the gold carboxylate by acting a reducing agent in the dispersion obtained in step (i). A step of obtaining a colloidal gold solution.
Item 9. The reduction uses at least one selected from the group consisting of alcohols having primary hydroxyl groups and / or secondary hydroxyl groups, polyvinyl pyrrolidone, polyvinyl alcohol, polyethylene glycol, gelatin, starch, dextrin, carboxymethyl cellulose, methyl cellulose, and ethyl cellulose. Item 9. A method for producing a colloidal gold solution according to Item 8.
Item 10. Item 10. The method according to Item 8 or 9, wherein the gold carboxylate is gold acetate.
Item 11. Item 11. The method according to any one of Items 8 to 10, wherein the dispersion contains a protective colloid.
Item 12. Item 12. The method according to any one of Items 8 to 11, wherein the protective colloid is at least one selected from the group consisting of polyvinylpyrrolidone, polyethylene glycol, polyacrylic acid, sodium polyacrylate, polyvinyl alcohol, and carboxymethylcellulose.

本発明によれば、沈澱等を生じることなく、長期に亘って安定な金コロイド溶液が提供される。より具体的には、金カルボキシラートを金ナノ粒子の供給源として用いることにより、塩化物イオンを実質的に含むことなく、前記式(a)で示される陰イオンが金ナノ粒子表面に吸着することによって水中に安定に分散された金コロイド溶液が提供される。   According to the present invention, a colloidal gold solution that is stable over a long period of time without causing precipitation or the like is provided. More specifically, by using gold carboxylate as a source of gold nanoparticles, the anion represented by the formula (a) is adsorbed on the gold nanoparticle surface without substantially containing chloride ions. This provides a colloidal gold solution that is stably dispersed in water.

更に、本発明の金コロイド溶液の製造方法によれば、塩化物イオンを含まない安定な金コロイド溶液を得ることができる。従って、塩化物イオンを除去する後処理の必要がなく、簡便且つ高効率に高濃度の金コロイド溶液を得ることができる。また、本発明の方法によれば製造過程で粗大粒子を副生することも無い。   Furthermore, according to the method for producing a colloidal gold solution of the present invention, a stable colloidal gold solution containing no chloride ions can be obtained. Therefore, there is no need for post-treatment to remove chloride ions, and a highly concentrated gold colloid solution can be obtained simply and efficiently. Further, according to the method of the present invention, coarse particles are not produced as a by-product in the production process.

従来、金属コロイドの調製条件としては金属塩が完全に溶解した溶液を出発点とするのが通常であり、難溶性金属塩を用いて金属コロイドを調製した例は殆ど報告されていない。特に金コロイド溶液に関し、原料として難溶性金属塩を用いて高濃度金コロイド溶液を得たとの報告例はこれまでになかった。これに対し、本発明によれば簡単な系で高濃度の金コロイド溶液を調製することが可能である。   Conventionally, as a preparation condition of a metal colloid, a solution in which a metal salt is completely dissolved is usually used as a starting point, and few examples of preparing a metal colloid using a hardly soluble metal salt have been reported. In particular, with respect to a colloidal gold solution, there has been no report of obtaining a highly concentrated colloidal gold solution using a hardly soluble metal salt as a raw material. On the other hand, according to the present invention, it is possible to prepare a gold colloid solution having a high concentration with a simple system.

図1は、実施例1において酢酸金より調製した金コロイドのUV−VISスペクトルを示すグラフである。1 is a graph showing a UV-VIS spectrum of a colloidal gold prepared from gold acetate in Example 1. FIG. 図2は、実施例1において酢酸金より調製し、PVPを除去した金コロイドのTEM写真および金粒子のサイズ分布を示すグラフである。FIG. 2 is a graph showing a TEM photograph of gold colloid prepared from gold acetate in Example 1 and from which PVP has been removed, and the size distribution of gold particles. 図3は、実施例2において酢酸金より調製した金コロイドのUV−VISスペクトルを示すグラフである。3 is a graph showing the UV-VIS spectrum of colloidal gold prepared from gold acetate in Example 2. FIG. 図4は、実施例2において酢酸金より調製し、PVPを除去した金コロイドのTEM写真および金粒子のサイズ分布を示すグラフである。FIG. 4 is a graph showing a TEM photograph of gold colloid prepared from gold acetate in Example 2 and from which PVP has been removed, and the size distribution of gold particles.

1.金コロイド溶液
本発明の金コロイド溶液は、水中に粒子径100nm以下の金ナノ粒子と下記一般式(a)で表わされる陰イオン
R−COO- (a)
(式中、Rは炭素数1〜4の直鎖状又は分岐鎖状アルキル基を示す)
を含むことを特徴とする。
1. Colloidal gold solution The colloidal gold solution of the present invention comprises a gold nanoparticle having a particle diameter of 100 nm or less in water and an anion R-COO (a) represented by the following general formula (a):
(Wherein R represents a linear or branched alkyl group having 1 to 4 carbon atoms)
It is characterized by including.

本明細書において、上記一般式(a)で表わされる陰イオンを「カルボキシラート(carboxylate)」と呼び、その金塩を「金カルボキシラート」と呼ぶことがある。   In the present specification, the anion represented by the general formula (a) may be referred to as “carboxylate” and its gold salt may be referred to as “gold carboxylate”.

金コロイド溶液中に塩化物イオン等のハロゲン化物イオンが含まれると、例えば導電性ペーストや触媒として使用された場合に腐食や触媒毒等の問題を生じることから、金ナノ粒子の供給源としてはハロゲン化物イオンを含まない金化合物を用いることが好ましい。本発明において金ナノ粒子の供給源としては、カルボキシル化された金(即ち、金カルボキシラート)、好ましくはカルボキシル化された3価の金を使用することが好ましい。このような金化合物として、具体的には、Au(CH3COO)3、Au(C25COO)3、Au(HCOO)3等が例示される。金カルボキシラートには、塩基性塩であるAu(OH)(CH3COO)2、Au(OH)2(CH3COO)等が含まれていても良い。金カルボキシラートとして、これらの中から1種を単独で、又は2種以上を組合せて用いてもよい。これらの金カルボキシラートの中でも入手が容易で水に対して適度な溶解度を有するという観点から、好ましくは酢酸金(Au(CH3COO)3)が挙げられる。When halide ions such as chloride ions are contained in the colloidal gold solution, problems such as corrosion and catalyst poisoning occur when used as a conductive paste or catalyst. It is preferable to use a gold compound that does not contain halide ions. In the present invention, it is preferable to use carboxylated gold (that is, gold carboxylate), preferably carboxylated trivalent gold as a source of gold nanoparticles. Specific examples of such a gold compound include Au (CH 3 COO) 3 , Au (C 2 H 5 COO) 3 , and Au (HCOO) 3 . The gold carboxylate may contain a basic salt such as Au (OH) (CH 3 COO) 2 , Au (OH) 2 (CH 3 COO). As the gold carboxylate, one of these may be used alone, or two or more may be used in combination. Among these gold carboxylates, gold acetate (Au (CH 3 COO) 3 ) is preferably used from the viewpoint that it is easily available and has an appropriate solubility in water.

本発明の金コロイド溶液中に含まれる金ナノ粒子の平均粒子径は、100nm以下、好ましくは50nm以下、更に好ましくは2〜40nmが挙げられる。ここで、平均粒子径とは、透過型電子顕微鏡(TEM)での観察により得られたサイズ分布から個数平均により求められる値を指す。   The average particle diameter of the gold nanoparticles contained in the gold colloid solution of the present invention is 100 nm or less, preferably 50 nm or less, more preferably 2 to 40 nm. Here, an average particle diameter refers to the value calculated | required by number average from the size distribution obtained by observation with a transmission electron microscope (TEM).

本発明の金コロイド溶液中の金ナノ粒子の濃度としては、通常0.0001〜50重量%、好ましくは0.001〜10重量%、更に好ましくは0.01〜5重量%が挙げられる。ここで、調製に用いた全ての金のうちプラズモン吸収を示すナノ粒子として液中に存在する金ナノ粒子の濃度は、媒体が同じ(水に対しPVP等を加えた場合は同一濃度)で金ナノ粒子の濃度が異なる数種の既知サンプルについてUV−VIS測定を行い、極大のプラズモン吸収を示す波長(λmax)における光学密度(OD)値を濃度に対してプロットし得られる検量線(直線で近似できる)により求めることが可能である。The concentration of the gold nanoparticles in the gold colloid solution of the present invention is usually 0.0001 to 50% by weight, preferably 0.001 to 10% by weight, and more preferably 0.01 to 5% by weight. Here, among all the gold used for the preparation, the concentration of gold nanoparticles present in the liquid as nanoparticles exhibiting plasmon absorption is the same in the medium (the same concentration when PVP or the like is added to water) and gold. A calibration curve (straight line) obtained by performing UV-VIS measurement on several kinds of known samples having different concentrations of nanoparticles and plotting the optical density (OD) value at the wavelength (λ max ) exhibiting the maximum plasmon absorption against the concentration. It can be approximated by

本発明の金コロイド溶液中に含まれる下記一般式(a)で表わされる陰イオンは、金コロイド溶液中に溶解された状態で存在していてもよく、金ナノ粒子の表面に吸着した状態で存在していてもよい。
R−COO- (a)
式中、Rは水素又は炭素数1〜4、好ましくは1〜2、更に好ましくは1の直鎖状又は分岐鎖状アルキル基を示す。具体的なアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル、ブチル基、イソブチル基、sec−ブチル基、t−ブチル基等が挙げられ、好ましくはメチル基が挙げられる。上記一般式(a)で表わされる陰イオンとして好ましくは、酢酸イオン(CH3COO-)が挙げられる。
The anion represented by the following general formula (a) contained in the colloidal gold solution of the present invention may exist in a state dissolved in the colloidal gold solution, and is adsorbed on the surface of the gold nanoparticle. May be present.
R-COO - (a)
In the formula, R represents hydrogen or a linear or branched alkyl group having 1 to 4, preferably 1 to 2, more preferably 1 carbon atoms. Specific examples of the alkyl group include a methyl group, an ethyl group, a propyl group, isopropyl, a butyl group, an isobutyl group, a sec-butyl group, and a t-butyl group, and a methyl group is preferable. The anion represented by the general formula (a) is preferably an acetate ion (CH 3 COO ).

また、本発明の金コロイド溶液は、保護コロイドを含んでいてもよい。保護コロイドとしては、従来公知のものから適宜選択され得るが、例えば、ポリビニルピロリドン(PVP)、ポリビニルアルコール、ポリエチレングリコール、ポリアクリル酸、ポリアクリル酸ナトリウム、ゼラチン、デンプン、デキストリン、カルボキシメチルセルロース、メチルセルロース、エチルセルロース、グルタチオン等が挙げられ、これらの中でも好ましくはポリビニルピロリドン、ポリエチレングリコール、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリビニルアルコール、カルボキシメチルセルロースが挙げられ、更に好ましくはポリビニルピロリドン、ポリエチレングリコールが挙げられる。これらの保護コロイドを1種単独で、又は2種以上を含んでもよい。これらの保護コロイドは、本発明の効果を損なわない範囲において変性、修飾等が加えられたものであってもよい。また、保護コロイドとしてポリマーを使用する場合、その分子量は本発明の効果が奏される限り特に限定されず、例えばポリビニルピロリドンであれば、具体的にはキシダ化学製PVP K−15(平均分子量1万)、K−30(平均分子量4万)、K−90(平均分子量36万)等を使用することができる。   Moreover, the gold colloid solution of the present invention may contain a protective colloid. The protective colloid may be appropriately selected from conventionally known colloids. For example, polyvinyl pyrrolidone (PVP), polyvinyl alcohol, polyethylene glycol, polyacrylic acid, sodium polyacrylate, gelatin, starch, dextrin, carboxymethylcellulose, methylcellulose, Examples thereof include ethyl cellulose and glutathione. Among these, polyvinyl pyrrolidone, polyethylene glycol, polyacrylic acid, sodium polyacrylate, polyvinyl alcohol, and carboxymethyl cellulose are preferable, and polyvinyl pyrrolidone and polyethylene glycol are more preferable. These protective colloids may be used alone or in combination of two or more. These protective colloids may be modified or modified within a range not impairing the effects of the present invention. When a polymer is used as the protective colloid, its molecular weight is not particularly limited as long as the effect of the present invention is exhibited. For example, polyvinylpyrrolidone is specifically PVP K-15 (average molecular weight 1 manufactured by Kishida Chemical). 10,000), K-30 (average molecular weight 40,000), K-90 (average molecular weight 360,000), and the like can be used.

本発明の金コロイド溶液中に保護コロイドが含まれる場合、その含有量は水に対する溶解度以下であれば特に限定されないが、通常は金1モルに対して0.1〜1000モル、好ましくは0.1〜500モル、更に好ましくは0.1〜100モルが挙げられる。ここで、保護コロイドがポリマーである場合は、そのモノマー単位でのモル量として扱うものとする。   When the protective colloid is contained in the gold colloid solution of the present invention, the content thereof is not particularly limited as long as it is not more than the solubility in water, but usually 0.1 to 1000 mol, preferably 0. 1-500 mol, More preferably, 0.1-100 mol is mentioned. Here, when the protective colloid is a polymer, it is handled as a molar amount in the monomer unit.

本発明の金コロイド溶液の溶媒としては水が使用される。ここで、水としては、特に限定されないが、蒸留水、イオン交換水、精製水、純水、超純水など塩化物イオン等の不純物を含まない水を用いることが望ましい。   Water is used as a solvent for the colloidal gold solution of the present invention. Here, the water is not particularly limited, but it is desirable to use water that does not contain impurities such as chloride ions, such as distilled water, ion exchange water, purified water, pure water, and ultrapure water.

また、本発明の金コロイド溶液は還元剤を含んでいてもよい。還元剤としては、従来公知のものから適宜選択することが可能であるが、例えば、メタノール、エタノール、1−プロパノール、エチレングリコール等の1級水酸基を有するアルコール;2−プロパノール、2−ブタノール等の2級水酸基を有するアルコール;グリセリン等の1級及び2級水酸基の両方を有するアルコール;ホルムアルデヒド、アセトアルデヒド等のアルデヒド;グルコース、フルクトース、グリセルアルデヒド、ラクトース、アラビノース、マルトース等の糖類;クエン酸、クエン酸ナトリウム、クエン酸カリウム、クエン酸アンモニウム、タンニン酸、アスコルビン酸、アスコルビン酸ナトリウム、アスコルビン酸カリウム等の有機酸及びその塩;水素化ホウ素ナトリウム、水素化ホウ素カリウム等の水素化ホウ素及びその塩;ヒドラジン、塩酸ヒドラジン、硫酸ヒドラジン等のヒドラジン及びその無機塩が挙げられる。これらの還元剤を1種単独で、又は2種以上を含んでもよい。これらの還元剤の中でも好ましくは1級水酸基及び/又は2級水酸基を有するアルコール、更に好ましくはエタノール、メタノール等が挙げられる。また、保護コロイドの種類によっては還元剤として使用できるものがある。還元剤としても使用できる保護コロイドの具体例については、後述する工程(i)において記載される。   The gold colloid solution of the present invention may contain a reducing agent. The reducing agent can be appropriately selected from conventionally known reducing agents, and examples thereof include alcohols having a primary hydroxyl group such as methanol, ethanol, 1-propanol, and ethylene glycol; 2-propanol, 2-butanol, and the like. Alcohols having secondary hydroxyl groups; alcohols having both primary and secondary hydroxyl groups such as glycerin; aldehydes such as formaldehyde and acetaldehyde; saccharides such as glucose, fructose, glyceraldehyde, lactose, arabinose and maltose; citric acid, citric acid Organic acids such as sodium citrate, potassium citrate, ammonium citrate, tannic acid, ascorbic acid, sodium ascorbate, potassium ascorbate and salts thereof; borohydrides such as sodium borohydride and potassium borohydride Salt; hydrazine, hydrazine hydrochloride, and hydrazine and its inorganic salts such as hydrazine sulfate. These reducing agents may be used alone or in combination of two or more. Among these reducing agents, an alcohol having a primary hydroxyl group and / or a secondary hydroxyl group is preferable, and ethanol, methanol and the like are more preferable. Some protective colloids can be used as a reducing agent. Specific examples of the protective colloid that can also be used as a reducing agent will be described in the step (i) described later.

本発明の金コロイド溶液中に還元剤が含まれる場合、その含有量は本発明の効果を損なわない限り特に限定されないが、金1モルに対して1〜100000モル、好ましくは1〜50000モル、更に好ましくは1〜20000モルが挙げられる。   When the reducing agent is contained in the colloidal gold solution of the present invention, the content thereof is not particularly limited as long as the effects of the present invention are not impaired, but 1 to 100000 mol, preferably 1 to 50000 mol, relative to 1 mol of gold, More preferably, 1 to 20000 mol is mentioned.

本発明の金コロイド溶液中には、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオンのいずれかであるハロゲン化物イオン(X)が実質的に含まれていないことが好ましい。これにより、本発明の金コロイド溶液を導電性ペーストや触媒などとして利用する場合にも、ハロゲン化物イオンによる腐食の発生や、ハロゲン化物イオンが触媒毒となるといった問題を防ぐことができる。なお、本発明において、ハロゲン化物イオンが実質的に含まれていないとは、金コロイド溶液中の金の量に対して、ハロゲン化物イオンの量が少ないことを意味する。例えば、塩化金酸(HAuCl4)を用いて金コロイド溶液を調製した場合、塩化物イオン除去処理を行わない限り、ハロゲン化物イオン(X)と金(Au)とのモル比(X/Au)は、通常4程度となる。一方、本発明においては、金コロイド溶液中のハロゲン化物イオン(X)と金(Au)とのモル比(X/Au)は、例えば0.4以下、または0.04以下、さらに0.004とすることができる。塩化金酸等のハロゲン化物イオン含有の原料を用いた場合にも、金コロイド溶液生成後に脱塩処理等を行えば、ハロゲン化物イオン濃度を低減することは可能であるが、本発明の金コロイド溶液では、脱塩処理を行うことなく所定のハロゲン化物イオン濃度以下の金コロイド溶液とすることができる。The gold colloid solution of the present invention preferably contains substantially no halide ion (X) which is any of fluoride ion, chloride ion, bromide ion and iodide ion. As a result, even when the colloidal gold solution of the present invention is used as a conductive paste or a catalyst, it is possible to prevent problems such as the occurrence of corrosion due to halide ions and the fact that halide ions become catalyst poisons. In the present invention, the phrase “substantially free of halide ions” means that the amount of halide ions is small relative to the amount of gold in the gold colloid solution. For example, when a colloidal gold solution is prepared using chloroauric acid (HAuCl 4 ), the molar ratio of halide ion (X) to gold (Au) (X / Au) unless chloride ion removal treatment is performed. Is usually around 4. On the other hand, in the present invention, the molar ratio (X / Au) of halide ion (X) to gold (Au) in the colloidal gold solution is, for example, 0.4 or less, or 0.04 or less, and further 0.004. It can be. Even when a halide ion-containing raw material such as chloroauric acid is used, it is possible to reduce the halide ion concentration by performing a desalting treatment after the gold colloid solution is produced. The solution can be made into a gold colloid solution having a predetermined halide ion concentration or less without performing a desalting treatment.

本発明の金コロイド溶液は、用途に応じて従来公知の添加剤を含んでいてもよい。このような添加剤としては、例えば、着色剤、安定剤、界面活性剤、分散剤、増粘剤等が挙げられる。   The colloidal gold solution of the present invention may contain a conventionally known additive depending on the application. Examples of such additives include colorants, stabilizers, surfactants, dispersants, thickeners, and the like.

本発明の金コロイド溶液は、導電性インク、導電性ペースト、触媒、センサー、接合材料、色材、塗料、バイオマーカー等の用途に適用することができる。   The colloidal gold solution of the present invention can be applied to uses such as conductive inks, conductive pastes, catalysts, sensors, bonding materials, coloring materials, paints, biomarkers and the like.

2.金コロイド溶液の製造方法
本発明は、上述のような金コロイド溶液を簡便に調製することが可能な金コロイド溶液の製造方法を提供する。当該金コロイド溶液の製造方法は、下記工程(i)及び(ii)を含む。
2. Method for Producing Gold Colloid Solution The present invention provides a method for producing a gold colloid solution, which can easily prepare the gold colloid solution as described above. The method for producing the colloidal gold solution includes the following steps (i) and (ii).

工程(i)
本工程(i)においては、金カルボキシラートを水に分散させて分散液を得る。ここで、金カルボキシラート及び溶媒である水については、上記「1.金コロイド溶液」において記載される通りである。
Step (i)
In this step (i), gold carboxylate is dispersed in water to obtain a dispersion. Here, gold carboxylate and water as a solvent are as described in the above “1. Gold colloid solution”.

本工程(i)において金カルボキシラートを分散させる際、溶媒として保護コロイドを含む水を使用してもよい。保護コロイドを添加することによって、金ナノ粒子の粒度分布を狭くすることができ、得られる金コロイド溶液の安定性を高めることができる。具体的な保護コロイドとしては、上記「1.金コロイド溶液」において記載される通りである。   When the gold carboxylate is dispersed in this step (i), water containing a protective colloid may be used as a solvent. By adding the protective colloid, the particle size distribution of the gold nanoparticles can be narrowed, and the stability of the resulting gold colloid solution can be improved. Specific protective colloids are as described in “1. Colloidal gold solution” above.

また、上述される保護コロイドのうち、例えば、ポリビニルピロリドン、ポリビニルアルコール、ポリエチレングリコール、ゼラチン、デンプン、デキストリン、カルボキシメチルセルロース、メチルセルロース、エチルセルロース等については還元剤としても使用することができ、これらの中でも好ましくはポリビニルピロリドン、ポリエチレングリコール、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリビニルアルコール、カルボキシメチルセルロースが挙げられ、より安定な金コロイド溶液が得られることからポリビニルピロリドン及びポリビニルアルコールが更に好ましいものとして例示される。従って、本工程(i)において保護コロイドとしてこれらが分散液に既に添加されている場合には、下記工程(ii)において別途還元剤を加えることなく金コロイド溶液の調製が可能である。   Among the protective colloids described above, for example, polyvinylpyrrolidone, polyvinyl alcohol, polyethylene glycol, gelatin, starch, dextrin, carboxymethylcellulose, methylcellulose, ethylcellulose and the like can be used as a reducing agent, and among these, preferred May include polyvinyl pyrrolidone, polyethylene glycol, polyacrylic acid, sodium polyacrylate, polyvinyl alcohol, and carboxymethyl cellulose, and more preferable examples of polyvinyl pyrrolidone and polyvinyl alcohol are obtained because a more stable gold colloid solution can be obtained. Therefore, when these are already added to the dispersion as protective colloids in this step (i), a gold colloid solution can be prepared without adding a separate reducing agent in the following step (ii).

保護コロイドの添加量としては、水に対する溶解度以下であれば特に限定されないが、通常は金1モルに対して0.1〜1000モル、好ましくは0.1〜500モル、更に好ましくは0.1〜100モルが挙げられる。   The amount of the protective colloid added is not particularly limited as long as it is not higher than the solubility in water, but is usually 0.1 to 1000 mol, preferably 0.1 to 500 mol, more preferably 0.1 to 1 mol of gold. ˜100 mol is mentioned.

本工程(i)において、金カルボキシラートを水に分散させる方法としては、粉体を水中に分散させるために通常使用される方法から適宜選択することができるが、例えば、マグネチックスターラー、タッチミキサー、超音波洗浄機等が挙げられる。また、これらの装置を組合せて使用してもよい。分散させる際の条件としては特に限定されないが、具体的には、タッチミキサー(240rpm、10秒)の後、超音波洗浄機による処理(60秒)が例示される。このような処理を複数回(例えば1〜20回、好ましくは5〜10回)繰り返し行ってもよい。   In this step (i), the method for dispersing the gold carboxylate in water can be appropriately selected from methods usually used for dispersing powder in water. For example, a magnetic stirrer, a touch mixer And an ultrasonic cleaner. Moreover, you may use combining these apparatuses. Although it does not specifically limit as conditions at the time of disperse | distributing, Specifically, the process (60 second) by an ultrasonic cleaner is illustrated after a touch mixer (240 rpm, 10 second). Such treatment may be repeated a plurality of times (for example, 1 to 20 times, preferably 5 to 10 times).

例えば、金カルボキシラートとして酢酸金を使用する場合、分散液は茶色を呈し、チンダル現象を示すことからコロイド状態で分散していることが確認できる。   For example, when gold acetate is used as the gold carboxylate, the dispersion exhibits a brown color and shows a Tyndall phenomenon, so that it can be confirmed that the dispersion is in a colloidal state.

本工程(i)において得られる分散液の分散濃度は、目的とする金コロイド溶液を得るのに必要な金カルボキシラートの分散濃度を有している限り特に限定されないが、生成される金コロイド溶液の安定性の観点から、金メタル換算で通常0.0001〜50重量%、好ましくは0.001〜10重量%である。   The dispersion concentration of the dispersion obtained in this step (i) is not particularly limited as long as it has the dispersion concentration of gold carboxylate necessary to obtain the target colloidal gold solution. From the viewpoint of stability, the amount is usually 0.0001 to 50% by weight, preferably 0.001 to 10% by weight in terms of gold metal.

金カルボキシラートは水に対して、僅かながらイオンとして溶解することが知られている。例えば、酢酸金の溶解度は、非特許文献2(G.C.Bond et al.,Chapter 4 Preparation of Supported Gold Catalysts, Catalysis by gold(Series editor,G.J.Hutchings),p.89,Imperial College Press(2006))において10-5M以下であると報告されている。従って、本発明の限定的な解釈を望むものではないが、金カルボキシラートを水に分散させると、一部は水に溶解し、残りの部分はコロイドとして水に分散すると予想される。Gold carboxylate is known to dissolve slightly in water as ions. For example, the solubility of gold acetate is described in Non-Patent Document 2 (GC Bond et al., Chapter 4 Preparation of Supported Gold Catalysts, Catalysts by gold (Series editor, G. J. Hutchings, p. 89), p. 89). Press (2006)) is reported to be 10 −5 M or less. Thus, although a limited interpretation of the present invention is not desired, it is expected that when gold carboxylate is dispersed in water, some will dissolve in water and the remainder will be dispersed in water as a colloid.

工程(ii)
本工程(ii)においては、前記工程(i)で得られた分散液において、金カルボキシラートに還元剤を作用させて還元することにより金コロイド溶液を得る。
Step (ii)
In this step (ii), a gold colloid solution is obtained by reducing the gold carboxylate by acting a reducing agent in the dispersion obtained in the step (i).

本工程(ii)において、金カルボキシラートの還元は、前記工程(i)で得られた分散液に還元剤を添加することにより行うことができる。還元剤としては、上記「1.金コロイド溶液」に記載の通りであり、好ましくは1級水酸基及び/又は2級水酸基を有するアルコール、更に好ましくはエタノール、メタノール等が挙げられる。分散液に作用させる還元剤の量としては、分散液中の金のモル数に対して酸化還元当量以上のモル数があれば特に制限はないが、例えば、金1モルに対して1〜100000モル、好ましくは1〜50000モル、更に好ましくは1〜20000モルが挙げられる。例えば、還元剤がアルコールである場合、水に対し均一に溶解できる範囲の体積比であることが好ましく、そのような体積比については前記モル数に基づいて適宜設定することができる。   In this step (ii), the reduction of the gold carboxylate can be performed by adding a reducing agent to the dispersion obtained in the step (i). The reducing agent is as described in “1. Colloidal gold solution” above, preferably an alcohol having a primary hydroxyl group and / or a secondary hydroxyl group, more preferably ethanol, methanol and the like. The amount of the reducing agent that acts on the dispersion is not particularly limited as long as it has a number of moles equal to or greater than the redox equivalent to the number of moles of gold in the dispersion, but for example, 1 to 100,000 per mole of gold. Mol, preferably 1 to 50000 mol, more preferably 1 to 20000 mol. For example, when the reducing agent is alcohol, the volume ratio is preferably in a range where it can be uniformly dissolved in water, and such volume ratio can be appropriately set based on the number of moles.

分散液に還元剤を作用させる条件としては、分散液中の金カルボキシラートと還元剤が反応し得る限り特に限定されず、必要に応じて撹拌等を行ってもよい。また、反応温度についても特に限定されず、使用する還元剤の種類等により適宜設定することが可能であるが、例えば1〜100℃、好ましくは5〜40℃、更に好ましくは10〜30℃が挙げられる。   The conditions for causing the reducing agent to act on the dispersion are not particularly limited as long as the gold carboxylate in the dispersion can react with the reducing agent, and stirring or the like may be performed as necessary. Further, the reaction temperature is not particularly limited, and can be appropriately set depending on the type of reducing agent to be used. For example, 1 to 100 ° C, preferably 5 to 40 ° C, more preferably 10 to 30 ° C. Can be mentioned.

例えば、エタノール、メタノール等の比較的強い還元剤を用いた場合には室温条件下数分で反応が十分進行するが、2−プロパノールや保護コロイドでもあるポリビニルピロリドン等の弱い還元剤を用いた場合には室温条件下では数日から数カ月を要することがある。従って、弱い還元剤を使用する場合には、反応溶液を加熱して反応温度を上げることにより反応速度を速め、金コロイドの生成を数分〜数時間で行うことができる。加熱温度としては、金コロイドが生成され得る限り特に限定されないが、例えば40〜100℃、好ましくは60〜100℃、更に好ましくは80〜100℃が挙げられる。より具体的には、金カルボキシラートとして酢酸金、保護コロイド及び還元剤としてポリビニルピロリドンを組合せて使用する場合であれば、80〜100℃で、5〜60分間加熱することにより、高濃度の金コロイド溶液を得ることができる。   For example, when a relatively strong reducing agent such as ethanol or methanol is used, the reaction proceeds sufficiently in several minutes under room temperature conditions, but when a weak reducing agent such as 2-propanol or polyvinylpyrrolidone which is also a protective colloid is used. Can take days to months at room temperature. Therefore, when a weak reducing agent is used, the reaction rate can be increased by heating the reaction solution to raise the reaction temperature, and gold colloid can be produced in several minutes to several hours. The heating temperature is not particularly limited as long as the colloidal gold can be produced, and examples thereof include 40 to 100 ° C, preferably 60 to 100 ° C, and more preferably 80 to 100 ° C. More specifically, if gold acetate is used in combination with gold acetate, protective colloid, and polyvinylpyrrolidone as the reducing agent, a high concentration of gold can be obtained by heating at 80 to 100 ° C. for 5 to 60 minutes. A colloidal solution can be obtained.

また、本工程(ii)において、必要に応じ過剰の保護コロイドの除去を行ってもよい。除去の方法としては特に限定されず、従来公知の方法から適宜選択され得るが、例えば、遠心濾過、膜分離、透析、電気透析等により行うことができる。除去する保護コロイドの量に応じて、これらの処理を複数回行ってもよい。また、得られた金コロイド溶液に対し、必要に応じて、従来公知の方法に従ってpH調整、濃縮、精製等の処理を行ってもよい。   Moreover, in this process (ii), you may remove an excess protective colloid as needed. The removal method is not particularly limited and may be appropriately selected from conventionally known methods. For example, centrifugal filtration, membrane separation, dialysis, electrodialysis and the like can be performed. Depending on the amount of protective colloid to be removed, these treatments may be performed multiple times. Further, the obtained colloidal gold solution may be subjected to treatments such as pH adjustment, concentration and purification according to a conventionally known method, if necessary.

上述のように、本発明の金コロイド溶液の製造方法においては、金カルボキシラートを必要に応じて保護コロイドを含む水に分散させ、次いで還元剤を作用させることもできるが、より簡便には、上記保護コロイド及び還元剤を溶媒である水に添加して水溶液とし、そこに金カルボキシラートを添加し、金コロイド溶液を調製してもよい。このような方法を採用する場合であっても、上記と同様の材料及び条件を採用することができる。   As described above, in the method for producing a gold colloid solution of the present invention, gold carboxylate can be dispersed in water containing a protective colloid as required, and then a reducing agent can be allowed to act. The protective colloid and the reducing agent may be added to water as a solvent to form an aqueous solution, and gold carboxylate may be added thereto to prepare a gold colloid solution. Even when such a method is employed, the same materials and conditions as described above can be employed.

本発明の金コロイド溶液の製造において、各材料の好ましい組合せとしては、例えば、金カルボキシラートとして酢酸金、保護コロイドとしてポリビニルピロリドン及び/又はポリビニルアルコール、還元剤としてメタノール及び/又はエタノールが挙げられる。このような組合せを採用することにより、簡便に、高濃度且つ安定な金コロイド溶液とすることができる。   In the production of the colloidal gold solution of the present invention, preferred combinations of the materials include, for example, gold acetate as the gold carboxylate, polyvinylpyrrolidone and / or polyvinyl alcohol as the protective colloid, and methanol and / or ethanol as the reducing agent. By adopting such a combination, a highly concentrated and stable gold colloid solution can be easily obtained.

本発明を限定的に解釈することを望むものではないが、本発明において高濃度の金コロイドを得ることができる理由は、例えば次のように考えることができる。酢酸金等の金カルボキシラートは水に難溶性であるために、水中の金イオン濃度は金コロイド生成に適した希薄濃度に保たれると考えられる。そして、金イオンが還元剤により金属金に還元されると、金カルボキシラートが再び微量水に溶解できるようになると考えられる。このように、金カルボキシラートの微量溶解と還元を繰り返すことにより、少しずつ金コロイドが生成し、結果として高濃度の金コロイドを得ることができると考えられる。   Although it is not desired to interpret the present invention in a limited manner, the reason why a high concentration of gold colloid can be obtained in the present invention can be considered as follows, for example. Since gold carboxylate such as gold acetate is hardly soluble in water, the gold ion concentration in water is considered to be kept at a dilute concentration suitable for gold colloid formation. And, when gold ions are reduced to metallic gold by a reducing agent, it is considered that gold carboxylate can be dissolved again in a trace amount of water. Thus, it is considered that a gold colloid is formed little by little by repeating a minute dissolution and reduction of gold carboxylate, and as a result, a high concentration of gold colloid can be obtained.

以下、実施例及び比較例を挙げて本発明を更に詳細に説明するが、本発明はこれらに限定されない。   Hereinafter, although an example and a comparative example are given and the present invention is explained still in detail, the present invention is not limited to these.

実施例1
エタノールと水の1:1溶液10mLにポリビニルピロリドン(PVP K15,キシダ化学製)を50mg溶かした。酢酸金[Au(CH3COO)3,AlfaAesar製、メーカーの分析証明書に記載の純度99.99%]の茶色粉末5mgを加え、タッチミキサー(IKA社製、Vortex Genius3)及び超音波洗浄機(アズワン製、US−2R)を用いて分散させた。分散処理としては、タッチミキサー処理(2400rpmで10秒)、超音波洗浄機処理(60秒)を交互に各5〜7回繰り返すのを標準条件としたが、沈殿の残存状況に応じて繰り返し回数を適宜増減した。このような処理により、溶液中の溶け残りの沈殿はほぼ無くなるが、容器の横からLEDライトの光を当てるとチンダル現象が見られることから真の水溶液ではなく茶色のコロイド分散液となっていることが確認された。
Example 1
50 mg of polyvinylpyrrolidone (PVP K15, manufactured by Kishida Chemical Co., Ltd.) was dissolved in 10 mL of a 1: 1 solution of ethanol and water. 5 mg of brown powder of gold acetate [Au (CH 3 COO) 3 , manufactured by Alfa Aesar, purity 99.99% described in the manufacturer's analysis certificate] was added, touch mixer (IKA, Vortex Genius 3) and ultrasonic cleaner (Used by ASONE, US-2R). As the dispersion treatment, the standard condition is that the touch mixer treatment (10 seconds at 2400 rpm) and the ultrasonic cleaner treatment (60 seconds) are alternately repeated 5 to 7 times, but the number of repetitions depends on the remaining state of precipitation. Was increased or decreased as appropriate. By such a treatment, the undissolved precipitate in the solution is almost eliminated, but a Tyndall phenomenon is observed when the light of the LED light is applied from the side of the container, so that it is not a true aqueous solution but a brown colloidal dispersion. It was confirmed.

この分散液を室温(約24℃)で放置すると、約10分で液色が赤くなり始めた。一晩放置後には赤色の金コロイド溶液(調製濃度1.3mmol−Au/L)が得られた。コロイド溶液を水で1/10濃度に希釈し、光路長1cmの石英セルに入れ、分光光度計(島津製作所、UV−1800)にてUV−VISスペクトルの測定を行った。結果を図1に示す。   When this dispersion was allowed to stand at room temperature (about 24 ° C.), the liquid color began to turn red in about 10 minutes. After standing overnight, a red gold colloid solution (preparation concentration 1.3 mmol-Au / L) was obtained. The colloidal solution was diluted to 1/10 concentration with water, put into a quartz cell having an optical path length of 1 cm, and UV-VIS spectrum was measured with a spectrophotometer (Shimadzu Corporation, UV-1800). The results are shown in FIG.

図1中、横軸は波長、縦軸は分光光度計において吸光度(Absorbance)として表示される値である。吸光度は、金コロイド溶液においては吸収の他に散乱、反射の影響も含まれ、ここでは光学密度(Optical density)と表示する。測定したスペクトルには表面プラズモン吸収に基づくピークが明確に観測され、その波長(λmax)は527nmであった。In FIG. 1, the horizontal axis represents the wavelength, and the vertical axis represents the value displayed as absorbance in the spectrophotometer. In the colloidal gold solution, the absorbance includes the influence of scattering and reflection in addition to absorption, and is expressed here as optical density. A peak based on surface plasmon absorption was clearly observed in the measured spectrum, and the wavelength (λ max ) was 527 nm.

一般に金ナノ粒子の粒子径が小さいほど、プラズモン吸収のピーク波長が小さくなるという関係が知られている。例えば、非特許文献3(小林敏勝、第21章 色材としての濃厚金ナノ粒子ペースト、金ナノテクノロジー(春田正毅監修)pp.273−282 CMC出版社(2009))には、金ナノ粒子の体積平均粒子径(DAu)とプラズモン吸収波長(λmax)の対応が示されている。金コロイドの分散媒が同一であればDAuとλmaxの両値には直線関係があり、λmaxの測定値からDAuを求めることが原理的には可能である。It is generally known that the smaller the particle diameter of gold nanoparticles, the smaller the peak wavelength of plasmon absorption. For example, Non-Patent Document 3 (Toshikatsu Kobayashi, Chapter 21 Rich Gold Nanoparticle Paste as Coloring Material, Gold Nanotechnology (supervised by Masami Haruta) pp.273-282 CMC Publishing Co., Ltd. (2009)) The correspondence between the volume average particle diameter (D Au ) and the plasmon absorption wavelength (λ max ) is shown. If the gold colloid dispersion medium is the same, both the values of D Au and λ max have a linear relationship, and it is possible in principle to determine D Au from the measured value of λ max .

本実施例においては金コロイドの分散媒は水であるが、エタノール等の還元剤やPVP等の保護コロイドの混合によって分散媒の誘電率が変わるため、DAuが同じであってもλmaxは変動する。また、DAuが50nm以下の範囲ではDAuが大きいほど強いプラズモン吸収を示すため、粒度分布が広い場合には大きい粒子からの影響を強く受け、単分散の場合と比較してDAuとλmaxの関係がずれてくる。このため、本実施例のように分散媒の組成が個々に異なり、金ナノ粒子のサイズ分布が単分散でない場合にはλmaxからDAuを正確に求めることは困難である。Although in this embodiment a dispersion medium for colloidal gold is water, the dielectric constant of the dispersion medium by mixing the reducing agent and protective colloid PVP such as ethanol or the like is changed, max even λ a D Au is the same fluctuate. In addition, in the range where D Au is 50 nm or less, the larger the D Au is, the stronger the plasmon absorption is. Therefore, when the particle size distribution is wide, it is strongly influenced by large particles, and D Au and λ are compared with the monodispersed case. The relation of max shifts. For this reason, it is difficult to accurately determine D Au from λ max when the composition of the dispersion medium is different from one another as in this example and the size distribution of the gold nanoparticles is not monodispersed.

そこで、後述する実施例1及び実施例2のTEM測定から求めたDAu値とλmaxの関係を非特許文献3の図8に示されるデータ点列に加え、最小2乗法により回帰直線を求めた。その結果、相関係数が0.96となり概ね1に近いことから、本発明の金コロイドの状況は非特許文献3の図8に示された金コロイドと類似の状況にあると言える。得られた直線式により、実施例1及び後述する実施例2〜33において測定されたλmaxの範囲(524〜562nm)に相当するDAuの範囲を求めると12〜37nmとなり、本実施例においては平均粒子径10〜40nm程度のサイズの金コロイドが得られているものと概算された。Therefore, the relationship between the D Au value obtained from the TEM measurement of Example 1 and Example 2 described later and λ max is added to the data point sequence shown in FIG. 8 of Non-Patent Document 3, and a regression line is obtained by the least square method. It was. As a result, the correlation coefficient is 0.96, which is close to 1, so that it can be said that the state of the gold colloid of the present invention is similar to that of the gold colloid shown in FIG. When the range of D Au corresponding to the range of λ max (524 to 562 nm) measured in Example 1 and Examples 2 to 33 described later is obtained from the obtained linear equation, it becomes 12 to 37 nm, and in this example It was estimated that a gold colloid having an average particle size of about 10 to 40 nm was obtained.

また、λmaxにおける光学密度は、金コロイド濃度の指標として用いることができる。測定に用いた石英セルの光路長をL(cm)、溶液の希釈倍率をF(例えば1/10濃度に希釈して測定した場合はF=10)、その時のλmaxにおける光学密度値をYとするとき、下記の式(1)により算出される調製直後の最大換算光学密度値(即ち、ODmax)は6.8であった(下表1を参照)。
ODmax=Y×F/L 式(1)
Further, the optical density at λ max can be used as an index of colloidal gold concentration. The optical path length of the quartz cell used for the measurement is L (cm), the dilution ratio of the solution is F (for example, F = 10 when measured by diluting to 1/10 concentration), and the optical density value at λ max at that time is Y The maximum converted optical density value (that is, OD max ) immediately after preparation calculated by the following formula (1) was 6.8 (see Table 1 below).
OD max = Y × F / L Formula (1)

金コロイド分散液(調製後40日経過)からPVPを除去するため遠心ろ過を行った。分画分子量50,000の遠心式フィルターユニット(アミコンウルトラ−15、ミリポア社製)を用い、4000rpmで20分間処理したところ、フィルターを通過しない金コロイド分散液は濃赤色に濃縮され、フィルターを通過した分は無色透明なろ液が得られた。濃縮された分散液に水を加えて10mLに戻し、再び遠心ろ過する操作を3回繰り返した。ろ液中のPVPの残存の有無を判断するため、非特許文献4(Binding of Evans Blue Onto Poly(N−Vinyl−2−Pyrrolidone),M.Maruthamuthu and E.Subrarnanian,Polymer Bulletin 14,207−212(1985))の記載に従い、エバンスブルー(EB)溶液を滴下しUV−VIS吸収を測定した。   Centrifugal filtration was performed to remove PVP from the colloidal gold dispersion (40 days after preparation). Using a centrifugal filter unit (Amicon Ultra-15, manufactured by Millipore) with a molecular weight cut off of 50,000, the colloidal gold dispersion that does not pass through the filter is concentrated to a deep red color after passing through the filter. As a result, a colorless and transparent filtrate was obtained. The operation of adding water to the concentrated dispersion to return to 10 mL and performing centrifugal filtration again was repeated three times. In order to determine the presence or absence of PVP remaining in the filtrate, Non-Patent Document 4 (Binding of Evans Blue On Poly (N-Vinyl-2-Pyrrolidone), M. Marthamuthu and E. Subrariannian, Polymer 12 Bull207 14 (1985)), Evans Blue (EB) solution was added dropwise to measure UV-VIS absorption.

1回目のろ液にはPVP−EB複合体に基づく639nmの吸収が見られたが、3回目のろ液は639nmの吸収が無くフリーのEBに基づく609nmの吸収のみが見られたことから、3回の遠心ろ過操作でPVPが除去できたことが確認された。得られた金コロイド分散液の一部にもエバンスブルーを加えUV−VIS吸収を測定した結果、639nmの吸収が無いことから金コロイドの分散媒である水中にPVPは残存していないことが確認できた。PVP除去後の金コロイド溶液(エバンスブルーを加えない部分)のUV−VIS吸収におけるλmaxは529nmであった。Since the first filtrate showed 639 nm absorption based on the PVP-EB complex, the third filtrate showed no absorption at 639 nm and only 609 nm absorption based on free EB. It was confirmed that PVP could be removed by three centrifugal filtration operations. As a result of adding Evans Blue to a part of the obtained colloidal gold dispersion and measuring UV-VIS absorption, it was confirmed that no PVP remained in the water, which is a dispersion medium of colloidal gold, because there was no absorption at 639 nm. did it. Λ max in UV-VIS absorption of the colloidal gold solution after removing the PVP (part where Evans Blue was not added) was 529 nm.

PVP除去操作後の金コロイド溶液をマイクログリッドに滴下して乾燥し、透過型電子顕微鏡(TEM)による観察を行った。TEM写真を図2に示す。各種の結晶構造(正20面体構造Ih,5角10面体構造Dh,面心立方格子構造Fcc)の金ナノ粒子混合物となっており、その粒子径は5nm程度のものから20nmを越えるものまで観察された。図2のサイズ分布から求めた個数平均粒子径は11.5nmであった。   The gold colloid solution after the PVP removal operation was dropped onto a microgrid and dried, and observed with a transmission electron microscope (TEM). A TEM photograph is shown in FIG. It is a gold nanoparticle mixture of various crystal structures (regular icosahedron structure Ih, pentagonal decahedron structure Dh, face-centered cubic lattice structure Fcc), and its particle diameter is observed from about 5 nm to over 20 nm. It was done. The number average particle diameter determined from the size distribution of FIG. 2 was 11.5 nm.

この後、室温下で金コロイド溶液を保存したが、7カ月後においても沈殿は見られずコロイド溶液は安定であった。金ナノ粒子表面に酢酸イオン及び/または少量の残存PVPが吸着して安定な金コロイド溶液になっていると考えられた。調製直後、PVP除去後、7カ月経過後における、λmax及びODmaxの値を下表1にまとめた。
Thereafter, the colloidal gold solution was stored at room temperature, but no precipitate was observed even after 7 months, and the colloidal solution was stable. It was considered that acetate ions and / or a small amount of residual PVP were adsorbed on the gold nanoparticle surface to form a stable gold colloid solution. Table 1 below summarizes the values of λ max and OD max immediately after preparation and after 7 months from the removal of PVP.

表1より、PVP除去時に粒子径と濃度の変動があるが、その後の7カ月経過の間には大きな変化が無く、コロイドが安定であることが示された。   Table 1 shows that the particle size and concentration fluctuate when PVP is removed, but there is no significant change during the subsequent 7 months, indicating that the colloid is stable.

比較例1
金コロイド原料の金カルボキシラートとして、酢酸金の代わりに塩化金酸四水和物(キシダ化学)の結晶を電子天秤で秤量し、所定量の水に溶解して調製した塩化金酸(HAuCl4)の0.1mol/L水溶液0.13mLを用いる他は、実施例1と同様にして溶液を調製した。調製時の液色は黄色(通常の塩化金酸水溶液の液色)でチンダル現象も観察されず塩化金酸は完全に溶けて真の溶液となっていた。実施例1と同様に室温で1晩放置したが、色の変化は全く起こらず黄色の溶液のままであり、金コロイドは生成しなかった。
Comparative Example 1
Chloroauric acid (HAuCl 4) prepared by weighing crystals of chloroauric acid tetrahydrate (Kishida Kagaku) instead of gold acetate in an electronic balance and dissolving it in a predetermined amount of water as the gold carboxylate of the gold colloid material. A solution was prepared in the same manner as in Example 1 except that 0.13 mL of 0.1 mol / L aqueous solution of) was used. The liquid color at the time of preparation was yellow (liquid color of a normal aqueous solution of chloroauric acid), and the Tyndall phenomenon was not observed, and chloroauric acid was completely dissolved and became a true solution. As in Example 1, it was allowed to stand overnight at room temperature. However, no color change occurred and the solution remained yellow and no colloidal gold was produced.

実施例2
水20mLに対しポリビニルピロリドン(PVP K15)を6g溶かし、その2mLをガラス製スクリュー管瓶にとった。酢酸金の粉末20mgを加え、タッチミキサと超音波洗浄機を用い実施例1と同様の条件で分散させると、茶色の分散液が得られた。攪拌子を入れて、テフロンコートパッキン付きの蓋を閉めてホットプレートスターラー上で攪拌しながら溶液を沸騰させると、数分で赤色のコロイド液(Au26.7mmol/L)が得られた。1/100に希釈したコロイド液のUV−VISスペクトル(吸収ピーク530nm)を図3に示す。(式1)により求めた金の粒子径は18.1nmであった。
Example 2
6 g of polyvinylpyrrolidone (PVP K15) was dissolved in 20 mL of water, and 2 mL thereof was taken in a glass screw tube bottle. When 20 mg of gold acetate powder was added and dispersed under the same conditions as in Example 1 using a touch mixer and an ultrasonic cleaner, a brown dispersion liquid was obtained. When a stirrer was inserted, the lid with Teflon-coated packing was closed, and the solution was boiled while stirring on a hot plate stirrer, a red colloidal solution (Au 26.7 mmol / L) was obtained in a few minutes. FIG. 3 shows the UV-VIS spectrum (absorption peak 530 nm) of the colloidal solution diluted to 1/100. The gold particle diameter determined by (Equation 1) was 18.1 nm.

調製後40日を経過した後、2mLのコロイド液に水10mLを加え、12mLに希釈した後実施例1と同じ条件で、遠心ろ過を6回行いPVPを除去し、6回目のろ過後に加える水の量を調節して調製時と同程度の濃度の金コロイド液を得た。PVP除去後の金コロイド溶液(エバンスブルーを加えない部分)のUV−VIS吸収におけるλmaxは524nmであった。調製直後、PVP除去後及び7カ月経過後において、実施例1と同様の方法により得られたλmax及びODmaxの値を下表2に示す。
After 40 days from the preparation, 10 mL of water was added to 2 mL of colloidal solution, diluted to 12 mL, and then subjected to centrifugal filtration 6 times under the same conditions as in Example 1 to remove PVP, and water added after the 6th filtration. The colloidal gold solution having the same concentration as that in the preparation was obtained by adjusting the amount. Λ max in UV-VIS absorption of the colloidal gold solution after removing the PVP (part where Evans Blue was not added) was 524 nm. The values of λ max and OD max obtained by the same method as in Example 1 immediately after preparation, after removal of PVP and after 7 months have passed are shown in Table 2 below.

表2より、前記実施例1と同様、PVP除去時に粒子径と濃度の変動があるが、その後の7カ月経過の間には大きな変化が無く、コロイドが安定であることが示された。   From Table 2, as in Example 1, the particle size and concentration varied during PVP removal, but there was no significant change during the subsequent 7 months, indicating that the colloid is stable.

PVP除去操作後の金コロイドのTEM写真を図4に示す。図4には、実施例1と同様、本実施例2の場合も各種構造の金ナノ粒子の混合物であることが示されている。実施例1の場合より粒度分布がやや良い結果となった。図4のサイズ分布から求めた平均粒子径(TEMで通常示す算術平均値)は9.8nmであった。   A TEM photograph of the gold colloid after the PVP removal operation is shown in FIG. FIG. 4 shows that, similarly to Example 1, the present Example 2 is also a mixture of gold nanoparticles having various structures. The particle size distribution was slightly better than in the case of Example 1. The average particle diameter (arithmetic average value usually shown by TEM) obtained from the size distribution of FIG. 4 was 9.8 nm.

比較例2
実施例2において酢酸金の粉末20mgを用いる代わりに、比較例1と同様の方法に従って塩化金酸四水和物(キシダ化学)から調製した塩化金酸(HAuCl4)の0.1mol/L水溶液0.5mLを用いる他は、実施例2と同様にして溶液を調製した。沸騰還流すると、粗大金粒子となって沈殿し、金コロイドは生成しなかった。
Comparative Example 2
Instead of using 20 mg of gold acetate powder in Example 2, 0.1 mol / L aqueous solution of chloroauric acid (HAuCl 4 ) prepared from chloroauric acid tetrahydrate (Kishida Kagaku) according to the same method as in Comparative Example 1 A solution was prepared in the same manner as in Example 2 except that 0.5 mL was used. Upon boiling to reflux, coarse gold particles precipitated and no gold colloid was produced.

実施例3〜6
試験管中の水2.5mLにポリビニルピロリドン(PVP K15)を25mg溶かした。酢酸金の粉末5mgを加え、タッチミキサ(IKA社製、Vortex Genius3)と超音波洗浄機(アイワ医科工業製、AU−25C)を用い実施例1と同様の条件で分散させた。ここに、表3に示した還元剤2.5mLの何れかを加えて攪拌した(実施例3:エタノール、実施例4:メタノール、実施例5:エチレングリコール、実施例6:2−プロパノール)。蓋をして室温で放置すると、実施例3〜5は赤色の金コロイドを生成した。実施例6は室温では1日放置しても変化が見られなかったが、蓋をした状態で沸騰水中で100℃に加熱すると直ちに金コロイドを生成した。コロイド生成後、室温で2日間静置し、UV−VIS測定を行った。測定されたλmaxの値より、前記式(1)に基づいてODmax値を算出した。これらの値を下表3に示す。
Examples 3-6
25 mg of polyvinylpyrrolidone (PVP K15) was dissolved in 2.5 mL of water in the test tube. Gold acetate powder (5 mg) was added, and the mixture was dispersed under the same conditions as in Example 1 using a touch mixer (IKA Corp., Vortex Genius 3) and an ultrasonic washer (Aiwa Medical Industries, AU-25C). To this, 2.5 mL of the reducing agent shown in Table 3 was added and stirred (Example 3: ethanol, Example 4: methanol, Example 5: ethylene glycol, Example 6: 2-propanol). When covered and allowed to stand at room temperature, Examples 3-5 produced red gold colloids. In Example 6, no change was observed after standing at room temperature for 1 day, but when heated to 100 ° C. in boiling water with the lid on, colloidal gold was immediately formed. After colloid formation, the mixture was allowed to stand at room temperature for 2 days, and UV-VIS measurement was performed. Based on the measured value of λ max , the OD max value was calculated based on the formula (1). These values are shown in Table 3 below.

比較例3
還元剤としてt−ブタノール2.5mLを用い、他の操作は実施例3〜6と同様に行った。室温では1日放置しても変化が見られなかった。更に沸騰水中で2時間加熱したが、茶色の沈殿物が落ち、上澄みは透明となって金コロイドは生成しなかった。結果を下表3に併せて示す。
Comparative Example 3
T-Butanol 2.5mL was used as a reducing agent, and other operation was performed like Example 3-6. At room temperature, no change was observed even after 1 day. Furthermore, although it heated in boiling water for 2 hours, the brown precipitate fell, the supernatant became transparent and the gold colloid was not produced | generated. The results are also shown in Table 3 below.

表3より、1級水酸基又は2級水酸基を有するアルコールを還元剤とした場合(実施例3〜6)は、何れも酢酸金を還元し金コロイドの生成が可能であるが、3級水酸基のみを有するt−ブタノールでは還元が起こらないことが示された。   From Table 3, when alcohol having a primary hydroxyl group or a secondary hydroxyl group is used as the reducing agent (Examples 3 to 6), gold colloid can be generated by reducing gold acetate, but only the tertiary hydroxyl group can be produced. It has been shown that no reduction occurs with t-butanol having.

実施例7〜16<酢酸金及び分散剤の量>
試験管中の水2.5mLにポリビニルピロリドン(PVP K15)の表4に示した量を溶かした。得られた水溶液に酢酸金の粉末を表4に示した量加え、タッチミキサ(IKA社製、Vortex Genius3)と超音波洗浄機(アイワ医科工業製、AU−25C)を用いて実施例1と同様の条件で分散させた。ここに、エタノール2.5mLを加え、蓋をして室温で放置すると金コロイドが生成した。1日放置後、UV−VISスペクトルを測定した。実施例1と同様の方法によって得られたλmax、ODmaxの値を下表4に示す。また、下表4においてAu濃度は調製の際に使用した酢酸金の量から計算したコロイド溶液中のAu重量濃度である。PVP/Auは、PVPのモノマー単位(分子量111)で計算したモル比である。
Examples 7 to 16 <Amount of gold acetate and dispersant>
The amount of polyvinylpyrrolidone (PVP K15) shown in Table 4 was dissolved in 2.5 mL of water in the test tube. The amount of gold acetate powder shown in Table 4 was added to the obtained aqueous solution, and Example 1 was used using a touch mixer (IKA Corp., Vortex Genius 3) and an ultrasonic washer (Aiwa Medical Industries, AU-25C). Dispersion was performed under the same conditions. When 2.5 mL of ethanol was added thereto, the lid was covered and allowed to stand at room temperature, colloidal gold was produced. After standing for 1 day, the UV-VIS spectrum was measured. The values of λ max and OD max obtained by the same method as in Example 1 are shown in Table 4 below. In Table 4 below, the Au concentration is the Au concentration by weight in the colloidal solution calculated from the amount of gold acetate used in the preparation. PVP / Au is a molar ratio calculated by the monomer unit (molecular weight 111) of PVP.

従来の貴金属コロイド調製ではPVPの添加量により貴金属粒子径を大きく変えた例があるが(例えば、特開2005−281817号公報)、酢酸金に対しPVPの添加量を大きく変えてもλmaxの変化は大きくなく、従って金ナノ粒子径にも大きな変化は無いものと考えられる。またPVPの添加の有無にかかわらず金コロイドは生成するが、PVP無添加の実施例7に比べ、PVPの添加を行った実施例8〜12では同じ酢酸金量でもOD値が1.4倍以上大きな値が得られた。実施例13〜16では酢酸金の量を変えた結果、金ナノ粒子の濃度が0.55重量%までは、ほぼ金ナノ粒子の濃度と直線関係にあるODmax値が得られている。実施例16では前記直線の外挿から期待されるODmax値の約50%の値となった。Although the conventional precious metal colloid prepared there is an example of changing a large noble metal particle size by the addition of PVP (eg, JP 2005-281817), changing significantly the amount of PVP to gold acetate of lambda max It is considered that the change is not large, and therefore there is no significant change in the gold nanoparticle diameter. Although colloidal gold is produced regardless of whether or not PVP is added, in Examples 8 to 12 where PVP is added, the OD value is 1.4 times the same even with the same amount of gold acetate compared to Example 7 where PVP is not added. Greater values were obtained. In Examples 13 to 16, as a result of changing the amount of gold acetate, an OD max value almost linearly related to the concentration of gold nanoparticles was obtained up to a concentration of gold nanoparticles of 0.55% by weight. In Example 16, the value was about 50% of the OD max value expected from the extrapolation of the straight line.

実施例17〜24<エタノール還元時における保護コロイドの影響>
試験管中の水2.5mLに表5に示す各種の分散剤を25mg溶かした。酢酸金の粉末5mg加え、タッチミキサ(IKA社製、Vortex Genius3)と超音波洗浄機(アイワ医科工業製、AU−25C)を用い実施例1と同様の条件で分散させた。ここに、エタノール2.5mLを加えた。蓋をして室温で放置すると金コロイドが生成した。1日放置後のUV−VISスペクトルを測定した。測定されたλmaxの値より、前記式(1)に基づいてODmax値を算出した。これらの値を表5に示す。
Examples 17 to 24 <Influence of protective colloid during ethanol reduction>
25 mg of the various dispersants shown in Table 5 were dissolved in 2.5 mL of water in the test tube. 5 mg of gold acetate powder was added, and the mixture was dispersed under the same conditions as in Example 1 using a touch mixer (IKA Corp., Vortex Genius 3) and an ultrasonic washer (Aiwa Medical Industries, AU-25C). To this, 2.5 mL of ethanol was added. The colloidal gold was formed when the lid was left standing at room temperature. The UV-VIS spectrum after standing for 1 day was measured. Based on the measured value of λ max , the OD max value was calculated based on the formula (1). These values are shown in Table 5.

表5から、保護コロイドの種類により得られる金コロイドのλmaxが異なることが示された。より具体的には、PVP K−15(実施例17)に比べ、分子量の大きなPVP K−30(実施例18)やPVPK−90(実施例19)を用いると、λmaxが小さくなり比較的粒子径の小さな金コロイドの生成が示唆された。また、ポリアクリル酸ナトリウム又はポリアクリル酸(それぞれ実施例21、22)を用いると、λmaxは大きくなり粒子径の大きな金コロイドの生成が示唆された。更に、ポリエチレングリコール、ポリビニルアルコール又はカルボキシメチルセルロース(それぞれ実施例20、23、24)を使用した場合には、PVP K−15(実施例17)と同程度のλmaxが示され、同程度の粒子径の金コロイドの生成が示唆されたが、ODmax値はPVP K−15に比べると低く、金ナノ粒子の濃度がわずかに低下したことが示された。From Table 5, it was shown that the λ max of the gold colloid obtained varies depending on the type of protective colloid. More specifically, when PVP K-30 (Example 18) or PVPK-90 (Example 19) having a large molecular weight is used as compared to PVP K-15 (Example 17), λ max becomes relatively small. The formation of gold colloid with small particle size was suggested. Further, when sodium polyacrylate or polyacrylic acid (Examples 21 and 22 respectively) was used, λ max was increased, suggesting the formation of a gold colloid with a large particle size. Furthermore, when polyethylene glycol, polyvinyl alcohol, or carboxymethyl cellulose (Examples 20, 23, and 24, respectively) was used, λ max of the same level as that of PVP K-15 (Example 17) was shown, and the same level of particles The generation of colloidal gold colloid was suggested, but the OD max value was lower compared to PVP K-15, indicating a slight decrease in the concentration of gold nanoparticles.

実施例25−33<各種保護コロイドによる還元>
試験管中の水5mLまたは2mLに、表6に示した分散剤を所定量加えて溶かした。酢酸金の粉末を所定量加え、タッチミキサ(IKA社製、Vortex Genius3)と超音波洗浄機(アイワ医科工業製、AU−25C)を用い実施例1と同様の条件で分散させた。蓋をして沸騰水中で2時間加熱する間に金コロイドが生成した。その後、室温で1日静置後(但し、実施例30〜33では3日後、実施例26は加熱せず室温で5日静置後)のUV−VISスペクトルを測定した。測定されたλmaxの値より、前記式(1)に基づいてODmax値を算出した。これらの値を下表6に示す。
Examples 25-33 <Reduction with various protective colloids>
A predetermined amount of the dispersant shown in Table 6 was added to 5 mL or 2 mL of water in the test tube and dissolved. A predetermined amount of gold acetate powder was added, and the mixture was dispersed under the same conditions as in Example 1 using a touch mixer (IKA Corp., Vortex Genius 3) and an ultrasonic cleaner (Aiwa Medical Industry, AU-25C). Colloidal gold was formed while capping and heating in boiling water for 2 hours. Thereafter, the UV-VIS spectrum was measured after standing at room temperature for 1 day (however, in Examples 30 to 33, after 3 days, Example 26 was left unheated at room temperature for 5 days). Based on the measured value of λ max , the OD max value was calculated based on the formula (1). These values are shown in Table 6 below.

表6よりエタノールを加えなくても保護コロイドとしてPVP、PEG、PVA又はCMCを使った場合に金コロイドが生成できることが示された。実施例26と27を比較すると、常温ではコロイドの生成に長期間を要しODmax値も小さいのに対して、加熱により短時間にODmax値の大きなコロイドが得られた。また、酢酸金の量を増やせばODmax値が100を超えるコロイドを生成することが可能であった(実施例29及び32)。保護コロイドとしてPVP又はPVAを用いた場合には、3日間静置後も安定な金コロイドが得られた(実施例25〜30及び32)。Table 6 shows that a gold colloid can be produced when PVP, PEG, PVA or CMC is used as a protective colloid without adding ethanol. When Examples 26 and 27 were compared, a colloid with a large OD max value was obtained in a short time by heating, whereas a long period of time was required for colloid formation at room temperature and the OD max value was small. Further, when the amount of gold acetate was increased, it was possible to produce a colloid having an OD max value exceeding 100 (Examples 29 and 32). When PVP or PVA was used as the protective colloid, stable colloidal gold was obtained even after standing for 3 days (Examples 25 to 30 and 32).

(まとめ)
以上の結果より、本発明によれば安定な金コロイド溶液が得られることが示された。更に、本発明によれば、従来の金コロイド溶液と比べて格段に高濃度のものを調製することも可能であった。また、金ナノ粒子の供給源として金カルボキシラートを使用することにより、塩化物イオン等の残留を懸念することなく、幅広い用途に適用可能な金コロイド溶液を簡便に調製することができることが示された。
(Summary)
From the above results, it was shown that a stable colloidal gold solution can be obtained according to the present invention. Furthermore, according to the present invention, it was possible to prepare a solution having a much higher concentration than conventional colloidal gold solutions. In addition, it was shown that by using gold carboxylate as a source of gold nanoparticles, a colloidal gold solution applicable to a wide range of applications can be easily prepared without worrying about residual chloride ions. It was.

Claims (11)

水中に粒子径100nm以下の金ナノ粒子と下記一般式(a)で表わされる陰イオン
R−COO- (a)
(式中、Rは炭素数1〜4の直鎖状又は分岐鎖状アルキル基を示す)
を含む、金コロイド溶液であって、
前記金ナノ粒子の含有量が0.01〜5重量%であり、
前記金コロイド溶液中の塩化物イオンと金とのモル比(塩化物イオン/金)は、0.04以下である、金コロイド溶液。
Gold nanoparticles having a particle diameter of 100 nm or less in water and an anion R—COO (a) represented by the following general formula (a)
(Wherein R represents a linear or branched alkyl group having 1 to 4 carbon atoms)
A colloidal gold solution comprising:
The gold nanoparticle content is 0.01 to 5% by weight,
The gold colloid solution, wherein the molar ratio of chloride ions to gold (chloride ions / gold) in the gold colloid solution is 0.04 or less .
前記陰イオンが酢酸イオンである、請求項1に記載の金コロイド溶液。   The colloidal gold solution according to claim 1, wherein the anion is acetate ion. 更に、保護コロイドを含む請求項1又は2に記載の金コロイド溶液。   The gold colloid solution according to claim 1 or 2, further comprising a protective colloid. 前記保護コロイドがポリビニルピロリドン、ポリエチレングリコール、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリビニルアルコール及びカルボキシメチルセルロースからなる群より選択される少なくとも1種である、請求項に記載の金コロイド溶液。 The colloidal gold solution according to claim 3 , wherein the protective colloid is at least one selected from the group consisting of polyvinylpyrrolidone, polyethylene glycol, polyacrylic acid, sodium polyacrylate, polyvinyl alcohol, and carboxymethylcellulose. 更に、1級水酸基及び/又は2級水酸基を有するアルコールからなる還元剤を含む請求項1〜4のいずれかに記載の金コロイド溶液。   Furthermore, the gold colloid solution in any one of Claims 1-4 containing the reducing agent which consists of alcohol which has a primary hydroxyl group and / or a secondary hydroxyl group. 前記金コロイド溶液中の塩化物イオンと金とのモル比(塩化物イオン/金)は、0.004以下である、請求項1〜のいずれかに記載の金コロイド溶液。 The gold colloid solution according to any one of claims 1 to 5 , wherein a molar ratio of chloride ions to gold (chloride ions / gold) in the gold colloid solution is 0.004 or less. 下記工程を含む金コロイド溶液の製造方法:
(i)金カルボキシラートを水に分散させて分散液を調製する工程、ただし、前記金カルボキシラートは、一般式(a)で表わされる陰イオンR−COO - (式中、Rは炭素数1〜4の直鎖状又は分岐鎖状アルキル基を示す)の金塩である;及び
(ii)前記工程(i)で得られた分散液において、金カルボキシラートに還元剤を作用させて還元することにより、塩化物イオンと金とのモル比(塩化物イオン/金)が0.4以下である金コロイド溶液を得る工程。
A method for producing a colloidal gold solution comprising the following steps:
(I) A step of preparing a dispersion by dispersing gold carboxylate in water , wherein the gold carboxylate is an anion R—COO represented by the general formula (a) (wherein R is carbon number 1) And (ii) in the dispersion obtained in the step (i), the gold carboxylate is reduced by acting a reducing agent. Thereby obtaining a gold colloid solution having a molar ratio of chloride ions to gold (chloride ions / gold) of 0.4 or less.
前記還元が、1級水酸基及び/又は2級水酸基を有するアルコール、ポリビニルピロリドン、ポリビニルアルコール、ポリエチレングリコール、ゼラチン、デンプン、デキストリン、カルボキシメチルセルロース、メチルセルロース並びにエチルセルロースからなる群より選択される少なくとも1種を用いて行われる、請求項に記載の金コロイド溶液の製造方法。 The reduction uses at least one selected from the group consisting of alcohols having primary hydroxyl groups and / or secondary hydroxyl groups, polyvinyl pyrrolidone, polyvinyl alcohol, polyethylene glycol, gelatin, starch, dextrin, carboxymethyl cellulose, methyl cellulose, and ethyl cellulose. The method for producing a colloidal gold solution according to claim 7 , wherein 前記金カルボキシラートが酢酸金である、請求項又はに記載の方法。 9. A method according to claim 7 or 8 , wherein the gold carboxylate is gold acetate. 前記分散液が保護コロイドを含む、請求項7〜9のいずれかに記載の方法。 The method according to claim 7 , wherein the dispersion contains a protective colloid. 前記保護コロイドがポリビニルピロリドン、ポリエチレングリコール、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリビニルアルコール及びカルボキシメチルセルロースからなる群より選択される少なくとも1種である、請求項10に記載の方法。 The method according to claim 10 , wherein the protective colloid is at least one selected from the group consisting of polyvinylpyrrolidone, polyethylene glycol, polyacrylic acid, sodium polyacrylate, polyvinyl alcohol, and carboxymethylcellulose.
JP2014503878A 2012-03-08 2013-03-06 Colloidal gold solution and method for producing the same Expired - Fee Related JP6032622B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012051800 2012-03-08
JP2012051800 2012-03-08
PCT/JP2013/056115 WO2013133315A1 (en) 2012-03-08 2013-03-06 Gold colloidal solution and method for producing same

Publications (2)

Publication Number Publication Date
JPWO2013133315A1 JPWO2013133315A1 (en) 2015-07-30
JP6032622B2 true JP6032622B2 (en) 2016-11-30

Family

ID=49116788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014503878A Expired - Fee Related JP6032622B2 (en) 2012-03-08 2013-03-06 Colloidal gold solution and method for producing the same

Country Status (4)

Country Link
US (1) US20150057147A1 (en)
JP (1) JP6032622B2 (en)
RU (1) RU2014139968A (en)
WO (1) WO2013133315A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2518430A (en) * 2013-09-23 2015-03-25 Speciality Fibres And Materials Ltd Cellulose fibres
KR102480159B1 (en) * 2014-10-07 2022-12-22 바스프 코포레이션 Synthesis of colloidal precious metal nanoparticles with controlled size and morphology
JP7089841B2 (en) * 2016-09-01 2022-06-23 旭化成株式会社 New core-shell nanoparticles and their manufacturing methods
CN112972678B (en) * 2021-02-22 2023-09-22 上海交通大学医学院附属第九人民医院 Pentagonal nano gold-based carrier, preparation method and application

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19734974A1 (en) * 1997-08-13 1999-02-25 Hoechst Ag Production of supported catalyst for vinyl acetate production
JP2001105759A (en) * 1999-10-12 2001-04-17 Fuji Photo Film Co Ltd Lithographic printing plate and original plate for negative lithographic printing
JP2005120034A (en) * 2003-10-17 2005-05-12 Konica Minolta Medical & Graphic Inc Metal fine particle complex and x-ray contrast medium using the same
JP4180531B2 (en) * 2004-02-19 2008-11-12 日本板硝子株式会社 Colloidal metal particles and method for producing the same
JP3952027B2 (en) * 2004-03-01 2007-08-01 住友電気工業株式会社 Metal colloid solution
JP4282630B2 (en) * 2004-06-25 2009-06-24 三菱マテリアル株式会社 Metal colloids with good stability and their applications
JP2006033205A (en) * 2004-07-14 2006-02-02 Nec Corp Distortion compensation circuit and compensation method thereof
JP2006109902A (en) * 2004-10-12 2006-04-27 Chemiprokasei Kaisha Ltd Deodorant and article with the deodorant at least on the surface
JP5740658B2 (en) * 2011-04-19 2015-06-24 国立研究開発法人産業技術総合研究所 Gold hydroxo anion complex solution and method for producing gold nanoparticle carrier

Also Published As

Publication number Publication date
WO2013133315A1 (en) 2013-09-12
RU2014139968A (en) 2016-04-27
US20150057147A1 (en) 2015-02-26
JPWO2013133315A1 (en) 2015-07-30

Similar Documents

Publication Publication Date Title
US10286382B2 (en) Silver nanowires, methods of making silver nanowires, core-shell nanostructures, methods of making core-shell nanostructures, core-frame nanostructures, methods of making core-frame nanostructures
Pastoriza-Santos et al. Reduction of silver nanoparticles in DMF. Formation of monolayers and stable colloids
Khan et al. Au (III)–CTAB reduction by ascorbic acid: Preparation and characterization of gold nanoparticles
RU2536144C2 (en) Method of obtaining stable suspensions of metal nanoparticles and stable colloid suspensions obtained thereby
Oluwafemi et al. A facile completely ‘green’size tunable synthesis of maltose-reduced silver nanoparticles without the use of any accelerator
CN101939091B (en) Method for preparing dispersions of precious metal nanoparticles and for isolating such nanoparticles from the dispersions
JP6032622B2 (en) Colloidal gold solution and method for producing the same
JP5451083B2 (en) Platinum black powder, colloid of platinum black and process for producing them
CN103586461A (en) Nano-silver sol and preparation and purification method thereof
AL-Thabaiti et al. Effects of surfactant and polymer on the morphology of advanced nanomaterials in aqueous solution
Bashir et al. Encapsulation of silver nanocomposites and effects of stabilizers
CN106623966B (en) The silver nanowires for preparing the method for silver nanowires based on ionic liquid and being prepared
JP2009057627A (en) Thick nanocolloidal gold liquid, fine gold particle, and their manufacturing methods
JP2012116699A (en) Method for producing metal-coated metal oxide fine particle, and the metal-coated metal oxide fine particle
Chen et al. Embedding hexanuclear tantalum bromide cluster {Ta6Br12} into SiO2 nanoparticles by reverse microemulsion method
JP2016089164A (en) Metal nanoparticle-sulfonated polyester composite and environmentally-friendly method of making the same
JP6140634B2 (en) Alloy fine particle dispersion and method for producing the same
JP6015224B2 (en) Method for producing metal oxide nanostructure
Zümreoglu-Karan A rationale on the role of intermediate Au (III)–vitamin C complexation in the production of gold nanoparticles
Pastoriza-Santos et al. Binary cooperative complementary nanoscale interfacial materials. Reduction of silver nanoparticles in DMF. Formation of monolayers and stable colloids
Kása et al. Myth or reality? A disquisition concerning the photostability of bismuth-based photocatalysts
KR100769731B1 (en) Preparation method for silver colloid
Soares et al. Structural, photoluminescent and electrochemical properties of self-assembled Co3 [Co (CN) 6] 2/ZnO nanocomposite
Samoilova et al. One-Pot Synthesis of Colloidal Hybrid Au (Ag)/ZnO Nanostructures with the Participation of Maleic Acid Copolymers. Polymers 2023, 15, 1670
Khan et al. Effect of macromolecule poly (vinyl alcohol) on the growth of cetyltrimethylammonium bromide stabilized Ag-nanoparticles

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151224

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20151224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160815

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161014

R150 Certificate of patent or registration of utility model

Ref document number: 6032622

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees