JP6019761B2 - Planar heating element and manufacturing method thereof - Google Patents

Planar heating element and manufacturing method thereof Download PDF

Info

Publication number
JP6019761B2
JP6019761B2 JP2012123155A JP2012123155A JP6019761B2 JP 6019761 B2 JP6019761 B2 JP 6019761B2 JP 2012123155 A JP2012123155 A JP 2012123155A JP 2012123155 A JP2012123155 A JP 2012123155A JP 6019761 B2 JP6019761 B2 JP 6019761B2
Authority
JP
Japan
Prior art keywords
resistor
heating element
planar heating
cellulose
carboxyl group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012123155A
Other languages
Japanese (ja)
Other versions
JP2013251064A (en
Inventor
奈緒 西嶋
奈緒 西嶋
友美子 大森
友美子 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2012123155A priority Critical patent/JP6019761B2/en
Publication of JP2013251064A publication Critical patent/JP2013251064A/en
Application granted granted Critical
Publication of JP6019761B2 publication Critical patent/JP6019761B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、少なくとも基材と抵抗体で構成され、抵抗体が導電性物質とカルボキシル基を有する繊維状多糖類を含むことを特徴とする面状発熱体に関する。   The present invention relates to a planar heating element comprising at least a base material and a resistor, wherein the resistor includes a conductive substance and a fibrous polysaccharide having a carboxyl group.

従来、面状発熱体としては、バインダーとなる樹脂にカーボンブラックを初めとしたカーボン粒子や導電性無機フィラー、金属化合物などの導電性物質を混在させ、このペースト状材料を絶縁基材上に成形して抵抗体を作製し、そこに通電して発生したジュール熱を利用した構造が用いられてきた。導電性物質の電導度やバインダーの熱導電性、抵抗体の形状等を設計・作製したうえで、印加電圧を制御すること等により温度制御を可能とする。このような発熱体は床面や壁面の暖房機器など比較的広範囲の平面や曲面を持つ機器へ適用できる。   Conventionally, as a planar heating element, carbon particles such as carbon black, conductive inorganic fillers, and conductive materials such as metal compounds are mixed in resin as a binder, and this paste-like material is molded on an insulating substrate. Thus, a structure using a Joule heat generated by energizing the resistor is used. The temperature can be controlled by controlling the applied voltage after designing and producing the conductivity of the conductive material, the thermal conductivity of the binder, the shape of the resistor, and the like. Such a heating element can be applied to a device having a relatively wide plane or curved surface, such as a floor surface or a wall surface heating device.

特開2009-256617号公報JP 2009-256617 A 特開2005-11651号公報JP 2005-11651 A 特願2009−547135号公報Japanese Patent Application No. 2009-547135

導電性物質をバインダー中に分散する際、比表面積の大きさや表面状態の親和性により導電性物質が凝集体を形成したり、偏在すること等により、均一に分散させることが困難であるという課題がある。或いは金属粒子など比重の大きな物質を用いる場合、保管中にバインダー内で分離、沈殿してしまい、再分散させるのが困難である。このように、導電性物質の分散制御は難しい。一方、導電特性や発熱特性はその分散性により大きく影響を受け、機能の多くは良分散状態で効率的に発揮される。   When dispersing a conductive material in a binder, it is difficult to uniformly disperse due to the formation of agglomerates or uneven distribution due to the size of the specific surface area and the affinity of the surface state. There is. Alternatively, when a substance having a large specific gravity such as metal particles is used, it separates and precipitates in the binder during storage and is difficult to redisperse. Thus, it is difficult to control the dispersion of the conductive material. On the other hand, the conductive characteristics and heat generation characteristics are greatly affected by the dispersibility, and many of the functions are efficiently exhibited in a well-dispersed state.

上記の課題を解決するために、従来、様々な試みが成されてきた。
特許文献1では、カーボン粒子表面にイミド基を有する合成高分子を吸着させる方法が開示されている。しかし、本方法を用いると、耐熱性や樹脂への相溶性は向上するものの、カーボン粒子同士の凝集を十分に抑制することができず、電気的・機械的特性を十分に発揮させることが困難である。特許文献2では、発熱体の面内温度を均一化するために均熱板を装着する方法が開示されている。しかし、本方法を用いると製造工程が複雑になるうえ、薄層化が困難になる。特許文献3では、分散媒中に界面活性剤を添加することでカーボンナノチューブの分散性を向上させる方法が開示されている。しかし、本方法を用いると、分散液状態での分散性は良いが、乾燥過程においてカーボンナノチューブが凝集体を形成するため、電気的特性を十分に発揮させることが困難である。
Various attempts have been made in the past to solve the above problems.
Patent Document 1 discloses a method of adsorbing a synthetic polymer having an imide group on the surface of carbon particles. However, when this method is used, the heat resistance and compatibility with the resin are improved, but agglomeration of carbon particles cannot be sufficiently suppressed, and it is difficult to sufficiently exhibit electrical and mechanical properties. It is. Patent Document 2 discloses a method of mounting a soaking plate in order to make the in-plane temperature of the heating element uniform. However, when this method is used, the manufacturing process becomes complicated and thinning becomes difficult. Patent Document 3 discloses a method for improving the dispersibility of carbon nanotubes by adding a surfactant to a dispersion medium. However, when this method is used, the dispersibility in the dispersion state is good, but since the carbon nanotubes form aggregates during the drying process, it is difficult to fully exhibit the electrical characteristics.

本発明は以上のような背景技術を考慮して成されたもので、製造から廃棄に至る環境負荷が極めて低く、製造工程が簡便で、生産性が高く、さらに電気的・機械的特性の高い面状発熱体を提供することを目的とする。   The present invention has been made in consideration of the background art as described above. The environmental load from manufacturing to disposal is extremely low, the manufacturing process is simple, the productivity is high, and the electrical and mechanical characteristics are high. An object is to provide a planar heating element.

本発明は、上記の課題を解決するために成されたものであり、本発明は、少なくとも基材、前記基材の一方の面に形成した抵抗体、および抵抗体へ通電するための電極で構成され、抵抗体が導電性物質とカルボキシル基を有する繊維状多糖類を含むことを特徴とする面状発熱体である。かつ、前記カルボキシル基を有する繊維状多糖類がセルロース繊維であることを特徴とする。かつ、前記セルロース繊維の繊維幅が2nm以上50nm以下であり、前記セルロース繊維の長さが0.5μm以上50μm以下であることを特徴とする。 The present invention has been made to solve the above problems, the present onset Ming, at least the substrate, electrodes for energizing resistors formed on one surface of the substrate, and to a resistor The sheet heating element is characterized in that the resistor includes a conductive substance and a fibrous polysaccharide having a carboxyl group. And the fibrous polysaccharide which has the said carboxyl group is a cellulose fiber, It is characterized by the above-mentioned. And the fiber width of the said cellulose fiber is 2 to 50 nm, The length of the said cellulose fiber is 0.5 to 50 micrometer, It is characterized by the above-mentioned.

本発明は、前記セルロース繊維のカルボキシル基の少なくとも一部がカルボン酸塩であることを特徴とする面状発熱体である。 This onset Ming is a planar heating element you wherein at least part of the carboxyl groups of the cellulose fibers is a carboxylic acid salt.

本発明は、前記導電性物質がカーボン粒子から成ることを特徴とする面状発熱体である。 This onset Ming, the conductive material is a planar heating element you characterized in that it consists of carbon particles.

本発明は、前記導電性物質が金属粒子であることを特徴とする面状発熱体である。 This onset Ming is a planar heating element you wherein the conductive material is a metal particle.

本発明は、前記導電性物質の粒子径が1nm以上100nm以下であることを特徴とする面状発熱体である。 This onset Ming is a planar heating element you wherein the particle size of the conductive material is 1nm or more 100nm or less.

本発明は、前記抵抗体の硬化後の厚みが0.5μm以上10μm以下であることを特徴とする面状発熱体である。 This onset Ming is a planar heating element you wherein a thickness after curing of the resistor is 0.5μm or more 10μm or less.

本発明は、基材の一方の面に印刷により抵抗体を形成する工程と前記抵抗体上に電極を設ける工程とを備え、前記抵抗体が導電性物質とカルボキシル基を有する繊維状多糖類とを含むことを特徴とする面状発熱体の製造方法である。かつ、前記カルボキシル基を有する繊維状多糖類がセルロース繊維であることを特徴とする。かつ、前記セルロース繊維の繊維幅が2nm以上50nm以下であり、前記セルロース繊維の長さが0.5μm以上50μm以下であることを特徴とする。 This onset Ming, and a step of providing an electrode on the step and on the resistor to form a resistor by printing on one side of the substrate, the fibrous the resistor is electrically conductive material and a carboxyl group polysaccharide Is a manufacturing method of the planar heating element characterized by including. And the fibrous polysaccharide which has the said carboxyl group is a cellulose fiber, It is characterized by the above-mentioned. And the fiber width of the said cellulose fiber is 2 to 50 nm, The length of the said cellulose fiber is 0.5 to 50 micrometer, It is characterized by the above-mentioned.

本発明によると、製造から廃棄に至る環境負荷が極めて低く、かつ製造工程が簡便で、生産性が高い面状発熱体を提供することができる。本方法によると、導電性物質が簡便に分散された分散液を得られ、この分散液により形成された抵抗体は、十分な電気的・機械的特性を備える。   According to the present invention, it is possible to provide a planar heating element that has an extremely low environmental load from manufacture to disposal, a simple manufacturing process, and high productivity. According to this method, a dispersion liquid in which a conductive substance is simply dispersed can be obtained, and the resistor formed by this dispersion liquid has sufficient electrical and mechanical characteristics.

本発明の面状発熱体の一実施形態の上面図である。It is a top view of one embodiment of the planar heating element of the present invention. 本発明の面状発熱体の一実施形態の側断面図である。It is a sectional side view of one embodiment of the sheet heating element of the present invention.

以下、本発明の一実施形態について、図面を参照して説明する。図1は、本発明における面状発熱体の上方図である。本発明における面状発熱体10は、少なくとも抵抗体11が形成され、電極12が抵抗体11に設けられたものである。また、抵抗体11は、少なくとも、導電性物質とカルボキシル基を有する繊維状多糖類とを含む。ここで、電極12の形状および配置に関しては、抵抗体11の形状および配置や、面状発熱体の用途によって適宜設計され、特に限定はされない。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an upper view of a planar heating element in the present invention. The planar heating element 10 according to the present invention includes at least a resistor 11 and an electrode 12 provided on the resistor 11. The resistor 11 includes at least a conductive substance and a fibrous polysaccharide having a carboxyl group. Here, the shape and arrangement of the electrode 12 are appropriately designed according to the shape and arrangement of the resistor 11 and the use of the planar heating element, and are not particularly limited.

図2は、図1に図示した本発明における面状発熱体のA’−Aにおける側断面図である。本発明における面状発熱体20は、基材23の少なくとも一方の面に、少なくとも抵抗体21が形成され、抵抗体21に電極22が設けられたものである。ここで基材の両面に抵抗体21および電極22が形成されていてもよい。また、抵抗体21は基材上の一部分または全表面に形成されていてもよい。抵抗体21の形状は、例えば、短冊形状、蛇腹形状、凹凸形状等が挙げられるが、面状発熱体の用途によって適宜設計され、特に限定はされない。   2 is a cross-sectional side view taken along line A'-A of the planar heating element of the present invention shown in FIG. In the planar heating element 20 in the present invention, at least a resistor 21 is formed on at least one surface of a substrate 23, and an electrode 22 is provided on the resistor 21. Here, the resistor 21 and the electrode 22 may be formed on both surfaces of the substrate. The resistor 21 may be formed on a part or the entire surface of the substrate. The shape of the resistor 21 includes, for example, a strip shape, a bellows shape, and an uneven shape, but is appropriately designed depending on the use of the planar heating element, and is not particularly limited.

本発明に用いる繊維状多糖類としては、セルロース、キチン、キトサンなどが挙げられ、特に構造配列が規則的であり、剛直な骨格を有するセルロース繊維が好ましい。セルロース繊維の原料となるセルロースとしては、木材パルプ、非木材パルプ、コットン、バクテリアセルロース等を用いることができる。   Examples of the fibrous polysaccharide used in the present invention include cellulose, chitin, chitosan and the like, and cellulose fibers having a regular structural arrangement and a rigid skeleton are particularly preferable. Wood pulp, non-wood pulp, cotton, bacterial cellulose, and the like can be used as cellulose that is a raw material for cellulose fibers.

セルロースにカルボキシル基を導入する方法としては、現在いくつか化学処理の方法が報告されている。しかし、本発明のように繊維状であり分散性が良好で、且つ導電性物質が効率的にセルロースのカルボキシル基と相互作用できる構造を有するためには、できるだけセルロースの結晶構造を保ちながらカルボキシル基を導入し、且つカルボキシル基が繊維表面に規則的に存在することが望ましい。   As a method for introducing a carboxyl group into cellulose, several chemical treatment methods are currently reported. However, as in the present invention, in order to have a structure that is fibrous and has good dispersibility, and the conductive material can efficiently interact with the carboxyl group of cellulose, the carboxyl group is maintained while maintaining the crystal structure of cellulose as much as possible. It is desirable that the carboxyl group is regularly present on the fiber surface.

具体的には、次の方法が望ましい。2,2,6,6−テトラメチル−1−ピペジニルオキシラジカル(TEMPO)を触媒として使用し、pHを調整しながら次亜塩素酸ナトリウム等の酸化剤、臭化ナトリウム等の臭化物を用いて処理する。この方法によると、TEMPOの立体障害により結晶性を有する繊維最小単位であるミクロフィブリルの表面に存在するセルロースC6位の一級水酸基のみが選択的にカルボキシル基へと酸化される。導入されたカルボキシル基の静電反発によってミクロフィブリルの結合が弱められるために、低エネルギー投入による機械的処理によって高分散した高結晶性を有する繊維状セルロースが得られる。
さらに、本方法を利用すると、得られたセルロース繊維の分子量低下が抑えられるため、高い力学強度が保持される。
Specifically, the following method is desirable. 2,2,6,6-tetramethyl-1-pipedinyloxy radical (TEMPO) is used as a catalyst, and an oxidizing agent such as sodium hypochlorite and bromide such as sodium bromide are used while adjusting pH. To process. According to this method, only the primary hydroxyl group at the cellulose C6 position existing on the surface of microfibril which is the smallest fiber unit having crystallinity is selectively oxidized to a carboxyl group due to steric hindrance of TEMPO. Since the binding of microfibrils is weakened by the electrostatic repulsion of the introduced carboxyl group, a fibrous cellulose having high crystallinity highly dispersed by mechanical treatment with low energy input can be obtained.
Furthermore, when this method is used, since the molecular weight reduction of the obtained cellulose fiber is suppressed, high mechanical strength is maintained.

以下、上記化学処理の具体的な方法を説明する。
水中で分散させたセルロースにニトロキシラジカルと臭化ナトリウムとを添加して室温で攪拌しながら、次亜塩素酸ナトリウム水溶液を添加してセルロースの酸化を行う。酸化反応中に水酸化ナトリウム等のアルカリ溶液を添加し、反応系内のpHを9〜11に制御する。この時、セルロース繊維表面のC6位の水酸基がカルボキシル基に酸化される。十分水洗し、得られたセルロースを繊維状に分散したものを分散液の構成材料として用いる。なお、酸化剤としては、次亜ハロゲン酸又はその塩、および亜ハロゲン酸又はその塩が使用可能であり、特に次亜塩素酸ナトリウムが好ましい。臭化物としては、臭化リチウム、臭化カリウム、臭化ナトリウム等が挙げられ、特に臭化ナトリウムが好ましい。
Hereinafter, a specific method of the chemical treatment will be described.
While adding nitroxy radical and sodium bromide to cellulose dispersed in water and stirring at room temperature, an aqueous sodium hypochlorite solution is added to oxidize the cellulose. An alkaline solution such as sodium hydroxide is added during the oxidation reaction to control the pH in the reaction system to 9-11. At this time, the hydroxyl group at the C6 position on the surface of the cellulose fiber is oxidized to a carboxyl group. Thoroughly washing with water and the obtained cellulose dispersed in a fibrous form is used as the constituent material of the dispersion. In addition, as an oxidizing agent, hypohalous acid or its salt, and halogenous acid or its salt can be used, and sodium hypochlorite is especially preferable. Examples of the bromide include lithium bromide, potassium bromide, sodium bromide and the like, and sodium bromide is particularly preferable.

さらに、カルボキシル基の一部がカルボン酸塩であることを特徴とする。例えば、カルボキシル基の対イオンとなるカチオンは、アルカリ金属イオン(リチウム、ナトリウム、カリウム等)、アルカリ土類金属(カルシウム等)、アンモニウムイオン、有機オニウム(各種脂肪族アミン、芳香族アミン、ジアミンなどのアミン類や水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラn−ブチルアンモニウム、水酸化ベンジルトリメチルアンモニウム、水酸化2−ヒドロキシエチルトリメチルアンモニウム等のNR4OH(Rはアルキル基、またはベンジル基、またはフェニル基、またはヒドロキシアルキル基で、4つのRが同一でも異なっていてもよい。)で表される水酸化アンモニウム化合物、水酸化テトラエチルホスホニウムなどの水酸化ホスホニウム化合物、水酸化オキソニウム化合物、水酸化スルホニウム化合物など)の対イオンが挙げられる。また、これらを2種以上混合して塩を形成することもできる。   Furthermore, a part of the carboxyl group is a carboxylate. For example, the cation serving as a counter ion of the carboxyl group includes alkali metal ions (lithium, sodium, potassium, etc.), alkaline earth metals (calcium, etc.), ammonium ions, organic oniums (various aliphatic amines, aromatic amines, diamines, etc.) Amines such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetra-n-butylammonium hydroxide, benzyltrimethylammonium hydroxide, 2-hydroxyethyltrimethylammonium hydroxide, and the like. Or a phenyl group or a hydroxyalkyl group, and four Rs may be the same or different.) Ammonium hydroxide compound, a phosphonium hydroxide compound such as tetraethylphosphonium hydroxide, Beam compounds include counterions such as hydroxide sulfonium compounds). Two or more of these may be mixed to form a salt.

さらに、繊維幅は2nm以上50nm以下であり、長さが0.5μm以上50μm以下を有する繊維状多糖類を含むことが好ましい。本発明における導電性物質の分散性のメカニズムは明らかではないが、この範囲の繊維状多糖類は、繊維同士の静電反発によって分散安定性が確保できる。また、セルロース繊維同士の絡み合い構造によって、導電性物質が捕捉されるため、欠落しにくくなり、歩留まりを向上させることができる。一方、繊維幅が50nmを超えると、セルロース繊維の全体積に占める表面積の割合が相対的に小さくなり、導電性物質と相互作用できる部位が減るため、導電性物質を効率的に分散させることが出来なくなると共に、導電性物質同士の相互作用を高めることが出来ないため、導電効率の低下を招いてしまう。また、長さが0.5μm未満だとセルロース繊維同士の絡み合いが十分に行えず、抵抗体の膜強度低下の原因になってしまうため好ましくない。さらに、長さが50μmを超えるとセルロース繊維同士の絡み合いが大きくなるために繊維は分散しにくく、沈殿を形成しやすくなるため、分散安定性が低下する。繊維の幅や長さは、分散液の状態では水などの溶媒に固形分濃度0.1%程度に希釈した繊維をガラス等に展開し、乾燥させたものをAFMやTEMなどを用いて測定することができる。   Furthermore, it is preferable to include a fibrous polysaccharide having a fiber width of 2 nm to 50 nm and a length of 0.5 μm to 50 μm. The dispersibility mechanism of the conductive substance in the present invention is not clear, but the fibrous polysaccharide in this range can ensure dispersion stability by electrostatic repulsion between fibers. In addition, since the conductive substance is captured by the entangled structure between the cellulose fibers, it is difficult to be lost and the yield can be improved. On the other hand, when the fiber width exceeds 50 nm, the ratio of the surface area to the total volume of the cellulose fibers becomes relatively small, and the number of sites capable of interacting with the conductive material is reduced. Therefore, the conductive material can be efficiently dispersed. In addition to this, the interaction between the conductive substances cannot be increased, leading to a decrease in the conductive efficiency. On the other hand, if the length is less than 0.5 μm, the cellulose fibers cannot be sufficiently entangled with each other, which causes a decrease in the film strength of the resistor, which is not preferable. Furthermore, when the length exceeds 50 μm, the entanglement between the cellulose fibers increases, so that the fibers are difficult to disperse and precipitates are easily formed, so that the dispersion stability decreases. The width and length of the fiber is measured with AFM, TEM, etc. in the state of dispersion in which the fiber diluted with water or other solvent to a solid content concentration of about 0.1% is spread on glass and dried. can do.

なお、カルボキシル基を有するセルロースの分散方法、及び導電性物質を混合させ分散液を調製する際の分散方法としては、特に限定しないが、各種の粉砕機、混合機、攪拌機、超音波等の使用により分散させる。例えば、ミキサー、高速回転ミキサー、シェアミキサー、ブレンダー、超音波ホモジナイザー、高圧ホモジナイザー、ボールミル等のせん断力或いは衝突による処理方法、ワーリングブレンダー、フラッシュミキサー、タービュライザーなどを用いることができ、またこれらを組み合わせることも出来る。予めセルロースを分散媒中で分散させた後に導電性物質を混合してもよく、或いはセルロースと導電性物質を混合したものを分散処理してもよい。これにより、セルロースは分散されナノオーダーの繊維状となり、導電性物質は分散した繊維に効率的に相互作用し、分散性が良好な分散液が調製される。   The dispersion method of the cellulose having a carboxyl group and the dispersion method when preparing a dispersion by mixing a conductive substance are not particularly limited, but use of various pulverizers, mixers, agitators, ultrasonic waves, etc. To disperse. For example, a processing method using shearing force or collision such as a mixer, a high-speed rotating mixer, a shear mixer, a blender, an ultrasonic homogenizer, a high-pressure homogenizer, a ball mill, a Waring blender, a flash mixer, and a turbulizer can be used. You can also combine them. The conductive material may be mixed after cellulose is previously dispersed in a dispersion medium, or a mixture of cellulose and a conductive material may be dispersed. As a result, cellulose is dispersed to form nano-order fibers, and the conductive material efficiently interacts with the dispersed fibers, thereby preparing a dispersion having good dispersibility.

これを基材に印刷し、加熱焼成することにより低導電性を有する抵抗体を形成する。形成した抵抗体に電極を設け、電流を流すことによりジュール熱が発生し、抵抗体が発熱する仕組みとなっている。   A resistor having low conductivity is formed by printing this on a substrate and heating and firing. An electrode is provided on the formed resistor and Joule heat is generated by passing an electric current, and the resistor generates heat.

本発明における導電性物質の分散性及び分散安定性のメカニズムとしては、分散液中に存在する繊維状多糖類が本来有する水酸基及び化学的処理により付与したカルボキシル基と、個々の導電性物質が相互作用し、さらに繊維状多糖類のカルボキシル基が部分的に電離していることにより、互いに静電反発しているため分散しやすく、また分散状態での安定性が良いと考えられる。さらに、本方法を用いると繊維状多糖類を含むことにより、繊維同士の絡み合いによる成膜性や多糖類の持つ耐熱性、ナノオーダーの繊維に導電性物質が捕捉されることによる導電性物質の歩留まり向上、多糖類に含まれるカルボキシル基の電離による導電性の向上等の付随的な効果が得られる。
また、紙すきに見られるように、乾燥状態において多糖類の繊維同士は強固な水素結合により、良好な成膜性を有するため、抵抗体の作製時に高温による加熱を必要としない。さらに、導電性物質分散時において、化学的あるいは機械的負荷が少ないため、導電性物質本来の特性を発揮させることができる。また、繊維状多糖類はアスペクト比が高く、分子量をある程度保持しながら分散媒中に分散するため、低濃度でも粘性を有し、印刷において膜厚を調整しやすいという特徴がある。
上述の効果を考慮し、本発明を用いれば様々な分野や用途への展開が可能となる。
In the present invention, the dispersibility and dispersion stability of the conductive material include a hydroxyl group inherent to the fibrous polysaccharide present in the dispersion and a carboxyl group imparted by chemical treatment, and the individual conductive materials. In addition, since the carboxyl groups of the fibrous polysaccharide are partially ionized, they are electrostatically repelled from each other, so that they are easily dispersed, and the stability in the dispersed state is considered good. Furthermore, when this method is used, by including fibrous polysaccharides, the film-forming property due to the entanglement of the fibers, the heat resistance of the polysaccharides, the conductivity of the conductive material captured by the nano-order fibers Ancillary effects such as improvement in yield and improvement in conductivity due to ionization of carboxyl groups contained in the polysaccharide can be obtained.
Further, as can be seen in papermaking, since the polysaccharide fibers in the dry state have good film-forming properties due to strong hydrogen bonding, heating at a high temperature is not required when the resistor is produced. Further, since the chemical or mechanical load is small when the conductive material is dispersed, the original characteristics of the conductive material can be exhibited. In addition, fibrous polysaccharides have a high aspect ratio and are dispersed in a dispersion medium while maintaining molecular weight to some extent, so that they have viscosity even at a low concentration and are easy to adjust the film thickness in printing.
In consideration of the above-described effects, the present invention can be used in various fields and applications.

本発明に用いる導電性物質としては、カーボン粒子からなることが好ましい。その粒子径は1nm以上100nm以下が好ましく、1nm以上50nm以下がより好ましい。カーボン粒子としては、あらゆるカーボンブラック(ファーネスブラック、チャンネルブラック、サーマルブラック、アセチレンブラック、ケッチェンブラック、ランプブラック)を始め、フラーレン、カーボンナノチューブ、カーボンナノホーン、カーボンナノファイバー、黒鉛、を挙げることができ、これらを物理的、化学的処理した物質の何れを用いてもよい。   The conductive substance used in the present invention is preferably composed of carbon particles. The particle diameter is preferably 1 nm or more and 100 nm or less, and more preferably 1 nm or more and 50 nm or less. Carbon particles include all carbon blacks (furnace black, channel black, thermal black, acetylene black, ketjen black, lamp black), fullerenes, carbon nanotubes, carbon nanohorns, carbon nanofibers, and graphite. Any of materials obtained by physically or chemically treating these may be used.

また、前処理としてカーボン粒子に表面処理を施しても良い。表面処理としては、酸化処理、グラフト重合反応、カップリング処理、機械的処理、プラズマ処理、黒鉛化、賦活化処理などを挙げることができる。前処理を施すことにより、カーボン粒子の表面状態を変化させ各種官能基を導入したり、有機層を形成することによってマトリックス樹脂との反応や相溶性を向上させたり、また、カーボン粒子自体の凝集を阻害することにより分散性を向上させることができる。   Further, the carbon particles may be subjected to a surface treatment as a pretreatment. Examples of the surface treatment include oxidation treatment, graft polymerization reaction, coupling treatment, mechanical treatment, plasma treatment, graphitization, activation treatment, and the like. By applying pretreatment, the surface state of the carbon particles is changed to introduce various functional groups, and by forming an organic layer, the reaction and compatibility with the matrix resin is improved, and the carbon particles themselves aggregate. Dispersibility can be improved by inhibiting.

また、導電性物質として金属粒子を用いることが更に望ましい。その粒子径は1nm以上100nm以下が好ましく、1nm以上20nm以下がより好ましい。粒子径が1nmより小さい場合では、ナノ粒子の表面張力による凝集力が強く、均一に分散することが困難なため、面上で均一な導電性を得ることができない。また、粒子径が100nmより大きい場合では、粒子同士の相互作用が相対的に小さくなるために凝集が起こりにくく、本方法による分散の効果が発揮されにくい。   It is further desirable to use metal particles as the conductive substance. The particle diameter is preferably from 1 nm to 100 nm, more preferably from 1 nm to 20 nm. When the particle diameter is smaller than 1 nm, the cohesive force due to the surface tension of the nanoparticles is strong, and it is difficult to uniformly disperse, so that uniform conductivity cannot be obtained on the surface. Further, when the particle diameter is larger than 100 nm, the interaction between the particles becomes relatively small, so that aggregation does not easily occur and the effect of dispersion by this method is hardly exhibited.

本発明における導電性物質としての金属粒子について、分散媒中に金属粒子を添加する方法の他、酸化還元反応を利用して分散媒中で金属粒子を析出させる方法を用いることができる。具体的には次の方法が望ましい。(参考文献:Chem.Commun.,2010,46,8567−8569)
カルボキシル基を有するセルロース繊維を含む分散液に水溶性の無機金属塩類を添加し、低温下で攪拌する。この時、セルロース繊維上に存在するカルボキシル基或いはカルボン酸塩の対イオンとしてイオン化した金属が配位する。その後、過剰量の還元剤を加えることにより、イオン化傾向の違いで金属が還元され析出する。このようにして得られた金属粒子の粒径は反応温度や反応時間、無機金属塩類の濃度によって制御することができ、1〜100nmの金属粒子が得られる。無機金属塩類の金属としては、金、銀、銅、鉄、鉛、白金などの金属またはこれらの合金、酸化物、塩化物などを用いることができる。なお。金属粒子の粒子径は金属粒子の分散液を固形分濃度0.05%程度に希釈してガラス等に展開し、乾燥させたものをTEM等を用いて観察することで求めることができる。
Regarding the metal particles as the conductive substance in the present invention, a method of depositing metal particles in the dispersion medium using an oxidation-reduction reaction can be used in addition to a method of adding the metal particles in the dispersion medium. Specifically, the following method is desirable. (Reference: Chem. Commun., 2010, 46, 8567-8568)
A water-soluble inorganic metal salt is added to a dispersion containing cellulose fibers having a carboxyl group and stirred at a low temperature. At this time, an ionized metal is coordinated as a counter ion of a carboxyl group or a carboxylate salt present on the cellulose fiber. Thereafter, by adding an excessive amount of a reducing agent, the metal is reduced and deposited due to a difference in ionization tendency. The particle size of the metal particles thus obtained can be controlled by the reaction temperature, reaction time, and concentration of inorganic metal salts, and metal particles of 1 to 100 nm can be obtained. As the metal of the inorganic metal salt, metals such as gold, silver, copper, iron, lead, platinum, alloys thereof, oxides, chlorides, and the like can be used. Note that. The particle size of the metal particles can be determined by diluting the dispersion of metal particles to a solid content concentration of about 0.05%, developing on glass or the like, and observing the dried particles using a TEM or the like.

上記方法により得られた金属粒子はセルロース繊維と単離することが出来ない。そのため、観察により得られた粒子径と、仕込みの無機金属塩類から算出される析出金属量によって評価される。   The metal particles obtained by the above method cannot be isolated from cellulose fibers. Therefore, it is evaluated by the particle diameter obtained by observation and the amount of deposited metal calculated from the charged inorganic metal salts.

分散媒中に金属粒子を添加する方法と異なり、上記方法を用いると、剛直なセルロース繊維に沿って一直線上に金属粒子が形成されるため、金属粒子が偏在することがない。また、粒子間距離が均一であることから抵抗体において均一な導電性を得ることができる。さらに、セルロース繊維の絡み合いに伴い金属粒子同士がネットワークを形成するため、電気的接続における効率がよく、少量の金属により高い導電性を発揮することができるため、金属の使用量を大幅に削減することができる。   Unlike the method of adding metal particles to the dispersion medium, when the above method is used, the metal particles are not unevenly distributed because the metal particles are formed in a straight line along the rigid cellulose fiber. In addition, since the inter-particle distance is uniform, uniform conductivity can be obtained in the resistor. Furthermore, since metal particles form a network with the entanglement of cellulose fibers, the efficiency in electrical connection is good, and high conductivity can be exhibited with a small amount of metal, so the amount of metal used is greatly reduced. be able to.

凝集や沈殿が生成しない範囲においては、より繊維同士の静電反発を増大させる目的や分散液の粘度を制御する目的、あるいは塗工性やぬれ性など機能性付与などのために、水溶性多糖類を含む各種添加物、各種樹脂を含んでもよい。例えば、カルボキシメチルセルロース等に代表される化学修飾したセルロース、カラギーナン、キサンタンガム、アルギン酸ナトリウム、寒天、可溶化澱粉や、シランカップリング剤、レベリング剤、消泡剤、水溶性高分子、合成高分子、無機系粒子、有機系粒子、潤滑剤などを用いることができる。   In the range where aggregation and precipitation do not occur, water-soluble high water content is used to increase the electrostatic repulsion between fibers, to control the viscosity of the dispersion, or to provide functionality such as coatability and wettability. Various additives including saccharides and various resins may be included. For example, chemically modified cellulose typified by carboxymethyl cellulose, carrageenan, xanthan gum, sodium alginate, agar, solubilized starch, silane coupling agent, leveling agent, antifoaming agent, water-soluble polymer, synthetic polymer, inorganic System particles, organic particles, lubricants, and the like can be used.

本発明における抵抗体については、基材上に導電性物質の分散液を一部分または全表面に印刷し、これを加熱、焼成することにより低導電性を有する抵抗体を形成することができる。印刷方法としては、特に限定されず、フレキソ印刷、オフセット印刷、グラビア印刷、スクリーン印刷、インクジェット印刷、バーコーター、スピンコーター等を用いることができる。印刷後、加熱、焼成することにより、分散媒を気化させるとともに分散媒中の繊維状多糖類同士あるいは繊維状多糖類と基材が主に水素結合による物理架橋を形成することで導電性物質を内包した抵抗体を形成する。加熱、焼成方法としては抵抗加熱、赤外線加熱、誘電加熱、マイクロ波加熱、誘導加熱等のいずれか、もしくはこれら二つ以上の加熱方法を組み合わせて用いてもよい。   About the resistor in this invention, the resistor which has low electroconductivity can be formed by printing the dispersion liquid of an electroconductive substance on the substrate partially or on the whole surface, and heating and baking this. The printing method is not particularly limited, and flexographic printing, offset printing, gravure printing, screen printing, ink jet printing, bar coater, spin coater, and the like can be used. After printing, by heating and firing, the dispersion medium is vaporized, and the fibrous polysaccharides in the dispersion medium or the fibrous polysaccharide and the substrate mainly form physical crosslinks due to hydrogen bonding to form the conductive substance. An encapsulated resistor is formed. As the heating and baking method, any one of resistance heating, infrared heating, dielectric heating, microwave heating, induction heating, or a combination of these two or more heating methods may be used.

抵抗体の硬化後の厚みに関しても0.5μmより小さいと基材表面の凹凸に抵抗体の追従が十分に行われず、基材が部分的に露出してしまうため、設計どおりの導電性が得られないとともに、抵抗体表面で均一な導電性を得られない可能性がある。また、硬化後の厚みが10μmより大きくなると、ハンドリング時に抵抗体にクラック発生等の問題が生じやすくなる。   If the thickness of the resistor after curing is smaller than 0.5 μm, the resistor does not sufficiently follow the unevenness of the substrate surface and the substrate is partially exposed, so that the conductivity as designed is obtained. In addition, there is a possibility that uniform conductivity cannot be obtained on the surface of the resistor. Moreover, when the thickness after hardening becomes larger than 10 micrometers, it will become easy to produce problems, such as crack generation, in a resistor at the time of handling.

本発明に用いる基材としては、絶縁性があればよく、熱可塑性樹脂、熱硬化性樹脂、紙、ガラス等を用いることが出来る。   As a base material used for this invention, what is necessary is just to have insulation, A thermoplastic resin, a thermosetting resin, paper, glass etc. can be used.

抵抗体表面の保護や吸湿抑制を目的に、抵抗体を形成後樹脂層を設けてもよい。樹脂層は特に限定されないが、熱可塑性樹脂を直接形成してもよく、接着剤を介してシート状樹脂をラミネートしてもよい。   For the purpose of protecting the resistor surface and suppressing moisture absorption, a resin layer may be provided after the resistor is formed. The resin layer is not particularly limited, but a thermoplastic resin may be directly formed, or a sheet-like resin may be laminated via an adhesive.

以下に、本発明を実施例によりさらに具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、各種評価結果は表1にまとめた。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. Various evaluation results are summarized in Table 1.

<試薬・材料>
銀ペースト:((株)アサヒ化学研究所、LS−453)
セルロース: 漂白クラフトパルプ(フレッチャー チャレンジ カナダ「Machenzie」)
TEMPO: 市販品(東京化成工業(株)、98%)
次亜塩素酸ナトリウム: 市販品(和光純薬(株)、Cl:5%)
臭化ナトリウム: 市販品(和光純薬(株))
カーボンブラック: 市販品(三菱化学、#40)
硝酸銀水溶液:市販品(和光純薬(株))
水素化ホウ素ナトリウム:市販品(和光純薬(株))
カルボキシメチルセルロースナトリウム塩(置換度1.2): 市販品(和光純薬(株))
<Reagents / Materials>
Silver paste: (Asahi Chemical Laboratory, LS-453)
Cellulose: Bleached Kraft Pulp (Fletcher Challenge Canada “Machenzie”)
TEMPO: Commercial product (Tokyo Chemical Industry Co., Ltd., 98%)
Sodium hypochlorite: Commercial product (Wako Pure Chemical Industries, Ltd., Cl: 5%)
Sodium bromide: Commercial product (Wako Pure Chemical Industries, Ltd.)
Carbon black: commercial product (Mitsubishi Chemical, # 40)
Silver nitrate aqueous solution: Commercial product (Wako Pure Chemical Industries, Ltd.)
Sodium borohydride: Commercial product (Wako Pure Chemical Industries, Ltd.)
Carboxymethylcellulose sodium salt (substitution degree 1.2): Commercially available product (Wako Pure Chemical Industries, Ltd.)

<実施例1>
基材としては、ガラス基材を用いた。銀ペーストをスクリーン印刷により塗布し、線幅1mmのT字電極と電極パッドを電極幅10mmとなるように形成し、100℃で30分硬化させた。次に、TEMPO酸化処理によりカルボキシル基を付与したセルロース(カルボキシル基量1.5mmol/g)を調製した。全体としてセルロースの固形分濃度4%となるようにイオン交換水を添加しながら1M水酸化ナトリウムを用いてpH10に調整した。これらをミキサー(大阪ケミカル、アブソルートミル、14,000rpm)を用いて1時間処理し、セルロース繊維を含む調製液を調製した。得られたセルロース繊維は繊維幅3nm、繊維長1.6μmであった。上記調製液5mlとカーボンブラック400mgとイオン交換水5mlとを混合し、卓上スターラーにて攪拌し、カーボンブラックの分散液を調製した。分散液をスクリーン印刷を用いて電極上に10mm角となるように塗工し、その後100℃で30分間乾燥させ、10μm厚の抵抗体を形成した。
<Example 1>
A glass substrate was used as the substrate. A silver paste was applied by screen printing, a T-shaped electrode having a line width of 1 mm and an electrode pad were formed to have an electrode width of 10 mm, and cured at 100 ° C. for 30 minutes. Next, cellulose (carboxyl group amount 1.5 mmol / g) to which a carboxyl group was imparted by TEMPO oxidation treatment was prepared. The pH was adjusted to 10 using 1M sodium hydroxide while adding ion-exchanged water so that the solid content concentration of cellulose was 4% as a whole. These were processed for 1 hour using a mixer (Osaka Chemical, Absolute Mill, 14,000 rpm) to prepare a preparation liquid containing cellulose fibers. The obtained cellulose fiber had a fiber width of 3 nm and a fiber length of 1.6 μm. 5 ml of the above preparation solution, 400 mg of carbon black and 5 ml of ion-exchanged water were mixed and stirred with a desktop stirrer to prepare a carbon black dispersion. The dispersion was coated on the electrode so as to be 10 mm square by screen printing, and then dried at 100 ° C. for 30 minutes to form a 10 μm thick resistor.

<実施例2>
実施例1と同様に固形分濃度4%になるようにセルロース繊維を含む調製液を調製した。5mMの硝酸銀を同量加え、卓上スターラーにて30分間攪拌後、50mMの水素化ホウ素ナトリウムをさらに調製液の2倍量加え、90分間攪拌し、分散液を調製した。分散液のTEM観察から、粒径5〜7nmの銀粒子の形成を確認した。実施例1と同様にガラス基材上に抵抗体を形成した。
<Example 2>
In the same manner as in Example 1, a preparation liquid containing cellulose fibers was prepared so as to have a solid content concentration of 4%. The same amount of 5 mM silver nitrate was added, and after stirring for 30 minutes with a desktop stirrer, 50 mM sodium borohydride was further added twice the amount of the preparation and stirred for 90 minutes to prepare a dispersion. From TEM observation of the dispersion, formation of silver particles having a particle diameter of 5 to 7 nm was confirmed. A resistor was formed on the glass substrate in the same manner as in Example 1.

<比較例1>
実施例1における調製液の替わりにバインダーとして、非繊維状多糖類であるカルボキシメチルを使用したカルボキシメチルセルロース(CMC)水溶液(固形分4%)を用いて、同様に形成した。
<比較例2>
実施例2における調製液の替わりにCMC水溶液(固形分4%)を用いて、同様に形成した。
<Comparative Example 1>
It formed similarly using the carboxymethylcellulose (CMC) aqueous solution (4% of solid content) using the carboxymethyl which is a non-fibrous polysaccharide as a binder instead of the preparation liquid in Example 1. FIG.
<Comparative example 2>
It formed similarly using the CMC aqueous solution (solid content 4%) instead of the preparation liquid in Example 2. FIG.

実施例1、2、比較例1、2においてデジタルマルチメーターにて電極間の抵抗値を測定した。また、面状発熱体において印加電圧を20〜80Vとし、発熱体中心部の60秒後の温度を熱電対によって測定した(表1)。また、実施例1と比較例1において印加電圧50Vを用いて10秒毎の温度変化を測定した(表2)。   In Examples 1 and 2 and Comparative Examples 1 and 2, resistance values between the electrodes were measured with a digital multimeter. Further, in the planar heating element, the applied voltage was 20 to 80 V, and the temperature after 60 seconds at the center of the heating element was measured with a thermocouple (Table 1). Moreover, the temperature change for every 10 seconds was measured in Example 1 and the comparative example 1 using the applied voltage 50V (Table 2).

Figure 0006019761
Figure 0006019761

Figure 0006019761
Figure 0006019761

表1、2のように、カルボキシル基を付与したセルロース繊維がカーボン粒子や金属粒子の分散液に存在することにより電流が流れ、応答性の高い発熱体となることがわかる。   As shown in Tables 1 and 2, it can be seen that when a cellulose fiber having a carboxyl group is present in a dispersion of carbon particles or metal particles, an electric current flows and a highly responsive heating element is obtained.

本発明によれば、製造から廃棄に至る環境負荷が極めて低く、かつ製造コストが低い導電性基材を製造することができる。本発明を用いると、繊維状多糖類を含むことにより、繊維同士の絡み合いによる成膜性や多糖類の持つ耐熱性や熱負荷時の寸法安定性、多糖類に含まれるカルボキシル基の電離による導電性向上、ナノオーダーの繊維による基材への密着性など付随的な効果が得られる。
上述の効果を考慮し、本発明を用いれば、様々な食品、医薬品、電子部材等の用途への展開が可能となる。
According to the present invention, it is possible to manufacture a conductive substrate that has an extremely low environmental load from manufacturing to disposal and low manufacturing costs. When the present invention is used, by including fibrous polysaccharide, film forming property due to entanglement of fibers, heat resistance of polysaccharide, dimensional stability under heat load, conductivity due to ionization of carboxyl group contained in polysaccharide Accompanying effects such as improvement in adhesion and adhesion to the substrate by nano-order fibers can be obtained.
In consideration of the above-described effects, if the present invention is used, it is possible to develop various uses such as foods, pharmaceuticals, and electronic members.

10・・・面状発熱体
11・・・抵抗体
12・・・電極
20・・・面状発熱体
21・・・抵抗体
22・・・電極
23・・・基材
DESCRIPTION OF SYMBOLS 10 ... Planar heating element 11 ... Resistor 12 ... Electrode 20 ... Planar heating element 21 ... Resistor 22 ... Electrode 23 ... Base material

Claims (7)

少なくとも基材、前記基材の一方の面に形成した抵抗体、および抵抗体へ通電するための電極で構成され、前記抵抗体が導電性物質とカルボキシル基を有する繊維状多糖類とを含み、
前記カルボキシル基を有する繊維状多糖類がセルロース繊維であり、
前記セルロース繊維の繊維幅が2nm以上50nm以下であり、前記セルロース繊維の長さが0.5μm以上50μm以下であることを特徴とする面状発熱体。
At least a base material, resistor formed on one surface of the substrate, and is composed of electrodes for energizing the resistor, seen including a fibrous polysaccharide said resistor having a conductive material and a carboxyl group ,
The fibrous polysaccharide having the carboxyl group is a cellulose fiber,
A planar heating element , wherein a fiber width of the cellulose fiber is 2 nm or more and 50 nm or less, and a length of the cellulose fiber is 0.5 μm or more and 50 μm or less .
前記セルロース繊維のカルボキシル基の少なくとも一部がカルボン酸塩であることを特徴とする請求項記載の面状発熱体。 Sheet heating element according to claim 1, wherein at least a part of carboxyl groups of the cellulose fibers is a carboxylic acid salt. 前記導電性物質がカーボン粒子から成ることを特徴とする請求項1記載の面状発熱体。   2. The planar heating element according to claim 1, wherein the conductive substance is made of carbon particles. 前記導電性物質が金属粒子であることを特徴とする請求項1記載の面状発熱体。   The planar heating element according to claim 1, wherein the conductive substance is metal particles. 前記導電性物質の粒子径が1nm以上100nm以下であることを特徴とする請求項またはに記載の面状発熱体。 The planar heating element according to claim 3 or 4 , wherein the conductive substance has a particle size of 1 nm or more and 100 nm or less. 前記抵抗体の硬化後の厚みが0.5μm以上10μm以下であることを特徴とする請求項1記載の面状発熱体。   The planar heating element according to claim 1, wherein a thickness of the resistor after curing is not less than 0.5 µm and not more than 10 µm. 基材の一方の面に印刷により抵抗体を形成する工程と前記抵抗体上に電極を設ける工程とを備え、前記抵抗体が導電性物質とカルボキシル基を有する繊維状多糖類とを含み、
前記カルボキシル基を有する繊維状多糖類がセルロース繊維であり、
前記セルロース繊維の繊維幅が2nm以上50nm以下であり、前記セルロース繊維の長さが0.5μm以上50μm以下であることを特徴とする面状発熱体の製造方法。
And a step of the step of forming the resistor by printing on one side of a substrate provided with electrodes on the resistor, seen including a fibrous polysaccharide said resistor having a conductive material and a carboxyl group,
The fibrous polysaccharide having the carboxyl group is a cellulose fiber,
A method for producing a planar heating element, wherein the cellulose fiber has a fiber width of 2 nm to 50 nm and a length of the cellulose fiber of 0.5 μm to 50 μm .
JP2012123155A 2012-05-30 2012-05-30 Planar heating element and manufacturing method thereof Active JP6019761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012123155A JP6019761B2 (en) 2012-05-30 2012-05-30 Planar heating element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012123155A JP6019761B2 (en) 2012-05-30 2012-05-30 Planar heating element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013251064A JP2013251064A (en) 2013-12-12
JP6019761B2 true JP6019761B2 (en) 2016-11-02

Family

ID=49849573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012123155A Active JP6019761B2 (en) 2012-05-30 2012-05-30 Planar heating element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6019761B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2904881T3 (en) * 2014-06-09 2022-04-06 BABA Mitsuko heat generating body
KR101843400B1 (en) * 2017-02-28 2018-05-15 전자부품연구원 Electrode composition for film heater, wiring board for film heater, film heater using the same and method thereof
KR101981216B1 (en) * 2017-09-25 2019-05-22 포항공과대학교 산학협력단 Glucose based nanofiber application to coating material for electrical insulation related process

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2809432B2 (en) * 1989-07-19 1998-10-08 松下電工株式会社 Heating element
JP2003264052A (en) * 2002-03-08 2003-09-19 Matsushita Electric Ind Co Ltd Planar heating element and heating device
US7645963B2 (en) * 2002-11-22 2010-01-12 Koninklijke Philips Electronics N.V. Sol-gel based heating element
JP2007248317A (en) * 2006-03-17 2007-09-27 Sumitomo Electric Ind Ltd Heating and cooling module
JP2009263825A (en) * 2008-04-28 2009-11-12 Hitachi Chem Co Ltd Method for producing conductive fiber and use thereof
JP5299890B2 (en) * 2008-08-10 2013-09-25 国立大学法人 東京大学 COMPOSITE MATERIAL, FUNCTIONAL MATERIAL, COMPOSITE MATERIAL MANUFACTURING METHOD, AND COMPOSITE MATERIAL THIN FILM MANUFACTURING METHOD
JPWO2011118361A1 (en) * 2010-03-24 2013-07-04 凸版印刷株式会社 Antistatic laminate and laminate material provided with the same
WO2011118407A1 (en) * 2010-03-25 2011-09-29 凸版印刷株式会社 Conductive film and manufacturing method thereof
JP5526964B2 (en) * 2010-04-15 2014-06-18 三菱化学株式会社 Transparent sheet heating laminate

Also Published As

Publication number Publication date
JP2013251064A (en) 2013-12-12

Similar Documents

Publication Publication Date Title
JP6020454B2 (en) Carbon particle dispersion and method for producing the same
JP5420416B2 (en) Sheet-like material and manufacturing method thereof
JP6274309B2 (en) Carbon nanotube dispersion and conductive film manufacturing method
Tang et al. Production of highly electro-conductive cellulosic paper via surface coating of carbon nanotube/graphene oxide nanocomposites using nanocrystalline cellulose as a binder
CN103333368B (en) Compound dispersing agent of carbon nanomaterial and method for preparing electric conduction polymeric composite thereof
JP6217395B2 (en) Dispersion of carbon nanotube-containing composition and conductive molded body
Xu et al. Bottom-up synthesis of PS–CNF nanocomposites
WO2016043145A1 (en) Electroconductive composition and method for manufacturing same
Cao et al. The enhanced mechanical properties of a covalently bound chitosan‐multiwalled carbon nanotube nanocomposite
Liu et al. Aqueous dispersion of carbon fibers and expanded graphite stabilized from the addition of cellulose nanocrystals to produce highly conductive cellulose composites
JP5554552B2 (en) Transparent conductive film and method for producing the same
Tang et al. Imparting cellulosic paper of high conductivity by surface coating of dispersed graphite
JP6019761B2 (en) Planar heating element and manufacturing method thereof
KR20180047410A (en) Composition for electromagnetic interference shielding using double percolation
Shah et al. Improved dielectric properties of polyetherimide and polyaniline-coated few-layer graphene based nanocomposites
JP2019183109A (en) Redispersible composition containing cellulose fiber and non-cellulose granulated material
CN106149460A (en) High intensity high antibiotic property water proof type conductive paper and preparation method thereof
Mao et al. Carbon nanotubes/polyaniline nanocomposite coatings: Preparation, rheological behavior, and their application in paper surface treatment
CN105153813B (en) A kind of preparation method of low percolation threshold electrically conductive ink
WO2019198429A1 (en) Redispersible composition containing cellulose fibers and non-cellulose powder granules
KR101454454B1 (en) Ingredient of conducting pastes based on nano carbon materials having multiple hydrogen bonding motifs for printing and their fabrication method
KR20130003467A (en) Transparent conductive film containing a carbon nanotube and method for preparing the same
Bao et al. Effect of electrostatic heterocoagulation of PVM/MA grafted carbon black and attapulgite nanorods on electrical and mechanical behaviors of waterborne polyurethane nanocomposites
JP2018195540A (en) Conductive paste and laminate with conductive pattern using the same
Adnan et al. Hybrid electrically conductive adhesive (HECA) properties as a function of hybrid filler ratio with increasing total filler loading

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160919

R150 Certificate of patent or registration of utility model

Ref document number: 6019761

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250