JP6018823B2 - Lighting control system - Google Patents

Lighting control system Download PDF

Info

Publication number
JP6018823B2
JP6018823B2 JP2012157215A JP2012157215A JP6018823B2 JP 6018823 B2 JP6018823 B2 JP 6018823B2 JP 2012157215 A JP2012157215 A JP 2012157215A JP 2012157215 A JP2012157215 A JP 2012157215A JP 6018823 B2 JP6018823 B2 JP 6018823B2
Authority
JP
Japan
Prior art keywords
tunnel
luminance
brightness
adaptation
road surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012157215A
Other languages
Japanese (ja)
Other versions
JP2014022090A (en
Inventor
伊東 勇人
勇人 伊東
森 星豪
星豪 森
恵士 平川
恵士 平川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2012157215A priority Critical patent/JP6018823B2/en
Publication of JP2014022090A publication Critical patent/JP2014022090A/en
Application granted granted Critical
Publication of JP6018823B2 publication Critical patent/JP6018823B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Description

本発明は、自動車道路のトンネル入口照明に用いられる照明制御システムに関する。   The present invention relates to a lighting control system used for lighting of a tunnel entrance on a motorway.

昼間の明るい野外を自動車で走行している運転者が、走行方向前方にあるトンネル坑口を見たとき、トンネル内が暗黒に見え、トンネル内に進行した前走車を見失うことがある。このような現象はブラックホール現象と呼ばれ、高速道路等において事故や渋滞を引き起こす要因となる。このようなブラックホール現象を抑制するために、トンネル入口照明に用いられる照明制御システムでは、昼間のトンネルに接近する運転者の順応を考慮したトンネル内の所要路面輝度が決定されている。   When a driver driving in a car in a bright field during the daytime looks at the tunnel wellhead in front of the traveling direction, the inside of the tunnel may appear dark, and the preceding vehicle that has advanced into the tunnel may be lost. Such a phenomenon is called a black hole phenomenon and causes an accident or traffic jam on an expressway or the like. In order to suppress such a black hole phenomenon, the required road surface brightness in the tunnel is determined in consideration of the adaptation of the driver approaching the daytime tunnel in the lighting control system used for tunnel entrance lighting.

従来の研究では、例えば、図11(a)(b)に示すように、均一な輝度分布を有する周辺視野Sにおいて、視標Oを視認できる背景Bの輝度を所要路面輝度として定めていた。また、周辺視野Sの輝度が、順応輝度と考えられ、図12に示すように、順応輝度と所要路面輝度との関係が求められている。図12は、視標の提示時間が0.1秒、視標の視角寸法が7分、視認確率75%である実験条件で計測されたものであり、図示された4種の曲線は、視標Oの輝度とその背景Bの路面輝度との輝度対比Cが異なっている。ここで、照明されているトンネル内の路面が背景Bに相当し、トンネル内の前走車といった路上障害物が視標Oに相当する。つまり、照明されているトンネル内の路面(背景B)と、トンネル内の路上障害物(視標O)との輝度差が大きいほど、視標Oを視認し易くなるので、順応輝度及び所要路面輝度は低くなる。なお、これら背景Bと視標Oとを識別し得る最小の輝度差を、輝度差弁別閾という。そして、トンネル入口照明では、図13に示すように、トンネル坑口T0を含む20度視野の平均輝度を順応輝度とし、この順応輝度に基づいて所要路面輝度が設定されてきた。   In the conventional research, for example, as shown in FIGS. 11A and 11B, the luminance of the background B where the target O can be visually recognized in the peripheral visual field S having a uniform luminance distribution is determined as the required road surface luminance. Further, the luminance of the peripheral visual field S is considered as adaptation luminance, and as shown in FIG. 12, the relationship between adaptation luminance and required road surface luminance is required. FIG. 12 shows measurement results under experimental conditions in which the target presentation time is 0.1 second, the visual angle dimension of the target is 7 minutes, and the visual recognition probability is 75%. The four types of curves shown in FIG. The brightness contrast C between the brightness of the mark O and the road surface brightness of the background B is different. Here, the road surface in the illuminated tunnel corresponds to the background B, and an obstacle on the road such as a preceding vehicle in the tunnel corresponds to the visual target O. That is, the larger the luminance difference between the illuminated road surface in the tunnel (background B) and the obstacle on the road in the tunnel (target O), the easier it is to visually recognize the target O. The brightness is lowered. The minimum luminance difference that can distinguish between the background B and the target O is referred to as a luminance difference discrimination threshold. And in tunnel entrance illumination, as shown in FIG. 13, the average brightness | luminance of 20 degree | times visual field including tunnel wellhead T0 is made into adaptation brightness, and required road surface brightness has been set based on this adaptation brightness.

しかしながら、現実的には、トンネルに接近している運転者の視野内における輝度分布は不均一であり、その平均輝度と均一面視野の輝度が一致した場合に、両者の順応輝度が等しいとは言えない。そのため、図12に示した関係図から、トンネル入口照明を設計するための所要路面輝度を設定した場合であっても、適切なトンネル照明を実現できるとは限らない。   However, in reality, the luminance distribution in the field of view of the driver approaching the tunnel is non-uniform, and if the average luminance and the luminance of the uniform surface field match, the adaptation luminance of both is equal. I can not say. Therefore, even if the required road surface brightness for designing tunnel entrance illumination is set from the relationship diagram shown in FIG. 12, appropriate tunnel illumination is not always realized.

そこで、不均一な輝度分布の視野における視認性の研究が行われている。この研究により、運転者の目の中心窩が順応している輝度(以下、中心窩順応輝度)と、運転者の目の眼球内散乱の程度を示す輝度(以下、等価光幕輝度)、及び視標Oの背景輝度が、視認性に影響することが明らかになった(例えば、非特許文献1参照)。図14は、中心窩順応輝度に対する輝度差弁別閾と、等価光幕輝度及び背景輝度の和に対する輝度差弁別閾と、を夫々示す。なお、後者について、等価光幕輝度に比べて、背景輝度は比較的低いことから、図14では等価光幕輝度に対する輝度差弁別閾を示している。   Therefore, research on visibility in the field of view of non-uniform luminance distribution has been conducted. According to this research, the brightness of the fovea of the driver's eyes (hereinafter referred to as fovea-adapted brightness), the brightness indicating the degree of scattering in the eyeball of the driver's eyes (hereinafter referred to as equivalent light curtain brightness), and It has been clarified that the background luminance of the target O affects the visibility (for example, see Non-Patent Document 1). FIG. 14 shows a luminance difference discrimination threshold for the foveal adaptation luminance and a luminance difference discrimination threshold for the sum of the equivalent light screen luminance and the background luminance. In the latter case, since the background luminance is relatively low compared to the equivalent screen brightness, FIG. 14 shows the brightness difference threshold for the equivalent screen brightness.

また、図15に示すように、所定の中心窩順応輝度における輝度差弁別閾と一致する等価光幕輝度と、均一な輝度分布空間における順応輝度との関係が求められている(例えば、特許文献1参照)。この図15に示す関係図と、上記図12に示した関係図から、あらゆるトンネル坑口の条件においても容易にトンネル内の所要路面輝度を求めることができる。   Further, as shown in FIG. 15, there is a demand for a relationship between an equivalent light curtain luminance that matches a luminance difference discrimination threshold at a predetermined foveal adaptation luminance and an adaptation luminance in a uniform luminance distribution space (for example, Patent Documents). 1). From the relationship diagram shown in FIG. 15 and the relationship diagram shown in FIG. 12, the required road surface brightness in the tunnel can be easily obtained even under the conditions of all tunnel wellheads.

Narisada, K. , Yoshimura, Y.:Luminance d’adaptation des yeux d’un conducteur à l’entrée d’un tunnel Une méthode objective de musure,Lux No.95(1977).Narisada, K., Yoshimura, Y .: Luminance d’ adaptation des yeux d’ un conducteur à l’ entr é e d’ un tunnel Unem é thode objective de musure, Lux No. 95 (1977). 特開昭61−290696号公報Japanese Patent Laid-Open No. 61-290696

ところで、一般的な高速道路のトンネル照明では、図13に示したように、自動車の運転者がトンネル坑口の150m前方からトンネル坑口の中央を注視し始めることを想定して照明制御が行われている。しかしながら、トンネル坑口からの距離に対する順応輝度は、例えば、トンネル坑口の大きさ、該当トンネルを含む道路の設定速度、又は周囲環境といったトンネルの様々な条件によって、ばらつきがある。従って、このようなばらつきを十分に考慮せずに順応輝度が定められ、この順応輝度に応じてトンネル内の所要路面輝度が求められると、トンネル内の路面輝度が必要以上となり、無駄な電力消費を発生させる、又は路面輝度が不十分となる虞がある。   By the way, in general highway tunnel lighting, as shown in FIG. 13, lighting control is performed on the assumption that the driver of the car starts to look at the center of the tunnel wellhead from 150 m ahead of the tunnel wellhead. Yes. However, the adaptation brightness with respect to the distance from the tunnel wellhead varies depending on various conditions of the tunnel such as the size of the tunnel wellhead, the set speed of the road including the tunnel, or the surrounding environment. Therefore, if the adaptation brightness is determined without fully considering such variations, and the required road surface brightness in the tunnel is determined according to the adaptation brightness, the road surface brightness in the tunnel becomes more than necessary and wasteful power consumption Or the road surface brightness may be insufficient.

本発明は、上記課題を解決するものであり、トンネル条件のばらつきによらず、適切なトンネル内の路面輝度を実現することができる照明制御システムを提供することを目的とする。   The present invention solves the above-described problems, and an object thereof is to provide an illumination control system capable of realizing appropriate road surface brightness in a tunnel regardless of variations in tunnel conditions.

上記課題を解決するため、本発明に係る照明制御システムは、トンネル内に配されて調光レベルを任意に制御することができる複数の照明器具と、前記照明器具を調光制御する制御装置と、トンネル坑口からトンネル外の所定の視距位置までの範囲において前記トンネル坑口に接近する運転者の順応輝度を計測する計測装置と、を備えた照明制御システムであって、前記制御装置は、前記計測装置が計測した順応輝度から順応曲線を求め、前記順応曲線に対応した所要路面輝度が得られるように前記照明器具を調光制御し、前記計測装置は、前記トンネル坑口から所定の視距位置離れた位置に設けられて前記トンネル坑口周囲の画像を撮像する撮像器を有し、前記撮像器が撮像した画像における前記トンネル坑口周囲の輝度分布から等価光幕輝度及び路面輝度を算出することにより前記順応輝度を計測することを特徴とする。 In order to solve the above problems, a lighting control system according to the present invention includes a plurality of lighting fixtures arranged in a tunnel and capable of arbitrarily controlling a dimming level, and a control device for dimming control of the lighting fixtures. A lighting control system comprising: a measuring device that measures adaptation brightness of a driver approaching the tunnel wellhead in a range from the tunnel wellhead to a predetermined viewing position outside the tunnel, wherein the control device includes the control device, seek adaptation curve from adaptation luminance measuring device is measured, the adaptation curve to the required brightness of the road surface of the luminaire controlled dimming so as to obtain corresponding said measuring apparatus, predetermined viewing distance position from the tunnel wellhead An image pickup device that is provided at a distant position and picks up an image around the tunnel wellhead, and an equivalent light curtain based on a luminance distribution around the tunnel wellhead in the image picked up by the imager; Characterized by measuring the adaptation luminance by calculating the degree and road surface brightness.

上記照明制御システムにおいて、前記計測装置は、前記トンネル坑口から前記視距位置までの間に複数設けられることが好ましい。   In the illumination control system, it is preferable that a plurality of the measuring devices are provided between the tunnel entrance and the viewing distance position.

上記照明制御システムにおいて、前記所定の視距位置は、前記トンネルを含む道路の設定速度に応じて設定されることが好ましい。   In the illumination control system, it is preferable that the predetermined visual distance position is set according to a set speed of a road including the tunnel.

本発明によれば、計測装置が計測した順応輝度に基づき、制御装置が順応曲線に対応した所要路面輝度が得られるように照明器具を調光制御するので、トンネル条件のばらつきによらず、適切なトンネル内の路面輝度を実現することができる。   According to the present invention, the lighting device is dimmed and controlled so that the required road surface luminance corresponding to the adaptation curve is obtained based on the adaptation luminance measured by the measurement device. It is possible to achieve road surface brightness in a simple tunnel.

本発明の第1の実施形態に係る照明制御システムの概略構成図。1 is a schematic configuration diagram of a lighting control system according to a first embodiment of the present invention. 同照明制御システムの動作フローを説明する図。The figure explaining the operation | movement flow of the illumination control system. (a)は等価光幕輝度と順応輝度との関係を示す図、(b)は順応輝度と所要路面輝度との関係を示す図。(A) is a figure which shows the relationship between equivalent light curtain brightness | luminance and adaptation brightness | luminance, (b) is a figure which shows the relationship between adaptation brightness | luminance and required road surface brightness | luminance. 同照明制御システムにおいて算出された順応輝度と、これに対応するトンネル内の所要路面輝度とを示す図。The figure which shows the adaptation brightness | luminance calculated in the illumination control system, and the required road surface brightness | luminance corresponding to this in a tunnel. 本発明の第2の実施形態に係る照明制御システムの概略構成図。The schematic block diagram of the illumination control system which concerns on the 2nd Embodiment of this invention. (a)乃至(c)は同照明制御システムにおける画像処理による輝度計測の手順を説明するための模式図。(A) thru | or (c) is a schematic diagram for demonstrating the procedure of the brightness | luminance measurement by the image processing in the illumination control system. 標準的なトンネル坑口までの距離と順応輝度との関係を示す図。The figure which shows the relationship between the distance to a standard tunnel wellhead, and an adaptation brightness | luminance. 等価光幕輝度の角度特性を説明するための図。The figure for demonstrating the angle characteristic of an equivalent light curtain brightness | luminance. 計測装置の配置と測定軸を説明するための図。The figure for demonstrating arrangement | positioning and a measurement axis | shaft of a measuring device. トンネル坑口までの距離と順応輝度との関係を示す図。The figure which shows the relationship between the distance to a tunnel wellhead, and an adaptation brightness | luminance. (a)は順応輝度及び所要路面輝度を説明するための側面図、(b)は同正面図。(A) is a side view for demonstrating adaptation brightness | luminance and required road surface brightness | luminance, (b) is the same front view. 順応輝度と所要路面輝度との関係を示す図。The figure which shows the relationship between adaptation brightness and required road surface brightness. 従来の照明制御システムの概略図。Schematic of the conventional lighting control system. 中心窩順応輝度又は等価光幕輝度と輝度差弁別閾との関係を示す図。The figure which shows the relationship between foveal adaptation brightness | luminance or equivalent light curtain brightness | luminance, and a brightness | luminance difference discrimination threshold. 不均一な輝度分布空間における順応輝度を示す図。The figure which shows the adaptation brightness | luminance in nonuniform brightness distribution space.

本発明の第1の実施形態に係る照明制御システムについて、図1乃至図4を参照して説明する。図1に示すように、本実施形態の照明制御システム1は、トンネルT内に配された複数の照明器具2と、照明器具2を調光制御する制御装置3と、トンネル坑口T0に接近する運転者の順応輝度を計測する計測装置4と、を備える。この照明制御システム1は、昼光がトンネル内部にまで差し込まない、トンネル延長が100m以上であるトンネルTの入口照明に好適に用いられる。照明器具2は、トンネルTの天井部又は隅角部に、車両走行方向に沿って所定間隔で配置される。計測装置4は、トンネル坑口T0からトンネルT外の所定の視距位置までの範囲において、トンネル坑口T0に接近する運転者の順応輝度を計測する。   A lighting control system according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 4. As shown in FIG. 1, the lighting control system 1 of the present embodiment approaches a plurality of lighting fixtures 2 arranged in a tunnel T, a control device 3 for dimming control of the lighting fixtures 2, and a tunnel wellhead T0. And a measuring device 4 that measures the driver's adaptation brightness. The illumination control system 1 is preferably used for entrance illumination of a tunnel T in which daylight is not inserted into the tunnel and the tunnel extension is 100 m or more. The lighting fixture 2 is arrange | positioned in the ceiling part or corner part of the tunnel T at predetermined intervals along a vehicle running direction. The measuring device 4 measures the adaptation brightness of the driver approaching the tunnel wellhead T0 in a range from the tunnel wellhead T0 to a predetermined visual distance position outside the tunnel T.

照明器具2は、制御装置3からの調光制御信号に基づき、各調光レベルを任意に制御することができる。照明器具2の光源には、例えば、制御装置3から出力された調光信号(例えばPWM信号ののオンデューティ比)に応じて、光出力を可変とすることができるLEDが用いられる。照明器具2は、少なくともトンネルT内の路面を効果的に照明できるように配置されていればよく、その配光が、道路横軸に対して対称であっても、車両進行方向(プロビーム照明)であっても、それと逆の方向(カウンタービーム照明)であってもよい。   The lighting fixture 2 can arbitrarily control each dimming level based on the dimming control signal from the control device 3. As the light source of the luminaire 2, for example, an LED that can change the light output in accordance with a dimming signal output from the control device 3 (for example, an on-duty ratio of a PWM signal) is used. The luminaire 2 only needs to be arranged so that at least the road surface in the tunnel T can be effectively illuminated. Even if the light distribution is symmetric with respect to the road lateral axis, the vehicle traveling direction (pro beam illumination) Even in the opposite direction (counter beam illumination) may be used.

計測装置4は、トンネル坑口T0を含む所定視野の輝度を測定する輝度測定器41と、輝度測定器41の計測結果から等価光幕輝度等を計算する輝度計測部42と、輝度計測部42の計測結果から運転者Dの順応輝度を計測する順応輝度算出部43と、を備える。輝度測定器41は、トンネル坑口T0から所定の視距位置までの間に複数設けられている。輝度測定器41は、受光部及びグレアレンズから構成され、グレアレンズを介して受光部が受光した所定の視野角の光束を測定する。輝度計測部42は、複数の輝度測定器41から送信された計測結果から、各々の地点における等価光幕輝度を計算する。なお、順応輝度は、上述したように、等価光幕輝度だけでなく、中心窩順応輝度にも依存する。しかし、トンネル接近中の運転者の中心窩順応輝度は、運転者が主に路面を走査しながら走行する傾向があるので、実質的に路面輝度に等しい。そこで、本実施形態の順応輝度算出部43は、中心窩順応輝度に換えて、路面輝度に基づいて順応輝度を計測する。なお、路面輝度は、等価光幕輝度のように観測位置に依存しないので、例えば、トンネル坑口T0から最も離れた位置に設けられた計測装置4の全視野角の平均輝度から推定される。また、例えば、上記計測装置4との別途に設けられた水平面輝度測定器(不図示)により計測され輝度が用いられてもよい。順応輝度算出部43は、各等価光幕輝度及び路面輝度から、トンネル坑口T0から離れた夫々の視距位置における順応輝度を計測し、その計測情報を制御装置3へ送信する。   The measuring device 4 includes a luminance measuring device 41 that measures the luminance of a predetermined visual field including the tunnel wellhead T0, a luminance measuring unit 42 that calculates an equivalent light screen luminance and the like from the measurement result of the luminance measuring device 41, and a luminance measuring unit 42 An adaptation luminance calculation unit 43 that measures the adaptation luminance of the driver D from the measurement result. A plurality of luminance measuring devices 41 are provided between the tunnel well opening T0 and a predetermined viewing distance position. The luminance measuring device 41 includes a light receiving unit and a glare lens, and measures a light flux having a predetermined viewing angle received by the light receiving unit via the glare lens. The luminance measuring unit 42 calculates the equivalent light curtain luminance at each point from the measurement results transmitted from the plurality of luminance measuring devices 41. As described above, the adaptation brightness depends not only on the equivalent screen brightness but also on the foveal adaptation brightness. However, the driver's fovea-adapted luminance while approaching the tunnel is substantially equal to the road surface luminance because the driver tends to travel while mainly scanning the road surface. Therefore, the adaptive luminance calculation unit 43 of the present embodiment measures the adaptive luminance based on the road surface luminance instead of the foveal adaptive luminance. Since the road surface brightness does not depend on the observation position like the equivalent screen brightness, for example, it is estimated from the average brightness of all viewing angles of the measuring device 4 provided at the position farthest from the tunnel wellhead T0. Further, for example, the luminance measured by a horizontal plane luminance measuring device (not shown) provided separately from the measuring device 4 may be used. The adaptation luminance calculation unit 43 measures the adaptation luminance at each visual distance position away from the tunnel entrance T0 from each equivalent light screen luminance and road surface luminance, and transmits the measurement information to the control device 3.

制御装置3は、受信した計測情報に基づいて順応曲線を生成する順応曲線生成部31と、この順応曲線に対応する所要路面輝度を算出する所要路面輝度算出部32と、その所要路面輝度が得られるように各照明器具2を調光制御する照明制御部33と、を備える。   The control device 3 obtains an adaptation curve generation unit 31 that generates an adaptation curve based on the received measurement information, a required road surface luminance calculation unit 32 that calculates a required road surface luminance corresponding to the adaptation curve, and the required road surface luminance. And a lighting control unit 33 that performs dimming control of each lighting fixture 2.

図2に、本実施形態の照明制御システム1の動作フローを示す。照明制御システム1は、まず、計測装置4が、等価光幕輝度及び路面輝度を計測し(S1)、更に、トンネル坑口T0から離れた夫々の視距位置における順応輝度を計測する(S2)。次に、制御装置3が、順応曲線を作成し(S3)、更に所要路面輝度を計算する(S4)。そして、制御装置3の照明制御部33は、上記所要路面輝度が得られる各照明器具2(入口照明)の調光率を計算し(S5)、照明器具2を点灯制御する調光率を設定する(S6)。また、照明制御部33は、この設定がなされると、累積点灯時間をカウントし(S7)、その計時時間に応じて適宜に照明器具2の光束を減退させるか否かを判断する(S8)。   In FIG. 2, the operation | movement flow of the illumination control system 1 of this embodiment is shown. In the illumination control system 1, first, the measuring device 4 measures the equivalent light screen luminance and the road surface luminance (S1), and further measures the adaptation luminance at each viewing distance position away from the tunnel well opening T0 (S2). Next, the control device 3 creates an adaptation curve (S3), and further calculates the required road surface brightness (S4). And the illumination control part 33 of the control apparatus 3 calculates the dimming rate of each lighting fixture 2 (entrance illumination) from which the said required road surface brightness | luminance is obtained (S5), and sets the dimming rate which carries out lighting control of the lighting fixture 2 (S6). In addition, when this setting is made, the lighting control unit 33 counts the cumulative lighting time (S7), and determines whether or not to appropriately reduce the luminous flux of the lighting fixture 2 according to the measured time (S8). .

図3(a)(b)は、上記S1において等価光幕輝度Leqが200cd/mとして、路面輝度Lafが5000cd/mとして計測されたときの順応輝度L及び所要路面輝度Lの算出する手順を示す。等価光幕輝度Leq200cd/m、路面輝度Laf5000cd/mであるときの順応輝度Lは、図3(a)に示すように、4700cd/mと算出される。そして、順応輝度Lであるときの所要路面輝度Lは、図3(b)に示すように、200cd/mと算出される。なお、図3(b)は、上述した図12と同様の実験条件で計測されている。また、ここで示す計算例は、国際照明委員会が推奨する値であり、国内基準に比べて2倍程度高い値となっている。従って、本実施形態の照明制御システム1を国内道路のトンネル照明に採用する際には、トンネル坑口から0mにおける所要路面輝度を国内基準の値とし、以降は順応輝度の相対値に準じて所要路面輝度を漸減させればよい。 Figure 3 (a) (b) as is 200 cd / m 2 equivalent light curtain luminance L eq in the S1, adaptation luminance L 1 and the required road surface brightness L when the road surface brightness L af is measured as 5000 cd / m 2 2 shows the calculation procedure. Equivalent light curtain luminance L eq 200cd / m 2, adaptation luminance L 1 when a road surface brightness L af 5000cd / m 2, as shown in FIG. 3 (a), is calculated as 4700cd / m 2. Then, the required road surface brightness L 2 at the time when a adaptation luminance L 1, as shown in FIG. 3 (b), is calculated to be 200 cd / m 2. In addition, FIG.3 (b) is measured on the experimental conditions similar to FIG. 12 mentioned above. Moreover, the calculation example shown here is a value recommended by the International Commission on Illumination, which is about twice as high as the national standard. Therefore, when the lighting control system 1 of the present embodiment is adopted for tunnel lighting on a domestic road, the required road surface brightness at 0 m from the tunnel wellhead is set as a domestic standard value, and thereafter the required road surface according to the relative value of the adaptive brightness. The luminance may be gradually decreased.

このようにして、トンネル坑口T0から離れた夫々の視距位置において、順応輝度L及び所要路面輝度Lを測定することにより、図4に示すような順応曲線(左上)を得ることができる。また、順応輝度Lと所要路面輝度Lとは概ね比例するので、入口照明におけるトンネル坑口T0から離れた夫々の路面について、順応輝度Lに対応する所要路面輝度が設定される。そして、照明制御部33は、上記所要路面輝度が得られるように、各照明器具2の調光レベルを設定することで、ブラックホール現象を抑制するのに必要なトンネル内の路面輝度を得ることができる。従って、本実施形態によれば、制御装置3が、計測装置4が計測した順応輝度に基づき、順応曲線に対応した所要路面輝度が得られるように照明器具を調光制御するので、トンネル条件のばらつきによらず、適切なトンネル内の路面輝度を実現することができる。 Thus, in view distance position of each remote from the tunnel wellhead T0, by measuring the adaptation luminance L 1 and the required road surface brightness L 2, can be obtained adaptation curve (upper left), as shown in FIG. 4 . Moreover, since approximately proportional to the adaptation luminance L 1 and the required road surface brightness L 2, for each of the road away from the tunnel wellhead T0 at the inlet illumination, the required road surface brightness corresponding to adaptation luminance L 1 is set. And the illumination control part 33 obtains the road surface brightness | luminance in a tunnel required in order to suppress a black hole phenomenon by setting the light control level of each lighting fixture 2 so that the said required road surface brightness | luminance may be obtained. Can do. Therefore, according to the present embodiment, the control device 3 performs dimming control of the luminaire based on the adaptation luminance measured by the measurement device 4 so that the required road surface luminance corresponding to the adaptation curve is obtained. Appropriate road surface brightness in the tunnel can be realized regardless of variations.

また、従来の一般的なトンネル入口照明では、照明器具が、例えば4段階(100、75、50、25%)でしか調光されなかったので、必要以上の路面輝度となり、無駄な電力消費が発生することがあった。これに対して、本実施形態においては、制御装置3が各照明器具2を漸次調光するので、無駄な電力消費を発生させることなく、必要な路面輝度を得ることができる。   Moreover, in the conventional general tunnel entrance lighting, since the lighting fixtures were dimmed only in, for example, four stages (100, 75, 50, 25%), the road surface brightness was more than necessary and unnecessary power consumption was achieved. It sometimes occurred. On the other hand, in this embodiment, since the control apparatus 3 dimmes each lighting fixture 2 gradually, required road surface brightness can be obtained, without generating useless power consumption.

次に、本発明の第2の実施形態に係る照明制御システムについて、図5乃至図10を参照して説明する。図5に示すように、本実施形態の照明制御システム1は、計測装置4の構成として、輝度測定器41に換えて、トンネル坑口T0から所定の視距位置離れた位置に設けられてトンネル坑口T0周囲の画像を撮像する撮像器44を有する。また、計測装置4は、上記実施形態の輝度計測部42に換えて、撮像器44が撮像した画像から等価光幕輝度及び路面輝度を算出する画像処理部45を有する。他の構成は、上記第1の実施形態と同様である。   Next, an illumination control system according to a second embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 5, the illumination control system 1 of the present embodiment is provided with a measuring tunnel 4 in place of the brightness measuring device 41 and provided at a position away from the tunnel wellhead T0 by a predetermined viewing distance. An imager 44 that captures an image around T0 is included. The measuring device 4 includes an image processing unit 45 that calculates equivalent light curtain luminance and road surface luminance from an image captured by the image pickup device 44, instead of the luminance measuring unit 42 of the above embodiment. Other configurations are the same as those in the first embodiment.

撮像器44は、図6(a)に示すように、トンネル坑口T0周囲のデジタル画像を撮像する。画像処理部45は、このデジタル画像におけるトンネル坑口T0周囲の輝度分布から等価光幕輝度及び路面輝度を算出する。そして、図6(b)(c)に示すように、上記デジタル画像をズームし、撮像器44とトンネル坑口T0との距離にズーム比率で除した値を視距位置に擬制して、トンネル坑口T0から離れた夫々の視距位置における等価光幕輝度及び順応輝度を算出する。   As shown in FIG. 6A, the imager 44 captures a digital image around the tunnel wellhead T0. The image processing unit 45 calculates the equivalent light curtain luminance and the road surface luminance from the luminance distribution around the tunnel wellhead T0 in this digital image. Then, as shown in FIGS. 6B and 6C, the digital image is zoomed, and the value obtained by dividing the distance between the image pickup device 44 and the tunnel wellhead T0 by the zoom ratio is simulated as the viewing distance position. Equivalent light curtain luminance and adaptation luminance at each viewing distance position away from T0 are calculated.

照明制御システム1が高速道路のトンネル入口照明に適用される場合、撮像器44は、例えば、トンネル坑口から150mの地点に設けられる。ここで、図7に、過去の調査研究(K.Narisada et al:Adaptation luminance of driver’s eyes approaching a tunnel entrance in daytime,CIE,Kyoto(1979))における、標準的なトンネル坑口までの距離と順応輝度の相対値との関係を示す。同図から、トンネル坑口までの距離が150m以上における順応輝度には、顕著な変化がないことが分かる。日本国内における車道の最高速度100k/mの条件における計測距離は160mなので、160m以上の距離における順応輝度は実用的に必要ない。従って、トンネル坑口から150mの地点における等価光幕輝度を測定すれば、トンネル坑口とそこから150m地点の間の運転者の順応輝度を推測することができる。なお、画像処理部45は、画像データから、ソフトウェアを用いて所定の路面部分を抽出して、その平均輝度を算出することで路面輝度を算出し、等価光幕輝度と同時に測定される。   When the illumination control system 1 is applied to tunnel entrance illumination on a highway, the imager 44 is provided at a point 150 m from the tunnel wellhead, for example. Here, Fig. 7 shows the distance to the standard tunnel wellhead and adaptation luminance in past research (K. Narisada et al: Adaptation luminance of driver's eyes approaching a tunnel entrance in daytime, CIE, Kyoto (1979)). The relationship with the relative value of is shown. From the figure, it can be seen that there is no significant change in the adaptation luminance when the distance to the tunnel wellhead is 150 m or more. Since the measurement distance at a maximum speed of 100 k / m in Japan is 160 m, adaptation brightness at a distance of 160 m or more is practically unnecessary. Therefore, if the equivalent light curtain brightness at a point 150 m from the tunnel well is measured, the driver's adaptation brightness between the tunnel well and the 150 m point can be estimated. The image processing unit 45 extracts a predetermined road surface portion from the image data using software, calculates the average luminance thereof, calculates the road surface luminance, and measures it simultaneously with the equivalent light curtain luminance.

なお、等価光幕輝度は、図8に示すような角度特性を有している。視野中心に発光部を置いたときの等価光幕輝度に比べて、例えば、視線中心から20°程度離れた位置に同一の輝度を有する発光部の等価光幕輝度は1000分の1となる。従って、画像処理における等価光幕輝度の測定に際しては、運転者の全視野の輝度分布を考慮して測定する必要はなく、視線中心から20〜30度の範囲の輝度分布を測定すれば必要十分であると推測される。   The equivalent light curtain luminance has an angle characteristic as shown in FIG. Compared to the equivalent screen brightness when the light emitting part is placed at the center of the visual field, for example, the equivalent light screen brightness of the light emitting part having the same brightness at a position away from the line-of-sight center by about 20 ° is 1/1000. Therefore, when measuring the equivalent light curtain luminance in image processing, it is not necessary to take into account the luminance distribution of the driver's entire visual field, and it is necessary and sufficient to measure the luminance distribution in the range of 20 to 30 degrees from the center of the line of sight. It is estimated that.

一方、路面輝度は、俯角1°において測定するものとされていることから、図9に示すように、測定軸が俯角1°となるように、測定する車道の範囲を設定することが望ましい。また、等価光幕輝度と同じ地点から路面輝度を測定する場合、山岳部の影の影響を考慮して坑口の手前50mより手前の路面に測定軸が交差するように測定するならば、撮像器44は、俯角1°となるように、約1.7mより低い高さに配置することが望ましい。   On the other hand, since the road surface brightness is measured at a depression angle of 1 °, it is desirable to set the range of the roadway to be measured so that the measurement axis becomes a depression angle of 1 ° as shown in FIG. In addition, when measuring the road surface brightness from the same point as the equivalent light screen brightness, if the measurement axis crosses the road surface before 50m before the wellhead in consideration of the influence of the shadow of the mountain, 44 is preferably disposed at a height lower than about 1.7 m so that the depression angle is 1 °.

このようにして、図10に示すように、トンネル坑口までの夫々の距離における順応輝度が求められる。本実施形態においては、画像データのズームにより各輝度を算出するので、複数の輝度測定器を用いることなく、トンネル坑口と撮像器44の設置位置との間の任意の位置における等価光幕輝度及び順応輝度を算出することができる。従って、各輝度を算出する視距位置を多数設定して、詳細な順応曲線を作成することができ、より適切なトンネル内の路面輝度を得ることができる。   Thus, as shown in FIG. 10, the adaptation brightness | luminance in each distance to a tunnel wellhead is calculated | required. In this embodiment, since each brightness is calculated by zooming image data, the equivalent light curtain brightness at an arbitrary position between the tunnel entrance and the installation position of the image pickup device 44 can be obtained without using a plurality of brightness measuring devices. The adaptive luminance can be calculated. Accordingly, a large number of viewing distance positions for calculating each luminance can be set to create a detailed adaptation curve, and a more appropriate road surface luminance in the tunnel can be obtained.

なお、視距位置、つまり、トンネル坑口T0から撮像器44の設置位置までの距離は、照明制御システム1が適用されるトンネルを含む道路の設定速度に応じて設定される。例えば、道路の設定速度が80km/hであれば視距位置は110mに、道路の設定速度が100km/hであれば視距位置は160mになる。   The viewing distance position, that is, the distance from the tunnel well opening T0 to the installation position of the image pickup device 44 is set according to the set speed of the road including the tunnel to which the illumination control system 1 is applied. For example, if the road setting speed is 80 km / h, the visual distance position is 110 m, and if the road setting speed is 100 km / h, the visual distance position is 160 m.

また、一般に、トンネル坑口に近づくほど、該当トンネルの条件により順応輝度がばらつき易いが、トンネル坑口から遠くなると、トンネルの条件によらず順応輝度はばらつき難くなる。順応距離は、各設計速度の視距に応じて求められることから、例えば、図7に示したような、標準的なトンネル坑口からの距離に対する順応輝度を相対値に対して、下記表1に示すような変換係数を乗ずることにより、任意の位置の等価光幕輝度を推定することができる。なお、表1は、等価光幕輝度の測定位置をトンネル坑口から100mの位置としたときの、設計速度毎の等価光幕輝度の変換係数を示す。   In general, the closer to the tunnel well, the easier it is for the adaptation brightness to vary depending on the conditions of the tunnel. However, the farther away from the tunnel well, the adaptation brightness hardly varies regardless of the tunnel conditions. Since the adaptation distance is determined according to the visual distance at each design speed, for example, the adaptation brightness with respect to the distance from a standard tunnel wellhead as shown in FIG. By multiplying the conversion coefficient as shown, the equivalent light curtain luminance at an arbitrary position can be estimated. Table 1 shows the conversion coefficient of equivalent light curtain luminance for each design speed when the measurement position of equivalent light curtain brightness is 100 m from the tunnel entrance.

トンネル坑口T0から遠い位置に配置した撮像器44の画像データを、ズーム比率を高めて等価光幕輝度を算出した場合、トンネル坑口から近い位置に配置した撮像器44の画像データを用いた場合に比べて、等価光幕輝度の算出精度が低下する。撮像器44がトンネル坑口から遠いと、スモッグや粉塵等のノイズの影響が大きくなり、仮に撮像素子の解像レベルや撮像器44のレンズ性能を向上させたとしても、その影響は排除できない。従って、一般的な設定速度に応じた視距を確保できる範囲で、撮像器44の設置位置は、トンネル坑口から近いことが望ましい。   When the image data of the image pickup device 44 arranged at a position far from the tunnel wellhead T0 is used to calculate the equivalent light curtain luminance by increasing the zoom ratio, the image data of the image pickup device 44 arranged at a position close to the tunnel wellhead is used. In comparison, the calculation accuracy of the equivalent screen brightness is lowered. If the image pickup device 44 is far from the tunnel wellhead, the influence of noise such as smog and dust becomes large. Even if the resolution level of the image pickup element and the lens performance of the image pickup device 44 are improved, the influence cannot be eliminated. Therefore, it is desirable that the installation position of the image pickup device 44 is close to the tunnel well as long as a viewing distance corresponding to a general set speed can be secured.

本実施形態によれば、トンネル坑口T0から遠い位置の等価光幕輝度を推定するので、比較的、撮像器44をトンネル坑口T0の近くに配置し易くなり、等価光幕輝度の算出精度を向上させることができる。また、トンネル条件の影響を受け易いトンネル坑口T0の近くの等価光幕輝度を実測し、トンネル条件の影響を受け難いトンネル坑口T0の遠くの等価光幕輝度を推定するので、トンネルの条件によらず、いずれの視距においても適切な順応輝度を計測することができる。   According to this embodiment, since the equivalent light curtain brightness at a position far from the tunnel wellhead T0 is estimated, it is relatively easy to place the imager 44 near the tunnel wellhead T0, and the calculation accuracy of the equivalent lightscreen brightness is improved. Can be made. Further, since the equivalent light screen brightness near the tunnel well T0 that is easily affected by the tunnel condition is measured and the equivalent light screen brightness near the tunnel well T0 that is difficult to be affected by the tunnel condition is estimated, it depends on the tunnel condition. In addition, appropriate adaptation luminance can be measured at any viewing distance.

なお、本発明は、上記実施形態に限らず、種々の変形が可能である。例えば、上記第2の実施形態で説明したトンネル坑口T0から遠い位置における等価光幕輝度の推定方法は、上記第1の実施形態においても適用することができる。また、上記第1の実施形態で用いた輝度測定器41と、上記第1の実施形態で用いた撮像器44とを組み合わせて、等価光幕輝度及び順応輝度を計測してもよい。   In addition, this invention is not restricted to the said embodiment, A various deformation | transformation is possible. For example, the method for estimating the equivalent light curtain luminance at a position far from the tunnel well opening T0 described in the second embodiment can also be applied to the first embodiment. Further, the luminance measuring device 41 used in the first embodiment and the imaging device 44 used in the first embodiment may be combined to measure the equivalent light curtain luminance and the adaptation luminance.

1 照明制御システム
2 照明器具
3 制御装置
4 計測装置
45 画像処理部
T トンネル
T0 トンネル坑口
DESCRIPTION OF SYMBOLS 1 Lighting control system 2 Lighting fixture 3 Control apparatus 4 Measuring apparatus 45 Image processing part T Tunnel T0 Tunnel wellhead

Claims (3)

トンネル内に配されて調光レベルを任意に制御することができる複数の照明器具と、前記照明器具を調光制御する制御装置と、トンネル坑口からトンネル外の所定の視距位置までの範囲において前記トンネル坑口に接近する運転者の順応輝度を計測する計測装置と、を備えた照明制御システムであって、
前記制御装置は、前記計測装置が計測した順応輝度から順応曲線を求め、前記順応曲線に対応した所要路面輝度が得られるように前記照明器具を調光制御し、
前記計測装置は、前記トンネル坑口から所定の視距位置離れた位置に設けられて前記トンネル坑口周囲の画像を撮像する撮像器を有し、前記撮像器が撮像した画像における前記トンネル坑口周囲の輝度分布から等価光幕輝度及び路面輝度を算出することにより前記順応輝度を計測することを特徴とする照明制御システム。
A plurality of lighting fixtures arranged in the tunnel and capable of arbitrarily controlling the dimming level, a control device for dimming control of the lighting fixtures, and a range from the tunnel entrance to a predetermined viewing distance outside the tunnel A lighting control system comprising: a measuring device that measures adaptation brightness of a driver approaching the tunnel wellhead,
The control device obtains an adaptation curve from the adaptation luminance measured by the measurement device, and dimming-controls the lighting fixture so that a required road surface luminance corresponding to the adaptation curve is obtained ,
The measurement apparatus includes an imager that is provided at a position away from the tunnel wellhead by a predetermined visual distance and picks up an image around the tunnel wellhead, and brightness around the tunnel wellhead in an image captured by the imager A lighting control system characterized in that the adaptation brightness is measured by calculating an equivalent light screen brightness and a road surface brightness from a distribution .
前記計測装置は、前記トンネル坑口から前記視距位置までの間に複数設けられることを特徴とする請求項1に記載の照明制御システム。   The lighting control system according to claim 1, wherein a plurality of the measuring devices are provided between the tunnel entrance and the viewing distance position. 前記所定の視距位置は、前記トンネルを含む道路の設定速度に応じて設定されることを特徴とする請求項1又は請求項2に記載の照明制御システム。   The illumination control system according to claim 1, wherein the predetermined visual distance position is set according to a set speed of a road including the tunnel.
JP2012157215A 2012-07-13 2012-07-13 Lighting control system Active JP6018823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012157215A JP6018823B2 (en) 2012-07-13 2012-07-13 Lighting control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012157215A JP6018823B2 (en) 2012-07-13 2012-07-13 Lighting control system

Publications (2)

Publication Number Publication Date
JP2014022090A JP2014022090A (en) 2014-02-03
JP6018823B2 true JP6018823B2 (en) 2016-11-02

Family

ID=50196773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012157215A Active JP6018823B2 (en) 2012-07-13 2012-07-13 Lighting control system

Country Status (1)

Country Link
JP (1) JP6018823B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109521739A (en) * 2018-11-15 2019-03-26 南京华盛智能物联网有限责任公司 A kind of adaptive self diagnosis laser vehicle detection Internet of Things saving pipe controlled system

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6399445B2 (en) * 2014-09-03 2018-10-03 パナソニックIpマネジメント株式会社 Lighting control system
CN104533441B (en) * 2014-10-26 2017-01-11 北京工业大学 Standard measuring and calculating method and system based on safety visibility for lighting of entrance section of tunnel at night
CN104316171B (en) * 2014-10-26 2016-06-15 北京工业大学 Based on safety depending on the tunnel interlude standard of illumination measuring method recognized and system thereof
CN104266823B (en) * 2014-10-26 2018-06-05 北京工业大学 Based on safety depending on the tunnel portal section lighting criteria measuring method and its system on daytime recognized
JP2016170899A (en) * 2015-03-11 2016-09-23 パナソニックIpマネジメント株式会社 Luminaire
JP6001203B1 (en) * 2016-04-06 2016-10-05 阪神高速技研株式会社 Road lighting equipment
CN112991471B (en) * 2021-03-02 2022-10-14 重庆交通大学 Tunnel portal dimming method based on equivalent light curtain brightness
CN114481894B (en) * 2022-03-11 2023-06-27 武汉理工大学 Self-adaptive induction system for entrance area of road tunnel on curved road section

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02142094A (en) * 1988-11-24 1990-05-31 Matsushita Electric Ind Co Ltd Automatic flashing device for lighting entrance of tunnel
JP2004087215A (en) * 2002-08-26 2004-03-18 Matsushita Electric Works Ltd Lighting system for tunnel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109521739A (en) * 2018-11-15 2019-03-26 南京华盛智能物联网有限责任公司 A kind of adaptive self diagnosis laser vehicle detection Internet of Things saving pipe controlled system

Also Published As

Publication number Publication date
JP2014022090A (en) 2014-02-03

Similar Documents

Publication Publication Date Title
JP6018823B2 (en) Lighting control system
WO2018201835A1 (en) Signal light state recognition method, device and vehicle-mounted control terminal and motor vehicle
CN108027976B (en) Travel assist device and travel assist method based on travel assist device
JP6325000B2 (en) In-vehicle image recognition device
US10648825B2 (en) Pulse wave measuring apparatus, control method, and non-transitory computer-readable recording medium
JP5147369B2 (en) Day and night image identification method and apparatus
CN106218492B (en) A kind of night running light automatic switching control equipment and switching method
Gallen et al. Towards night fog detection through use of in-vehicle multipurpose cameras
CN106778534B (en) Method for identifying ambient light during vehicle running
JP2007142624A (en) Vehicle mounted imaging apparatus
JP2009017157A (en) Image processor, method and program
RU2013132011A (en) DRIVING ASSISTANCE AND METHOD FOR DETECTING A VEHICLE NEAR HIM
CN113490316B (en) Light supplementing system and light supplementing lamp
JP2010234851A (en) Display device for vehicle
WO2016091041A1 (en) Method for performing dynamic evaluation on lighting glare of road by using imaging brightness meter
CN104427255A (en) Image processing method of vehicle camera and image processing apparatus using the same
JP2012240530A (en) Image processing apparatus
BR112015001711A2 (en) A solid thing detecting device and a solid thing detecting method
JP5261952B2 (en) Equivalent screen brightness measuring device, tunnel lighting system and information display system
JP2012027773A (en) Pseudo grayscale image generation device and program
JPWO2012066609A1 (en) Environment estimation apparatus and vehicle control apparatus
KR101462734B1 (en) Integrated control system for tunnel lighting
CN104175945A (en) Vehicle lamp angle adjusting method and vehicle lamp angle adjusting system
CN102509302B (en) Passing light brightness dead line based on human vision for headlamp and HV (Hyper Velocity) point computing method
JP2013185871A (en) Mobile object position attitude estimation device and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161003

R150 Certificate of patent or registration of utility model

Ref document number: 6018823

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350