JP6025657B2 - Method for producing lubricating base oil - Google Patents

Method for producing lubricating base oil Download PDF

Info

Publication number
JP6025657B2
JP6025657B2 JP2013109081A JP2013109081A JP6025657B2 JP 6025657 B2 JP6025657 B2 JP 6025657B2 JP 2013109081 A JP2013109081 A JP 2013109081A JP 2013109081 A JP2013109081 A JP 2013109081A JP 6025657 B2 JP6025657 B2 JP 6025657B2
Authority
JP
Japan
Prior art keywords
oil
lubricating base
catalyst
direct
base oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013109081A
Other languages
Japanese (ja)
Other versions
JP2014227498A (en
Inventor
孝樹 児玉
孝樹 児玉
尚久 立谷
尚久 立谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Original Assignee
Cosmo Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd filed Critical Cosmo Oil Co Ltd
Priority to JP2013109081A priority Critical patent/JP6025657B2/en
Publication of JP2014227498A publication Critical patent/JP2014227498A/en
Application granted granted Critical
Publication of JP6025657B2 publication Critical patent/JP6025657B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

本発明は、潤滑油基油の製造方法に関するものである。   The present invention relates to a method for producing a lubricating base oil.

潤滑油基油には、原油を常圧蒸留や減圧蒸留により得られる潤滑油留分を原料に用いる石油系の基油(特許文献1、特許文献2)や、ポリ−α−オレフィン(PAO)などの合成油系の基油(特許文献3)などがある。   As the lubricating base oil, petroleum-based base oil (Patent Document 1, Patent Document 2) using a crude oil fraction obtained by atmospheric distillation or vacuum distillation of crude oil as a raw material, or poly-α-olefin (PAO) And synthetic oil base oils (Patent Document 3).

そして、特許文献2のように潤滑油留分の精製処理の工程などで得られるワックス分を原料に用いて、水素化分解処理や異性化処理により、高性能化された潤滑油基油を製造する方法がある。   Then, as described in Patent Document 2, a high-performance lubricant base oil is produced by hydrocracking or isomerization using the wax obtained in the refining process of the lubricating oil fraction as a raw material. There is a way to do it.

ただし、原料入手の容易性やコストの面から、原油の潤滑油留分を原料に用いた潤滑油基油が多く製造されている。図1には、従来の原油の潤滑油留分を原料に用いた潤滑油基油の製造のフロー図を示す。先ず、原油1を常圧で蒸留する常圧蒸留2を行い、常圧蒸留留出分3と常圧蒸留残渣油4とに分ける。次いで、常圧蒸留残渣油4を減圧下で蒸留する減圧蒸留7を行い、減圧蒸留留出分である潤滑油留分8と減圧蒸留残渣油9とに分ける。次いで、潤滑油留分8に、脱ろう処理10を行い、潤滑油基油11を得る。なお、図1中、潤滑油留分8が、原油1中の潤滑油留分である。   However, many lubricant base oils using a crude oil lubricant fraction as a raw material are produced from the viewpoint of easy availability of raw materials and cost. FIG. 1 shows a flow chart of manufacturing a lubricating base oil using a conventional crude oil lubricating oil fraction as a raw material. First, the crude oil 1 is subjected to an atmospheric distillation 2 in which the crude oil 1 is distilled at an atmospheric pressure, and is divided into an atmospheric distillation distillate 3 and an atmospheric distillation residue oil 4. Subsequently, the atmospheric distillation residue oil 4 is subjected to vacuum distillation 7 for distilling under reduced pressure, and is divided into a lubricating oil fraction 8 and a vacuum distillation residue oil 9 which are vacuum distillation distillates. Next, the lubricating oil fraction 8 is subjected to dewaxing treatment 10 to obtain a lubricating base oil 11. In FIG. 1, the lubricating oil fraction 8 is a lubricating oil fraction in the crude oil 1.

特開平04−036391号Japanese Patent Laid-Open No. 04-033691 特開平06−116572号JP 06-116572 A 特表平04−502775号Special table hei 04-502775

原油には、パラフィンリッチな原油やナフテンリッチな原油などがあり、原油によって組成は異なる。そのため、原油の潤滑油留分を原料に用いた潤滑油基油の製造においては、目標とする潤滑油基油の性状に応じて、原油種を選択する必要がある。そのため、製油所の原油処理において、原油種の選択に制限が生じる。   Crude oil includes paraffin-rich crude oil and naphthen-rich crude oil, and the composition differs depending on the crude oil. Therefore, in the production of a lubricating base oil using a crude oil lubricating oil fraction as a raw material, it is necessary to select a crude oil type according to the target properties of the lubricating base oil. This limits the choice of crude oil types in crude oil processing at refineries.

従って、本発明の課題は、原油種によって制限を受けることが少なく、原油種選択の自由度が高い潤滑油基油の製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for producing a lubricating base oil that is less restricted by the crude oil type and has a high degree of freedom in selecting the crude oil type.

上記課題は、以下の本発明により解決される。すなわち、本発明は、直脱原料油として、常圧蒸留残渣油、又は常圧蒸留残渣油と減圧蒸留残渣油の混合油を用いて、該直脱原料油を300〜500℃且つ水素分圧8〜20MPaで水素化脱硫し、直接脱硫処理油を得る工程(A)と、
該直接脱硫処理油を、減圧蒸留して、直接脱硫処理油減圧蒸留軽質分を得る工程(B)と、
溶剤抽出、フィルタープレス脱ろう、溶剤脱ろう、接触脱ろう、水素化分解、水素化精製、硫酸洗浄及び白土処理のうちのいずれか1種又は2種以上により、該直接脱硫処理油減圧蒸留軽質分を処理する工程(C)と、
を有することを特徴とする潤滑油基油の製造方法を提供するものである。
The above problems are solved by the present invention described below. That is, the present invention uses an atmospheric distillation residue oil, or a mixed oil of an atmospheric distillation residue oil and a vacuum distillation residue oil as the direct desorption raw material oil, and the direct desorption raw material oil is 300 to 500 ° C. and a hydrogen partial pressure. A step (A) of hydrodesulfurizing at 8 to 20 MPa to directly obtain a desulfurized oil;
A step (B) of subjecting the direct desulfurized oil to vacuum distillation to obtain a direct desulfurized oil vacuum distilled light component;
Lightly distilled light by direct desulfurization treatment oil by solvent extraction, filter press dewaxing, solvent dewaxing, catalytic dewaxing, hydrocracking, hydrorefining, sulfuric acid washing and clay treatment A step (C) of processing the minute;
The present invention provides a method for producing a lubricating base oil characterized by having

本発明によれば、原油種によって制限を受けることが少なく、原油種選択の自由度が高い潤滑油基油の製造方法を提供することができる。   According to the present invention, it is possible to provide a method for producing a lubricating base oil that is less restricted by the crude oil type and has a high degree of freedom in selecting the crude oil type.

従来の原油の潤滑油留分を原料に用いた潤滑油基油の製造のフロー図を示す図である。It is a figure which shows the flowchart of manufacture of the lubricating base oil which used the lubricating oil fraction of the conventional crude oil as a raw material.

本発明の潤滑油基油の製造方法は、直脱原料油として、常圧蒸留残渣油、又は常圧蒸留残渣油と減圧蒸留残渣油の混合油を用いて、該原料油を水素化脱硫し、直接脱硫処理油を得る工程(A)と、
該直接脱硫処理油を、減圧蒸留して、直接脱硫処理油減圧蒸留軽質分を得る工程(B)と、
溶剤抽出、フィルタープレス脱ろう、溶剤脱ろう、接触脱ろう、水素化分解、水素化精製、硫酸洗浄及び白土処理のうちのいずれか1種又は2種以上により、該直接脱硫処理油減圧蒸留軽質分を処理する工程(C)と、
を有することを特徴とする潤滑油基油の製造方法である。
The method for producing a lubricating base oil of the present invention comprises hydrodesulfurizing a raw oil using a direct distillation raw oil, an atmospheric distillation residual oil, or a mixed oil of an atmospheric distillation residual oil and a vacuum distillation residual oil. A step (A) for directly obtaining a desulfurized oil;
A step (B) of subjecting the direct desulfurized oil to vacuum distillation to obtain a direct desulfurized oil vacuum distilled light component;
Lightly distilled light by direct desulfurization treatment oil by solvent extraction, filter press dewaxing, solvent dewaxing, catalytic dewaxing, hydrocracking, hydrorefining, sulfuric acid washing and clay treatment A step (C) of processing the minute;
It is a manufacturing method of the lubricating base oil characterized by having.

本発明の潤滑油基油の製造方法に係る工程(A)は、直脱原料油として、常圧蒸留残渣油、又は常圧蒸留残渣油と減圧蒸留残渣油の混合油を用いて、直脱原料油を水素化脱硫し、直接脱硫処理油を得る工程である。   The step (A) according to the method for producing the lubricating base oil of the present invention comprises direct desorption using a normal distillation residue oil or a mixed oil of an atmospheric distillation residue oil and a vacuum distillation residue oil as a direct desorption raw material oil. This is a step of hydrodesulfurizing raw material oil to obtain a direct desulfurized oil.

工程(A)において、直接脱硫される直脱原料油は、常圧蒸留残渣油、あるいは、常圧蒸留残渣油と減圧蒸留残渣油の混合油である。直脱原料油に係る常圧蒸留残渣油は、特に制限はなく、原油を常圧蒸留して、蒸発留分を分離した後の残渣分であり、好ましくは、沸点が320℃以上、硫黄分が0.85〜5.5質量%、ニッケル及びバナジウムの含有量がいずれも5〜240質量ppmである。直脱原料油に係る減圧蒸留残渣油は、特に制限はなく、常圧蒸留残渣油を減圧蒸留して、蒸発留分を分離した後の残渣分であり、好ましくは、沸点が常圧換算で500℃以上、硫黄分が1〜6質量% 、ニッケル及びバナジウムの含有量がいずれも5〜500質量ppmである。直脱原料油として、常圧蒸留残渣油と減圧蒸留残渣油の混合油を用いる場合、両者の混合割合は、特に制限されず、適宜調節される。   In the step (A), the direct desulfurization raw material oil to be directly desulfurized is an atmospheric distillation residue oil or a mixed oil of an atmospheric distillation residue oil and a vacuum distillation residue oil. There are no particular restrictions on the atmospheric distillation residue oil of the direct feed oil, and it is the residue after the crude oil is subjected to atmospheric distillation to separate the evaporating fraction. Preferably, the boiling point is 320 ° C. or higher, the sulfur content Is 0.85 to 5.5 mass%, and the contents of nickel and vanadium are all 5 to 240 mass ppm. There is no particular limitation on the vacuum distillation residue oil related to the direct desorption raw material oil, and it is a residue obtained by distilling the atmospheric distillation residue oil under reduced pressure and separating the evaporation fraction. Preferably, the boiling point is converted into atmospheric pressure. 500 degreeC or more, 1-6 mass% of sulfur content, and nickel and vanadium content are all 5-500 mass ppm. When a mixed oil of atmospheric distillation residue oil and vacuum distillation residue oil is used as the direct desorption raw material oil, the mixing ratio of the both is not particularly limited and is appropriately adjusted.

常圧蒸留残渣油の蒸留原料となる原油としては、特に制限されない。本発明の潤滑油基油の製造方法は、原油種の使用が制限されないことが特徴であり、本発明の潤滑油基油の製造方法では、常圧蒸留残渣油の蒸留原料となる原油として、あらゆる原油が用いられる。つまり、本発明の潤滑油基油の製造方法に係る工程(A)の直脱原料油となる常圧蒸留残渣油及び減圧蒸留残渣油は、いかなる原油を蒸留原料に用いて得られたものであってもよい。原油種は特に制限されないが、例えば、アラビアンヘビー、アラビアンミディアム、アラビアンライト、アラビアンエクストラライト、クウェート、バスラ、オマーン、マーバン、ムバラスブレンド、ザクム、アッパーザクム、カタールランド、カタールマリン、ウムシャイフ、シリー、カフジ、エスポ等が挙げられ、いずれか1種であっても、2種以上の組み合わせであってもよい。   It does not restrict | limit especially as crude oil used as the distillation raw material of atmospheric distillation residue oil. The method for producing a lubricating base oil of the present invention is characterized in that the use of crude oil species is not limited, and in the method for producing a lubricating base oil of the present invention, as crude oil that is a distillation raw material for atmospheric distillation residue oil, Any crude oil is used. That is, the atmospheric distillation residue oil and the vacuum distillation residue oil that are direct desorption raw material oils in step (A) according to the method for producing the lubricating base oil of the present invention are obtained by using any crude oil as a distillation raw material. There may be. The crude oil species is not particularly limited, but for example, Arabian Heavy, Arabian Medium, Arabian Light, Arabian Extra Light, Kuwait, Basra, Oman, Marban, Mubarras Blend, Zakum, Upper Zakum, Qatar Land, Qatar Marine, Um Shaif, Siri, Examples include kafuji and espo, and any one kind or a combination of two or more kinds may be used.

そして、工程(A)では、直脱原料油を、高温加圧下、脱硫触媒の共存下で水素化脱硫する。   Then, in the step (A), the hydrodesulfurization raw material oil is hydrodesulfurized under high temperature and pressure in the presence of a desulfurization catalyst.

脱硫触媒は、耐火性無機酸化物担体に水素化活性成分が担持されたものである。脱硫触媒の耐火性無機酸化物担体としては、アルミナ、シリカ、チタニア、マグネシア等の単独物又は混合物が用いられ、あるいは、更にこれらにジルコニア、酸化ホウ素、酸化亜鉛等の各種酸化物やYゼオライト、ZSM−5ゼオライト等の各種ゼオライトが混合されたものが用いられる。脱硫触媒に担持されている水素化活性成分としては、モリブデン、タングステン等の長周期型周期表における第6族元素、コバルト、ニッケル等の長周期型周期表における第9族元素及び第10族元素が用いられ、また、必要に応じてこれらの金属の他、リン、鉄、白金等が用いられる。   The desulfurization catalyst is a refractory inorganic oxide support on which a hydrogenation active component is supported. As the refractory inorganic oxide carrier for the desulfurization catalyst, alumina, silica, titania, magnesia and the like are used alone or as a mixture, or various oxides such as zirconia, boron oxide and zinc oxide, Y zeolite, A mixture of various zeolites such as ZSM-5 zeolite is used. Examples of the hydrogenation active component supported by the desulfurization catalyst include Group 6 elements in the long-period periodic table such as molybdenum and tungsten, and Group 9 and Group 10 elements in the long-period periodic table such as cobalt and nickel. In addition to these metals, phosphorus, iron, platinum or the like is used as necessary.

脱硫触媒の平均細孔直径は、好ましくは5〜15nm、特に好ましくは6〜12nmである。脱硫触媒の平均細孔径が上記範囲であることにより、安定した耐金属性能を有し、十分な脱硫性能を得易くなる。脱硫触媒の比表面積は、好ましくは150〜350m/g、特に好ましくは200〜320m/gである。脱硫触媒の比表面積が、上記範囲であることにより、十分な脱硫性能を得易くなる。また、脱硫触媒の平均細孔直径±1.5nmの細孔が占める容積は、好ましくは全細孔容積の50%以上、特に好ましくは60%以上必要である。脱硫触媒の平均細孔直径±1.5nmの細孔が占める容積が上記範囲であることにより、十分な脱硫活性を得易くなる。 The average pore diameter of the desulfurization catalyst is preferably 5 to 15 nm, particularly preferably 6 to 12 nm. When the average pore diameter of the desulfurization catalyst is in the above range, it has stable metal resistance and it is easy to obtain sufficient desulfurization performance. The specific surface area of the desulfurization catalyst is preferably 150 to 350 m 2 / g, particularly preferably 200 to 320 m 2 / g. When the specific surface area of the desulfurization catalyst is within the above range, sufficient desulfurization performance can be easily obtained. Further, the volume occupied by pores having an average pore diameter of ± 1.5 nm of the desulfurization catalyst is preferably 50% or more, particularly preferably 60% or more of the total pore volume. When the volume occupied by pores having an average pore diameter of ± 1.5 nm of the desulfurization catalyst is in the above range, sufficient desulfurization activity can be easily obtained.

工程(A)では、原料油から金属分を除去するための脱金属触媒を用いて脱金属処理を行った後に、水素化脱硫処理を行うこともできる。つまり、工程(A)で水素化脱硫処理される原料油には、脱金属処理された原料油(脱金属処理された常圧蒸留残渣油又は常圧蒸留残渣油と減圧蒸留残渣油の混合油)も含まれる。その場合、例えば、原料油から金属分を除去するための脱金属触媒を前段に、脱硫触媒をその後段に充填し、原料油をそれぞれの触媒床に順に供給して、脱金属処理と水素化脱硫処理を行う。   In the step (A), the hydrodesulfurization treatment can be performed after performing the demetallation treatment using a demetallation catalyst for removing a metal component from the raw material oil. In other words, the raw material oil to be hydrodesulfurized in step (A) includes a demetallized raw material oil (demetallized atmospheric distillation residue oil or a mixture of atmospheric distillation residue oil and vacuum distillation residue oil). ) Is also included. In that case, for example, a demetallation catalyst for removing metal from the feedstock is placed in the front stage, a desulfurization catalyst is filled in the backstage, and the feedstock oil is supplied to each catalyst bed in order to perform demetallation treatment and hydrogenation. Desulfurization treatment is performed.

脱金属触媒は、耐火性無機酸化物担体に水素化活性成分が担持されたものであり、硫黄分、アスファルテン分、ニッケルやバナジウム等の重金属分を含有する原料油から金属分を効果的に除去するために、触媒床前段部分に充填される。脱金属触媒の耐火性無機酸化物担体としては、アルミナ、シリカ、アルミナ−シリカ等の単独物又は混合物が用いられ、あるいは、更にこれらに酸化ホウ素、酸化亜鉛等の各種金属が混合されたものが用いられる。脱金属触媒に担持される水素化活性成分としては、モリブデン、タングステン等長周期型周期表における第6族元素、コバルト、ニッケル等の長周期型周期表における第9族元素及び第10族元素が用いられる。   A demetallation catalyst is a refractory inorganic oxide support with a hydrogenation active component supported, and effectively removes metal from raw oils containing heavy metals such as sulfur, asphaltene, nickel and vanadium. In order to do this, the catalyst bed is filled in the previous stage. As the refractory inorganic oxide carrier for the metal removal catalyst, a single substance or a mixture of alumina, silica, alumina-silica, etc. is used, or a mixture of various metals such as boron oxide and zinc oxide. Used. Examples of the hydrogenation active component supported on the metal removal catalyst include Group 6 elements in the long periodic table such as molybdenum and tungsten, and Group 9 and Group 10 elements in the long periodic table such as cobalt and nickel. Used.

脱金属触媒の平均細孔直径は、好ましくは15〜25nm、特に好ましくは18〜23nmである。脱金属触媒の平均細孔直径が上記範囲であることにより、十分な脱金属活性が得易く、水素化活性及び触媒強度が高くなり易い。脱金属触媒の細孔容積は、好ましくは0.6〜0.8ml/g、特に好ましくは0.65〜0.8ml/gである。脱金属触媒の細孔容積が上記範囲であることにより、十分な触媒寿命と触媒強度を有し、安定した運転をし易くなる。   The average pore diameter of the demetallation catalyst is preferably 15 to 25 nm, particularly preferably 18 to 23 nm. When the average pore diameter of the metal removal catalyst is in the above range, sufficient metal removal activity is easily obtained, and the hydrogenation activity and catalyst strength are likely to be increased. The pore volume of the demetallation catalyst is preferably 0.6 to 0.8 ml / g, particularly preferably 0.65 to 0.8 ml / g. When the pore volume of the metal removal catalyst is in the above range, it has a sufficient catalyst life and catalyst strength, and facilitates stable operation.

脱硫触媒及び脱金属触媒の触媒強度は、SCS(Side Crushing Strength)で、好ましくは9N/mm以上、特に好ましくは13N/mm以上である。SCSは、触媒を横置きにして過重を加え、触媒が破壊される荷質量を求め、触媒長さで割った値であり、触媒単位長さ当たりの破壊強度を示している。脱硫触媒及び脱金属触媒のSCSが上記範囲であることにより、反応装置内での触媒割れが起こり難くなり、継続的な運転をし易くなる。   The catalyst strength of the desulfurization catalyst and the demetalization catalyst is SCS (Side Crushing Strength), preferably 9 N / mm or more, and particularly preferably 13 N / mm or more. The SCS is a value obtained by adding the excess weight with the catalyst placed horizontally, obtaining the load mass at which the catalyst is destroyed, and dividing by the catalyst length, indicating the breaking strength per unit length of the catalyst. When the SCS of the desulfurization catalyst and the demetallization catalyst is in the above range, cracking of the catalyst in the reaction apparatus hardly occurs, and continuous operation is facilitated.

脱金属触媒及び脱硫触媒は、新触媒であっても再生触媒であってもよい。また、脱硫触媒と脱金属触媒の割合は、その運転条件に合わせて適宜選択され、脱金属触媒の比率が高い程、金属による活性劣化を防ぐ効果が高くなり、また、脱硫触媒の比率が高い程、脱硫活性が高くなる。   The demetallation catalyst and the desulfurization catalyst may be new catalysts or regenerated catalysts. In addition, the ratio of the desulfurization catalyst and the demetalization catalyst is appropriately selected according to the operating conditions, and the higher the ratio of the demetallation catalyst, the higher the effect of preventing activity deterioration due to the metal, and the higher the ratio of the desulfurization catalyst. The higher the desulfurization activity is.

工程(A)における水素化脱硫処理の条件は、工程(A)を行い得ようとする直接脱硫処理油の目標硫黄含有量と脱硫触媒の活性とを考慮して、適宜選択される。工程(A)における水素化脱硫処理の反応温度は、好ましくは300〜500℃、特に好ましくは350〜450℃であり、水素分圧は、好ましくは3〜20MPa、より好ましくは5〜17MPa、特に好ましくは8〜15MPaであり、水素/油比は、好ましくは400〜3000m(normal)/m、特に好ましくは500〜1800m(normal)/mであり、液空間速度は、好ましくは0.1〜3.0h−1、特に好ましくは0.15〜2.0h−1である。 The conditions for the hydrodesulfurization treatment in the step (A) are appropriately selected in consideration of the target sulfur content of the direct desulfurization treatment oil to be subjected to the step (A) and the activity of the desulfurization catalyst. The reaction temperature of the hydrodesulfurization treatment in step (A) is preferably 300 to 500 ° C., particularly preferably 350 to 450 ° C., and the hydrogen partial pressure is preferably 3 to 20 MPa, more preferably 5 to 17 MPa, particularly preferably 8~15MPa, hydrogen / oil ratio is preferably 400~3000m 3 (normal) / m 3 , particularly preferably 500~1800m 3 (normal) / m 3 , the liquid space velocity is preferably It is 0.1-3.0 h < -1 >, Most preferably, it is 0.15-2.0 h < -1 >.

水素化脱硫処理の反応温度が、上記範囲であることにより、脱硫触媒の活性が十分発揮され易く、原料油の熱分解が進行し過ぎないので、水素化脱硫処理を円滑に行い易くなり、また、脱硫触媒の活性劣化を抑制し易くなる。水素化脱硫処理の水素分圧が、上記範囲であることにより、水素化反応が十分に進行し易くなり、装置建設費用及び運転費用の増大を避け易くなる。水素化脱硫処理の水素/油比が、上記範囲であることにより、脱硫触媒の活性が発揮され易くなり、経済性が高くなり易い。水素化脱硫処理の液空間速度が、上記範囲であることにより、経済性を確保し易く、脱硫触媒の活性が十分に発揮され易くなる。   When the reaction temperature of the hydrodesulfurization treatment is in the above range, the activity of the desulfurization catalyst is easily exhibited sufficiently, and the thermal decomposition of the raw material oil does not proceed excessively, making it easy to perform the hydrodesulfurization treatment smoothly. It becomes easy to suppress the activity deterioration of the desulfurization catalyst. When the hydrogen partial pressure of the hydrodesulfurization treatment is in the above range, the hydrogenation reaction is sufficiently facilitated and it is easy to avoid an increase in equipment construction costs and operating costs. When the hydrogen / oil ratio of the hydrodesulfurization treatment is in the above range, the activity of the desulfurization catalyst is easily exhibited and the economy is likely to be increased. When the liquid space velocity of the hydrodesulfurization treatment is in the above range, it is easy to ensure economic efficiency, and the activity of the desulfurization catalyst is sufficiently exhibited.

工程(A)を行い得られる直接脱硫処理油中の硫黄分含有量は、好ましくは0.3質量%以下である。直接脱硫処理油中の硫黄分含有量が、上記範囲であることにより、潤滑油基油の原料として適切なものを供給し易くなり、また、流動接触分解装置の原料やC重油の基材としても利用できるので、直接脱硫処理油用のタンクを新設する必要がなくなる。   The sulfur content in the direct desulfurized oil obtained by performing the step (A) is preferably 0.3% by mass or less. When the sulfur content in the direct desulfurized oil is within the above range, it becomes easy to supply an appropriate raw material for a lubricating base oil, and as a raw material for fluid catalytic cracking equipment and a base material for C heavy oil. Therefore, it is not necessary to install a new tank for desulfurized oil directly.

直接脱硫処理油中のニッケル及びバナジウムの含有量は、特に制限されないが、それぞれ、好ましくは40質量ppm以下、より好ましくは20質量ppm以下、特に好ましくは15質量ppm以下である。直接脱硫処理油中のニッケル及びバナジウムの含有量が、上記範囲を超えると、流動接触分解装置で用いられる触媒の被毒物質となり触媒の活性を低下させる。   The contents of nickel and vanadium in the direct desulfurized oil are not particularly limited, but each is preferably 40 ppm by mass or less, more preferably 20 ppm by mass or less, and particularly preferably 15 ppm by mass or less. When the content of nickel and vanadium in the direct desulfurized oil exceeds the above range, it becomes a poisonous substance for the catalyst used in the fluid catalytic cracking apparatus, and the activity of the catalyst is reduced.

工程(A)では、水素化脱硫処理を行った後、必要に応じて、常圧蒸留により軽質の成分を除去してもよい。   In the step (A), after performing the hydrodesulfurization treatment, if necessary, light components may be removed by atmospheric distillation.

本発明の潤滑油基油の製造方法に係る工程(B)は、工程(A)を行い得られる直接脱硫処理油を、減圧蒸留して、直接脱硫処理油減圧蒸留軽質分を得る工程である。   The step (B) relating to the method for producing the lubricating base oil of the present invention is a step of obtaining a light portion of the direct desulfurized oil vacuum distilled light by subjecting the direct desulfurized oil obtained by performing the step (A) to vacuum distillation. .

工程(B)における減圧蒸留では、減圧蒸留により得られる直接脱硫処理油減圧蒸留軽質分の初留点が常圧換算で280〜400℃且つ終点が常圧換算で500〜590℃となる条件で、直接脱硫処理油の減圧蒸留を行う。また、工程(B)における減圧蒸留では、直接脱硫処理油減圧蒸留軽質分の50%留出温度が400℃以上であることが好ましい。   In the vacuum distillation in the step (B), the initial boiling point of the direct desulfurized oil obtained by vacuum distillation is 280 to 400 ° C in terms of atmospheric pressure and the end point is 500 to 590 ° C in terms of atmospheric pressure. Then, the desulfurized oil is directly distilled under reduced pressure. Moreover, in the vacuum distillation in a process (B), it is preferable that the 50% distillation temperature of the direct desulfurization process oil vacuum distillation light weight is 400 degreeC or more.

本発明の潤滑油基油の製造方法に係る工程(C)は、溶剤抽出、フィルタープレス脱ろう、溶剤脱ろう、接触脱ろう、水素化分解、水素化精製、硫酸洗浄及び白土処理のうちのいずれか1種又は2種以上により、工程(B)を行い得られる直接脱硫処理油減圧蒸留軽質分を処理する工程である。つまり、工程(C)では、溶剤抽出、フィルタープレス脱ろう、溶剤脱ろう、接触脱ろう、水素化分解、水素化精製、硫酸洗浄及び白土処理のうちのいずれか1種、又はこれらのうちの2種以上を組み合わせて、工程(B)を行い得られる直接脱硫処理油減圧蒸留軽質分を処理する。なお、工程(C)における処理又は処理の組み合わせは、直接脱硫処理油減圧蒸留軽質分及び工程(C)を行い得ようとする潤滑油基油の目標組成又は性状により、適宜選択される。   Step (C) relating to the method for producing the lubricating base oil of the present invention includes solvent extraction, filter press dewaxing, solvent dewaxing, catalytic dewaxing, hydrocracking, hydrorefining, sulfuric acid washing and clay treatment. This is a step of treating a light component obtained by subjecting a direct desulfurized oil under reduced pressure obtained by performing step (B) to any one or more of them. That is, in the step (C), any one of solvent extraction, filter press dewaxing, solvent dewaxing, catalytic dewaxing, hydrocracking, hydrorefining, sulfuric acid washing and clay treatment, or of these A combination of two or more kinds is used to treat the light component obtained by performing the step (B) and directly desulfurized oil under reduced pressure. In addition, the process or the combination of processes in a process (C) is suitably selected according to the target composition or property of the lube base oil which can carry out a direct desulfurization process oil vacuum distillation light component, and a process (C).

工程(C)に係る溶剤抽出では、潤滑油基油の製造において、溶剤として、フルフラール、フェノール、N−メチルピロリドン等を用いて行われる通常の方法により、被処理油の溶剤抽出を行う。溶剤抽出では、被処理油中の芳香族化合物、特に多環芳香族化合物が除去される。   In the solvent extraction according to the step (C), the solvent to be treated is extracted by a usual method using furfural, phenol, N-methylpyrrolidone or the like as a solvent in the production of the lubricating base oil. In the solvent extraction, aromatic compounds, particularly polycyclic aromatic compounds, in the oil to be treated are removed.

工程(C)に係るフィルタープレス脱ろうでは、潤滑油基油の製造において行われる通常の方法により、被処理油のフィルタープレス脱ろうを行う。例えば、フィルタープレス脱ろうでは、被処理油に溶剤を加えずに冷却してワックスを析出させ、これをプレスろ過する。   In the filter press dewaxing according to the step (C), the filter press dewaxing of the oil to be treated is performed by an ordinary method performed in the production of a lubricating base oil. For example, in dewaxing a filter press, the oil to be treated is cooled without adding a solvent to precipitate wax, and this is subjected to press filtration.

工程(C)に係る溶剤脱ろうでは、潤滑油基油の製造において行われる通常の方法により、例えば、メチルエチルケトン(MEK)及びトルエンの混合溶剤、ベンゼン、アセトン、メチルイソブチルケトン(MIBK)等の溶剤を用いて、被処理油の溶剤脱ろうを行う。溶剤脱ろうでは、流動点を所望の潤滑油基油の流動点(概ね、流動点が−50〜0℃の範囲)に合わせるため、溶剤/油比、加熱温度(ろう分溶解時)、冷却温度、冷却時間等の条件を変える。これらの条件は設備の能力によって異なるが、一般に冷却温度が低い程、低い流動点の潤滑油基油が得られる。従って、所望の潤滑油基油の流動点によって、冷却温度が選択される。流動点を下げ過ぎると、ろう分を除去しすぎる事になるので、結果として得率が低くなり、粘度指数も低くなるため好ましくない。溶剤脱ろう条件は、脱ろう油の流動点を−25℃以下とするためには、溶剤/油比を1〜6倍とすることが好ましく、また、ろ過温度を−25℃以下とすることが好ましく、より好ましくは−45〜−26℃であり、更に好ましくは−40〜−26℃であり、特に好ましくは−35〜−26℃である。   In the solvent dewaxing according to the step (C), for example, a solvent such as a mixed solvent of methyl ethyl ketone (MEK) and toluene, benzene, acetone, methyl isobutyl ketone (MIBK), or the like is performed by a normal method performed in the production of a lubricating base oil. Is used to remove the solvent of the oil to be treated. In solvent dewaxing, the pour point is adjusted to the pour point of the desired lubricating base oil (generally, the pour point is in the range of −50 to 0 ° C.), the solvent / oil ratio, the heating temperature (when the wax is dissolved), and cooling. Change conditions such as temperature and cooling time. These conditions vary depending on the capacity of the equipment. Generally, the lower the cooling temperature, the lower the pour point of the lubricating base oil. Accordingly, the cooling temperature is selected according to the desired pour point of the lubricating base oil. If the pour point is lowered too much, the wax content will be removed too much, resulting in a low yield and a low viscosity index. The solvent dewaxing conditions are such that the solvent / oil ratio is preferably 1 to 6 times and the filtration temperature is −25 ° C. or lower in order to set the pour point of the dewaxed oil to −25 ° C. or lower. Is more preferably −45 to −26 ° C., further preferably −40 to −26 ° C., and particularly preferably −35 to −26 ° C.

工程(C)に係る接触脱ろうでは、潤滑油基油の製造において行われる通常の方法により、脱ろう触媒の存在下で、流動点を下げるのに有効な処理条件で、被処理油を水素と反応させて、被処理油の接触脱ろうを行う。脱ろう触媒としては、目的とする凝固点を有する潤滑油基油が得られるものであれば特に制限はされず、例えば、モレキュラーシーブが挙げられ、具体的には、フェリエライト、モルデナイト、ZSM−5、ZSM−11、ZSM−22、ZSM−23、ZSM−35、ZSM−48、ZSM−57、シリコアルミノホスフェート類(SAPO)等が挙げられる。これらのモレキュラーシーブは、触媒金属成分と組み合わせて用いられてもよく、触媒金属成分は、1種であっても2種以上の組み合わせであってもよい。   In the catalytic dewaxing according to the step (C), the oil to be treated is hydrogenated under the treatment conditions effective for lowering the pour point in the presence of the dewaxing catalyst by the usual method used in the production of lubricating base oil. To dewax the oil to be treated. The dewaxing catalyst is not particularly limited as long as a lubricant base oil having a desired freezing point can be obtained. Examples thereof include molecular sieves, and specifically, ferrierite, mordenite, ZSM-5. ZSM-11, ZSM-22, ZSM-23, ZSM-35, ZSM-48, ZSM-57, silicoaluminophosphates (SAPO) and the like. These molecular sieves may be used in combination with a catalytic metal component, and the catalytic metal component may be one kind or a combination of two or more kinds.

接触脱ろう条件は、特に制限されず、処理温度は200〜500℃が好ましく、水素分圧は1MPa〜20MPaが好ましい。また、フロースルー反応器の場合、水素処理速度は0.1〜10kg/l/hrが好ましく、液空間速度は0.1〜10h−1が好ましく、0.2〜2.0h−1が特に好ましい。接触脱ろうでは、潤滑油基油に含まれる、通常40質量%以下、好ましくは30質量%以下の、初留点が350〜400℃である物質をこの初留点未満の沸点を有する物質へと転換するように行うことが好ましい。 The contact dewaxing conditions are not particularly limited, and the treatment temperature is preferably 200 to 500 ° C., and the hydrogen partial pressure is preferably 1 MPa to 20 MPa. Also, the flow when the through reactor, hydrogen processing speed is preferably from 0.1 to 10 / l / hr, liquid hourly space velocity is preferably 0.1 to 10 -1, especially 0.2~2.0H -1 preferable. In catalytic dewaxing, a substance having an initial boiling point of 350 to 400 ° C., usually 40% by mass or less, preferably 30% by mass or less, contained in a lubricating base oil is changed to a substance having a boiling point lower than this initial boiling point. It is preferable to carry out such conversion.

工程(C)に係る水素化分解では、潤滑油基油の製造において行われる通常の方法により、水素化分解触媒の存在下で、目標とする流動点や目標とする粘度指数となるような処理条件で、被処理油を水素と反応させて、被処理油の水素化分解を行う。水素化分解触媒は、目標とする凝固点や目標とする粘度指数を有する潤滑油基油が得られるものであれば、特に制限されない。水素化分解触媒としては、例えば、Al、B、Si、Ti、Zn及びZrから選ばれる1種以上の元素の酸化物を含有し、酸の性質を有する無機酸化物からなる担体に、触媒金属として長周期型周期表における第6族元素、長周期型周期表における第9族元素、及び第10族元素のうちの1種以上の金属が担持されたものが挙げられる。水素化分解条件は、用いられる水素化分解触媒や、目標流動点や粘度指数により異なるが、例えば、水素分圧は0.1〜14MPaが好ましく、1〜14MPaが特に好ましく、2〜7MPaがより好ましく、平均反応温度は230〜430℃が好ましく、330〜400℃が特に好ましく、350〜390℃がより好ましく、LHSV液空間速度は0.3〜3.0hr−1が好ましく、0.5〜2.0hr−1が特に好ましく、水素油比は10〜2500m(normal)/mが好ましく、15〜800m(normal)/mが特に好ましい。 In the hydrocracking according to step (C), a process that provides a target pour point and a target viscosity index in the presence of a hydrocracking catalyst by a conventional method performed in the production of lubricating base oils. Under conditions, the oil to be treated is reacted with hydrogen to hydrocrack the oil to be treated. The hydrocracking catalyst is not particularly limited as long as a lubricating base oil having a target freezing point and a target viscosity index can be obtained. As the hydrocracking catalyst, for example, a catalyst metal containing an oxide of one or more elements selected from Al, B, Si, Ti, Zn and Zr, and an inorganic oxide having acid properties is used. And those in which one or more metals of Group 6 elements in the Long Periodic Periodic Table, Group 9 elements in the Long Periodic Periodic Table, and Group 10 Elements are supported. The hydrocracking conditions vary depending on the hydrocracking catalyst used, the target pour point and the viscosity index. For example, the hydrogen partial pressure is preferably 0.1 to 14 MPa, particularly preferably 1 to 14 MPa, and more preferably 2 to 7 MPa. Preferably, the average reaction temperature is preferably 230 to 430 ° C, particularly preferably 330 to 400 ° C, more preferably 350 to 390 ° C, and the LHSV liquid space velocity is preferably 0.3 to 3.0 hr -1 , 0.5 to particularly preferably 2.0 hr -1, hydrogen oil ratio is preferably 10~2500m 3 (normal) / m 3 , is particularly preferred 15~800m 3 (normal) / m 3 .

水素化分解では、被処理油中に含まれるn−パラフィンを分解する過程でイソパラフィンへの異性化を進行させることにより、流動点が低く且つ粘度指数の高いイソパラフィン成分を生成させるのと同時に、被処理油に含まれる粘度指数向上の阻害因子である芳香族分を分解し、単環芳香族分、ナフテン分又はパラフィン分とし、また、粘度指数向上の阻害因子である多環ナフテン分を分解し、単環ナフテン分やパラフィン分とする。なお、粘度指数向上の観点からは、被処理油中に高沸点で粘度指数の低い成分が少ない方が好ましい。   In hydrocracking, isoparaffin components having a low pour point and a high viscosity index are generated by proceeding with isomerization to isoparaffin in the process of decomposing n-paraffin contained in the oil to be treated. Decomposes aromatics that are an inhibitor of viscosity index improvement in treated oil to monocyclic aromatics, naphthenes, or paraffins, and decomposes polycyclic naphthene that is an inhibitor of viscosity index improvement. , Monocyclic naphthene and paraffin. From the viewpoint of improving the viscosity index, it is preferable that the oil to be treated has few components having a high boiling point and a low viscosity index.

工程(C)に係る水素化精製では、潤滑油基油の製造において行われる通常の方法により、水素化触媒の存在下で、被処理油中のオレフィン化合物や芳香族化合物を水素化する。水素化精製では、例えば、水素化触媒として、モリブデン等の長周期型周期表における第6族元素のうちの1種以上の金属と、コバルト、ニッケル等の長周期型周期表における第9族元素及び第10族元素のうちの1種以上の金属が担持されたアルミナ触媒を用いて、水素分圧5〜20MPa、反応温度300〜400℃、液空間速度0.5〜5.0hr−1の条件下で、被処理油の水素化精製を行う。 In the hydrorefining which concerns on a process (C), the olefin compound and aromatic compound in to-be-processed oil are hydrogenated by the normal method performed in manufacture of lubricating oil base oil in presence of a hydrogenation catalyst. In hydrorefining, for example, as a hydrogenation catalyst, one or more metals among Group 6 elements in a long-period periodic table such as molybdenum and Group 9 elements in a long-period periodic table such as cobalt and nickel are used. And an alumina catalyst supporting one or more metals of group 10 elements, a hydrogen partial pressure of 5 to 20 MPa, a reaction temperature of 300 to 400 ° C., and a liquid space velocity of 0.5 to 5.0 hr −1 . Hydrotreating of the oil to be treated is performed under the conditions.

工程(C)に係る硫酸洗浄では、潤滑油基油の製造において行われる通常の方法により、被処理油の硫酸洗浄を行う。   In the sulfuric acid washing according to the step (C), the oil to be treated is washed with sulfuric acid by a usual method performed in the production of the lubricating base oil.

工程(C)に係る白土処理では、潤滑油基油の製造において行われる通常の方法により、被処理油の白土処理を行う。   In the white clay treatment according to the step (C), the white clay treatment of the oil to be treated is performed by a normal method performed in the production of the lubricating base oil.

また、工程(C)における各処理では、必要に応じて、各処理後に蒸留により軽質の成分を除去してもよい。   Moreover, in each process in a process (C), you may remove a light component by distillation after each process as needed.

なお、本発明の潤滑油基油の製造方法に係る工程(C)では、溶剤抽出、フィルタープレス脱ろう、溶剤脱ろう、接触脱ろう、水素化分解、水素化精製、硫酸洗浄及び白土処理のうちのいずれか1種の処理を行う場合と、溶剤抽出、フィルタープレス脱ろう、溶剤脱ろう、接触脱ろう、水素化分解、水素化精製、硫酸洗浄及び白土処理のうちの2種以上の処理を行う場合があるため、上記では、各処理において処理される油を被処理油と記載して説明した。   In the step (C) according to the method for producing the lubricating base oil of the present invention, solvent extraction, filter press dewaxing, solvent dewaxing, catalytic dewaxing, hydrocracking, hydrorefining, sulfuric acid washing and clay treatment 2 or more types of treatments, one of which is solvent extraction, filter press dewaxing, solvent dewaxing, catalytic dewaxing, hydrocracking, hydrorefining, sulfuric acid washing and clay treatment In the above description, the oil to be processed in each process is described as the oil to be processed.

本発明の潤滑油基油の製造方法を行い得られる潤滑油基油の性状及び組成は、40℃における動粘度が20〜100mm/s、粘度指数が100〜130、流動点が−20〜0℃、硫黄分が0〜0.03質量%、芳香族分が0〜3質量%、ナフテン分が5〜40質量%、パラフィン分が57〜95質量%である。また、本発明の潤滑油基油の製造方法を行い得られる潤滑油基油の蒸留性状は、初留点が280〜350℃、50%流出温度が400〜480℃、終点が500〜590℃である。 The properties and composition of the lubricating base oil obtained by carrying out the method for producing the lubricating base oil of the present invention have a kinematic viscosity at 40 ° C. of 20 to 100 mm 2 / s, a viscosity index of 100 to 130, and a pour point of -20 to 20. 0 degreeC, sulfur content is 0-0.03 mass%, aromatic content is 0-3 mass%, naphthene content is 5-40 mass%, and paraffin content is 57-95 mass%. In addition, the distillation properties of the lubricating base oil obtained by the method for producing the lubricating base oil of the present invention have an initial boiling point of 280 to 350 ° C., a 50% outflow temperature of 400 to 480 ° C., and an end point of 500 to 590 ° C. It is.

本発明の潤滑油基油の製造方法では、工程(A)にて、常圧蒸留残渣油又は常圧蒸留残渣油と減圧蒸留残渣油の混合油の水素化脱硫処理を行うことにより、ナフテン分を開裂させて、又は芳香族分をナフテン分に転換し、更にそのナフテン分を開裂させて、パラフィン分に転換することができるため、潤滑油基油の製造において、原油種の選択の自由度を高くすることができる。   In the method for producing a lubricating base oil of the present invention, in step (A), the hydrodesulfurization treatment of the atmospheric distillation residue oil or the mixed oil of the atmospheric distillation residue oil and the vacuum distillation residue oil is carried out to obtain a naphthenic component. Or the aromatic component can be converted to a naphthene component, and the naphthene component can be further cleaved and converted to a paraffin component. Can be high.

以下に実施例を示して本発明を更に具体的に説明するが、本発明はこれに制限されるものではない。
実施例及び比較例において、密度は、JIS K 2249−1「原油及び石油製品−密度試験方法及び密度・質量・容量換算表(振動式密度試験方法)」、硫黄分は、JIS K 2541−4「原油及び石油製品−硫黄分試験方法 第4部:放射線式励起法」、窒素分は、JIS K 2609「原油及び石油製品−窒素分試験方法」、蒸留性状はJIS K 2254「石油製品−蒸留試験方法(ガスクロマトグラフ法蒸留試験方法)」、動粘度及び粘度指数はJIS K 2283「原油及び石油製品−動粘度試験方法及び粘度指数算出方法」、流動点はJIS K 2269「原油及び石油製品の流動点並びに石油製品曇り点試験方法」、引火点はJIS K 2265−4「原油及び石油製品−引火点の求め方−第4部:クリーブランド開放法」、ヨウ素価はJIS K 0070「化学製品の酸価、ケン化価、ヨウ素価、水酸基価および不ケン化価」の指示薬滴定法、アニリン点はJIS K 2256「石油製品−アニリン点及び混合アニリン点試験方法」に準拠した。
ニッケル及びバナジウムの含有量は、石油学会規格 JPI−5S−62−2000「石油製品金属分析試験法(ICP発光分析法)」に準拠した。
組成の芳香族、ナフテン、飽和の割合は、それぞれASTM D 3238−85に準拠した方法(n−d−M環分析)により求められる%C、%C、%Cを意味する。
The present invention will be described more specifically with reference to the following examples, but the present invention is not limited thereto.
In Examples and Comparative Examples, the density is JIS K 2249-1 “Crude oil and petroleum products—density test method and density / mass / capacity conversion table (vibration density test method)”, and the sulfur content is JIS K 2541-4. "Crude oil and petroleum products-sulfur content test method Part 4: Radiation excitation method", nitrogen content is JIS K 2609 "crude oil and petroleum products-nitrogen content test method", distillation properties are JIS K 2254 "petroleum products-distillation "Test method (gas chromatographic distillation test method)", kinematic viscosity and viscosity index are JIS K 2283 "Crude oil and petroleum products-kinematic viscosity test method and viscosity index calculation method", pour point is JIS K 2269 "crude oil and petroleum products Pour point and petroleum product cloud point test method ", flash point is JIS K 2265-4" crude oil and petroleum products-how to determine flash point-Part 4: Cleveland Opening Method ", The prime value is JIS K 0070 “indicator titration method of acid value, saponification value, iodine value, hydroxyl value and non-saponification value of chemical products”, and the aniline point is JIS K 2256 “Petroleum products—aniline point and mixed aniline point test”. Conforms to "Method".
The contents of nickel and vanadium conformed to the Petroleum Institute Standard JPI-5S-62-2000 “Petroleum Products Metal Analysis Test Method (ICP Luminescence Analysis Method)”.
Aromatic composition, naphthenic, the percentage of saturation is meant a method in accordance with ASTM D 3238-85, respectively (n-d-M ring analysis) by sought% C A,% C N, the% C P.

(実施例1)
<工程(A)>
カタールマリン原油を常圧蒸留して得られた30%留出温度が466℃である常圧蒸留残渣油Aを、脱金属触媒と脱硫触媒を充填した直接脱硫装置にて、反応温度が350℃ 、水素分圧が10.8MPa 、水素/油比が769m(normal)/m、液空間速度が0.25h−1で水素化脱硫処理を行った。次いで、常圧蒸留により軽質の成分を除去し、直接脱硫処理油Aを得た。常圧蒸留残渣油A及び直接脱硫処理油Aの性状を表1に示す。
なお、水素化脱硫処理に際しては、反応器に脱金属触媒及び2種の脱硫触媒を前段、中段、後段に充填し、それらを組み合わせて充填した。それぞれの触媒の充填比率を、前段の脱金属触媒/中段の脱硫触媒A/後段の脱硫触媒Bが、20/30/50(容量%)とした。
・脱金属触媒(前段):アルミナ担体に、ニッケル、モリブデンを担持した触媒、平均細孔直径21nm、細孔容積0.74ml/g、比表面積132m/g
・脱硫触媒A(中段):アルミナ担体にニッケル、リブデンを担持した触媒、平均細孔直径8nm、細孔容積0.63ml/g、比表面積280m/g
・脱硫触媒B(後段):アルミナ担体にニッケル、モリブデンを担持した触媒、平均細孔直径8nm、細孔容積0.52ml/g、比表面積255m/g
Example 1
<Process (A)>
The atmospheric distillation residue oil A obtained by atmospheric distillation of Qatar Marine crude oil having a distillation temperature of 466 ° C. is subjected to a reaction temperature of 350 ° C. in a direct desulfurization apparatus filled with a demetallization catalyst and a desulfurization catalyst. The hydrodesulfurization treatment was performed at a hydrogen partial pressure of 10.8 MPa, a hydrogen / oil ratio of 769 m 3 (normal) / m 3 , and a liquid space velocity of 0.25 h −1 . Next, light components were removed by atmospheric distillation to obtain a direct desulfurized oil A. Table 1 shows the properties of the atmospheric distillation residue oil A and the direct desulfurized oil A.
In the hydrodesulfurization treatment, the reactor was charged with a demetallation catalyst and two types of desulfurization catalysts in the front, middle, and rear stages, and a combination thereof was charged. The packing ratio of each catalyst was 20/30/50 (volume%) for the first-stage demetallation catalyst / middle-stage desulfurization catalyst A / second-stage desulfurization catalyst B.
Demetallization catalyst (previous stage): catalyst in which nickel and molybdenum are supported on an alumina carrier, average pore diameter 21 nm, pore volume 0.74 ml / g, specific surface area 132 m 2 / g
Desulfurization catalyst A (middle stage): catalyst having nickel and ribden supported on an alumina carrier, average pore diameter 8 nm, pore volume 0.63 ml / g, specific surface area 280 m 2 / g
Desulfurization catalyst B (second stage): catalyst having nickel and molybdenum supported on an alumina carrier, average pore diameter of 8 nm, pore volume of 0.52 ml / g, specific surface area of 255 m 2 / g

<工程(B)>
直接脱硫処理油Aを減圧蒸留装置で減圧蒸留することにより、50%留出温度が435℃、70%留出温度が460℃の直接脱硫処理油減圧蒸留軽質分Aと、直接脱硫処理油減圧蒸留残渣分Aを得た。直接脱硫処理油減圧蒸留軽質分Aの性状を表1に示す。
<Process (B)>
Direct desulfurization treatment oil A is distilled under reduced pressure using a vacuum distillation apparatus, so that a direct desulfurization treatment oil vacuum distillation light fraction A having a 50% distillation temperature of 435 ° C. and a 70% distillation temperature of 460 ° C. A distillation residue A was obtained. The properties of the direct desulfurized oil vacuum distilled light component A are shown in Table 1.

<工程(C)>
直接脱硫処理油減圧蒸留軽質分Aを、下記条件にて、溶剤抽出、溶剤脱ろう、水素化精製の順に処理を行い、潤滑油基油Aを得た。潤滑油基油Aの性状を表1に示す。
<溶剤抽出条件>
1Lの直接脱硫処理油減圧蒸留軽質分Aに、0.34Lのフルフラールを加え、110℃に加熱し、2分間機械攪拌した後、フルフラール相(下層)を分液留去する操作を7回繰り返した。処理油中に少量残留する軽質分(フルフラール)を、圧力2mmHg、温度160℃の条件で除去して、溶剤抽出処理油0.6Lを得た。
<溶剤脱ろう条件>
0.5Lの溶剤抽出処理油に、トルエン/メチルエチルケトン(40/60 体積%)の混合溶剤2.3Lを加え、70℃に加熱して溶解させた。溶解した溶液を−15℃に冷却して、WAX分を析出した後、減圧ろ過により脱ろう(ろう分を除去)した溶液を得た。さらに、同溶液を常圧蒸留により、トルエン/メチルエチルケトン混合溶剤の大部分を除去した後、少量残留する軽質分(トルエン/メチルエチルケトン混合溶剤)を圧力2mmHg、温度160℃の条件で除去して、溶剤脱ろう処理油0.35Lを得た。
<水素化精製条件>
オートクレーブに溶剤脱ろう処理油60ml、市販のNiMo系水素化精製触媒20.5gを仕込み、水素分圧15.7MPa、温度333℃の条件で、3時間反応させた。反応終了後、室温まで冷却、回収した処理油中の軽質分を減圧蒸留(圧力2mmHg、温度160℃)で除去して、潤滑油基油Aを58ml得た。
<Process (C)>
The direct desulfurized oil vacuum distilled light component A was processed in the order of solvent extraction, solvent dewaxing, and hydrorefining under the following conditions to obtain lubricating base oil A. Table 1 shows the properties of the lubricating base oil A.
<Solvent extraction conditions>
Add 0.34 L of furfural to 1 L of direct desulfurized oil vacuum distilled light component A, heat to 110 ° C., mechanically stir for 2 minutes, then repeat the operation of separating and distilling off the furfural phase (lower layer) seven times. It was. The light component (furfural) remaining in a small amount in the treated oil was removed under the conditions of a pressure of 2 mmHg and a temperature of 160 ° C. to obtain 0.6 L of a solvent extraction treated oil.
<Solvent dewaxing conditions>
To 0.5 L of solvent extraction processing oil, 2.3 L of a mixed solvent of toluene / methyl ethyl ketone (40/60 vol%) was added and dissolved by heating to 70 ° C. The dissolved solution was cooled to −15 ° C. to precipitate the WAX component, and then a solution that was dewaxed (removed the wax component) by vacuum filtration was obtained. Further, after removing the majority of the toluene / methyl ethyl ketone mixed solvent by atmospheric distillation, the small amount of the remaining light component (toluene / methyl ethyl ketone mixed solvent) was removed under the conditions of a pressure of 2 mmHg and a temperature of 160 ° C. 0.35 L of dewaxed oil was obtained.
<Hydro-refining conditions>
An autoclave was charged with 60 ml of solvent dewaxing oil and 20.5 g of a commercially available NiMo hydrorefining catalyst, and reacted for 3 hours under conditions of a hydrogen partial pressure of 15.7 MPa and a temperature of 333 ° C. After completion of the reaction, the light component in the treated oil that was cooled to room temperature and recovered was removed by distillation under reduced pressure (pressure 2 mmHg, temperature 160 ° C.) to obtain 58 ml of lubricating base oil A.

(実施例2)
常圧残渣油Aに代えて、アラビアンヘビー原油を常圧蒸留して得られた30%留出温度が504℃である常圧蒸留残渣油Bを用いて実施例1の工程(A)を行い、直接脱硫処理油Bを得た。常圧蒸留残渣油B及び直接脱硫処理油Bの性状を表1に示す。
次いで、直接脱硫処理油Aに代えて、直接脱硫処理油Bとすること以外は、実施例1と同様にして、実施例1の工程(B)を行い、直接脱硫処理油減圧蒸留軽質分Bを得た。直接脱硫処理油減圧蒸留軽質分Bの性状を表2に示す。
次いで、直接脱硫処理油減圧蒸留軽質分Aに代えて、直接脱硫処理油減圧蒸留軽質分Bとすること以外は、実施例1と同様にして、実施例1の工程(C)を行い、潤滑油基油Bを得た。潤滑油基油Bの性状を表3に示す。
(Example 2)
Instead of atmospheric residue A, step (A) of Example 1 is carried out using atmospheric distillation residue oil B having a 30% distillation temperature of 504 ° C. obtained by atmospheric distillation of Arabian heavy crude oil. A direct desulfurized oil B was obtained. Table 1 shows the properties of the atmospheric distillation residue oil B and the direct desulfurized oil B.
Next, in place of the direct desulfurization processing oil A, the direct desulfurization processing oil B is used except that the step (B) of Example 1 is performed in the same manner as in Example 1, and the direct desulfurization processing oil vacuum distillation light component B is performed. Got. Table 2 shows the properties of the direct desulfurized oil vacuum distilled light component B.
Next, in place of the direct desulfurized oil vacuum distilled light component A, the process (C) of Example 1 is performed in the same manner as in Example 1 except that the direct desulfurized oil vacuum distilled light component B is used. Oil base oil B was obtained. Table 3 shows the properties of the lubricating base oil B.

(比較例1)
実施例1で得られた常圧蒸留残渣油Aを減圧蒸留装置で減圧蒸留することにより、50%留出温度が434℃、70%留出温度が458℃の減圧蒸留軽油aを得た。減圧蒸留軽油aの性状を表2に示す。
次いで、直接脱硫処理油減圧蒸留軽質分Aに代えて、減圧蒸留軽油aとすること以外は、実施例1と同様にして、実施例1の工程(C)を行い、潤滑油基油aを得た。潤滑油基油aの性状を表3に示す。
つまり、比較例1では、工程(A)を行っていない。
(Comparative Example 1)
The atmospheric distillation residue oil A obtained in Example 1 was distilled under reduced pressure using a vacuum distillation apparatus to obtain vacuum distillation gas oil a having a 50% distillation temperature of 434 ° C and a 70% distillation temperature of 458 ° C. Table 2 shows the properties of the vacuum distilled light oil a.
Next, in place of the direct desulfurized oil vacuum distilled light oil A, except that the vacuum distilled light oil a is used, the process (C) of Example 1 is performed in the same manner as in Example 1 to obtain the lubricating base oil a. Obtained. Table 3 shows the properties of the lubricating base oil a.
That is, in Comparative Example 1, the step (A) is not performed.

(比較例2)
常圧蒸留残渣油Aに代えて、常圧蒸留残渣油Bとすること以外は、比較例1と同様にして、潤滑油基油bを得た。減圧蒸留軽油bおよび潤滑油基油bの性状を、それぞれ、表2および表3に示す。
(Comparative Example 2)
Lubricating oil base oil b was obtained in the same manner as in Comparative Example 1 except that atmospheric distillation residue oil A was used instead of atmospheric distillation residue oil A. Properties of the vacuum distilled light oil b and the lubricating base oil b are shown in Table 2 and Table 3, respectively.

実施例1と実施例2では、原油種が異なっているために、表1に示すように、それらの原油を常圧蒸留して得られた常圧蒸留残渣油(常圧蒸留残渣油Aと常圧蒸留残渣油B)の性状は異なったものとなっている。ところが、それらの性状が異なる常圧残渣油であっても、水素化脱硫処理及び減圧蒸留を経ることにより、表3に示すように、硫黄分、芳香族分、ナフテン分、飽和分の各含有量、動粘度、粘度指数、流動点、引火点、ヨウ素価及びアニリン点が近似しており、性状が近似した潤滑油基油(潤滑油基油Aと潤滑油基油B)が得られている。
一方、比較例1は実施例1と原油種が同じであり、比較例2は実施例2と原油種が同じであり、いずれも、常圧蒸留の残渣油(常圧蒸留残渣油Aと常圧蒸留残渣油B)を、水素化脱硫処理を経ずに、減圧蒸留を経て潤滑油基油が製造されている。そして、比較例1と比較例2では、原油種が異なっているために、それらの性状の差異が、得られる潤滑油基油(潤滑油基油aと潤滑油基油b)に影響を与えており、表3に示すように、性状が異なる潤滑油基油が得られている。
よって、本発明の潤滑油基油の製造方法によれば、従来の潤滑油基油の製造方法に比べ、原油種により制限を受けることが少なく、原油種選択の自由度が高くなる。
Since Example 1 and Example 2 have different crude oil types, as shown in Table 1, atmospheric distillation residue oils obtained by atmospheric distillation of these crude oils (atmospheric distillation residue oil A and The properties of the atmospheric distillation residue oil B) are different. However, even if they are atmospheric residue oils having different properties, each component contains sulfur, aromatics, naphthenes, and saturated components as shown in Table 3 through hydrodesulfurization treatment and vacuum distillation. The quantity, kinematic viscosity, viscosity index, pour point, flash point, iodine value, and aniline point are approximated, and lubricating base oils (lubricating base oil A and lubricating base oil B) with similar properties are obtained. Yes.
On the other hand, Comparative Example 1 has the same crude oil type as Example 1, and Comparative Example 2 has the same crude oil type as Example 2, both of which are atmospheric distillation residue oils (atmospheric distillation residue oil A and atmospheric pressure oils). Lubricating oil base oil is produced by subjecting the pressure distillation residue oil B) to vacuum distillation without going through hydrodesulfurization treatment. In Comparative Example 1 and Comparative Example 2, since the crude oil types are different, the difference in properties affects the resulting lubricating base oil (lubricating base oil a and lubricating base oil b). As shown in Table 3, lubricating base oils having different properties are obtained.
Therefore, according to the method for producing a lubricating base oil of the present invention, compared to the conventional method for producing a lubricating base oil, the crude oil type is less restricted and the degree of freedom in selecting the crude oil type is increased.

本発明によれば、潤滑油基油の製造において、原油種の選択の自由度を高くでき、また、石油精製プロセス全体において、今後需要の減少傾向が続くことが想定されるガソリンやC重油の減産に貢献できる。   According to the present invention, in the production of lubricating base oil, the degree of freedom in selecting crude oil types can be increased, and the demand for gasoline and C heavy oil, which are expected to continue to decline in the future in the entire oil refining process, is expected. Contributes to reduced production.

1 原油
2 常圧蒸留
3 常圧蒸留留出分
4 常圧蒸留残渣油
7 減圧蒸留
8 減圧蒸留留出分
9 減圧蒸留残渣油
10 脱ろう処理
11 潤滑油基油
1 crude oil 2 atmospheric distillation 3 atmospheric distillation distillate 4 atmospheric distillation residue oil 7 vacuum distillation 8 vacuum distillation distillate 9 vacuum distillation residue oil 10 dewaxing treatment 11 lubricating base oil

Claims (2)

直脱原料油として、常圧蒸留残渣油、又は常圧蒸留残渣油と減圧蒸留残渣油の混合油を用いて、該直脱原料油を300〜500℃且つ水素分圧8〜20MPaで水素化脱硫し、直接脱硫処理油を得る工程(A)と、
該直接脱硫処理油を、減圧蒸留して、直接脱硫処理油減圧蒸留軽質分を得る工程(B)と、
溶剤抽出、フィルタープレス脱ろう、溶剤脱ろう、接触脱ろう、水素化分解、水素化精製、硫酸洗浄及び白土処理のうちのいずれか1種又は2種以上により、該直接脱硫処理油減圧蒸留軽質分を処理する工程(C)と、
を有することを特徴とする潤滑油基油の製造方法。
Hydrogenation is performed at 300 to 500 ° C. and a hydrogen partial pressure of 8 to 20 MPa using an atmospheric distillation residue oil or a mixed oil of an atmospheric distillation residue oil and a vacuum distillation residue oil as a direct desorption raw material oil. Desulfurizing and directly obtaining desulfurized oil (A);
A step (B) of subjecting the direct desulfurized oil to vacuum distillation to obtain a direct desulfurized oil vacuum distilled light component;
Lightly distilled light by direct desulfurization treatment oil by solvent extraction, filter press dewaxing, solvent dewaxing, catalytic dewaxing, hydrocracking, hydrorefining, sulfuric acid washing and clay treatment A step (C) of processing the minute;
A method for producing a lubricating base oil, comprising:
前記工程(C)において、溶剤抽出を含む請求項1記載の潤滑油基油の製造方法。   The method for producing a lubricating base oil according to claim 1, wherein the step (C) includes solvent extraction.
JP2013109081A 2013-05-23 2013-05-23 Method for producing lubricating base oil Active JP6025657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013109081A JP6025657B2 (en) 2013-05-23 2013-05-23 Method for producing lubricating base oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013109081A JP6025657B2 (en) 2013-05-23 2013-05-23 Method for producing lubricating base oil

Publications (2)

Publication Number Publication Date
JP2014227498A JP2014227498A (en) 2014-12-08
JP6025657B2 true JP6025657B2 (en) 2016-11-16

Family

ID=52127672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013109081A Active JP6025657B2 (en) 2013-05-23 2013-05-23 Method for producing lubricating base oil

Country Status (1)

Country Link
JP (1) JP6025657B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105199778A (en) * 2015-09-08 2015-12-30 山东成泰化工有限公司 Solvent oil hydrofining method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2724508B2 (en) * 1990-05-31 1998-03-09 日本石油株式会社 Lubricating oil composition for internal combustion engines

Also Published As

Publication number Publication date
JP2014227498A (en) 2014-12-08

Similar Documents

Publication Publication Date Title
CN1181166C (en) Biodegradable high performance hydrocarbon base oils
RU2671862C2 (en) Process for preparing heavy base oil
CA2931187C (en) Hydrocracking of gas oils with increased distillate yield
JP2013534559A (en) Method for producing Group II and Group III lubricating base oils
JP2019505630A (en) Deasphalting and gasification of integrated residual oil
US20140042056A1 (en) Co-production of heavy and light base oils
JP2020523436A (en) Production of diesel and base stock from crude oil
US20160194566A1 (en) Catalytic and solvent processing for base oil production
JP5893617B2 (en) Method for producing Group II and Group III lubricating base oils
CA2896371A1 (en) Production of base oils from petrolatum
WO2015148051A1 (en) Basestock production from feeds containing solvent extracts
US10221367B2 (en) Lubricant base stock production from disadvantaged feeds
JP6025657B2 (en) Method for producing lubricating base oil
JP6391108B2 (en) Method for producing lubricating base oil
KR102293750B1 (en) Hydrotreating and dewaxing process
KR20120114321A (en) Catalytic dewaxing process
JP6812265B2 (en) How to treat pyrolyzed heavy light oil
JP4766940B2 (en) Method for producing hydrocarbon oil
US10947460B2 (en) Production of upgraded extract and raffinate
JP5082138B2 (en) Operation method of direct desulfurization equipment
JP2006188634A (en) Method for producing lubricant base oil
CN105602615B (en) Handle method and lube base oil of Fischer-Tropsch wax and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161011

R150 Certificate of patent or registration of utility model

Ref document number: 6025657

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250