JP6015301B2 - Manufacturing method of glass tube - Google Patents

Manufacturing method of glass tube Download PDF

Info

Publication number
JP6015301B2
JP6015301B2 JP2012214880A JP2012214880A JP6015301B2 JP 6015301 B2 JP6015301 B2 JP 6015301B2 JP 2012214880 A JP2012214880 A JP 2012214880A JP 2012214880 A JP2012214880 A JP 2012214880A JP 6015301 B2 JP6015301 B2 JP 6015301B2
Authority
JP
Japan
Prior art keywords
glass
glass tube
starting rod
rod portion
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012214880A
Other languages
Japanese (ja)
Other versions
JP2014069974A (en
Inventor
森田 圭省
圭省 森田
中村 哲夫
哲夫 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2012214880A priority Critical patent/JP6015301B2/en
Publication of JP2014069974A publication Critical patent/JP2014069974A/en
Application granted granted Critical
Publication of JP6015301B2 publication Critical patent/JP6015301B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

本発明は、フッ素が添加されたガラス管の製造方法に関する。   The present invention relates to a method of manufacturing a glass tube to which fluorine is added.

一般に、コア部とクラッド部からなる光ファイバは、光ファイバ用のガラス母材を線引きして製造される。このガラス母材は、コア部となるコアロッドをクラッド部となるガラス管に挿入することにより製造する場合があるが、このクラッド部となるガラス管の製造方法として、石英からなるガラスロッドの周囲にスス体を堆積させ、このスス体を焼結させた後、内側のガラスロッドを穿孔により除去することでガラス管を製造する方法が知られている(例えば、特許文献1参照)。   In general, an optical fiber including a core portion and a clad portion is manufactured by drawing a glass preform for an optical fiber. This glass base material may be manufactured by inserting a core rod serving as a core portion into a glass tube serving as a cladding portion. As a method of manufacturing the glass tube serving as a cladding portion, a glass rod made of quartz is provided around a glass rod. A method of manufacturing a glass tube by depositing a soot body and sintering the soot body and then removing the inner glass rod by perforation is known (for example, see Patent Document 1).

特開2001−192233号公報JP 2001-192233 A

上記特許文献1のガラス管の製造方法においては、出発ロッドとして石英からなるガラスロッドが使用され、その周囲にスス体を堆積させているが、石英ガラスロッドを用いてその周囲にフッ素が添加されたガラス管部を製造した場合、穿孔工具による穿孔の際に割れが発生する場合があった。これは、石英ガラスロッドとその周囲のフッ素添加されたガラス管部との熱膨張率の差により、ガラスロッドとガラス管部との界面に歪みが生じているためであると考えられる。   In the method of manufacturing a glass tube of Patent Document 1, a glass rod made of quartz is used as a starting rod, and soot is deposited around the glass rod. Fluorine is added around the glass rod using the quartz glass rod. In the case of manufacturing a glass tube part, cracks may occur when drilling with a drilling tool. This is presumably because the interface between the glass rod and the glass tube part is distorted due to the difference in the coefficient of thermal expansion between the quartz glass rod and the glass tube part to which fluorine has been added.

本発明の目的は、穿孔の際の割れを抑制することが可能なガラス管の製造方法を提供することにある。   The objective of this invention is providing the manufacturing method of the glass tube which can suppress the crack at the time of perforation.

上記課題を解決することのできる本発明のガラス管の製造方法は、
フッ素が添加されたガラス管を製造する方法であって、
フッ素が添加されたガラスロッドを出発ロッド部として用い、
前記出発ロッド部の周囲に四塩化珪素からなるガラス微粒子を堆積させてガラス微粒子堆積体を形成し、フッ素を添加しながら前記ガラス微粒子堆積体を焼結させてガラス管部を形成した後、
前記ガラス管部から前記出発ロッド部を穿孔工具により穿孔して除去し、パイプ状のガラス管を形成することを特徴とする。
The method for producing a glass tube of the present invention capable of solving the above-mentioned problems
A method of manufacturing a glass tube to which fluorine is added,
Using a glass rod added with fluorine as the starting rod part,
After depositing glass fine particles made of silicon tetrachloride around the starting rod portion to form a glass fine particle deposit, forming the glass tube portion by sintering the glass fine particle deposit while adding fluorine,
The starting rod portion is removed from the glass tube portion with a drilling tool to form a pipe-shaped glass tube.

本発明のガラス管の製造方法において、穿孔時における前記出発ロッド部の外径は前記穿孔工具の内径よりも小さいことが好ましい。   In the manufacturing method of the glass tube of this invention, it is preferable that the outer diameter of the said starting rod part at the time of drilling is smaller than the internal diameter of the said drilling tool.

本発明のガラス管の製造方法において、前記出発ロッド部の平均フッ素添加濃度と前記ガラス微粒子堆積体を焼結した部分の平均フッ素添加濃度との差が0.8wt%以下であることが好ましい。   In the method for producing a glass tube of the present invention, it is preferable that a difference between an average fluorine addition concentration of the starting rod portion and an average fluorine addition concentration of a portion where the glass fine particle deposit is sintered is 0.8 wt% or less.

本発明によれば、ガラス微粒子をその周囲に堆積させる出発ロッド部としてフッ素が添加されたガラスロッドが用いられているため、出発ロッド部と、その周囲にガラス微粒子を堆積させ、フッ素を添加しながら焼結して形成したガラス管部との間に熱膨張率の差がなくなり、出発ロッド部とガラス管部との界面における歪みの発生を抑えることができる。これにより、穿孔の際に生じる割れの発生を抑制することができる。   According to the present invention, since the glass rod to which fluorine is added is used as the starting rod portion for depositing the glass fine particles on the periphery thereof, the glass fine particles are deposited on the starting rod portion and the periphery thereof, and the fluorine is added. However, there is no difference in the coefficient of thermal expansion between the glass tube portion formed by sintering and the occurrence of distortion at the interface between the starting rod portion and the glass tube portion can be suppressed. Thereby, generation | occurrence | production of the crack which arises in the case of drilling can be suppressed.

本発明の実施形態に係るガラス管の製造方法の一例を示す断面図であって、(a)は出発ロッド部の周囲にガラス微粒子が堆積された状態の図、(b)は出発ロッド部の周囲に堆積されたガラス微粒子堆積体を焼結させた状態の図、(c)は焼結された透明ガラス体を延伸させた状態の図、(d)は透明ガラス体のうち出発ロッド部の部分を除去した状態の図である。It is sectional drawing which shows an example of the manufacturing method of the glass tube which concerns on embodiment of this invention, Comprising: (a) is a figure of the state by which the glass fine particle was deposited around the starting rod part, (b) is a starting rod part. The figure of the state which sintered the glass particulate deposit body deposited on circumference | surroundings, the figure of the state which extended | stretched the sintered transparent glass body, (d) is a figure of the starting rod part among transparent glass bodies. It is a figure of the state which removed the part.

以下、本発明に係るガラス管の製造方法の実施の形態の例を、図1(a)〜(d)を参照して説明する。   Hereinafter, the example of embodiment of the manufacturing method of the glass tube which concerns on this invention is described with reference to Fig.1 (a)-(d).

まず、図1(a)に示すように、出発ロッド部20の周囲に例えば四塩化珪素(SiCl)からなるガラス微粒子を堆積させてガラス微粒子堆積体10を形成し、多孔質ガラス母材1を作製する。具体的には、原料ガスである四塩化珪素(SiCl)と、燃料ガスである水素ガス(H)および酸素ガス(O)等を用いて加水分解反応若しくは熱酸化反応によりガラス微粒子を生成し、出発ロッド部20の外周にガラス微粒子を堆積させる。 First, as shown in FIG. 1A, glass particulates made of, for example, silicon tetrachloride (SiCl 4 ) are deposited around the starting rod portion 20 to form a glass particulate deposit 10 to form a porous glass base material 1. Is made. Specifically, glass fine particles are obtained by hydrolysis reaction or thermal oxidation reaction using silicon tetrachloride (SiCl 4 ) as a raw material gas, hydrogen gas (H 2 ) and oxygen gas (O 2 ) as a fuel gas, and the like. And fine glass particles are deposited on the outer periphery of the starting rod portion 20.

次に、図1(b)に示すように、例えばヘリウムガス等の雰囲気中でフッ素を添加しながら出発ロッド部20の周囲に形成されたガラス微粒子堆積体10を焼結することで、ガラス微粒子堆積体10が透明ガラス体10aとなった焼結母材1aを作製する。   Next, as shown in FIG. 1 (b), the glass fine particle deposit 10 formed around the starting rod portion 20 is sintered while adding fluorine in an atmosphere such as helium gas, for example. The sintered base material 1a in which the deposited body 10 becomes the transparent glass body 10a is produced.

その後、図1(c)に示すように、焼結母材1aを所望の長さおよび外径となるよう延伸させて、延伸母材1bを作製する。延伸母材1bは、焼結母材1aのときと比較して、透明ガラス体10bおよび出発ロッド部20bが長くなり、細径化されている。   Thereafter, as shown in FIG. 1 (c), the sintered base material 1a is stretched so as to have a desired length and outer diameter to produce a stretched base material 1b. Compared to the case of the sintered base material 1a, the stretched base material 1b has a longer transparent glass body 10b and a starting rod portion 20b, and is reduced in diameter.

最後に、図1(d)に示すように、延伸された透明ガラス体10bのうち出発ロッド部20bの部分を図示しない穿孔工具により穿孔して除去し、パイプ状のガラス管1cを得る。   Finally, as shown in FIG. 1 (d), the portion of the starting rod portion 20b of the stretched transparent glass body 10b is removed by drilling with a drilling tool (not shown) to obtain a pipe-shaped glass tube 1c.

本実施形態においては、出発ロッド部20としてフッ素が添加されたガラスロッドが用いられる。また、穿孔時の割れをより抑制するためには、出発ロッド部20のフッ素添加濃度とガラス微粒子堆積体10を焼結した透明ガラス体10aのフッ素添加濃度との差は小さくすることが好ましい。   In the present embodiment, a glass rod to which fluorine is added is used as the starting rod portion 20. Further, in order to further suppress cracking during drilling, it is preferable to reduce the difference between the fluorine addition concentration of the starting rod portion 20 and the fluorine addition concentration of the transparent glass body 10a obtained by sintering the glass fine particle deposit 10.

穿孔工具としては、筒状部材の先端にダイアモンド等で形成されるヘッドが取り付けられたものが用いられる。穿孔工具の筒部の内径は穿孔時の出発ロッド部20bの外径D’よりも大きいものであることが好ましい。出発ロッド部20bと周囲の透明ガラス体10bとの界面にはガラス微粒子堆積体10を形成する際に発生するOH基などの不純物が付着している。また、出発ロッド部20b自体も不純物を含んでいる。穿孔後に出発ロッド部20bの部分が残るとOH基などの不純物に起因する伝送ロスが生じるため、穿孔時の出発ロッド部20bの外径D’を穿孔工具の筒部の内径よりも小さくなるようにして出発ロッド部20bの部分を完全に除去することが必要である。 As the drilling tool, a tool in which a head formed of diamond or the like is attached to the tip of a cylindrical member is used. The inner diameter of the cylindrical portion of the drilling tool is preferably larger than the outer diameter D 0 ′ of the starting rod portion 20b at the time of drilling. Impurities such as OH groups generated when forming the glass particulate deposit 10 are attached to the interface between the starting rod portion 20b and the surrounding transparent glass body 10b. The starting rod portion 20b itself also contains impurities. If the portion of the starting rod portion 20b remains after drilling, transmission loss due to impurities such as OH groups occurs, so that the outer diameter D 0 ′ of the starting rod portion 20b at the time of drilling is smaller than the inner diameter of the cylindrical portion of the drilling tool. Thus, it is necessary to completely remove the part of the starting rod part 20b.

なお、穿孔工具により出発ロッド部20bの部分を完全に除去するためには、焼結前の出発ロッド部20の外径が以下の式(1)の関係を満たすことが必要である。   In order to completely remove the portion of the starting rod portion 20b with the drilling tool, it is necessary that the outer diameter of the starting rod portion 20 before sintering satisfies the relationship of the following formula (1).

Figure 0006015301

・・・式(1)
(mm):出発ロッド部20の外径
(mm):焼結後の透明ガラス10aの外径
’(mm):延伸後の透明ガラス体10bの外径
(mm):穿孔工具の(筒部の)内径
Figure 0006015301

... Formula (1)
D 0 (mm): outer diameter of the starting rod portion D 1 (mm): outer diameter of the transparent glass 10a after sintering D 1 ′ (mm): outer diameter of the transparent glass body 10b after stretching D 2 (mm ) : Inner diameter of the drilling tool

式(1)のうち「(D−0.5)」は出発ロッド部20の曲がりなどを考慮して、穿孔工具の内径Dに余裕を持たせた値である。なお、ガラス微粒子堆積体10の焼結後に延伸を行わない場合には、D=D’となる。 In the formula (1), “(D 2 −0.5)” is a value that gives a margin to the inner diameter D 2 of the drilling tool in consideration of the bending of the starting rod portion 20 and the like. Incidentally, in the case of not performing stretching after sintering of the glass particles deposit 10 becomes D 1 = D 1 '.

また、式(1)のうち、「α」は以下の式(2)で表されるものであり、焼結される際のガラス微粒子堆積体10の軸方向における収縮率を示す。

Figure 0006015301

・・・式(2)
L(mm):ガラス微粒子堆積時の出発ロッド部20のロッド長
L’(mm):焼結後の出発ロッド部20aのロッド長 Further, in the formula (1), “α” is represented by the following formula (2), and indicates the shrinkage rate in the axial direction of the glass particulate deposit 10 when being sintered.
Figure 0006015301

... Formula (2)
L (mm): Rod length of the starting rod portion 20 when the glass fine particles are deposited L ′ (mm): Rod length of the starting rod portion 20a after sintering

焼結前の出発ロッド部20の外径Dが上記の式(1)を満たしていれば、焼結・延伸後の出発ロッド部20bの外径D’が穿孔工具の内径よりも小さくなるため、焼結あるいは延伸後の出発ロッド部20a,20bの部分を穿孔工具により確実に除去することができる。 If the outer diameter D 0 of the starting rod portion 20 before sintering satisfies the above equation (1), an outer diameter D 0 of the starting rod portion 20b after sintering and stretching 'is smaller than the inner diameter of the drill Therefore, the portions of the starting rod portions 20a and 20b after sintering or stretching can be surely removed by the drilling tool.

異なる外径Dを有する複数の出発ロッド部20を用いて図1(a)〜(d)に示す製造方法にて複数のガラス管1cを製造し、それぞれのガラス管1cにおけるロス良好率を測定した結果を表1に示している。表1に示すように、穿孔工具の内径Dが11.8mmであり、焼結される際のガラス微粒子堆積体10の収縮率αが0.8である場合、式(1)は、D≦19.44となる。
そこで、式(1)を満たす実施例1〜3として、焼結前の出発ロッド部20の外径Dを17.0〜19.0mmとして作製されたガラス管1cを用いて光ファイバ用ガラス母材を製造し、これを線引して得られた光ファイバについて評価を行った。また、式(1)を満たさない比較例1〜5として、焼結前の出発ロッド部20の外径Dを19.5〜23.0mmとしたガラス管1cについて、同様に評価を行った。
なお、本実施形態における「ロス良好率」とは、波長1550nmの場合の伝送損失が0.175dB/km以下である割合を示す。
The different outer diameters with a plurality of starting rod portion 20 having a D 0 to produce a plurality of glass tubes 1c in the manufacturing method shown in FIG. 1 (a) ~ (d) , the loss good rate in each of the glass tube 1c The measured results are shown in Table 1. As shown in Table 1, when the inner diameter D 2 of the drilling tool is 11.8 mm, shrinkage of the soot glass deposit body 10 when being sintered α is 0.8, Equation (1) is, D 0 ≦ 19.44.
Therefore, as Examples 1 to 3 satisfying the equation (1), glass for optical fiber using a glass tube 1c to fabricated the outer diameter D 0 of the starting rod portion 20 before sintering as 17.0~19.0mm An optical fiber obtained by manufacturing a base material and drawing it was evaluated. As Comparative Examples 1-5 which do not satisfy the formula (1), the glass tube 1c in which the outer diameter D 0 of the starting rod portion 20 before sintering and 19.5~23.0Mm, evaluations were carried out in the same manner .
The “loss good rate” in the present embodiment indicates a rate at which the transmission loss at a wavelength of 1550 nm is 0.175 dB / km or less.

Figure 0006015301
Figure 0006015301

その結果、表1に示すように実施例1〜3においては、ロス良好率がいずれも100%であったが、比較例1〜5においては、ロス良好率が0〜85%であった。   As a result, as shown in Table 1, in Examples 1 to 3, the loss good rate was 100%, but in Comparative Examples 1 to 5, the loss good rate was 0 to 85%.

以上より、式(1)の関係を満たしている実施例1〜3においては、出発ロッド部20bの部分を完全に除去することができるため、伝送ロスの発生を抑制できることが確認された。   From the above, in Examples 1 to 3 satisfying the relationship of the expression (1), it was confirmed that the portion of the starting rod portion 20b can be completely removed, so that generation of transmission loss can be suppressed.

次に、実施例4〜8および比較例6〜8として、出発ロッド部20の平均フッ素添加濃度とガラス微粒子堆積体10を焼結した部分であるガラス管部(透明ガラス体10a,10b)の平均フッ素添加濃度との差(以下、「フッ素添加濃度の差」という)、および出発ロッド部20bの部分を穿孔して除去する際にガラス管1cに割れが生じる確率(以下、「ガラス管割れ発生率」という)を比較した。その結果を表2に示す。   Next, as Examples 4 to 8 and Comparative Examples 6 to 8, the average fluorine addition concentration of the starting rod portion 20 and the glass tube portions (transparent glass bodies 10a and 10b) that are the portions where the glass fine particle deposits 10 were sintered. The difference from the average fluorine addition concentration (hereinafter referred to as “fluorine addition concentration difference”) and the probability that a crack will occur in the glass tube 1c when the portion of the starting rod portion 20b is perforated and removed (hereinafter referred to as “glass tube cracking”). "Incidence rate"). The results are shown in Table 2.

Figure 0006015301
Figure 0006015301

表2に示すように、出発ロッド部20のフッ素添加濃度を1.20〜0wt%の各値とし、ガラス管部(透明ガラス体10a,10b)のフッ素添加濃度を1.05wt%として、フッ素添加濃度の差に基づく、穿孔時のガラス管割れ発生率を比較評価した。
その結果、フッ素添加濃度の差が−0.15〜0.75wt%である実施例4〜8においては、ガラス管割れ発生率は0〜0.5%であった。
一方、フッ素添加濃度の差が0.84〜1.05wt%である比較例6〜8においては、ガラス管割れ発生率は45〜100%であり、実施例4〜8と比べてガラス管割れ発生率が大幅に上がった。
As shown in Table 2, the fluorine addition concentration of the starting rod portion 20 is set to 1.20 to 0 wt%, and the fluorine addition concentration of the glass tube portions (transparent glass bodies 10a and 10b) is set to 1.05 wt%. Based on the difference in addition concentration, the glass tube cracking incidence during drilling was comparatively evaluated.
As a result, in Examples 4 to 8 in which the difference in fluorine addition concentration was −0.15 to 0.75 wt%, the glass tube crack occurrence rate was 0 to 0.5%.
On the other hand, in Comparative Examples 6 to 8 in which the difference in fluorine addition concentration is 0.84 to 1.05 wt%, the glass tube crack occurrence rate is 45 to 100%, and the glass tube cracks compared to Examples 4 to 8. The incidence has increased significantly.

以上より、ガラス管割れ発生率をほぼ0%に抑えるためには、フッ素添加濃度の差を0.8wt%以下とすることが好適であることが確認された。   From the above, it was confirmed that it is preferable to set the difference in fluorine addition concentration to 0.8 wt% or less in order to suppress the occurrence rate of glass tube cracking to almost 0%.

以上説明した本実施形態に係るガラス管1cの製造方法によれば、フッ素が添加されたガラスロッドが出発ロッド部20として用いられているため、出発ロッド部20とガラス管部との間の熱膨張率の差を最小限にすることができ、出発ロッド部20とガラス管部との界面における歪みの発生を抑えることができる。これにより、穿孔工具による穿孔の際に生じる割れの発生を抑制することができる。   According to the manufacturing method of the glass tube 1c according to the present embodiment described above, since the glass rod added with fluorine is used as the starting rod portion 20, the heat between the starting rod portion 20 and the glass tube portion. The difference in expansion coefficient can be minimized, and the occurrence of distortion at the interface between the starting rod portion 20 and the glass tube portion can be suppressed. Thereby, generation | occurrence | production of the crack which arises in the case of drilling with a drilling tool can be suppressed.

また、焼結・延伸後の出発ロッド部20bの外径が穿孔工具の内径よりも小さく設定されていることで、出発ロッド部20bの部分を穿孔工具により完全に除去することができ、出発ロッド部20bの残留による伝送ロスの発生を抑制することができる。   In addition, since the outer diameter of the starting rod portion 20b after sintering and stretching is set smaller than the inner diameter of the drilling tool, the portion of the starting rod portion 20b can be completely removed by the drilling tool. The occurrence of transmission loss due to the remaining part 20b can be suppressed.

さらに、出発ロッド部20の平均フッ素添加濃度とガラス管部の平均フッ素添加濃度との差を0.8wt%以下とすることで、穿孔の際のガラス管1cの割れの発生を有意に抑制することができる。   Furthermore, by making the difference between the average fluorine addition concentration of the starting rod portion 20 and the average fluorine addition concentration of the glass tube portion 0.8 wt% or less, the occurrence of cracking of the glass tube 1c during drilling is significantly suppressed. be able to.

以上において本発明の実施の形態の一例を説明したが、本発明は上記実施の形態に限定されるものでなく、必要に応じて他の構成を採用することが可能である。   Although an example of an embodiment of the present invention has been described above, the present invention is not limited to the above embodiment, and other configurations can be adopted as necessary.

例えば、上記実施形態においては、ガラス微粒子堆積体10の焼結時にフッ素を添加したが、スス付け時にフッ素を添加してもよい。また、細径の出発ロッド部20の周囲にガラス微粒子を堆積させる方法としては、VAD法(気相軸付け法)でもよいし、OVD法(外付け法)、MMD法(多バーナ多層付け法)などの他のガラス母材の製造方法でもよい。   For example, in the above embodiment, fluorine is added during the sintering of the glass fine particle deposit 10, but fluorine may be added during sooting. Further, as a method for depositing glass fine particles around the small-diameter starting rod portion 20, a VAD method (gas phase axial method), an OVD method (external method), an MMD method (multi-burner multilayer method) Other glass base material manufacturing methods such as

1:多孔質ガラス母材、1a:焼結母材、1b:延伸母材、1c:ガラス管、10:ガラス微粒子堆積体、10a,10b:透明ガラス体(ガラス管部)、20,20a,20b:出発ロッド部 1: porous glass base material, 1a: sintered base material, 1b: stretched base material, 1c: glass tube, 10: glass fine particle deposit, 10a, 10b: transparent glass body (glass tube part), 20, 20a, 20b: Departure rod part

Claims (2)

フッ素が添加されたガラス管を製造する方法であって、
フッ素が添加されたガラスロッドを出発ロッド部として用い、
前記出発ロッド部の周囲に四塩化珪素からなるガラス微粒子を堆積させてガラス微粒子堆積体を形成し、フッ素を添加しながら前記ガラス微粒子堆積体を焼結させてガラス管部を形成した後、
前記ガラス管部から前記出発ロッド部を穿孔工具により穿孔して除去し、パイプ状のガラス管を形成することを含み
前記出発ロッド部の平均フッ素添加濃度と前記ガラス微粒子堆積体を焼結した部分の平均フッ素添加濃度との差が0.8wt%以下であることを特徴とする、ガラス管の製造方法。
A method of manufacturing a glass tube to which fluorine is added,
Using a glass rod added with fluorine as the starting rod part,
After depositing glass fine particles made of silicon tetrachloride around the starting rod portion to form a glass fine particle deposit, forming the glass tube portion by sintering the glass fine particle deposit while adding fluorine,
Wherein said the glass tube section and the starting rod portion by puncturing removed by the drilling tool, to form a pipe-shaped glass tube,
The method for producing a glass tube, wherein a difference between an average fluorine addition concentration of the starting rod portion and an average fluorine addition concentration of a portion where the glass fine particle deposit is sintered is 0.8 wt% or less .
穿孔時における前記出発ロッド部の外径は前記穿孔工具の内径よりも小さいことを特徴とする、請求項1に記載のガラス管の製造方法。   The method of manufacturing a glass tube according to claim 1, wherein an outer diameter of the starting rod portion at the time of drilling is smaller than an inner diameter of the drilling tool.
JP2012214880A 2012-09-27 2012-09-27 Manufacturing method of glass tube Active JP6015301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012214880A JP6015301B2 (en) 2012-09-27 2012-09-27 Manufacturing method of glass tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012214880A JP6015301B2 (en) 2012-09-27 2012-09-27 Manufacturing method of glass tube

Publications (2)

Publication Number Publication Date
JP2014069974A JP2014069974A (en) 2014-04-21
JP6015301B2 true JP6015301B2 (en) 2016-10-26

Family

ID=50745529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012214880A Active JP6015301B2 (en) 2012-09-27 2012-09-27 Manufacturing method of glass tube

Country Status (1)

Country Link
JP (1) JP6015301B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003146680A (en) * 2001-11-07 2003-05-21 Sumitomo Electric Ind Ltd Method of manufacturing optical fiber

Also Published As

Publication number Publication date
JP2014069974A (en) 2014-04-21

Similar Documents

Publication Publication Date Title
US7930904B2 (en) Method of making an optical fiber having voids
US20140161406A1 (en) Method of manufacturing optical fiber preform and optical fiber
JP6513796B2 (en) Method of making an optical fiber preform having a one-step fluorine trench and overcladding
US20040050110A1 (en) Methods for fabricating optical fibers and optical fiber preforms
JP4870114B2 (en) Method for increasing D / d of core rod with low clad to core ratio D / d of optical fiber preform
WO2015034991A2 (en) Method of making updoped cladding by using silicon tertrachloride as the dopant
JP2018535176A (en) Method for preventing cracking in optical fiber preform, and optical fiber preform obtained by the above method
US8919153B2 (en) Manufacturing method for glass base material
JP6015301B2 (en) Manufacturing method of glass tube
JP5345352B2 (en) Manufacturing method of optical fiber preform
JP2012171802A (en) Method for producing optical fiber preform
JP2016147765A (en) Manufacturing method of optical fiber preform
JP4453680B2 (en) Manufacturing method of glass base material
JP5644694B2 (en) Optical fiber manufacturing method
JP5533205B2 (en) Glass base material manufacturing method
JP2024086248A (en) Manufacturing method of glass base material for optical fiber and manufacturing method of optical fiber
US20230286851A1 (en) Method for manufacturing optical fiber preform
JP2024086249A (en) Manufacturing method of glass base material for optical fiber and manufacturing method of optical fiber
JP5778895B2 (en) Glass base material manufacturing method
JP2011020887A (en) Method for manufacturing glass preform
JP2012066972A (en) Optical fiber preform suspender
JP4472308B2 (en) Method for producing porous quartz base material
JP3966544B2 (en) Manufacturing method of doped quartz tube, doped quartz tube and quartz preform glass base material for optical fiber manufactured using the doped quartz tube
JP5843084B2 (en) Glass base material manufacturing method
US20080050079A1 (en) Low Attenuation Optical Fiber and Its Producing Method in Mcvd

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160912

R150 Certificate of patent or registration of utility model

Ref document number: 6015301

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250