JP6029274B2 - Seal assembly and gas turbine provided with the same - Google Patents

Seal assembly and gas turbine provided with the same Download PDF

Info

Publication number
JP6029274B2
JP6029274B2 JP2011246539A JP2011246539A JP6029274B2 JP 6029274 B2 JP6029274 B2 JP 6029274B2 JP 2011246539 A JP2011246539 A JP 2011246539A JP 2011246539 A JP2011246539 A JP 2011246539A JP 6029274 B2 JP6029274 B2 JP 6029274B2
Authority
JP
Japan
Prior art keywords
seal
plate
seal plate
seal assembly
recesses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011246539A
Other languages
Japanese (ja)
Other versions
JP2013104304A (en
Inventor
喜敏 藤本
喜敏 藤本
健太 谷口
健太 谷口
勇大 青山
勇大 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2011246539A priority Critical patent/JP6029274B2/en
Priority to US13/670,798 priority patent/US20140023489A1/en
Priority to PCT/JP2012/079147 priority patent/WO2013069775A1/en
Priority to EP12846960.8A priority patent/EP2778373B1/en
Priority to KR1020147007980A priority patent/KR20140054366A/en
Priority to CN201280052994.0A priority patent/CN103890350A/en
Publication of JP2013104304A publication Critical patent/JP2013104304A/en
Application granted granted Critical
Publication of JP6029274B2 publication Critical patent/JP6029274B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/28Arrangement of seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/08Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing
    • F16J15/0887Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing the sealing effect being obtained by elastic deformation of the packing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/005Sealing means between non relatively rotating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/023Transition ducts between combustor cans and first stage of the turbine in gas-turbine engines; their cooling or sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • F23R3/46Combustion chambers comprising an annular arrangement of several essentially tubular flame tubes within a common annular casing or within individual casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • F23R3/60Support structures; Attaching or mounting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/55Seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00005Preventing fatigue failures or reducing mechanical stress in gas turbine components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00012Details of sealing devices

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Gasket Seals (AREA)

Description

本発明は、ガスタービンの燃焼器において、周方向に隣接する燃焼器同士の尾筒間に設けられるシール装置に関するものである。   The present invention relates to a sealing device provided between tail pipes of combustors adjacent in the circumferential direction in a combustor of a gas turbine.

ガスタービンの燃焼器は、ロータの周方向に複数が隣り合って設置されている。これら複数の燃焼器は、尾筒出口のフランジ部同士が互いに隣接して配置されており、この接続箇所にシール構造が設けられることにより、圧縮機から車室内へ導入された圧縮空気がタービン内部へ入り込まないようにされている。   A plurality of gas turbine combustors are installed adjacent to each other in the circumferential direction of the rotor. In the plurality of combustors, the flange portions of the transition piece outlets are arranged adjacent to each other, and a seal structure is provided at this connection location, so that the compressed air introduced from the compressor into the vehicle interior is inside the turbine. It is made not to enter.

このようなシール構造については種々のものが公知となっており、例えば特許文献1(図14)においては、隣り合う燃焼器のフランジ同士が対向する面に各々凹溝が形成され、この凹溝間にわたってシール組立体が挿入されている。このシール組立体は、長尺状のシール板と金属製のバネ板とがスポット溶接によって接合されたものとなっており、上記シール板は燃焼器からの振動による加振力を低減するために薄板状となっている。   Various types of such seal structures are known. For example, in Patent Document 1 (FIG. 14), concave grooves are formed on the surfaces where the flanges of adjacent combustors face each other. A seal assembly is inserted between them. In this seal assembly, a long seal plate and a metal spring plate are joined by spot welding, and the seal plate is used to reduce the excitation force caused by vibration from the combustor. It is a thin plate.

特許第4672728号公報Japanese Patent No. 4672728

しかしながら、上記特許文献1のシール板は薄板状とされているため、製作時、取付取外時、運転時においてシール板に変形が生じ、凹溝(凹部)とシール板との間に間隙が発生してしまうおそれがあった。このような間隙から、尾筒外部の圧縮空気が燃焼ガス側に漏れてしまうことで、燃焼器において燃焼用として用いられる圧縮空気が減少してしまう。そのため、燃焼器内部の火炎温度が上昇し、燃焼ガス中の窒素酸化物(NOx)を増加させてしまう。さらに、この間隙へ流入する圧縮空気によって引き起こされる自励振動によって、シール板が損傷を受けてしまうという懸念もあった。
また、このような変形及び自励振動抑制による損傷発生を防止するため、シール板の板厚を増加させることも可能である。しかし、この場合、凹溝(凹部)の形状を変更しなければならないため、既に設置されているガスタービンに対してシール板の板厚を増加させたシール組立体を適用するためには、同時に燃焼器を交換しなければならない。
However, since the seal plate of Patent Document 1 has a thin plate shape, the seal plate is deformed during manufacturing, mounting / removal, and operation, and there is a gap between the concave groove (concave portion) and the seal plate. There was a risk of it occurring. The compressed air used for combustion in the combustor decreases because the compressed air outside the tail tube leaks to the combustion gas side from such a gap. Therefore, the flame temperature inside the combustor rises and increases nitrogen oxides (NOx) in the combustion gas. Further, there is a concern that the seal plate is damaged by the self-excited vibration caused by the compressed air flowing into the gap.
Further, in order to prevent such deformation and damage due to suppression of self-excited vibration, it is possible to increase the thickness of the seal plate. However, in this case, since the shape of the concave groove (recessed part) must be changed, in order to apply a seal assembly in which the thickness of the seal plate is increased to the gas turbine that has already been installed, The combustor must be replaced.

本発明はこのような事情を考慮してなされたもので、既に設置されているガスタービンにも適用可能なうえ、シール板の変形及び損傷を防止してシール性能と耐久性の向上が可能なシール組立体及びこれを備えたガスタービンを提供することを目的とする。   The present invention has been made in consideration of such circumstances, and can be applied to an already installed gas turbine, and can prevent the deformation and damage of the sealing plate and improve the sealing performance and durability. It is an object of the present invention to provide a seal assembly and a gas turbine including the same.

上記課題を解決するため、本発明は以下の手段を採用している。
即ち、本発明に係るシール組立体は、複数の燃焼器の各々に設けられ、側面で互いに隣接する尾筒出口フランジの前記側面に設けられた一対の凹部が画定する空間に挿入されるシール組立体において、前記一対の凹部のそれぞれで互いに対向する側面のうち、前記尾筒内を流れる燃焼ガスの下流側の側面のそれぞれに接触するシール部が形成されているシール体と、前記シール体を前記下流側に向って付勢する弾性体と、を備え、前記シール体は、前記一対の凹部のそれぞれの前記下流側の側面に対向し、前記シール部が形成されているシール板と、前記シール板で前記側面の方向で互いに対向する側縁のそれぞれから、前記凹部の底面に沿って前記燃焼ガスの上流側に向って前記シール板より前記上流側の位置まで直線状に延びる側板と、を有し、前記弾性体は、前記シール板の前記上流側の面に接触して前記シール板を前記下流側に向かって付勢するシール板接触部と、該シール板接触部から該上流側に延び、その一部が前記一対の凹部のそれぞれの前記上流側の側面に接触する弾性部と、を有する、ことを特徴とする。
さらに、本発明に係るシール体は、複数の燃焼器の各々に設けられ、側面で互いに隣接する尾筒出口フランジの前記側面に設けられた一対の凹部が画定する空間に挿入されるシール組立体において、前記一対の凹部のそれぞれで互いに対向する側面のうち、前記尾筒内を流れる燃焼ガスの下流側の側面のそれぞれに接触するシール部が形成されているシール体と、前記シール体を前記下流側に向って付勢する弾性体と、を備え、前記シール体は、前記一対の凹部のそれぞれの前記下流側の側面に対向し、前記シール部が形成されているシール板と、前記シール板の側縁のそれぞれから、前記下流側に突出する凸部と、前記凸部に接続し、前記凹部の底面に沿って前記燃焼ガスの上流側に向って延びる側板と、を有し、前記弾性体は、前記シール板の前記上流側の面に接触して前記シール板を前記下流側に向かって付勢するシール板接触部と、該シール板接触部から該上流側に延び、その一部が前記一対の凹部のそれぞれの前記上流側の側面に接触する弾性部と、を有し、前記燃焼ガスの流れる方向における前記シール板から前記側板の端部までの距離が、前記燃焼ガスの流れる方向における前記シール板から前記凸部の頂点までの距離よりも大きいことを特徴とする。
In order to solve the above problems, the present invention employs the following means.
That is, the seal assembly according to the present invention is provided in each of a plurality of combustors, and is inserted into a space defined by a pair of recesses provided on the side surface of the tail tube outlet flange adjacent to each other on the side surface. In a three-dimensional structure, a seal body in which a seal portion that contacts each of the side surfaces on the downstream side of the combustion gas flowing in the tail cylinder among the side surfaces facing each other in each of the pair of recesses is formed; and An elastic body that urges toward the downstream side, the seal body facing the downstream side surface of each of the pair of recesses, and a seal plate on which the seal portion is formed, A side plate extending linearly from each of the side edges facing each other in the direction of the side surface of the seal plate toward the upstream side of the combustion gas along the bottom surface of the recess from the seal plate to the upstream side position; The elastic body includes a seal plate contact portion that contacts the upstream surface of the seal plate and biases the seal plate toward the downstream side; and from the seal plate contact portion to the upstream side. An elastic part that extends and a part of which contacts the upstream side surface of each of the pair of recesses.
Furthermore, the seal body according to the present invention is provided in each of the plurality of combustors, and is inserted into a space defined by a pair of recesses provided on the side surface of the tail tube outlet flange adjacent to each other on the side surface. The seal body is formed with a seal portion that is in contact with each of the side surfaces on the downstream side of the combustion gas flowing in the tail cylinder among the side surfaces facing each other in each of the pair of recesses, and the seal body is An elastic body biasing toward the downstream side, the seal body facing the downstream side surface of each of the pair of recesses, and a seal plate on which the seal portion is formed, and the seal From each of the side edges of the plate, there is a convex portion protruding to the downstream side, and a side plate connected to the convex portion and extending toward the upstream side of the combustion gas along the bottom surface of the concave portion, The elastic body is A seal plate contact portion that contacts the upstream surface of the plate and urges the seal plate toward the downstream side, and extends from the seal plate contact portion to the upstream side, and a part of the seal plate contact portion And an elastic portion that contacts the side surface on the upstream side of each of the seal plates, and the distance from the seal plate to the end of the side plate in the flow direction of the combustion gas is the seal plate in the flow direction of the combustion gas It is larger than the distance from the top of the said convex part to the said convex part.

このようなシール組立体によると、シール組立体が凹部へ挿入された状態において、弾性体の弾性部が凹部の上流側の側面に接触し、シール板接触部を介してシール体を凹部の下流側の側面に押し付けてシール性能を発揮する。この際、シール板の両側縁から上流側に向かって側板が延びているため、シール板の板厚を増大させなくとも、断面剛性の向上を達成できる。そのため、シール板の変形及び損傷を防止してシール性能と耐久性を向上させることができる。また板厚を変更していないため、既存の凹部の形状や大きさに対応でき、シール組立体を上記空間へ挿入可能となる。   According to such a seal assembly, in a state where the seal assembly is inserted into the recess, the elastic portion of the elastic body contacts the side surface on the upstream side of the recess, and the seal body is placed downstream of the recess via the seal plate contact portion. It exerts sealing performance by pressing against the side surface. At this time, since the side plate extends from the both side edges of the seal plate toward the upstream side, the cross-sectional rigidity can be improved without increasing the thickness of the seal plate. Therefore, deformation and damage of the seal plate can be prevented, and the sealing performance and durability can be improved. Further, since the plate thickness is not changed, the shape and size of the existing recess can be accommodated, and the seal assembly can be inserted into the space.

また、上記のシール組立体において、前記シール体の前記シール板と前記側板とがなす角部の断面形状は、円弧形状であってもよい。   In the above seal assembly, the cross-sectional shape of the corner portion formed by the seal plate and the side plate of the seal body may be an arc shape.

このような断面円弧形状の角部によって、仮に燃焼器が軸方向に熱伸びして、隣り合う燃焼器同士の間に位置ズレが発生した後に再び位置ズレが解消された場合等であっても、凹部からシール組立体が脱落することなく、上記空間内に収さまるように移動可能であるため、シール性能を保持することが可能である。   Even if such a misalignment is eliminated again after the combustor is thermally expanded in the axial direction by the corner portion of the cross-sectional arc shape and the misalignment is generated between the adjacent combustors. Since the seal assembly can be moved so as to be accommodated in the space without dropping from the recess, the seal performance can be maintained.

さらに、本発明に係るガスタービンは、ロータと、前記ロータの周方向に配置されている複数の燃焼器と、複数の前記燃焼器で隣り合う燃焼器のそれぞれの前記凹部によって定められる前記空間に挿入される上記のシール組立体とを備えていることを特徴とする。   Furthermore, the gas turbine according to the present invention is provided in the space defined by the rotor, the plurality of combustors arranged in the circumferential direction of the rotor, and the recesses of the combustors adjacent to each other in the plurality of combustors. And the above-described seal assembly to be inserted.

このようなガスタービンによると、シール板の側板によって板厚を増加させることなく断面剛性の向上を図ることができるため、凹部の形状変更に伴う設計変更を不要としながら、シール板の変形及び損傷を防止してシール性能の向上を図ることができる。そのため、圧縮空気の漏れを減らすことができるから、窒素酸化物の発生量を削減することができる。さらに、シール板の上記角部が断面円弧状であることによって、凹部からのシール組立体の脱落を防止しながら、挿入空間内で円滑移動可能とされ、シール性能を保持できる。   According to such a gas turbine, the cross-section rigidity can be improved without increasing the plate thickness by the side plate of the seal plate, so that the design change accompanying the shape change of the recess is not required, and the seal plate is deformed and damaged. Can be prevented and the sealing performance can be improved. Therefore, since leakage of compressed air can be reduced, the amount of nitrogen oxides generated can be reduced. Furthermore, since the corner portion of the seal plate has a circular arc shape, the seal assembly can be smoothly moved in the insertion space while preventing the seal assembly from dropping from the recess, and the sealing performance can be maintained.

本発明のシール組立体、及びガスタービンによれば、既設のガスタービンにこれらを適用可能であり、シール板の両側部の側板によってシール性能と耐久性の向上を達成することができる。   According to the seal assembly and the gas turbine of the present invention, these can be applied to the existing gas turbine, and the sealing performance and durability can be improved by the side plates on both sides of the seal plate.

本発明の実施形態に係るガスタービンの全体概略図である。1 is an overall schematic diagram of a gas turbine according to an embodiment of the present invention. 本発明の実施形態に係るガスタービンの燃焼器の概略断面図である。It is a schematic sectional drawing of the combustor of the gas turbine which concerns on embodiment of this invention. 本発明の実施形態に係るガスタービンの燃焼器の尾筒及びシール組立体を示す立体図である。It is a three-dimensional view showing the transition piece and seal assembly of the combustor of the gas turbine according to the embodiment of the present invention. 本発明の実施形態に係るガスタービンの燃焼器におけるシール組立体の設置状態を示す図であって、図3のA−A断面を示すものである。It is a figure which shows the installation state of the seal assembly in the combustor of the gas turbine which concerns on embodiment of this invention, Comprising: The AA cross section of FIG. 3 is shown. 本発明の実施形態に係るガスタービンの燃焼器におけるシール組立体の立体図であるIt is a three-dimensional view of the seal assembly in the combustor of the gas turbine which concerns on embodiment of this invention. 本発明の実施形態に係るガスタービンの燃焼器におけるシール組立体の断面図であって、(a)は図5の断面A−Aを、(b)は図5の断面B−Bを、(c)は図5の断面C−Cを示す図である。It is sectional drawing of the seal assembly in the combustor of the gas turbine which concerns on embodiment of this invention, Comprising: (a) is the cross section AA of FIG. 5, (b) is the cross section BB of FIG. c) is a view showing a cross-section CC of FIG.

以下、本発明の実施形態に係るガスタービン1について説明する。
図1に示すように、ガスタービン1は、圧縮機2において生成された圧縮空気Wを燃焼器3で燃料と混合した後に燃焼し、高温・高圧の燃焼ガスGを生成するように構成されている。そしてこの燃焼ガスGをタービン4へ流入させることによって、このタービン4のロータ6を軸線P(以下、ガスタービン1の軸線P)回りに回転させ、回転動力を得るようになっており、また、上記燃焼ガスGはタービン4を回転させた後に、排気室5を通じて排気される。
Hereinafter, the gas turbine 1 which concerns on embodiment of this invention is demonstrated.
As shown in FIG. 1, the gas turbine 1 is configured so that compressed air W generated in the compressor 2 is mixed with fuel in the combustor 3 and then combusted to generate a high-temperature and high-pressure combustion gas G. Yes. The combustion gas G is caused to flow into the turbine 4 so that the rotor 6 of the turbine 4 is rotated about the axis P (hereinafter referred to as the axis P of the gas turbine 1) to obtain rotational power. The combustion gas G is exhausted through the exhaust chamber 5 after rotating the turbine 4.

次に、燃焼器3について説明する。
なお、以下では、ガスタービン1の圧縮機2側(図1の紙面左側)を上流側と称し、排気室5側(図1の紙面右側)を下流側と称する。
図2及び図3に示すように、燃焼器3は、圧縮機2とタービン4の間に配置されて、ガスタービン1の軸線Pについての周方向に複数が並設されており、それぞれが車室7に接続されている。
Next, the combustor 3 will be described.
In the following, the compressor 2 side (the left side in FIG. 1) of the gas turbine 1 is referred to as the upstream side, and the exhaust chamber 5 side (the right side in FIG. 1) is referred to as the downstream side.
As shown in FIGS. 2 and 3, the combustor 3 is disposed between the compressor 2 and the turbine 4, and a plurality of the combustors 3 are arranged in the circumferential direction about the axis P of the gas turbine 1. Connected to chamber 7.

燃焼器3は、高温・高圧の燃焼ガスGをタービン4に送る尾筒11と、この尾筒11内に燃料及び圧縮空気Wを供給する燃料供給器12とを備え、さらに図3及び図4に示すように、隣り合う尾筒11同士の出口部分の間に設けられるシール組立体30とを備えている。   The combustor 3 includes a tail cylinder 11 that sends high-temperature and high-pressure combustion gas G to the turbine 4, and a fuel supplier 12 that supplies fuel and compressed air W into the tail cylinder 11, and further includes FIGS. 3 and 4. As shown in FIG. 2, a seal assembly 30 is provided between the outlet portions of the adjacent tail cylinders 11.

燃料供給器12は、パイロット燃料PF及び圧縮空気Wを尾筒11内に供給して、この尾筒11内に拡散火炎を形成するパイロットバーナ13と、メイン燃料MF及び圧縮空気Wを予混合して、予混合気体として尾筒11内に供給し、この尾筒11内に予混合火炎を形成する複数のメインノズル14とを有している。そして、パイロットバーナ13及びメインノズル14によって、尾筒11内で燃焼ガスGが生成される。   The fuel supplier 12 supplies pilot fuel PF and compressed air W into the tail cylinder 11, and premixes the pilot burner 13 that forms a diffusion flame in the tail cylinder 11, the main fuel MF, and compressed air W. And a plurality of main nozzles 14 for supplying premixed gas into the tail cylinder 11 and forming a premixed flame in the tail cylinder 11. The combustion gas G is generated in the transition piece 11 by the pilot burner 13 and the main nozzle 14.

尾筒11は、筒状部材16の下流端に尾筒出口フランジ15が設けられているものであり、この尾筒出口フランジ15を介して燃焼器3とタービン4とが接続され、燃焼ガスGがタービン4内へ流入可能とされている。   The transition piece 11 is provided with a transition piece outlet flange 15 at the downstream end of the tubular member 16, and the combustor 3 and the turbine 4 are connected via the transition piece outlet flange 15. Can flow into the turbine 4.

そして、図3及び図4に示すように、この尾筒出口フランジ15には、隣り合う燃焼器3の尾筒出口フランジ15同士が対向する対向面15aから、互いに遠ざかるようにガスタービン1の軸線Pについての周方向に向かって凹む凹部21が形成されている。また、これらの対向する凹部21によって空間Sが形成されており、この空間S内にはシール組立体30が挿入されている。   As shown in FIGS. 3 and 4, this transition piece outlet flange 15 has an axis of the gas turbine 1 so as to be away from each other from a facing surface 15 a where the transition piece outlet flanges 15 of the adjacent combustors 3 face each other. A recess 21 that is recessed in the circumferential direction of P is formed. In addition, a space S is formed by the opposed concave portions 21, and the seal assembly 30 is inserted into the space S.

次に、図4から図6を参照してシール組立体30について説明する。
シール組立体30は、ガスタービン1の軸線Pについての径方向を長手方向とし、上記空間S内に径方向全域にわたって設けられ、尾筒11外部の圧縮空気Wが燃焼ガスGに混入することを防止する金属製のシール部材である。
そしてこのシール組立体30は、空間S内において、凹部21の下流側の側面である第一側面21aに対向するシール体31と、上流側の側面である第二側面21bに対向するバネ部(弾性体)32とを備えている。
Next, the seal assembly 30 will be described with reference to FIGS.
The seal assembly 30 is provided over the entire radial direction in the space S with the radial direction about the axis P of the gas turbine 1 as a longitudinal direction, and the compressed air W outside the tail cylinder 11 is mixed into the combustion gas G. It is a metal sealing member to prevent.
In the space S, the seal assembly 30 includes a seal body 31 that opposes the first side surface 21a that is the downstream side surface of the recess 21 and a spring portion that opposes the second side surface 21b that is the upstream side surface ( Elastic body) 32.

シール体31は、第一側面21aに接触するシール部となるシール板41を有する。このシール板41の、ガスタービン1の軸線Pについての周方向両縁部に位置する側縁からは、凹部21の底面21cに沿って上流側に向かって延びる側板42が形成されている。また、上記側縁においては断面円弧形状となるように、シール体31は下流側に突出する凸部43を有するとともに、角の無い滑らかな曲面によって側板42とシール板41とが接続されている。   The seal body 31 has a seal plate 41 serving as a seal portion that contacts the first side surface 21a. A side plate 42 is formed extending from the side edge of the seal plate 41 located at both edges in the circumferential direction about the axis P of the gas turbine 1 along the bottom surface 21c of the recess 21 toward the upstream side. In addition, the sealing body 31 has a convex portion 43 protruding downstream so that the side edge has a circular arc shape at the side edge, and the side plate 42 and the sealing plate 41 are connected by a smooth curved surface without corners. .

また、シール体31の、ガスタービン1の軸線Pについての径方向外側の端部は、シール組立体30を空間Sに挿入する際の取手部33となっている。   Further, the end portion of the seal body 31 on the radially outer side with respect to the axis P of the gas turbine 1 serves as a handle portion 33 when the seal assembly 30 is inserted into the space S.

バネ部32は、弾性変形可能なバネ板51を有しており、バネ板51はシール板41の上流側を向く面上に位置するシール板接触部51aにおいて、シール板41に溶接によって接合されている。またバネ板51は、このシール板接触部51aを基点とした上流側であって、ガスタービン1の軸線Pの径方向の内外両側に向かってシール板41から離間するようにV字状に延びるように形成されている。さらに、このバネ板51は上記長手方向に一定の間隔を空けて複数設けられており、シール板接触部51aとバネ板51の端部51bとの間の中途位置で、隣り合うバネ板51同士が重なり合っている。具体的にはバネ板51は、細長く形成されたバネ板51Aと、貫通孔54が設けられたバネ板51Bの二種類よりなる。そして、バネ板51Bに設けられた貫通孔54に、バネ板51Aを通した状態で、バネ板51が設置されている。   The spring portion 32 has a spring plate 51 that can be elastically deformed. The spring plate 51 is joined to the seal plate 41 by welding at a seal plate contact portion 51a located on the surface facing the upstream side of the seal plate 41. ing. Further, the spring plate 51 extends upstream from the seal plate contact portion 51a and extends in a V shape so as to be separated from the seal plate 41 toward both the inside and outside in the radial direction of the axis P of the gas turbine 1. It is formed as follows. Further, a plurality of the spring plates 51 are provided at a certain interval in the longitudinal direction, and adjacent spring plates 51 are located at a midway position between the seal plate contact portion 51a and the end portion 51b of the spring plate 51. Are overlapping. Specifically, the spring plate 51 is composed of two types: a long and thin spring plate 51A and a spring plate 51B provided with a through hole 54. And the spring board 51 is installed in the state which let the spring board 51A pass through the through-hole 54 provided in the spring board 51B.

そして、このバネ板51においては、シール板接触部51aと端部51bとの間の中途位置であって、貫通孔54よりも上流側の位置でシール板41と平行となる平行面56を形成するように屈曲部55が設けられている。また、第二側面21bに対向するシール部となる略矩形状をなす当接部52(弾性部)が、上流側から平行面56上に載置され、溶接によって接合されている。   In the spring plate 51, a parallel surface 56 is formed in a midway position between the seal plate contact portion 51 a and the end portion 51 b and parallel to the seal plate 41 at a position upstream of the through hole 54. A bent portion 55 is provided as described above. Moreover, the contact part 52 (elastic part) which makes the substantially rectangular shape used as the seal part which opposes the 2nd side surface 21b is mounted on the parallel surface 56 from the upstream, and is joined by welding.

また、この当接部52は、ガスタービン1の軸線Pの周方向両縁部において上流側に曲面状に突出する凸部53を有しており、この凸部53が凹部21の第二側面21bに接触するようになっている。   Further, the contact portion 52 has a convex portion 53 protruding in a curved shape on the upstream side at both circumferential edges of the axis P of the gas turbine 1, and the convex portion 53 is a second side surface of the concave portion 21. 21b is contacted.

このようなガスタービン1においては、シール組立体30が空間Sへ挿入された状態では、当接部52の凸部53が凹部21の第二側面21bに接触し、シール板接触部51aを介してシール体31を下流側の第一側面21aに押し付ける。このようにして、隣り合う尾筒出口フランジ15同士の間に間隙が形成されることがなく、確実にシール性能を発揮することができる。   In such a gas turbine 1, in the state where the seal assembly 30 is inserted into the space S, the convex portion 53 of the contact portion 52 contacts the second side surface 21b of the concave portion 21, and the seal plate contact portion 51a is interposed therebetween. Then, the sealing body 31 is pressed against the first side surface 21a on the downstream side. In this way, no gap is formed between the adjacent transition piece outlet flanges 15, and the sealing performance can be reliably exhibited.

さらに、シール体31に側板42が設けられることによって、シール板41の板厚を増加させることなく、断面剛性を向上できる。従って、この断面剛性向上によって、シール組立体30を空間S内へ設置する際に変形してしまうことを防止でき、凹部21とシール組立体30との間の間隙形成を回避できるから、シール性能を向上させることができる。そして仮に、シール組立体30が変形してしまい上記間隙が形成されてしまった場合であっても、この間隙を通過する漏れ空気によって発生する自励振動の回避が可能となる。従って、このような自励振動によるシール組立体30の損傷を回避することができ、シール組立体30の耐久性を向上させることができる。   Furthermore, by providing the side plate 42 on the seal body 31, the cross-sectional rigidity can be improved without increasing the thickness of the seal plate 41. Therefore, the improvement in the cross-sectional rigidity can prevent the seal assembly 30 from being deformed when being installed in the space S, and the formation of a gap between the recess 21 and the seal assembly 30 can be avoided. Can be improved. Even if the seal assembly 30 is deformed and the gap is formed, the self-excited vibration generated by the leaked air passing through the gap can be avoided. Therefore, damage to the seal assembly 30 due to such self-excited vibration can be avoided, and durability of the seal assembly 30 can be improved.

さらに、ガスタービン1の運転によって、隣り合う燃焼器3同士の間に位置ズレが生じても、この位置ズレに追従してシール体31の凸部43が凹部21の第一側面21aに、また、当接部52の凸部53が第二側面21bに接触可能である。このため、隣り合う尾筒出口フランジ15同士の間に間隙を形成することがなく、確実にシール性能を発揮でき、尾筒11外部の圧縮空気Wが燃焼ガスGに混入してしまうことを防止できる。   Furthermore, even if a positional deviation occurs between the adjacent combustors 3 due to the operation of the gas turbine 1, the convex portion 43 of the seal body 31 follows the first lateral surface 21 a of the concave portion 21 following the positional deviation. The convex part 53 of the contact part 52 can contact the second side surface 21b. For this reason, a gap is not formed between the adjacent transition piece outlet flanges 15, the sealing performance can be reliably exhibited, and the compressed air W outside the transition piece 11 is prevented from being mixed into the combustion gas G. it can.

また、ガスタービン1の運転によって燃焼器3の軸線P方向への熱伸縮が発生したり、燃焼器3が振動する場合であっても、側板42が設けられることによって、凹部21の内周面である第一側面21a、第二側面21b、底面21cへ、シール組立体30が接触する箇所が多くなり、空間Sからシール組立体30が脱落しにくい。また、シール板41と側板42との接続部が角のない曲面状となっているため、仮にシール組立体30が空間Sから脱落しそうな状態となっても、ガスタービンの運転停止等によって燃焼器3の位置ズレが解消した際や振動が収まった際には、再びシール組立体30が空間S内に収まるように円滑移動が可能である。   Further, even when thermal expansion or contraction in the direction of the axis P of the combustor 3 occurs due to the operation of the gas turbine 1 or the combustor 3 vibrates, the inner peripheral surface of the recess 21 is provided by providing the side plate 42. The number of locations where the seal assembly 30 comes into contact with the first side surface 21a, the second side surface 21b, and the bottom surface 21c increases, and the seal assembly 30 is unlikely to drop out of the space S. In addition, since the connection portion between the seal plate 41 and the side plate 42 has a curved surface with no corners, even if the seal assembly 30 is likely to fall out of the space S, it burns due to the operation stop of the gas turbine or the like. When the positional deviation of the container 3 is eliminated or when the vibration is settled, the seal assembly 30 can be smoothly moved so that the seal assembly 30 is again accommodated in the space S.

また、仮にシール体31が側板42を有しない矩形状である場合には、凹部21の底面21cと第一側面21aとの間に形成される角部、又は底面21cと第二側面21bとの間に形成される角部にシール体31が噛み込んでしまうおそれがある。しかしこの点、本実施形態のシール体31は、側板42によって噛み込みを防止でき、確実にシール性能を発揮可能となる。   If the sealing body 31 has a rectangular shape without the side plate 42, the corner formed between the bottom surface 21c and the first side surface 21a of the recess 21 or the bottom surface 21c and the second side surface 21b. There is a possibility that the sealing body 31 may bite into corner portions formed therebetween. However, in this respect, the sealing body 31 of the present embodiment can prevent biting by the side plate 42 and can surely exhibit the sealing performance.

本実施形態のガスタービン1によると、シール体31の側板42によってシール板41の板厚を増大することなく断面剛性が高められ、シール組立体30の変形及び損傷を回避できる。これによりシール性能の向上を達成することが可能となる。さらに自励振動による損傷を回避することができ、シール組立体30の耐久性を向上することができる。そして、尾筒11外部からの圧縮空気Wが燃焼ガスGに漏れこんでしまうことにより、燃焼器3に流れる燃焼用空気が不足することで火炎温度が上昇し、窒素酸化物が発生してしまうことを防ぐことができ、ガスタービン1の排気ガスの性状を改善することができる。   According to the gas turbine 1 of the present embodiment, the cross-sectional rigidity is increased by the side plate 42 of the seal body 31 without increasing the plate thickness of the seal plate 41, and deformation and damage of the seal assembly 30 can be avoided. This makes it possible to achieve an improvement in sealing performance. Furthermore, damage due to self-excited vibration can be avoided, and the durability of the seal assembly 30 can be improved. And since the compressed air W from the outside of the tail cylinder 11 leaks into the combustion gas G, the combustion air flowing to the combustor 3 is insufficient, so that the flame temperature rises and nitrogen oxides are generated. This can be prevented, and the properties of the exhaust gas of the gas turbine 1 can be improved.

さらに、板厚を増加せずに断面剛性の向上が可能となり、空間Sへ設置された際の軸線P方向の寸法も増大することがないため、凹部21の形状変更にともなう尾筒11の設計変更が不要となる。言い換えれば、本実施形態のガスタービン1は、既に取り付けられている燃焼器3を取り替えることなく、そのシール性能を向上させることによって排気ガスの性状を改善することができる。   Furthermore, since the cross-sectional rigidity can be improved without increasing the plate thickness, and the dimension in the direction of the axis P when installed in the space S does not increase, the design of the tail cylinder 11 accompanying the shape change of the recess 21 is achieved. No change is required. In other words, the gas turbine 1 of the present embodiment can improve the properties of the exhaust gas by improving its sealing performance without replacing the already installed combustor 3.

また、燃焼器3の位置ズレが発生した際にも、シール体31の側板42によってシール組立体30の脱落や噛み込みを防止可能である。   Further, even when the combustor 3 is misaligned, the side plate 42 of the seal body 31 can prevent the seal assembly 30 from dropping off or being caught.

以上、本発明の実施形態についての詳細説明を行なったが、本発明の技術的思想を逸脱しない範囲内において、多少の設計変更も可能である。
例えば、シール体31の凸部43、当接部52の凸部53表面には、耐摩耗性のCrC、WC、MoS2等がコーティングされてもよく、このようなコーティングによって、シール組立体30の耐久性を向上し、ガスタービン1のさらなる性能向上を達成できる。
The embodiment of the present invention has been described in detail above, but some design changes can be made without departing from the technical idea of the present invention.
For example, the surface of the convex portion 43 of the seal body 31 and the convex portion 53 of the contact portion 52 may be coated with wear-resistant CrC, WC, MoS2, or the like. Durability can be improved and further performance improvement of the gas turbine 1 can be achieved.

また、シール体31においては、凸部43が形成されずに、側板42とシール板41との接続部分がR状となっているのみであってもよい。   Moreover, in the sealing body 31, the convex part 43 is not formed, but the connection part of the side plate 42 and the sealing plate 41 may only be R shape.

さらに、上記実施形態では、隣り合うバネ板51同士が重なり合うように配置されているが、バネ板51の配置間隔、バネ板51の長さ寸法等の際によって、重なり合わないように製作しても構わない。   Further, in the above embodiment, the adjacent spring plates 51 are arranged so as to overlap each other, but they are manufactured so as not to overlap depending on the arrangement interval of the spring plates 51, the length dimension of the spring plates 51, and the like. It doesn't matter.

1…ガスタービン、2…圧縮機、3…燃焼器、4…タービン、5…排気室、6…ロータ、7…車室、11…尾筒、12…燃料供給器、13…パイロットバーナ、14…メインノズル、15…尾筒出口フランジ、15a…対向面、16…筒状部材、21…凹部、21a…第一側面、21b…第二側面、21c…底面、30…シール組立体、31…シール体、32…バネ部(弾性体)、33…取手部、41…シール板、42…側板、43…凸部、51…バネ板、51a…シール板接触部、51b…端部、52…当接部(弾性部)、53…凸部、54…貫通孔、55…屈曲部、56…平行面、P…軸線、W…圧縮空気、G…燃焼ガス、MF…メイン燃料、PF…パイロット燃料、S…空間 DESCRIPTION OF SYMBOLS 1 ... Gas turbine, 2 ... Compressor, 3 ... Combustor, 4 ... Turbine, 5 ... Exhaust chamber, 6 ... Rotor, 7 ... Cabin, 11 ... Tail, 12 ... Fuel supply, 13 ... Pilot burner, 14 ... main nozzle, 15 ... tail tube outlet flange, 15a ... opposed surface, 16 ... cylindrical member, 21 ... recess, 21a ... first side, 21b ... second side, 21c ... bottom, 30 ... seal assembly, 31 ... Seal body 32 ... Spring part (elastic body) 33 ... Handle part 41 ... Seal plate 42 ... Side plate 43 ... Convex part 51 ... Spring plate 51a ... Seal plate contact part 51b ... End part 52 ... Contact part (elastic part), 53 ... convex part, 54 ... through hole, 55 ... bent part, 56 ... parallel plane, P ... axis, W ... compressed air, G ... combustion gas, MF ... main fuel, PF ... pilot Fuel, S ... space

Claims (4)

複数の燃焼器の各々に設けられ、側面で互いに隣接する尾筒出口フランジの前記側面に設けられた一対の凹部が画定する空間に挿入されるシール組立体において、
前記一対の凹部のそれぞれで互いに対向する側面のうち、前記尾筒内を流れる燃焼ガスの下流側の側面のそれぞれに接触するシール部が形成されているシール体と、
前記シール体を前記下流側に向って付勢する弾性体と、
を備え、
前記シール体は、前記一対の凹部のそれぞれの前記下流側の側面に対向し、前記シール部が形成されているシール板と、前記シール板で前記側面の方向で互いに対向する側縁のそれぞれから、前記凹部の底面に沿って前記燃焼ガスの上流側に向って前記シール板より前記上流側の位置まで直線状に延びる側板と、を有し、
前記弾性体は、前記シール板の前記上流側の面に接触して前記シール板を前記下流側に向かって付勢するシール板接触部と、該シール板接触部から該上流側に延び、その一部が前記一対の凹部のそれぞれの前記上流側の側面に接触する弾性部と、を有する、
ことを特徴とするシール組立体。
In a seal assembly that is provided in each of a plurality of combustors and is inserted into a space defined by a pair of recesses provided in the side surface of the transition piece outlet flange adjacent to each other on the side surface,
Of the side surfaces facing each other in each of the pair of recesses, a seal body in which a seal portion is formed in contact with each of the downstream side surfaces of the combustion gas flowing in the tail cylinder,
An elastic body that biases the seal body toward the downstream side;
With
The seal body is opposed to the downstream side surface of each of the pair of recesses, and from each of the seal plate on which the seal portion is formed and the side edges of the seal plate facing each other in the direction of the side surface. A side plate extending linearly from the seal plate to the upstream position along the bottom surface of the recess toward the upstream side of the combustion gas,
The elastic body is in contact with the upstream surface of the seal plate and urges the seal plate toward the downstream side, and extends from the seal plate contact portion to the upstream side. A part of which has an elastic portion in contact with the upstream side surface of each of the pair of recesses,
A seal assembly characterized by that.
複数の燃焼器の各々に設けられ、側面で互いに隣接する尾筒出口フランジの前記側面に設けられた一対の凹部が画定する空間に挿入されるシール組立体において、
前記一対の凹部のそれぞれで互いに対向する側面のうち、前記尾筒内を流れる燃焼ガスの下流側の側面のそれぞれに接触するシール部が形成されているシール体と、
前記シール体を前記下流側に向って付勢する弾性体と、
を備え、
前記シール体は、前記一対の凹部のそれぞれの前記下流側の側面に対向し、前記シール部が形成されているシール板と、前記シール板の側縁のそれぞれから、前記下流側に突出する凸部と、前記凸部に接続し、前記凹部の底面に沿って前記燃焼ガスの上流側に向って延びる側板と、を有し、
前記弾性体は、前記シール板の前記上流側の面に接触して前記シール板を前記下流側に向かって付勢するシール板接触部と、該シール板接触部から該上流側に延び、その一部が前記一対の凹部のそれぞれの前記上流側の側面に接触する弾性部と、を有し、
前記燃焼ガスの流れる方向における前記シール板から前記側板の端部までの距離が、前記燃焼ガスの流れる方向における前記シール板から前記凸部の頂点までの距離よりも大きい
ことを特徴とするシール組立体。
In a seal assembly that is provided in each of a plurality of combustors and is inserted into a space defined by a pair of recesses provided in the side surface of the transition piece outlet flange adjacent to each other on the side surface,
Of the side surfaces facing each other in each of the pair of recesses, a seal body in which a seal portion is formed in contact with each of the downstream side surfaces of the combustion gas flowing in the tail cylinder,
An elastic body that biases the seal body toward the downstream side;
With
The seal body faces the downstream side surface of each of the pair of recesses, and protrudes downstream from each of a seal plate on which the seal portion is formed and a side edge of the seal plate. A side plate connected to the convex portion and extending toward the upstream side of the combustion gas along the bottom surface of the concave portion,
The elastic body is in contact with the upstream surface of the seal plate and urges the seal plate toward the downstream side, and extends from the seal plate contact portion to the upstream side. A part of which has an elastic portion in contact with the upstream side surface of each of the pair of recesses,
The seal assembly, wherein a distance from the seal plate to the end of the side plate in a direction in which the combustion gas flows is greater than a distance from the seal plate to the top of the convex portion in the direction in which the combustion gas flows. Solid.
請求項1に記載のシール組立体において、
前記シール体の前記シール板と前記側板とがなす角部の断面形状は、円弧形状である、
ことを特徴とするシール組立体。
The seal assembly according to claim 1.
The cross-sectional shape of the corner formed by the seal plate and the side plate of the seal body is an arc shape.
A seal assembly characterized by that.
ロータと、
前記ロータの周方向に配置されている複数の燃焼器と、
複数の前記燃焼器で隣り合う燃焼器のそれぞれの前記凹部によって定められる前記空間に挿入される請求項1からのいずれか一項に記載のシール組立体と、
を備えていることを特徴とするガスタービン。
A rotor,
A plurality of combustors disposed in a circumferential direction of the rotor;
The seal assembly according to any one of claims 1 to 3 , wherein the seal assembly is inserted into the space defined by each recess of each of the adjacent combustors.
A gas turbine comprising:
JP2011246539A 2011-11-10 2011-11-10 Seal assembly and gas turbine provided with the same Active JP6029274B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2011246539A JP6029274B2 (en) 2011-11-10 2011-11-10 Seal assembly and gas turbine provided with the same
US13/670,798 US20140023489A1 (en) 2011-11-10 2012-11-07 Seal assembly and gas turbine having the same
PCT/JP2012/079147 WO2013069775A1 (en) 2011-11-10 2012-11-09 Seal assembly and gas turbine provided therewith
EP12846960.8A EP2778373B1 (en) 2011-11-10 2012-11-09 Seal assembly and gas turbine provided therewith
KR1020147007980A KR20140054366A (en) 2011-11-10 2012-11-09 Seal assembly and gas turbine provided therewith
CN201280052994.0A CN103890350A (en) 2011-11-10 2012-11-09 Seal assembly and gas turbine having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011246539A JP6029274B2 (en) 2011-11-10 2011-11-10 Seal assembly and gas turbine provided with the same

Publications (2)

Publication Number Publication Date
JP2013104304A JP2013104304A (en) 2013-05-30
JP6029274B2 true JP6029274B2 (en) 2016-11-24

Family

ID=48290142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011246539A Active JP6029274B2 (en) 2011-11-10 2011-11-10 Seal assembly and gas turbine provided with the same

Country Status (6)

Country Link
US (1) US20140023489A1 (en)
EP (1) EP2778373B1 (en)
JP (1) JP6029274B2 (en)
KR (1) KR20140054366A (en)
CN (1) CN103890350A (en)
WO (1) WO2013069775A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6021675B2 (en) * 2013-02-13 2016-11-09 三菱重工業株式会社 Combustor seal structure and seal for combustor
US9574460B2 (en) * 2014-10-30 2017-02-21 Siemens Energy, Inc. Support arrangement for a transition piece of a gas turbine engine
DE102014226138A1 (en) * 2014-12-16 2016-06-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for producing a device with a three-dimensional magnetic structure
US10156148B2 (en) * 2015-03-31 2018-12-18 Siemens Aktiengesellschaft Transition duct assembly
DE102015212573A1 (en) * 2015-07-06 2017-01-12 Rolls-Royce Deutschland Ltd & Co Kg Gas turbine combustor with integrated turbine guide wheel and method for its production
CN108495975B (en) * 2016-01-27 2021-04-09 西门子公司 Transition system side seal for gas turbine engine
JP6650849B2 (en) 2016-08-25 2020-02-19 三菱日立パワーシステムズ株式会社 gas turbine
US10753220B2 (en) * 2018-06-27 2020-08-25 Raytheon Technologies Corporation Gas turbine engine component
CN110779043B (en) * 2019-10-09 2020-11-24 东方电气集团东方汽轮机有限公司 Combustor tail cylinder structure and outlet lateral connection method
US11187095B1 (en) * 2020-12-29 2021-11-30 General Electric Company Magnetic aft frame side seals

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09195799A (en) * 1996-01-17 1997-07-29 Mitsubishi Heavy Ind Ltd Spring seal apparatus for combustor
US6431825B1 (en) * 2000-07-28 2002-08-13 Alstom (Switzerland) Ltd Seal between static turbine parts
US6860108B2 (en) * 2003-01-22 2005-03-01 Mitsubishi Heavy Industries, Ltd. Gas turbine tail tube seal and gas turbine using the same
US7082766B1 (en) * 2005-03-02 2006-08-01 General Electric Company One-piece can combustor
JP4476152B2 (en) * 2005-04-01 2010-06-09 三菱重工業株式会社 Gas turbine combustor
JP2006312903A (en) * 2005-05-09 2006-11-16 Mitsubishi Heavy Ind Ltd Gas turbine combustor
WO2007023734A1 (en) * 2005-08-23 2007-03-01 Mitsubishi Heavy Industries, Ltd. Seal structure of gas turbine combustor
JP2008121512A (en) * 2006-11-10 2008-05-29 Mitsubishi Heavy Ind Ltd Brush seal and turbine using same
US20090085305A1 (en) * 2007-09-28 2009-04-02 General Electric Company High temperature seal
CH699066A1 (en) * 2008-07-01 2010-01-15 Alstom Technology Ltd Seal and seal assembly for containing leakage flows between adjacent components of turbomachines, particularly gas turbines.
US20100005804A1 (en) * 2008-07-11 2010-01-14 General Electric Company Combustor structure
US8142142B2 (en) * 2008-09-05 2012-03-27 Siemens Energy, Inc. Turbine transition duct apparatus

Also Published As

Publication number Publication date
JP2013104304A (en) 2013-05-30
EP2778373A1 (en) 2014-09-17
EP2778373A4 (en) 2015-07-29
CN103890350A (en) 2014-06-25
WO2013069775A1 (en) 2013-05-16
US20140023489A1 (en) 2014-01-23
KR20140054366A (en) 2014-05-08
EP2778373B1 (en) 2019-06-19

Similar Documents

Publication Publication Date Title
JP6029274B2 (en) Seal assembly and gas turbine provided with the same
US7246995B2 (en) Seal usable between a transition and a turbine vane assembly in a turbine engine
US7784264B2 (en) Slidable spring-loaded transition-to-turbine seal apparatus and heat-shielding system, comprising the seal, at transition/turbine junction of a gas turbine engine
EP2126289B1 (en) Transition support system for combustion transition ducts for turbine engines
JP4960065B2 (en) Method and apparatus for assembling a turbine engine
CN102575526B (en) Sealing element, gas turbine nozzle arrangement and gas turbine
RU2698150C2 (en) Sealing device between injection system and aircraft gas turbine engine fuel injector
JP5905676B2 (en) Transition piece sealing shim
WO2016139799A1 (en) Turbocharger
US20100180605A1 (en) Structural Attachment System for Transition Duct Outlet
WO2013077394A1 (en) Combustor and gas turbine
JP2007218375A (en) Sealing device and gas turbine equipped therewith
JPWO2015097872A1 (en) Turbine housing
US20110085888A1 (en) Sealing arrangement for use with gas turbine engine
WO2013132692A1 (en) Sealing device and gas turbine provided with sealing device
US7562880B2 (en) Seal usable between thermally movable components
US9127552B2 (en) Transition piece aft frame with fuel injection apertures
JP2013108423A (en) Gas turbine combustor having seal plate
JPWO2019003724A1 (en) Gas turbine first stage vane, gas turbine, gas turbine vane unit and combustor assembly
US11795876B2 (en) Outlet seal, outlet seal set, and gas turbine
JP2009167905A (en) Gas turbine combustor outlet seal structure
US10156148B2 (en) Transition duct assembly
EP3039316B1 (en) Sliding seal
JP7130545B2 (en) Gas turbine combustor, gas turbine, and method for manufacturing gas turbine combustor
JP2007224731A (en) Tail pipe seal structure of gas turbine combustor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140811

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20150129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161018

R151 Written notification of patent or utility model registration

Ref document number: 6029274

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350