JP6017271B2 - Shaft member connection structure - Google Patents

Shaft member connection structure Download PDF

Info

Publication number
JP6017271B2
JP6017271B2 JP2012246953A JP2012246953A JP6017271B2 JP 6017271 B2 JP6017271 B2 JP 6017271B2 JP 2012246953 A JP2012246953 A JP 2012246953A JP 2012246953 A JP2012246953 A JP 2012246953A JP 6017271 B2 JP6017271 B2 JP 6017271B2
Authority
JP
Japan
Prior art keywords
shaft member
conical surface
connection structure
shaft
tan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012246953A
Other languages
Japanese (ja)
Other versions
JP2014095420A (en
Inventor
年宏 松野
年宏 松野
正晴 橘
正晴 橘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CFC DESIGN INC.
Original Assignee
CFC DESIGN INC.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CFC DESIGN INC. filed Critical CFC DESIGN INC.
Priority to JP2012246953A priority Critical patent/JP6017271B2/en
Publication of JP2014095420A publication Critical patent/JP2014095420A/en
Application granted granted Critical
Publication of JP6017271B2 publication Critical patent/JP6017271B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Mutual Connection Of Rods And Tubes (AREA)

Description

本発明は、2つの軸部材を軸方向に連結するための接続構造に関する。 更に詳細には、熱膨張係数が異なる2つの軸部材を軸方向に連結するための接続構造であって、熱膨張係数の差異に起因して連結部に生じる熱応力や、緩み・ガタ等が発生することのない接続構造に関する。
The present invention relates to a connection structure for connecting two shaft members in the axial direction. More specifically, it is a connection structure for connecting two shaft members having different thermal expansion coefficients in the axial direction, and thermal stress, looseness, backlash, etc. generated in the connecting portion due to the difference in the thermal expansion coefficients are generated. It relates to a connection structure that does not occur.

高温炉内で、回転運動を伝達したり、種々の荷重を伝達するために使用される軸部材のような構造部材であって、2以上の軸部材を軸方向に接続して使用すると共に、接続する軸部材の材料が異なるような場合には、接続された軸部材の間で緩みが生じたり、あるいは接続された軸部材の間で過度の応力が発生したりする場合がある。   A structural member such as a shaft member used for transmitting rotational motion or transmitting various loads in a high-temperature furnace, and using two or more shaft members connected in the axial direction, When the materials of the shaft members to be connected are different, looseness may occur between the connected shaft members, or excessive stress may be generated between the connected shaft members.

このように、接続された軸部材の間で緩み・ガタ等が生じたり、あるいは接続された軸部材の間で過度の応力が発生したりするのは、接続する軸部材の材料が異なり、その結果接続する軸部材の材料の熱膨張係数が異なる場合である。   In this way, loosening, looseness, etc. occur between the connected shaft members, or excessive stress is generated between the connected shaft members. As a result, the thermal expansion coefficients of the shaft member materials to be connected are different.

このような問題を避けるため、軸部材を1種類の材料で構成することが望ましいが、高温炉内の温度が高い場合には、通常耐熱鋼等の材料を使用することはできず、炉内で使用される軸部材には特殊な耐熱材料(例えば、セラミックス材料やカーボン/カーボンコンポジット材など)を使い、これに接続され炉外に伸びる軸部材には鋼などの通常の金属材料を使用することが避けられないケースがある。   In order to avoid such a problem, it is desirable that the shaft member is composed of one kind of material. However, when the temperature in the high-temperature furnace is high, materials such as heat-resistant steel cannot be used normally, A special heat-resistant material (such as a ceramic material or a carbon / carbon composite material) is used for the shaft member used in the steel, and a normal metal material such as steel is used for the shaft member connected to this and extending outside the furnace. There are cases where this is unavoidable.

そして、上述したような接続された軸部材の間で緩み・ガタ等が生じたり、あるいは接続された軸部材の間で過度の応力が発生したりすると、軸部材の接続部で機械振動が生じたり、あるいは、接続部で軸部材が破壊してしまったりというトラブルが発生する。
Then, when loosening, backlash, etc. occur between the connected shaft members as described above, or excessive stress occurs between the connected shaft members, mechanical vibration occurs at the connecting portion of the shaft members. Or the shaft member is broken at the connecting portion.

本発明は以上述べたような背景技術を鑑みなされたものであり、熱膨張係数が異なる2つの軸部材を軸方向に連結するための接続構造であって、熱膨張係数の差異に起因して連結部に生じる熱応力や、緩み・ガタ等が発生することのない接続構造を提供することを課題とするものである。
The present invention has been made in view of the background art as described above, and is a connection structure for connecting two shaft members having different thermal expansion coefficients in the axial direction, resulting from a difference in thermal expansion coefficient. It is an object of the present invention to provide a connection structure that does not generate thermal stress, looseness, backlash, or the like that occurs in the connecting portion.

上記課題を解決するために、請求項1に記載する発明では、第1の軸部材と第2の軸部材を軸方向に連結するための接続構造であって、第1の軸部材と第2の軸部材の熱膨張係数が異なり、第1の軸部材の端部には中空部分が設けられ、第2の軸部材の端部には突起部分が設けられ、第1の軸部材の中空部分と第2の軸部材の突起部分とは嵌合し、嵌合した第1の軸部材の中空部分と第2の軸部材の突起部分を、軸方向とは直交する方向に貫通する貫通孔が備えられ、貫通穴には、せん断ピンが嵌合挿入され、第1の軸部材の中空部分の端面側には円錐面が設けられ、 第2の軸部材の突起部分の基端側には円錐面が設けられ、第1の軸部材の円錐面と第2の軸部材の円錐面とが当接している。
In order to solve the above-mentioned problem, in the invention described in claim 1, there is provided a connection structure for connecting the first shaft member and the second shaft member in the axial direction, the first shaft member and the second shaft member. The shaft member has a different coefficient of thermal expansion, the end portion of the first shaft member is provided with a hollow portion, the end portion of the second shaft member is provided with a protruding portion, and the hollow portion of the first shaft member is provided. And a protruding portion of the second shaft member are fitted, and a through-hole penetrating the hollow portion of the fitted first shaft member and the protruding portion of the second shaft member in a direction orthogonal to the axial direction A shear pin is fitted and inserted into the through hole, a conical surface is provided on the end surface side of the hollow portion of the first shaft member, and a conical surface is provided on the base end side of the projecting portion of the second shaft member. surface is provided, the conical surface of the first shaft member and the conical surface of the second shaft member that has contact with.

ここで、(1)第1の軸部材の端面から貫通穴中心までの距離をLとし、(2)第1の軸部材の端面における中空部分の内半径をrfとし、(3)第2の軸部材の基端部の外半径をrmとし、(4)第1の軸部材の円錐面の半頂角をαfとし、(5) 第2の軸部材の円錐面の半頂角をαmとすると、
tan-1{2rf/3L}≦αf≦tan-1{2rf/L}
tan-1{2rm/3L}≦αm≦tan-1{2rm/L}
の関係を満たす円錐面を有する構成の接続構造とした。
Here, (1) the distance from the end surface of the first shaft member to the center of the through hole is L, (2) the inner radius of the hollow portion at the end surface of the first shaft member is r f, and (3) the second the outer radius and r m of the proximal end of the shaft member, (4) a half apex angle of the conical surface of the first shaft member and alpha f, (5) a half apex angle of the conical surface of the second shaft member Is α m
tan −1 {2r f / 3L} ≦ α f ≦ tan −1 {2r f / L}
tan -1 {2r m / 3L} ≤ α m ≤ tan -1 {2r m / L}
A connection structure having a conical surface satisfying the above relationship.

更に、請求項に記載する発明では、第1の軸部材と第2の軸部材を軸方向に連結するための接続構造であって、第1の軸部材と第2の軸部材の熱膨張係数が異なり、第1の軸部材には中空部分が設けられ、第2の軸部材の端部には突起部分が設けられ、当該突起部分の先端部にはオネジ部分が備えられ、第1の軸部材の中空部分と第2の軸部材の突起部分とは嵌合し、嵌合した第1の軸部材のオネジ部分にはナットが螺合すると共に、ナットの座面は第1の軸部材の端面を押圧し、第1の軸部材の中空部分には円錐面が設けられ、第2の軸部材の突起部分の基端側には円錐面が設けられ、第1の軸部材の円錐面と第2の軸部材の円錐面とが当接している構成の接続構造とした。
Furthermore, the invention described in claim 2 is a connection structure for connecting the first shaft member and the second shaft member in the axial direction, and thermal expansion of the first shaft member and the second shaft member. The first shaft member is provided with a hollow portion, the second shaft member is provided with a projection portion at the end portion thereof, and the tip portion of the projection portion is provided with a male screw portion. The hollow portion of the shaft member and the protruding portion of the second shaft member are fitted, the nut is screwed into the male screw portion of the fitted first shaft member, and the seat surface of the nut is the first shaft member A conical surface is provided in the hollow portion of the first shaft member, a conical surface is provided on the proximal end side of the projecting portion of the second shaft member, and the conical surface of the first shaft member is provided. And a conical surface of the second shaft member.

また、請求項に記載する発明では、請求項に記載の接続構造において、(1)前記第2の軸部材の円錐面の肩部から円錐面の頂点までの距離をLとし、(2)前記第1の軸部材の円錐面の内半径をrfとし、(3)前記第2の軸部材の円錐面の肩部外半径をrmとし、(4)前記第1の軸部材の円錐面の半頂角をαfとし、(5)前記第2の軸部材の円錐面の半頂角をαmとし、(6)前記第1の軸部材12円錐面の内半径rfは、第2の軸部材の円錐面の肩部外半径をrmであると定義した場合に、
tan-1{2rf/3L}≦αf≦tan-1{2rf/L}
tan-1{2rm/3L}≦αm≦tan-1{2rm/L}
の関係を満たす円錐面を有する構成の接続構造とした。
In the invention according to claim 3, in the connection structure according to claim 2, (1) the distance to the apex of the conical surface is L from the shoulder portion of the conical surface of the second shaft member, (2 ) The inner radius of the conical surface of the first shaft member is r f , (3) the shoulder outer radius of the conical surface of the second shaft member is r m, and (4) the first shaft member The half apex angle of the conical surface is α f , (5) the half apex angle of the conical surface of the second shaft member is α m, and (6) the inner radius r f of the conical surface of the first shaft member 12 is , If the outer radius of the shoulder of the conical surface of the second shaft member is defined as r m ,
tan −1 {2r f / 3L} ≦ α f ≦ tan −1 {2r f / L}
tan -1 {2r m / 3L} ≤ α m ≤ tan -1 {2r m / L}
A connection structure having a conical surface satisfying the above relationship.

また、請求項に記載する発明では、請求項1乃至に記載の接続構造において、第1の軸部材の中空部分の一部は、円筒形状部分を成し、第2の軸部材の突起部分の一部は、円柱形状部分を成し、円筒形状部分に、円柱形状部分が挿入される構成の接続構造とした。
According to a fourth aspect of the present invention, in the connection structure according to the first to third aspects, a part of the hollow portion of the first shaft member forms a cylindrical portion, and the protrusion of the second shaft member A part of the part formed a columnar part, and the connection structure was configured such that the columnar part was inserted into the cylindrical part.

更に、請求項に記載する発明では、請求項1乃至のいずれかに記載の接続構造において、第1の軸部材の円筒形状部分と第2の軸部材の円柱形状部分との嵌合面に、少なくとも1つのトルク伝達要素を設けた構成の接続構造とした。
Furthermore, in the invention described in claim 5 , in the connection structure according to any one of claims 1 to 4 , the fitting surface between the cylindrical portion of the first shaft member and the columnar portion of the second shaft member In addition, a connection structure having a configuration in which at least one torque transmission element is provided.

また、請求項に記載する発明では、請求項1乃至のいずれかに記載の接続構造において、第1の軸部材に使用する材料および第2の軸部材に使用する材料の組み合わせは、金属材料とカーボン/カーボンコンポジット材の組み合わせ、あるいは金属材料とセラミック材との組み合わせである構成の接続構造とした。
Further, in the invention described in claim 6 , in the connection structure according to any one of claims 1 to 5 , the combination of the material used for the first shaft member and the material used for the second shaft member is a metal. The connection structure is a combination of a material and a carbon / carbon composite material, or a combination of a metal material and a ceramic material.

以上述べたような発明の構成とすることにより、高温炉内で、回転運動を伝達したり、種々の荷重を伝達するために使用される接続構造であって、2以上の軸部材を軸方向に接続して使用すると共に、接続する軸部材の材料が異なるような場合であっても、接続された軸部材の間で緩みが生じたり、あるいは接続された軸部材の間で過度の応力が発生したりすることがない接続構造とすることができる。
By the configuration of the invention as described above, it is a connection structure used for transmitting rotational motion or transmitting various loads in a high temperature furnace, and two or more shaft members are axially connected. Even when the material of the shaft member to be connected is different, loosening occurs between the connected shaft members or excessive stress is applied between the connected shaft members. It can be set as the connection structure which does not generate | occur | produce.

本発明の第1の実施例に係る接続構造を示したものであって、接続構造を分解した状態を示したものである。1 illustrates a connection structure according to a first embodiment of the present invention, and illustrates a state in which the connection structure is disassembled. 本発明の第1の実施例に係る接続構造を示したものであって、接続構造を組立てた状態を示したものである。1 shows a connection structure according to a first embodiment of the present invention, and shows a state in which the connection structure is assembled. 本発明の第1の実施例の変形例に係る接続構造を示したものである。6 shows a connection structure according to a modification of the first embodiment of the present invention. 本発明の第1の実施例に係る接続構造の寸法諸元を示したものである。FIG. 3 shows dimensions of the connection structure according to the first embodiment of the present invention. 本発明の第2の実施例に係る接続構造を示したものであって、接続構造を分解した状態を示したものである。The connection structure which concerns on 2nd Example of this invention is shown, Comprising: The state which decomposed | disassembled the connection structure is shown. 本発明の第2の実施例に係る接続構造を示したものであって、接続構造を組立てた状態を示したものである。The connection structure which concerns on the 2nd Example of this invention is shown, Comprising: The state which assembled the connection structure is shown. 本発明の第2の実施例に係る接続構造の寸法諸元を示したものである。The dimension specification of the connection structure which concerns on the 2nd Example of this invention is shown.

図に基き、本発明を実施するための形態を説明する。 図1および図2は、本発明の第1の実施例に係る接続構造10を示したものであって、図1は接続構造を分解した状態を示したものであり、図2は接続構造を組立てた状態を示したものである。 この接続構造10は、第1の軸部材11と、第2の軸部材12と、せん断ピン13から構成されている。
なお、ここで、軸部材とは、動力や運動(直線運動や回転運動)を伝達するために使用される部材の総称として使用するものであり、形状が「細長い棒状」の部材に限定されるものではない。
The form for implementing this invention is demonstrated based on a figure. 1 and 2 show a connection structure 10 according to a first embodiment of the present invention. FIG. 1 shows a state in which the connection structure is disassembled, and FIG. 2 shows the connection structure. The assembled state is shown. The connection structure 10 includes a first shaft member 11, a second shaft member 12, and a shear pin 13.
Here, the shaft member is used as a general term for members used for transmitting power or motion (linear motion or rotational motion), and is limited to a member having an “elongate rod shape”. It is not a thing.

第1の軸部材11の端部には、中空部分11aが設けられ、この中空部分11aの端面側(図1及び図2では右側)には円錐面11bが設けられている。 また、第1の軸部材11の中空部分11aであって、円錐面11bの左側には円筒形状部分11cを設けるようにしても良い。   A hollow portion 11a is provided at the end of the first shaft member 11, and a conical surface 11b is provided on the end surface side (right side in FIGS. 1 and 2) of the hollow portion 11a. Moreover, you may make it provide the cylindrical part 11c in the hollow part 11a of the 1st shaft member 11, and the left side of the conical surface 11b.

同様に、第2の軸部材12の端部には、突起部分12aが設けられ、この突起部分12aの基端側(図1及び図2では右側)には円錐面12bが設けられている。 また、第2の軸部材12の突起部分12aであって、円錐面12bの左側(第2の軸部材12の先端側)には円柱形状部分12cを設けるようにしても良い。   Similarly, a protruding portion 12a is provided at the end of the second shaft member 12, and a conical surface 12b is provided on the proximal end side (right side in FIGS. 1 and 2) of the protruding portion 12a. Also, a cylindrical portion 12c may be provided on the left side of the conical surface 12b (the tip side of the second shaft member 12), which is the protruding portion 12a of the second shaft member 12.

そして、第1の軸部材11の中空部分11aには、第2の軸部材12の突起部分12aが挿入され互いに嵌合するようになっており、第1の軸部材11の中空部分11aに設けた円錐面11bは、第2の軸部材12の突起部分12aに設けられた円錐面12bに当接するようになっている(図2参照)。   And the protrusion part 12a of the 2nd shaft member 12 is inserted in the hollow part 11a of the 1st shaft member 11, and it mutually fits, It is provided in the hollow part 11a of the 1st shaft member 11 The conical surface 11b comes into contact with the conical surface 12b provided on the protruding portion 12a of the second shaft member 12 (see FIG. 2).

また、第1の軸部材11の中空部分11aに設けた円筒形状部分11cには、第2の軸部材12の突起部分12aに設けられた円柱形状部分12cが挿入される(図2参照)。   In addition, the cylindrical portion 11c provided in the protruding portion 12a of the second shaft member 12 is inserted into the cylindrical portion 11c provided in the hollow portion 11a of the first shaft member 11 (see FIG. 2).

そして、第1の軸部材11の中空部分11aと、第2の軸部材12の突起部分12aには、軸方向とは直交する方向であって、軸芯が共通する貫通孔11d、12dが設けられており、この貫通孔11d、12dにはせん断ピン13が挿入されている(図2参照)。   The hollow portion 11a of the first shaft member 11 and the protruding portion 12a of the second shaft member 12 are provided with through holes 11d and 12d that are perpendicular to the axial direction and have a common shaft core. The shear pin 13 is inserted into the through holes 11d and 12d (see FIG. 2).

ここで、第1の軸部材11の中空部分11aに設けた円筒形状部分11cと第2の軸部材12の突起部分12aに設けられた円柱形状部分12cとの間の嵌め合い、および貫通孔11d、12dとせん断ピン13の嵌め合いについては、部材間の熱膨張係数の相違に起因する熱応力が過大にならない程度の隙間が生じるような公差を設定しても良い。   Here, the fitting between the cylindrical portion 11c provided in the hollow portion 11a of the first shaft member 11 and the columnar portion 12c provided in the protruding portion 12a of the second shaft member 12, and the through hole 11d. , 12d and the shear pin 13 may be fitted with a tolerance such that a gap is generated so that the thermal stress due to the difference in thermal expansion coefficient between the members does not become excessive.

このような接続構造を高温炉に適用する場合には、例えば第1の軸部材11を炉外に配置した駆動源に接続し、第2の軸部材12を炉内に配置し、炉外から炉内へ、運動(直進運動や回転運動等)、あるいは外力(トルク、軸力、モーメント等)を伝達させるようにしても良いし、第1の軸部材11と第2の軸部材12を入れ替えて配置するようにしても良い。   When such a connection structure is applied to a high-temperature furnace, for example, the first shaft member 11 is connected to a drive source disposed outside the furnace, the second shaft member 12 is disposed inside the furnace, and from the outside of the furnace. Movement (straight movement, rotational movement, etc.) or external force (torque, axial force, moment, etc.) may be transmitted into the furnace, or the first shaft member 11 and the second shaft member 12 are exchanged. May be arranged.

なお、接続部材をこのように高温炉に適用する場合には、炉外に配置する軸部材にはステンレス鋼のような比較的耐熱性のある鋼を使用し、炉内に配置する軸部材には、セラミックス材料やカーボン/カーボンコンポジット材などの耐熱性の極めて優れた材料を使用しても良い。   When the connecting member is applied to a high-temperature furnace in this way, a relatively heat-resistant steel such as stainless steel is used for the shaft member disposed outside the furnace, and the shaft member disposed in the furnace is used. May be a material having extremely excellent heat resistance such as a ceramic material or a carbon / carbon composite material.

このように、第1の軸部材11と第2の軸部材12に異なる材料を使用し、各材料の熱膨張係数が異なるような場合であって、環境温度が大きく変化する環境下で使用する場合でも、上述したように、第1の軸部材11と第2の軸部材12をせん断ピン13を介して連結すると共に、第1の軸部材11の中空部分11aに設けた円錐面11bと第2の軸部材12の突起部分12aに設けられた円錐面12bとを当接させて第1の軸部材11と第2の軸部材12を接続させることにより、第1の軸部材11と第2の軸部材12の熱膨張差は、円錐面11bと円錐面12bの間の境界面での相対的な動き(ズレ)によって吸収されるようになっている。 この点については、後で詳細に説明する。   As described above, different materials are used for the first shaft member 11 and the second shaft member 12, and the thermal expansion coefficients of the respective materials are different, and the environment is used in an environment where the environmental temperature changes greatly. Even in this case, as described above, the first shaft member 11 and the second shaft member 12 are connected via the shear pin 13, and the conical surface 11b provided in the hollow portion 11a of the first shaft member 11 and the first shaft member 11 are connected. The first shaft member 11 and the second shaft member 12 are connected by contacting the conical surface 12b provided on the protruding portion 12a of the second shaft member 12 to connect the first shaft member 11 and the second shaft member 12. The difference in thermal expansion of the shaft member 12 is absorbed by the relative movement (deviation) at the boundary surface between the conical surface 11b and the conical surface 12b. This point will be described in detail later.

従って、第1の軸部材11と第2の軸部材12の接続部に、例えば数百℃の温度変化が生じたとしても、接続された軸部材の間で緩み・ガタ等が生じたり、あるいは接続された軸部材の間で過度の応力((熱応力)が発生したりすることはない。   Therefore, even if a temperature change of, for example, several hundred degrees C. occurs at the connecting portion between the first shaft member 11 and the second shaft member 12, looseness or backlash occurs between the connected shaft members, or Excessive stress ((thermal stress) is not generated between the connected shaft members.

なお、炉外から炉内へ伝達するトルクが大きい場合には、図3に示すように第1の軸部材11と第2の軸部材12の間に、少なくとも1つのトルク伝達要素、例えばキー14を設置するようにしても良い。   When the torque transmitted from the outside of the furnace to the inside of the furnace is large, at least one torque transmission element such as a key 14 is provided between the first shaft member 11 and the second shaft member 12 as shown in FIG. You may make it install.

図4は、本発明に係る接続構造の寸法諸元を示したものである。 本発明に係る接続構造10では、第1の軸部材11の中空部分11aと、第2の軸部材12の突起部分12aに設けられたせん断ピン13と、互いに当接した第1の軸部材11の中空部分11aに設けた円錐面11bと第2の軸部材12の突起部分12aに設けられた円錐面12bによって、第1の軸部材11と第2の軸部材12の間で、運動(直進運動や回転運動等)および外力(トルク、軸力、モーメント等)が伝達されるようになっている。   FIG. 4 shows dimensions of the connection structure according to the present invention. In the connection structure 10 according to the present invention, the hollow portion 11a of the first shaft member 11, the shear pin 13 provided in the protruding portion 12a of the second shaft member 12, and the first shaft member 11 in contact with each other. Between the first shaft member 11 and the second shaft member 12 by the conical surface 11b provided in the hollow portion 11a and the conical surface 12b provided in the protruding portion 12a of the second shaft member 12. Motion, rotational motion, etc.) and external force (torque, axial force, moment, etc.) are transmitted.

従って、円錐面11b、12bの頂点が、せん断ピン13と第1の軸部材11および第2の軸部材12との接触面上の1つの点“O”で交わるようになっていれば、第1の軸部材11と第2の軸部材12の材料が異なり、それぞれの熱膨張係数が異なる場合であって、第1の軸部材11と第2の軸部材12の接合構造部分の温度が変化したとしても、点“O”からの円錐面11b、12bまでの距離は変動するものの、構造全体の変形は点“O”を基点とする相似変形であるから、その変動は、点“O”から円錐面11b、12bに沿って半径方向に変動するだけであるから、円錐面11b、12bの接触状態は常に一定である。   Accordingly, if the apexes of the conical surfaces 11b and 12b intersect at one point “O” on the contact surface between the shear pin 13 and the first shaft member 11 and the second shaft member 12, The material of the first shaft member 11 and the second shaft member 12 are different and have different thermal expansion coefficients, and the temperature of the joint structure portion between the first shaft member 11 and the second shaft member 12 changes. Even though the distance from the point “O” to the conical surfaces 11b and 12b varies, the deformation of the entire structure is a similar deformation based on the point “O”. Since it only varies in the radial direction along the conical surfaces 11b and 12b, the contact state of the conical surfaces 11b and 12b is always constant.

第1の軸部材11と第2の軸部材12の接合構造部分の温度が変化したとしても、接続された軸部材の間で緩みが生じたり、あるいは接続された軸部材の間で過度の応力が発生したりすることがない。   Even if the temperature of the joint structure portion of the first shaft member 11 and the second shaft member 12 changes, loosening occurs between the connected shaft members, or excessive stress is applied between the connected shaft members. Does not occur.

ここで説明したように、円錐面11b、12bの頂点が、せん断ピン13と第1の軸部材11および第2の軸部材12との接触面上の1つの点“O”で交わるようになっていれば、第1の軸部材11と第2の軸部材12の材料が異なり、それぞれの熱膨張係数が異なる場合であって、第1の軸部材11と第2の軸部材12の接合構造部分の温度が変化したとしても、理論的には、接続された第1および第2の軸部材11、12の間で緩みが生じたり、あるいは過度の応力が発生したりすることがない。   As described here, the apexes of the conical surfaces 11 b and 12 b intersect at one point “O” on the contact surface between the shear pin 13 and the first shaft member 11 and the second shaft member 12. If this is the case, the materials of the first shaft member 11 and the second shaft member 12 are different and the thermal expansion coefficients thereof are different, and the joining structure of the first shaft member 11 and the second shaft member 12 Even if the temperature of the portion changes, theoretically, the connected first and second shaft members 11 and 12 are not loosened or excessive stress is not generated.

しかしながら、実際の構造物においては、円錐面11b、12bの頂点が、せん断ピン13と第1の軸部材11および第2の軸部材12との接触面上の1つの点“O”で交わるようになっていなくとも、所定の条件の範囲内であれば、現実的には接続された第1および第2の軸部材11、12の間で緩みが生じたり、あるいは過度の応力が発生したりすることがなく、実用上何ら問題ないことを発明者らは見出した。   However, in the actual structure, the apexes of the conical surfaces 11 b and 12 b intersect at one point “O” on the contact surface between the shear pin 13 and the first shaft member 11 and the second shaft member 12. Even if it is not within the range of the predetermined conditions, in reality, the first and second shaft members 11 and 12 connected to each other may loosen or excessive stress may be generated. The inventors have found that there is no problem in practical use.

これは、第1の軸部材11と第2の軸部材12と接続した場合に、第1の軸部材11と第2の軸部材12の円錐面11b、12bや、せん断ピン13と第1の軸部材11および第2の軸部材12との接触面が弾性変形し、この弾性変形によって、接続された第1および第2の軸部材11、12の間で緩みが生じたり、あるいは過度の応力が発生したりすることがないものと考えられる。   This is because when the first shaft member 11 and the second shaft member 12 are connected, the conical surfaces 11b and 12b of the first shaft member 11 and the second shaft member 12, the shear pin 13 and the first shaft member 11 are connected. The contact surface between the shaft member 11 and the second shaft member 12 is elastically deformed, and this elastic deformation causes looseness between the connected first and second shaft members 11 and 12, or excessive stress. It is considered that no occurrence occurs.

そこで、第1の軸部材11と第2の軸部材12の円錐面11b、12bの円錐角がどのような範囲であれば、接続された第1および第2の軸部材11、12の間で緩みが生じたり、あるいは過度の応力が発生したりすることがないかを試験によって確認した。 以下、試験結果について説明する。   Therefore, what is the range of the conical angles of the conical surfaces 11b, 12b of the first shaft member 11 and the second shaft member 12, between the connected first and second shaft members 11, 12. It was confirmed by a test whether loosening occurred or excessive stress was generated. Hereinafter, the test results will be described.

まず、図4の接続構造の寸法諸元に示すように、第1の軸部材11の端面から貫通穴中心までの距離をLとし、第1の軸部材11の端面における中空部分11aの内半径をrfとし、第2の軸部材12の基端部の外半径をrmとし、第1の軸部材11の円錐面11bの半頂角をαfとし、第2の軸部材12の円錐面12bの半頂角をαmと定義する。
ここで、第2の軸部材12の基端部の外半径rmは、嵌合後における第1の軸部材11の端面位置における第2の軸部材12の円錐面12bの外半径であると定義する。
First, as shown in the dimension specifications of the connection structure in FIG. 4, the distance from the end surface of the first shaft member 11 to the center of the through hole is L, and the inner radius of the hollow portion 11a on the end surface of the first shaft member 11 was a r f, the outer radius of the base end portion of the second shaft member 12 and r m, the half apex angle of the conical surface 11b of the first shaft member 11 and alpha f, of the second shaft member 12 conical The half apex angle of the surface 12b is defined as α m .
Here, the outer radius r m of the base end portion of the second shaft member 12, if it is the outer radius of the conical surface 12b of the second shaft member 12 at the position of the end face of the first shaft member 11 after the fitting Define.

第1の軸部材11と、第2の軸部材12の材質をそれぞれSUS304材、カーボン/カーボンコンポジット材とし、
第1の軸部材11の円錐面11bのtanαfが[rf /(L*1/2)]、[rf /(L*1/1)]、 [rf
/(L*3/2)]となるように加工した第1の軸部材11と、
第2の軸部材12の円錐面12bのtanαmが[rm /(L*1/2)]、[rm /(L*1/1)]、 [rm
/(L*3/2)]となるように加工した第2の軸部材12と、を準備し、
これらの第1の軸部材11と第2の軸部材12とを組み合わせ、貫通孔11d、12dを加工すると共に、この貫通孔11d、12dにせん断ピン13を挿入して第1の軸部材11と第2の軸部材12とを組立てた。
The materials of the first shaft member 11 and the second shaft member 12 are SUS304 material and carbon / carbon composite material, respectively.
The tan α f of the conical surface 11b of the first shaft member 11 is [r f / (L * 1/2)], [r f / (L * 1/1)], [r f
/ (L * 3/2)], the first shaft member 11 processed to be
The tan α m of the conical surface 12b of the second shaft member 12 is [r m / (L * 1/2)], [r m / (L * 1/1)], [r m
/ (L * 3/2)] is prepared, and the second shaft member 12 is prepared.
The first shaft member 11 and the second shaft member 12 are combined to process the through holes 11d and 12d, and the shear pin 13 is inserted into the through holes 11d and 12d to form the first shaft member 11 and The second shaft member 12 was assembled.

組立てた第1の軸部材11と第2の軸部材12の接続構造部分を高温炉の中へ入れ、400℃〜500℃まで加熱すると共に、運動(直進運動と回転運動)および外力(トルク、軸力、モーメント)を伝達させて、接続された第1および第2の軸部材11、12の間で緩みが生じたり、あるいは過度の応力が発生したりすることがないかを確認したところ、上記のtanαfおよびtanαmの異なる第1の軸部材11と第2の軸部材12のいずれの組み合わせにおいても、接続された第1および第2の軸部材11、12の間で緩みが生じたり、あるいは過度の応力が発生したりすることがない(即ち、部材の破損が生じない)ことを確認した。 The assembled connection structure portion of the first shaft member 11 and the second shaft member 12 is put into a high temperature furnace and heated to 400 ° C. to 500 ° C., and motion (straight motion and rotational motion) and external force (torque, (Axial force, moment) is transmitted, and it is confirmed whether looseness occurs between the connected first and second shaft members 11, 12 or excessive stress is generated. in any combination of the above tan [alpha f and tan [alpha m and the first shaft member 11 having a different second shaft member 12, or cause loosening between the first and second shaft members 11 and 12 which are connected Or, it was confirmed that no excessive stress was generated (that is, the member was not damaged).

次に、第1の軸部材11と、第2の軸部材12の材質を入れ替え、第1の軸部材11の材質をカーボン/カーボンコンポジット材、第2軸部材12の材質をSUS304材として、上記と同様な試験を行った所、tanαfおよびtanαmの異なる第1の軸部材11と第2の軸部材12のいずれの組み合わせにおいても、接続された第1および第2の軸部材11、12の間で緩みが生じたり、あるいは過度の応力が発生したりすることがない(即ち、部材の破損が生じない)ことを確認した。   Next, the materials of the first shaft member 11 and the second shaft member 12 are exchanged, the material of the first shaft member 11 is carbon / carbon composite material, and the material of the second shaft member 12 is SUS304 material. When the same test is performed, the first shaft member 11 and the second shaft member 12 having different tanαf and tanαm are connected to each other between the connected first and second shaft members 11 and 12. Thus, it was confirmed that no loosening or excessive stress was generated (that is, the member was not damaged).

以上の試験結果から、少なくとも、tanαfおよびtanαmが以下の条件を満たす限りは、接続された第1および第2の軸部材11、12の間で緩みが生じたり、あるいは過度の応力が発生したりすることがない(即ち、部材の破損が生じない)ということが言える。
即ち、
From the above test results, at least as long as satisfying tan [alpha f and tan [alpha m is below, or cause loosening between the first and second shaft members 11 and 12 which are connected, or excessive stress generation It can be said that there is no damage (that is, the member is not damaged).
That is,

ここで使用したSUS304材、カーボン/カーボンコンポジット材の熱膨張係数は、以下の通りである。
SUS304材: 18x10−61/℃
カーボン/カーボンコンポジット材の繊維配向方向: 1x10−61/℃
繊維と直角方向: 10x10−61/℃
The thermal expansion coefficients of the SUS304 material and the carbon / carbon composite material used here are as follows.
SUS304 material: 18 × 10 −6 1 / ° C.
Fiber orientation direction of carbon / carbon composite material: 1 × 10 −6 1 / ° C.
Fiber and perpendicular: 10x10 -6 1 / ℃

次に、本発明の第2の実施例について説明する。 図5および図6は、本発明の第2の実施例に係る接続構造20を示したものであって、図5は接続構造を分解した状態を示したものであり、図6は接続構造を組立てた状態を示したものである。 この接続構造20は、第1の軸部材21と、第2の軸部材22と、ナット15から構成されている。 第2の実施例に係る接続構造20における第1の軸部材は、例えば、ボス部の外周に複数のフィンが配置された炉内ファンの如き構造物を想定したものであるが、このような構造物に限定されるものではなく、軸部材としては、動力や運動(直線運動や回転運動)を伝達するために使用される幅広い部材が該当する。   Next, a second embodiment of the present invention will be described. 5 and 6 show a connection structure 20 according to a second embodiment of the present invention. FIG. 5 shows a state in which the connection structure is disassembled, and FIG. 6 shows the connection structure. The assembled state is shown. The connection structure 20 includes a first shaft member 21, a second shaft member 22, and a nut 15. The first shaft member in the connection structure 20 according to the second embodiment is assumed to be a structure such as a furnace fan in which a plurality of fins are arranged on the outer periphery of the boss portion. The shaft member is not limited to a structure, and a wide range of members used for transmitting power and motion (linear motion and rotational motion) are applicable.

第1の軸部材21には、中空部分21aが設けられ、この中空部分21aの一端側(図5及び図6では右側)には円錐面21bが設けられている。 また、第1の軸部材21の中空部分21aであって、円錐面21bの左側には円筒形状部分21cを設けるようにしても良い。   The first shaft member 21 is provided with a hollow portion 21a, and a conical surface 21b is provided on one end side (right side in FIGS. 5 and 6) of the hollow portion 21a. Further, the hollow portion 21a of the first shaft member 21 may be provided with a cylindrical portion 21c on the left side of the conical surface 21b.

同様に、第2の軸部材22の端部には、突起部分22aが設けられ、この突起部分22aの基端側(図5及び図6では右側)には円錐面2bが設けられており、円錐面の右側端部(第2の軸部材の右側円筒部との接続部分)は肩部を形成している。 また、第2の軸部材22の突起部分22aであって、円錐面22bの左側(第2の軸部材22の先端側)には円柱形状部分22cを設けるようにしても良い。   Similarly, a protruding portion 22a is provided at the end of the second shaft member 22, and a conical surface 2b is provided on the proximal end side (right side in FIGS. 5 and 6) of the protruding portion 22a. A right end portion of the conical surface (a connection portion with the right cylindrical portion of the second shaft member) forms a shoulder portion. Also, a cylindrical portion 22c may be provided on the left side of the conical surface 22b (the tip side of the second shaft member 22), which is the protruding portion 22a of the second shaft member 22.

そして、第2の軸部材22の突起部分22a先端側(円柱形状部分22c)には、オネジ部分22eが設けられている。 また、第1の軸部材21の中空部分21aには、第2の軸部材22の突起部分22aが挿入され互いに嵌合するようになっており、第1の軸部材21の中空部分21aに設けた円錐面21bは、第2の軸部材22の突起部分22aに設けられた円錐面22bに当接するようになっている(図6参照)。   A male screw portion 22e is provided on the distal end side (cylindrical portion 22c) of the protruding portion 22a of the second shaft member 22. Further, the protruding portion 22a of the second shaft member 22 is inserted into the hollow portion 21a of the first shaft member 21 so as to be fitted to each other, and is provided in the hollow portion 21a of the first shaft member 21. The conical surface 21b comes into contact with a conical surface 22b provided on the protruding portion 22a of the second shaft member 22 (see FIG. 6).

また、第1の軸部材21の中空部分21aに設けた円筒形状部分21cには、第2の軸部材22の突起部分22aに設けられた円柱形状部分22cが挿入される(図6参照)。   Further, a cylindrical portion 22c provided in the protruding portion 22a of the second shaft member 22 is inserted into the cylindrical portion 21c provided in the hollow portion 21a of the first shaft member 21 (see FIG. 6).

そして、第1の軸部材21の中空部分21aに、第2の軸部材22の突起部分22aが挿入され互いに嵌合させた後、第1の軸部材21から突起した第2の軸部材22の突起部分22a先端側に設けたオネジ部分22eには、ナット15が螺合される。 このナット15を締めることにより、ナット15の座面は、第1の軸部材21の左側端面を押圧し、第1の軸部材21の円錐面21bと第2の軸部材22の円錐面22bが互いに当接するようになっている(図6参照)。   Then, after the protruding portion 22a of the second shaft member 22 is inserted into and fitted to the hollow portion 21a of the first shaft member 21, the second shaft member 22 protruding from the first shaft member 21 is inserted. The nut 15 is screwed into the male screw portion 22e provided on the distal end side of the protruding portion 22a. By tightening the nut 15, the seating surface of the nut 15 presses the left end surface of the first shaft member 21, and the conical surface 21 b of the first shaft member 21 and the conical surface 22 b of the second shaft member 22 are They are in contact with each other (see FIG. 6).

ここで、第1の軸部材21の中空部分21aに設けた円筒形状部分21cと第2の軸部材22の突起部分22aに設けられた円柱形状部分22cとの間の嵌め合いについては、部材間の熱膨張係数の相違に起因する熱応力が過大にならない程度の隙間が生じるような公差を設定しても良い。   Here, the fitting between the cylindrical portion 21c provided in the hollow portion 21a of the first shaft member 21 and the columnar portion 22c provided in the protruding portion 22a of the second shaft member 22 Tolerances may be set so as to create gaps that do not cause excessive thermal stress due to differences in the thermal expansion coefficients.

このような接続構造を高温炉に適用する場合には、例えば第2の軸部材21を炉外に配置した駆動用モーターに接続し、第1の軸部材22(例えば炉内ファン)を炉内に配置し、炉外から炉内へ回転運動を伝達させるようにしても良い。   When such a connection structure is applied to a high-temperature furnace, for example, the second shaft member 21 is connected to a driving motor disposed outside the furnace, and the first shaft member 22 (for example, an in-furnace fan) is connected to the inside of the furnace. The rotary motion may be transmitted from the outside of the furnace to the inside of the furnace.

なお、接続部材をこのように高温炉に適用する場合には、炉外に配置する軸部材にはステンレス鋼のような比較的耐熱性のある鋼を使用し、炉内に配置する軸部材(例えば炉内ファン)には、セラミックス材料やカーボン/カーボンコンポジット材などの耐熱性の極めて優れた材料を使用しても良い。   When the connecting member is applied to the high-temperature furnace as described above, a relatively heat-resistant steel such as stainless steel is used for the shaft member disposed outside the furnace, and the shaft member disposed in the furnace ( For example, a material having extremely high heat resistance such as a ceramic material or a carbon / carbon composite material may be used for the furnace fan.

このように、第1の軸部材21(例えば炉内ファン)と第2の軸部材22に異なる材料を使用し、各材料の熱膨張係数が異なるような場合であって、環境温度が大きく変化する環境下で使用する場合でも、上述したように、第1の軸部材21(例えば炉内ファン)と第2の軸部材22をナット15を介して締結すると共に、第1の軸部材21(例えば炉内ファン)の中空部分21aに設けた円錐面21bと第2の軸部材22の突起部分22aに設けられた円錐面22bとを当接させて第1の軸部材21と第2の軸部材22を締結させることにより、第1の軸部材21と第2の軸部材22の熱膨張差は、円錐面21bと円錐面22bの間の境界面での相対的な動き(ズレ)によって吸収されるようになっている。   In this way, different materials are used for the first shaft member 21 (for example, the in-furnace fan) and the second shaft member 22, and the thermal expansion coefficients of the respective materials are different. Even when used in an environment in which the first shaft member 21 (for example, an in-furnace fan) and the second shaft member 22 are fastened via the nut 15 as described above, the first shaft member 21 ( For example, the first shaft member 21 and the second shaft are brought into contact with the conical surface 21b provided on the hollow portion 21a of the furnace and the conical surface 22b provided on the protruding portion 22a of the second shaft member 22. By fastening the member 22, the difference in thermal expansion between the first shaft member 21 and the second shaft member 22 is absorbed by the relative movement (deviation) at the boundary surface between the conical surface 21b and the conical surface 22b. It has come to be.

従って、第1の軸部材21(例えば炉内ファン)と第2の軸部材22の接続部に、例えば数百℃の温度変化が生じたとしても、接続された軸部材の間で緩み・ガタ等が生じたり、あるいは接続された軸部材の間で過度の応力(熱応力)が発生したりすることはない。   Therefore, even if a temperature change of, for example, several hundred degrees C. occurs at the connecting portion between the first shaft member 21 (for example, the in-furnace fan) and the second shaft member 22, loosening and backlash between the connected shaft members occurs. Or excessive stress (thermal stress) is not generated between the connected shaft members.

なお、炉外から炉内へ伝達するトルクが大きい場合には、第1の実施例において説明したように、第1の軸部材21と第2の軸部材22の間に、少なくとも1つのトルク伝達要素、例えばキーを設置するようにしても良い。   When the torque transmitted from the outside of the furnace to the inside of the furnace is large, at least one torque transmission is performed between the first shaft member 21 and the second shaft member 22 as described in the first embodiment. Elements such as keys may be installed.

図7は、本発明に係る第2の実施例の接続構造の寸法諸元を示したものである。 本発明に係る接続構造20では、第2の軸部材22の突起部分22aの先端側に設けられたオネジ部分22e螺合したナット15と第1の軸部材21の左側端面の間、及び、互いに当接した第1の軸部材21の中空部分21aに設けた円錐面21bと第2の軸部材22の突起部分22aに設けられた円錐面22bとの間において、第1の軸部材21と第2の軸部材22の間で、回転運動が伝達されるようになっている。   FIG. 7 shows dimensions of the connection structure of the second embodiment according to the present invention. In the connection structure 20 according to the present invention, the male screw portion 22e provided on the distal end side of the protruding portion 22a of the second shaft member 22 and the screwed nut 15 and the left end surface of the first shaft member 21 are mutually connected. Between the conical surface 21b provided in the hollow portion 21a of the abutting first shaft member 21 and the conical surface 22b provided in the protruding portion 22a of the second shaft member 22, the first shaft member 21 and the first shaft member 21 A rotational motion is transmitted between the two shaft members 22.

従って、円錐面21b、22bの頂点が、ナット15の座面(あるいは第1の軸部材の左側端面)上の1つの点“O”で交わるようになっていれば、第1の軸部材21と第2の軸部材22の材料が異なり、それぞれの熱膨張係数が異なる場合であって、第1の軸部材21と第2の軸部材22の接合構造部分の温度が変化したとしても、点“O”からの円錐面21b、22bまでの距離は変動するものの、構造全体の変形は点“O”を基点とする相似変形であるから、その変動は、点“O”から円錐面21b、22bに沿って半径方向に変動するだけであるから、円錐面21b、22bの接触状態は常に一定である。   Therefore, if the apexes of the conical surfaces 21b and 22b intersect at one point “O” on the seating surface of the nut 15 (or the left end surface of the first shaft member), the first shaft member 21 Even if the material of the second shaft member 22 is different and the thermal expansion coefficients thereof are different, even if the temperature of the joint structure portion of the first shaft member 21 and the second shaft member 22 changes, Although the distance from the “O” to the conical surfaces 21b and 22b varies, the deformation of the entire structure is a similar deformation starting from the point “O”, so the variation is from the point “O” to the conical surfaces 21b, Since it only varies in the radial direction along 22b, the contact state of the conical surfaces 21b, 22b is always constant.

第1の軸部材21と第2の軸部材22の接合構造部分の温度が変化したとしても、接続された軸部材の間で緩みが生じたり、あるいは接続された軸部材の間で過度の応力が発生したりすることがない。   Even if the temperature of the joint structure portion of the first shaft member 21 and the second shaft member 22 changes, loosening occurs between the connected shaft members, or excessive stress is applied between the connected shaft members. Does not occur.

ここで説明したように、円錐面21b、22bの頂点が、ナット15の座面(あるいは第1の軸部材の左側端面)上の1つの点“O”で交わるようになっていれば、第1の軸部材21と第2の軸部材22の材料が異なり、それぞれの熱膨張係数が異なる場合であって、第1の軸部材21と第2の軸部材22の接合構造部分の温度が変化したとしても、理論的には、接続された第1および第2の軸部材21、22の間で緩みが生じたり、あるいは過度の応力が発生したりすることがない。   As explained here, if the apexes of the conical surfaces 21b and 22b intersect at one point “O” on the seating surface of the nut 15 (or the left end surface of the first shaft member), The material of the first shaft member 21 and the second shaft member 22 are different, and the respective thermal expansion coefficients are different, and the temperature of the joint structure portion between the first shaft member 21 and the second shaft member 22 changes. Even in this case, theoretically, no looseness or excessive stress is generated between the connected first and second shaft members 21 and 22.

しかしながら、第1実施例でも説明したように、実際の構造物においては、円錐面21b、22bの頂点が、ナット15の座面(あるいは第1の軸部材の左側端面)上の1つの点“O”で交わるようになっていなくとも、所定の条件の範囲内であれば、現実的には接続された第1および第2の軸部材21、22の間で緩みが生じたり、あるいは過度の応力が発生したりすることがなく、実用上何ら問題ない。   However, as described in the first embodiment, in the actual structure, the apex of the conical surfaces 21b and 22b is one point on the seating surface of the nut 15 (or the left end surface of the first shaft member). Even if it does not come in contact with O ″, if it is within the range of the predetermined condition, in reality, the connected first and second shaft members 21 and 22 may loosen or excessively No stress is generated and there is no practical problem.

これは、第1の軸部材21と第2の軸部材22と接続した場合に、第1の軸部材21と第2の軸部材22の円錐面21b、22bや、ナット15と第1の軸部材21との接触面が弾性変形し、この弾性変形によって、接続された第1および第2の軸部材21、22の間で緩みが生じたり、あるいは過度の応力が発生したりすることがないものと考えられる。   This is because, when the first shaft member 21 and the second shaft member 22 are connected, the conical surfaces 21b and 22b of the first shaft member 21 and the second shaft member 22, the nut 15 and the first shaft. The contact surface with the member 21 is elastically deformed, and the elastic deformation does not cause looseness between the connected first and second shaft members 21 and 22 or excessive stress is generated. It is considered a thing.

そして、第1の実施例において説明した試験結果から、少なくとも、半頂角αfおよびαmが以下の条件を満たす限りは、接続された第1および第2の軸部材21、22の間で緩みが生じたり、あるいは過度の応力が発生したりすることがない(即ち、部材の破損が生じない)ということが推認できる。
ただし、ここで第2の軸部材22の円錐面22bの肩部から円錐面22bの頂点までの距離をLとし、第1の軸部材21の円錐面21bの内半径をrfとし、第2の軸部材22の円錐面22bの肩部外半径をrmとし、第1の軸部材21の円錐面21bの半頂角をαfとし、第2の軸部材22の円錐面22bの半頂角をαmとし、第1の軸部材21の円錐面の内半径rfは、第2の軸部材22の円錐面の肩部外半径をrmであると定義する。
From the test results described in the first embodiment, at least as long as the half apex angles α f and α m satisfy the following conditions, the connected first and second shaft members 21 and 22 are connected. It can be inferred that loosening does not occur or excessive stress is not generated (that is, the member is not damaged).
Here, the distance from the shoulder of the conical surface 22b of the second shaft member 22 to the apex of the conical surface 22b is L, the inner radius of the conical surface 21b of the first shaft member 21 is r f, and the second the shoulder portion outer radius and r m of the conical surface 22b of the shaft member 22, the half apex angle of the conical surface 21b of the first shaft member 21 and alpha f, half apex of the conical surface 22b of the second shaft member 22 the angle and alpha m, inner radius r f of the conical surface of the first shaft member 21, the shoulder portion outer radius of the conical surface of the second shaft member 22 is defined as a r m.

10、20 接続構造
11、21 第1の軸部材
11a、21a 第1の軸部材の中空部分
11b、21b 第1の軸部材の円錐面
11c、21c 第1の軸部材の円筒形状部分
11d 第1の軸部材の貫通孔
12、22 第2の軸部材
12a、22a 第2の軸部材の突起部分
12b、22b 第2の軸部材の円錐面
12c、22c 第2の軸部材の円柱形状部分
12d 第2の軸部材の貫通孔
22e 第2の軸部材のオネジ部分
13 せん断ピン
14 キー
15 ナット


10, 20 Connection structure
11, 21 First shaft member
11a, 21a Hollow part of the first shaft member
11b, 21b Conical surface of the first shaft member
11c, 21c The cylindrical part of the first shaft member
11d 1st shaft member through hole
12, 22 Second shaft member
12a, 22a Projection portion of second shaft member
12b, 22b Conical surface of the second shaft member
12c, 22c The cylindrical part of the second shaft member
12d Second shaft member through hole
22e Male thread part of second shaft member
13 Shear pin
14 key
15 nut


Claims (6)

第1の軸部材と第2の軸部材を軸方向に連結するための接続構造であって、
第1の軸部材と第2の軸部材の熱膨張係数が異なり、
第1の軸部材の端部には中空部分が設けられ、
第2の軸部材の端部には突起部分が設けられ、
第1の軸部材の中空部分と第2の軸部材の突起部分とは嵌合し、
嵌合した第1の軸部材の中空部分と第2の軸部材の突起部分を、軸方向とは直交する方向に貫通する貫通孔が備えられ、
当該貫通穴には、せん断ピンが嵌合挿入され、
第1の軸部材の中空部分の端面側には円錐面が設けられ、
第2の軸部材の突起部分の基端側には円錐面が設けられ、
第1の軸部材の円錐面と第2の軸部材の円錐面とが当接しており、
(1) 前記第1の軸部材の端面から貫通穴中心までの距離をLとし、
(2) 前記第1の軸部材の端面における中空部分の内半径をr f とし、
(3) 前記第2の軸部材の基端部の外半径をr m とし、
(4) 前記第1の軸部材の円錐面の半頂角をα f とし、
(5) 前記第2の軸部材の円錐面の半頂角をα m とすると、
tan -1 {2r f /3L}≦α f ≦tan -1 {2r f /L}
tan -1 {2r m /3L}≦α m ≦tan -1 {2r m /L}
の関係を満たす円錐面を有することを特徴とする接続構造。
A connection structure for connecting the first shaft member and the second shaft member in the axial direction,
The first shaft member and the second shaft member have different thermal expansion coefficients,
A hollow portion is provided at the end of the first shaft member,
A protrusion is provided at the end of the second shaft member,
The hollow portion of the first shaft member and the protruding portion of the second shaft member are fitted,
A through hole is provided that penetrates the hollow portion of the fitted first shaft member and the protruding portion of the second shaft member in a direction perpendicular to the axial direction,
A shear pin is fitted and inserted into the through hole,
A conical surface is provided on the end surface side of the hollow portion of the first shaft member,
A conical surface is provided on the base end side of the protruding portion of the second shaft member,
The conical surface of the first shaft member and the conical surface of the second shaft member are in contact,
(1) The distance from the end face of the first shaft member to the center of the through hole is L,
(2) The inner radius of the hollow portion at the end face of the first shaft member is r f ,
(3) the outer radius of the base end portion of the second shaft member as r m,
(4) The half apex angle of the conical surface of the first shaft member is α f ,
(5) When the half apex angle of the conical surface of the second shaft member is α m ,
tan −1 {2r f / 3L} ≦ α f ≦ tan −1 {2r f / L}
tan -1 {2r m / 3L} ≤ α m ≤ tan -1 {2r m / L}
A connection structure characterized by having a conical surface satisfying the following relationship .
第1の軸部材と第2の軸部材を軸方向に連結するための接続構造であって、
第1の軸部材と第2の軸部材の熱膨張係数が異なり、
第1の軸部材には中空部分が設けられ、
第2の軸部材の端部には突起部分が設けられ、当該突起部分の先端部にはオネジ部分が備えられ、
第1の軸部材の中空部分と第2の軸部材の突起部分とは嵌合し、
嵌合した第1の軸部材のオネジ部分にはナットが螺合すると共に、当該ナットの座面は第1の軸部材の端面を押圧し、
第1の軸部材の中空部分には円錐面が設けられ、
第2の軸部材の突起部分の基端側には円錐面が設けられ、
第1の軸部材の円錐面と第2の軸部材の円錐面とが当接していることを特徴とする接続構造。
A connection structure for connecting the first shaft member and the second shaft member in the axial direction,
The first shaft member and the second shaft member have different thermal expansion coefficients,
The first shaft member is provided with a hollow portion,
A protruding portion is provided at the end of the second shaft member, and a male screw portion is provided at the tip of the protruding portion.
The hollow portion of the first shaft member and the protruding portion of the second shaft member are fitted,
The nut is screwed into the male screw portion of the fitted first shaft member, and the seat surface of the nut presses the end surface of the first shaft member,
The hollow portion of the first shaft member is provided with a conical surface,
A conical surface is provided on the base end side of the protruding portion of the second shaft member,
A connection structure, wherein the conical surface of the first shaft member and the conical surface of the second shaft member are in contact with each other.
請求項に記載の接続構造であって、
(1) 前記第2の軸部材の円錐面の肩部から円錐面の頂点までの距離をLとし、
(2) 前記第1の軸部材の円錐面の内半径をrfとし、
(3) 前記第2の軸部材の円錐面の肩部外半径をrmとし、
(4) 前記第1の軸部材の円錐面の半頂角をαfとし、
(5) 前記第2の軸部材の円錐面の半頂角をαmとし、
(6) 前記第1の軸部材12円錐面の内半径rfは、第2の軸部材の円錐面の肩部外半径をrmであると定義した場合に、
tan-1{2rf/3L}≦αf≦tan-1{2rf/L}
tan-1{2rm/3L}≦αm≦tan-1{2rm/L}
の関係を満たす円錐面を有することを特徴とする接続構造。
The connection structure according to claim 2 ,
(1) The distance from the shoulder of the conical surface of the second shaft member to the apex of the conical surface is L,
(2) The inner radius of the conical surface of the first shaft member is r f ,
(3) the shoulder portion outer radius of the conical surface of the second shaft member as r m,
(4) The half apex angle of the conical surface of the first shaft member is α f ,
(5) The half apex angle of the conical surface of the second shaft member is α m ,
(6) the inner radius r f of the first shaft member 12 conical face, a shoulder portion outer radius of the conical surface of the second shaft member when defined as r m,
tan −1 {2r f / 3L} ≦ α f ≦ tan −1 {2r f / L}
tan -1 {2r m / 3L} ≤ α m ≤ tan -1 {2r m / L}
A connection structure characterized by having a conical surface satisfying the following relationship.
請求項1乃至に記載の接続構造であって、
前記第1の軸部材の中空部分の一部は、円筒形状部分を成し、
前記第2の軸部材の突起部分の一部は、円柱形状部分を成し、
当該円筒形状部分に、当該円柱形状部分が挿入されている
ことを特徴とする接続構造。
A connection structure according to claim 1 to 3,
A part of the hollow portion of the first shaft member forms a cylindrical portion,
A part of the protruding portion of the second shaft member forms a cylindrical portion,
A connection structure, wherein the cylindrical portion is inserted into the cylindrical portion.
請求項1乃至のいずれかに記載の接続構造であって、
前記第1の軸部材の円筒形状部分と前記第2の軸部材の円柱形状部分との嵌合面に、少なくとも1つのトルク伝達要素が設けられていることを特徴とする接続構造。
The connection structure according to any one of claims 1 to 4 ,
A connection structure, wherein at least one torque transmission element is provided on a fitting surface between a cylindrical portion of the first shaft member and a columnar portion of the second shaft member.
請求項1乃至のいずれかに記載の接続構造であって、
前記第1の軸部材に使用する材料および前記第2の軸部材に使用する材料の組み合わせは、金属材料とカーボン/カーボンコンポジット材の組み合わせ、あるいは金属材料とセラミック材との組み合わせである
ことを特徴とする接続構造。
The connection structure according to any one of claims 1 to 5 ,
The combination of the material used for the first shaft member and the material used for the second shaft member is a combination of a metal material and a carbon / carbon composite material, or a combination of a metal material and a ceramic material. Connection structure.
JP2012246953A 2012-11-09 2012-11-09 Shaft member connection structure Active JP6017271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012246953A JP6017271B2 (en) 2012-11-09 2012-11-09 Shaft member connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012246953A JP6017271B2 (en) 2012-11-09 2012-11-09 Shaft member connection structure

Publications (2)

Publication Number Publication Date
JP2014095420A JP2014095420A (en) 2014-05-22
JP6017271B2 true JP6017271B2 (en) 2016-10-26

Family

ID=50938653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012246953A Active JP6017271B2 (en) 2012-11-09 2012-11-09 Shaft member connection structure

Country Status (1)

Country Link
JP (1) JP6017271B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016191444A (en) * 2015-03-31 2016-11-10 多摩川精機株式会社 Connection structure for rotation sensor shaft
CN112412940A (en) * 2020-10-30 2021-02-26 江西昌河航空工业有限公司 Lug connection structure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58196322A (en) * 1982-05-13 1983-11-15 Asahi Glass Co Ltd Shaft coupling
JPS59174333U (en) * 1983-05-09 1984-11-21 富士重工業株式会社 Engine drive generator coupling device
JPH076544B2 (en) * 1985-10-25 1995-01-30 旭硝子株式会社 Coupling structure of shaft and member
JP2812165B2 (en) * 1993-11-11 1998-10-22 トヨタ自動車株式会社 Mechanical fuse device
JP2003139156A (en) * 2001-11-05 2003-05-14 Kawasaki Heavy Ind Ltd Rotor assembly and fastening mechanism thereof

Also Published As

Publication number Publication date
JP2014095420A (en) 2014-05-22

Similar Documents

Publication Publication Date Title
JP5925788B2 (en) Adiabatic turbine coupling
JP5500804B2 (en) Flexing ring and propulsion system
JP6188425B2 (en) Propeller shaft
JP2009530169A (en) Bolt joint
JP6017271B2 (en) Shaft member connection structure
EP2837843A2 (en) Flexible couplings for power transmission devices
JP2016540927A (en) Method for assembling a set of impellers via a tie rod, impeller and turbomachine
JP2007244163A (en) Support structure and rotary electric machine rotor
JP2012225372A (en) Coupling
JP2018040380A (en) Elastic shaft coupling
JP2006187063A (en) Rotor structure
JP2015523532A (en) Insulator and manufacturing method thereof
US10100961B2 (en) Joint assembly and a method of using the same
JP2011122589A (en) Method for locking rotor sections of high-temperature steam turbine to each other and rotor of high-temperature steam turbine
JP2015086619A (en) Steel pipe pile connection structure
JP2009060733A (en) Rotor
CN108448286B (en) Gap eliminating piece
JP6192844B2 (en) Connection means for brake disc assembly
JP2010203469A (en) Flexible coupling
EP3285276A1 (en) Drive rod and method of manufacturing a drive rod
KR101616630B1 (en) Gas turbine
JP7035829B2 (en) Electric motor
JP6659256B2 (en) Alignment mechanism of joints made of materials with different thermal expansion characteristics
KR101656584B1 (en) Bolt and nut assembling module to add torque
JP2020085189A (en) Fitting structure of shaft member

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160928

R150 Certificate of patent or registration of utility model

Ref document number: 6017271

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250