JP6015170B2 - Brake control device for vehicle - Google Patents

Brake control device for vehicle Download PDF

Info

Publication number
JP6015170B2
JP6015170B2 JP2012149970A JP2012149970A JP6015170B2 JP 6015170 B2 JP6015170 B2 JP 6015170B2 JP 2012149970 A JP2012149970 A JP 2012149970A JP 2012149970 A JP2012149970 A JP 2012149970A JP 6015170 B2 JP6015170 B2 JP 6015170B2
Authority
JP
Japan
Prior art keywords
braking force
amount
fluid
wheel
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012149970A
Other languages
Japanese (ja)
Other versions
JP2014012429A (en
Inventor
崇史 飯田
崇史 飯田
加藤 智啓
智啓 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advics Co Ltd
Original Assignee
Advics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advics Co Ltd filed Critical Advics Co Ltd
Priority to JP2012149970A priority Critical patent/JP6015170B2/en
Publication of JP2014012429A publication Critical patent/JP2014012429A/en
Application granted granted Critical
Publication of JP6015170B2 publication Critical patent/JP6015170B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Regulating Braking Force (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、液圧制動力発生装置および回生制動力発生装置を制御して車両の車輪に目標とする制動力を付与する車両用制動制御装置に関する。   The present invention relates to a vehicle braking control device that controls a hydraulic braking force generator and a regenerative braking force generator to apply a target braking force to a vehicle wheel.

特許文献1には、車両用制動制御装置においては、バッテリの充電状態が電池発電を停止させる第1所定値より低い第2所定値以上のときに車両が制動状態になった場合、回生制動から液圧制動への低速すり替え前に液圧を予めブレーキ準備液圧まで上昇させておくと共に、モータによる回生量を制限するように制御することが記載されている。   In Patent Document 1, in the vehicle braking control device, when the vehicle enters a braking state when the state of charge of the battery is equal to or higher than a second predetermined value lower than a first predetermined value for stopping battery power generation, regenerative braking is performed. It is described that the hydraulic pressure is raised to the brake preparation hydraulic pressure in advance before switching to the low-speed switching to the hydraulic braking, and control is performed so as to limit the regeneration amount by the motor.

特開2006−34034号公報JP 2006-34034 A

しかしながら、特許文献1に記載の制動制御装置では、液圧制動の応答性能を確保するには不十分である。   However, the braking control device described in Patent Document 1 is insufficient to ensure the response performance of hydraulic braking.

本発明は、このような事情に鑑みてなされたものであり、液圧制動の応答性能を向上させることができる車両用制動制御装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a vehicle brake control device that can improve the response performance of hydraulic braking.

請求項1に係る発明は、車両の車輪に設けられたホイルシリンダ内にブレーキ液を供給して前記ホイルシリンダに対応する前記車輪に液圧制動力を発生させる液圧制動力発生装置と、前記車輪に回生制動力を発生させる回生制動力発生装置と、を備える車両用の制動装置に適用され、前記液圧制動力発生装置および前記回生制動力発生装置を制御して前記車輪に目標とする制動力を付与する車両用制動制御装置であって、前記液圧制動力発生装置による液圧制動力の少なくとも増加直前の前記ホイルシリンダ内の液量を所定の最低液量以上にする液量制御手段と、前記回生制動力発生装置が前記回生制動力を発生している状態において、前記車両の車両速度が所定車両速度から前記車両速度の低下に伴って前記回生制動力を前記液圧制動力にすり替える低速すり替えが開始される開始車両速度にまで減速される期間の前記最低液量を第一液量に設定し、前記期間以前の前記最低液量を前記第一液量よりも少ない第二液量に設定する最低液量設定手段と、を備え、前記最低液量は、前記ホイルシリンダ内の液量と同ホイルシリンダ内の液圧との関係において、前記ホイルシリンダ内の液量の増加に対する同ホイルシリンダ内の液圧の上昇幅が所定値以上になるように設定されていることである。 According to a first aspect of the present invention, there is provided a hydraulic braking force generator for supplying a brake fluid into a wheel cylinder provided on a wheel of a vehicle to generate a hydraulic braking force on the wheel corresponding to the wheel cylinder; And a regenerative braking force generator for generating a regenerative braking force, and applied to a vehicle braking device, which controls the hydraulic braking force generator and the regenerative braking force generator to provide a target braking force on the wheel. A vehicle brake control device to be applied, the fluid amount control means for setting the fluid amount in the wheel cylinder immediately before the increase of the fluid pressure braking force by the fluid pressure braking force generator to a predetermined minimum fluid amount or more, and the regeneration In a state where the braking force generator generates the regenerative braking force, the vehicle speed of the vehicle changes from the predetermined vehicle speed to the hydraulic braking force as the vehicle speed decreases. The minimum liquid amount during the period of deceleration to the starting vehicle speed at which low-speed switching is started is set as the first liquid amount, and the minimum liquid amount before the period is less than the first liquid amount. A minimum liquid volume setting means for setting the liquid volume, and the minimum liquid volume is an increase in the liquid volume in the wheel cylinder in relation to the liquid volume in the wheel cylinder and the hydraulic pressure in the wheel cylinder. The increase in the hydraulic pressure in the wheel cylinder is set to be equal to or greater than a predetermined value.

請求項1に記載の発明によれば、液圧制動力の少なくとも増加直前のホイルシリンダ内の液量が最低液量以上になる。ここで、最低液量は、ホイルシリンダ内の液量と同ホイルシリンダ内の液圧との関係において、ホイルシリンダ内の液量の増加に対するホイルシリンダ内の液圧の上昇幅が所定値以上になるように設定されている。よって、液圧制動力の少なくとも増加開始時点での応答性を高めることができる。そして、低速すり替えに備えてホイルシリンダ内の液量を第一液量にすることにより、低速すり替え時の液圧制動力増大の応答性を確実に高めることができる。また、ホイルシリンダ内の液量を第一液量よりも少ない第二液量にすることにより、低速すり替え時以外の液圧制動力増大(踏み増し時の液圧制動力増大)の応答性の向上と回生効率の向上との両立を図ることができる。 According to the first aspect of the present invention, the amount of fluid in the wheel cylinder immediately before the increase of the hydraulic braking force is equal to or greater than the minimum amount of fluid. Here, the minimum amount of liquid is that the increase in the hydraulic pressure in the wheel cylinder with respect to the increase in the amount of liquid in the wheel cylinder is greater than or equal to a predetermined value in the relationship between the amount of liquid in the wheel cylinder and the hydraulic pressure in the wheel cylinder. It is set to be. Therefore, it is possible to improve the responsiveness at least when the hydraulic braking force starts to increase. In addition, the responsiveness of the increase in the hydraulic braking force at the time of the low-speed switching can be reliably increased by setting the liquid amount in the wheel cylinder to the first liquid amount in preparation for the low-speed switching. In addition, by making the amount of fluid in the wheel cylinder smaller than the amount of the first fluid, the response of the hydraulic braking force increase (increase of the hydraulic braking force when the pedal is stepped up) other than when switching at low speed is improved. The improvement of regeneration efficiency can be achieved at the same time.

本実施形態の車両制動制御装置を備えた車両用制動装置の概略構成を示す図である。It is a figure which shows schematic structure of the brake device for vehicles provided with the vehicle braking control apparatus of this embodiment. 本実施形態の車両制動制御装置の動作を説明するためのフローチャートである。It is a flowchart for demonstrating operation | movement of the vehicle braking control apparatus of this embodiment. 回生制動力を液圧制動力にすり替える低速すり替えの前に運転者によるプレーキペダルの踏み増しが無かった場合の、(a)は車両速度の経時変化を示す図、(b)はプレーキペダルの操作量の経時変化を示す図、(c)は制動力の経時変化を示す図、(d)はホイルシリンダ液圧の経時変化を示す図である。(A) is a graph showing the change in vehicle speed over time, and (b) is the operation amount of the brake pedal when the driver does not increase the brake pedal before the low-speed switching to switch the regenerative braking force to the hydraulic braking force. FIG. 4C is a diagram showing a change with time of braking force, and FIG. 4D is a diagram showing a change with time of wheel cylinder hydraulic pressure. 回生制動力を液圧制動力にすり替える低速すり替えの前に運転者によるプレーキペダルの踏み増しが有った場合の、(a)は車両速度の経時変化を示す図、(b)はプレーキペダルの操作量の経時変化を示す図、(c)は制動力の経時変化を示す図、(d)はホイルシリンダ液圧の経時変化を示す図である。(A) shows the change in vehicle speed over time, (b) shows the operation of the brake pedal when the driver has stepped on the brake pedal before the low-speed switching to switch the regenerative braking force to the hydraulic braking force. The figure which shows the time-dependent change of quantity, (c) is a figure which shows the time-dependent change of braking force, (d) is a figure which shows the time-dependent change of wheel cylinder hydraulic pressure. (a)は、ホイルシリンダ内のブレーキ液の液量とホイルシリンダ内のブレーキ液の液圧との関係を示す図、(b)は、(a)におけるホイルシリンダ液圧の経時変化を示す図、(c)は、(b)における車両の減速度の経時変化を示す図である。(A) is a figure which shows the relationship between the liquid quantity of the brake fluid in a wheel cylinder, and the hydraulic pressure of the brake fluid in a wheel cylinder, (b) is a figure which shows the time-dependent change of the wheel cylinder hydraulic pressure in (a). (C) is a figure which shows the time-dependent change of the deceleration of the vehicle in (b).

本発明の実施の形態の車両制動制御装置を備えた車両用制動装置について図1を参照して説明する。図1に示すように、車両用制動装置1は、車輪に液圧制動力を発生させる液圧制動力発生装置2と、車輪に回生制動力を発生させる回生制動力発生装置3と、液圧制動力発生装置2を制御するブレーキECU4と、回生制動力発生装置3を制御するハイブリッドECU5等とを備えて構成される。   A vehicle braking device including a vehicle braking control device according to an embodiment of the present invention will be described with reference to FIG. As shown in FIG. 1, a vehicular braking device 1 includes a hydraulic braking force generator 2 that generates a hydraulic braking force on a wheel, a regenerative braking force generator 3 that generates a regenerative braking force on a wheel, and a hydraulic braking force generation. A brake ECU 4 that controls the device 2 and a hybrid ECU 5 that controls the regenerative braking force generating device 3 are provided.

液圧制動力発生装置2は、運転者が操作するブレーキ操作手段としてプレーキペダル21と、ブレーキペダル21に設けられてブレーキペダル21の操作量を検出するストロークセンサ22と、ブレーキペダル21に掛けられる運転者の踏力を倍力するバキュームブースタ23と、その倍力された踏力により基礎液圧から操作液圧を発生するマスタシリンダ24と、基礎液圧を貯留するリザーバ25と、液圧を制御する液圧制御用アクチュエータ26と、ホイルシリンダ27a,27bと、車輪速度を検出する車輪速度センサ28と、マスタシリンダ圧を検出するマスタシリンダ圧センサ29等とを備えて構成される。なお、液圧制御用アクチュエータ26は、右前輪FRおよび左前輪FLを油圧制動するF系統と図略の右後輪および左後輪を油圧制動するR系統とを備えて構成されるが、両者の構成は同一であるため、図1においてはF系統のみを示す。   The hydraulic braking force generator 2 is a brake pedal 21 operated by a driver, a brake pedal 21, a stroke sensor 22 provided on the brake pedal 21 for detecting an operation amount of the brake pedal 21, and an operation applied to the brake pedal 21. A vacuum booster 23 that boosts the pedaling force of the person, a master cylinder 24 that generates an operating fluid pressure from the base fluid pressure by the boosted pedaling force, a reservoir 25 that stores the base fluid pressure, and a fluid that controls the fluid pressure A pressure control actuator 26, wheel cylinders 27a and 27b, a wheel speed sensor 28 for detecting a wheel speed, a master cylinder pressure sensor 29 for detecting a master cylinder pressure, and the like are provided. The hydraulic pressure control actuator 26 includes an F system that hydraulically brakes the right front wheel FR and the left front wheel FL and an R system that hydraulically brakes the right rear wheel and the left rear wheel (not shown). 1 are the same, only the F system is shown in FIG.

マスタシリンダ24は、シリンダ内孔41を有するシリンダボディ42と、このシリンダボディ42におけるシリンダ内孔41の後方部位(図示右方)に組付けられ、スプリング43により後方に付勢された入力ピストン44と、シリンダボディ42におけるシリンダ内孔41の前方部位(図示左方)に組付けられ、一対のスプリング45,46により後方に付勢された一対のマスタピストン47,48等とを備えている。このマスタシリンダ24には、ブレーキペダル21の操作量が所定量以上になるまで運転者の踏力が直接反映されない領域(アイドルストローク)が設けられている。液圧制動力と回生制動力との協調は、アイドルストロークの間で行われるようになっている。   The master cylinder 24 is assembled to a cylinder body 42 having a cylinder inner hole 41, and an input piston 44 that is assembled to a rear portion (right side in the drawing) of the cylinder inner hole 41 in the cylinder body 42 and is urged rearward by a spring 43. And a pair of master pistons 47, 48, etc., which are assembled to a front portion (left side in the drawing) of the cylinder inner hole 41 in the cylinder body 42 and are urged rearward by a pair of springs 45, 46. The master cylinder 24 is provided with a region (idle stroke) in which the driver's pedaling force is not directly reflected until the amount of operation of the brake pedal 21 exceeds a predetermined amount. The coordination between the hydraulic braking force and the regenerative braking force is performed between idle strokes.

液圧制御用アクチュエータ26は、電磁弁としてマスタカット弁と一体となった差圧弁61と、ポンプ62と、ポンプ62を駆動する電動モータ63と、絞り64と、保持弁65a,65bと、減圧弁66a,66bと、リザーバ67等とが配管接続されて構成されている。すなわち、管路の入口側には分岐点Aが設けられ、分岐点Aから左側に分岐した管路には差圧弁61が配置されている。差圧弁61の下流側の管路には分岐点Bが設けられ、分岐点Bの下流側の一方の管路には右前輪FR用の保持弁65aが配置され、他方の管路には左前輪FL用の保持弁65bが配置されている。一方、分岐点Aから右側に分岐した管路はリザーバ67に連通されている。リザーバ67と分岐点Bとは、ポンプ62と絞り64を介して管路により連通されている。   The hydraulic pressure control actuator 26 includes a differential pressure valve 61 integrated with a master cut valve as a solenoid valve, a pump 62, an electric motor 63 that drives the pump 62, a throttle 64, holding valves 65a and 65b, a pressure reducing valve. The valves 66a and 66b, the reservoir 67, and the like are connected by piping. That is, a branch point A is provided on the inlet side of the pipe, and a differential pressure valve 61 is disposed on the pipe branched from the branch point A to the left side. A branch point B is provided in the pipe line on the downstream side of the differential pressure valve 61, a holding valve 65a for the right front wheel FR is disposed in one pipe line on the downstream side of the branch point B, and a left pipe is provided in the other pipe line. A holding valve 65b for the front wheel FL is disposed. On the other hand, the pipe branched from the branch point A to the right side is communicated with the reservoir 67. The reservoir 67 and the branch point B are communicated with each other via a pipe 62 via a pump 62 and a throttle 64.

保持弁65aの下流側の管路には分岐点Cが設けられ、分岐点Cの下流側の一方の管路には右前輪FRのホイルシリンダ27aが連通され、他方の管路は減圧弁66aを介してリザーバ67に連通されている。保持弁65bの下流側の管路には分岐点Dが設けられ、分岐点Dの下流側の一方の管路には左前輪FLのホイルシリンダ27bが連通され、他方の管路は減圧弁66bを介してリザーバ67に連通されている。   A branch point C is provided in the pipe line on the downstream side of the holding valve 65a, the wheel cylinder 27a of the right front wheel FR is connected to one pipe line on the downstream side of the branch point C, and the pressure pipe 66a is connected to the other pipe line. And communicated with the reservoir 67 via A branch point D is provided in the pipe line on the downstream side of the holding valve 65b, the wheel cylinder 27b of the left front wheel FL is communicated with one pipe line on the downstream side of the branch point D, and the pressure pipe 66b is connected to the other pipe line. And communicated with the reservoir 67 via

回生制動力発生装置3は、両前輪FL,FRを連結する車軸に接続された例えば交流同期型のモータ31と、モータ31によって発電された交流電力を直流電力に変換してバッテリ33に充電し、バッテリ33の直流電流を交流電流に変換してモータ31へ供給するインバータ32等とを備えて構成される。   The regenerative braking force generator 3 converts, for example, an AC synchronous motor 31 connected to an axle that connects both front wheels FL and FR, and AC power generated by the motor 31 into DC power and charges the battery 33. And an inverter 32 that converts the direct current of the battery 33 into an alternating current and supplies the alternating current to the motor 31.

ブレーキECU4は、CPU、ROM、RAM、I/O等を備えた周知のマイクロコンピュータであり、ROM等に記憶されたプログラムに従って各種演算処理や各種制御等の実行が可能に構成されている。例えば、ブレーキECU4は、ストロークセンサ22の検出信号に基づくブレーキペダル21の操作量の演算処理や、車輪速度センサ28の検出信号に基づく車両速度や車両の減速度の演算処理を実行する。また、液圧制動力発生装置2の液圧制御用アクチュエータ26による液圧制動力を例えば両前輪FL,FRに対して発生させるときは、差圧弁61を差圧状態にした状態で電動モータ63を駆動することにより、マスタシリンダ24内のブレーキ液をポンプ62に吸入させ、各ホイルシリンダ27a,27bに吐出させて各ホイルシリンダ27a,27bを加圧する制御を実行する。また、回生制動力発生装置3による回生制動力を発生させるときは、ハイブリッドECU5に対して周知の回生協調制御にて求められる回生制動力を表す回生指令値を出力する。   The brake ECU 4 is a well-known microcomputer including a CPU, ROM, RAM, I / O, and the like, and is configured to be able to execute various arithmetic processes and various controls according to a program stored in the ROM. For example, the brake ECU 4 executes a calculation process of the operation amount of the brake pedal 21 based on the detection signal of the stroke sensor 22 and a calculation process of the vehicle speed and the vehicle deceleration based on the detection signal of the wheel speed sensor 28. When the hydraulic braking force generated by the hydraulic pressure control actuator 26 of the hydraulic braking force generator 2 is generated, for example, for both front wheels FL and FR, the electric motor 63 is driven with the differential pressure valve 61 in the differential pressure state. As a result, the brake fluid in the master cylinder 24 is sucked into the pump 62 and discharged to the wheel cylinders 27a and 27b to pressurize the wheel cylinders 27a and 27b. Further, when the regenerative braking force is generated by the regenerative braking force generator 3, a regenerative command value representing the regenerative braking force obtained by well-known regenerative cooperative control is output to the hybrid ECU 5.

ハイブリッドECU5は、バッテリ33の充電状態を管理し、また、ブレーキECU70と協調して回生ブレーキ制御を実行する。すなわち、両前輪FL,FRの回転力でモータ31を駆動させることにより発電を行い、得られた電力によりバッテリ33を充電する。そして、この発電の際のモータ31の抵抗力により発生する回生制動力を求めてブレーキECU4に対して出力する。   The hybrid ECU 5 manages the state of charge of the battery 33 and executes regenerative brake control in cooperation with the brake ECU 70. That is, power is generated by driving the motor 31 with the rotational force of both front wheels FL and FR, and the battery 33 is charged with the obtained electric power. Then, the regenerative braking force generated by the resistance force of the motor 31 during power generation is obtained and output to the brake ECU 4.

ここで、回生制動から液圧制動への低速すり替えの初期段階においてはホイルシリンダ27a,27bの消費液量が多いため、図5(a)に示すように、ホイルシリンダ27a,27b内のブレーキ液の液量Qの増加に対するホイルシリンダ27a,27b内のブレーキ液の液圧Pの上昇幅は漸増傾向にある。よって、図5(b)に示すように、ホイルシリンダ27a,27b内のブレーキ液の液圧Pを容量が小さく吐出量が一定であるポンプ63により高める(液圧0から液圧Paまで高める)ことには時間が掛かる(時点0から時点ta)。よって、図5(c)に示すように、車両の減速度Gを高める(減速度0から減速度Gaまで高める)ことには時間が掛かる(時点0から時点ta)ため、液圧制動の応答遅れが懸念される。特に、回生制動力の最大値が目標制動力よりも大きい場合、回生効率の向上のため回生制動力のみで目標制動力を得ることが一般的である。この状態で低速すり替えが行われた場合、液圧を0から高めることには時間が掛かるため、液圧制動の応答遅れが発生することが考えられる。   Here, in the initial stage of low-speed switching from regenerative braking to hydraulic braking, the amount of liquid consumed in the wheel cylinders 27a, 27b is large, so as shown in FIG. 5A, the brake fluid in the wheel cylinders 27a, 27b. The increase width of the hydraulic pressure P of the brake fluid in the wheel cylinders 27a and 27b with respect to the increase in the amount Q of the hydraulic fluid tends to increase gradually. Therefore, as shown in FIG. 5B, the hydraulic pressure P of the brake fluid in the wheel cylinders 27a and 27b is increased by the pump 63 having a small capacity and a constant discharge amount (increased from a hydraulic pressure of 0 to a hydraulic pressure Pa). This takes time (from time 0 to time ta). Therefore, as shown in FIG. 5 (c), it takes time to increase the deceleration G of the vehicle (from deceleration 0 to deceleration Ga) (from time 0 to time ta). There is concern about the delay. In particular, when the maximum value of the regenerative braking force is larger than the target braking force, it is common to obtain the target braking force only with the regenerative braking force in order to improve the regeneration efficiency. When low-speed switching is performed in this state, it takes time to increase the hydraulic pressure from 0, and it is considered that a response delay of hydraulic braking occurs.

そこで、本発明では、ホイルシリンダ27a,27b内のブレーキ液の液量Qを所定の最低液量以上にする。これにより、液圧制動力の増加開始時点での応答性を高めることができる。すなわち、回生制動力の増加終了時から液圧制動力の増加開始時までホイルシリンダ27a,27b内のブレーキ液の液量Qを最低液量に設定する。この最低液量としては、ホイルシリンダ27a,27b内のブレーキ液の液量Qの増加に対するホイルシリンダ27a,27b内のブレーキ液の液圧Pの上昇幅が所定値以上になる液量、例えばQaやQb(本発明の「第一液量」、「第二液量」に相当する)を設定する。   Therefore, in the present invention, the amount Q of brake fluid in the wheel cylinders 27a, 27b is set to be equal to or greater than a predetermined minimum amount. Thereby, the responsiveness at the time of starting the increase of the hydraulic braking force can be enhanced. That is, the brake fluid amount Q in the wheel cylinders 27a and 27b is set to the minimum fluid amount from the end of the increase of the regenerative braking force to the start of the increase of the hydraulic braking force. The minimum fluid amount is a fluid amount at which the increase amount of the brake fluid pressure P in the wheel cylinders 27a and 27b with respect to the increase in the brake fluid amount Q in the wheel cylinders 27a and 27b becomes a predetermined value or more, for example, Qa And Qb (corresponding to “first liquid amount” and “second liquid amount” of the present invention) are set.

次に、車両制動制御装置の動作を図2のフローチャートを参照して説明する。車両制動制御装置は、各センサ信号、例えばストロークセンサ22や車輪速度センサ28等の検出信号を取込み(図2のステップS1)、回生協調中であるか否かを判断する(図2のステップS2)。回生協調中でない場合は処理を終了するが、回生協調中である場合は、マスタシリンダ圧センサ29の検出信号を取込んで求めたマスタ圧および差圧弁61に対する指示値に基づいて、ホイルシリンダ27a,27b内のブレーキ液の液量Qを演算する。   Next, the operation of the vehicle braking control device will be described with reference to the flowchart of FIG. The vehicle braking control device takes in each sensor signal, for example, a detection signal from the stroke sensor 22 or the wheel speed sensor 28 (step S1 in FIG. 2), and determines whether or not regeneration coordination is being performed (step S2 in FIG. 2). ). If the regeneration coordination is not in progress, the process is terminated. If the regeneration coordination is in progress, the wheel cylinder 27a is based on the master pressure obtained by taking the detection signal of the master cylinder pressure sensor 29 and the indicated value for the differential pressure valve 61. , 27b, the amount Q of brake fluid is calculated.

そして、車両制動制御装置は、演算したホイルシリンダ27a,27b内のブレーキ液の液量Qと最低液量Qbとを比較し(図2のステップS3)、演算した液量Qが最低液量Qb以上のときはステップS5に進む。一方、演算した液量Qが最低液量Qb未満のときは、ステップS4でホイルシリンダ27a,27b内の液量Qが少なくとも最低液量Qbとなるようにホイルシリンダ27a,27b内にブレーキ液を導入する(本発明の「液量制御手段」に相当する)。   Then, the vehicle braking control device compares the calculated fluid amount Q of the brake fluid in the wheel cylinders 27a and 27b with the minimum fluid amount Qb (step S3 in FIG. 2), and the calculated fluid amount Q is the minimum fluid amount Qb. If so, the process proceeds to step S5. On the other hand, when the calculated fluid amount Q is less than the minimum fluid amount Qb, brake fluid is introduced into the wheel cylinders 27a and 27b so that the fluid amount Q in the wheel cylinders 27a and 27b becomes at least the minimum fluid amount Qb in step S4. It is introduced (corresponding to the “liquid amount control means” of the present invention).

ステップS5では、車両制動制御装置は、回生制動力から液圧制動力への低速すり替えを開始する車両速度(以下、「開始車両速度」という)Vsよりも高い所定車両速度Viを、車両減速度に基づいて(例えば、次式(1)に次式(2)を代入して)演算し(本発明の「開始速度設定手段」に相当する)、ステップS6に進む。
Vi=Vs+G×ΔT・・・(1)
ΔT=(Qa−Qb)/A・・・(2)
ここで、Gは、車両減速度、Qaは、Qbよりも液量が多い最低液量、Aは、ポンプ62の吐出能力(単位時間当たりの吐出量)である。
In step S5, the vehicle braking control device sets a predetermined vehicle speed Vi higher than a vehicle speed (hereinafter referred to as “starting vehicle speed”) Vs at which low-speed switching from regenerative braking force to hydraulic braking force is started as vehicle deceleration. Based on (for example, substituting the following expression (2) into the following expression (1)) (corresponding to the “starting speed setting means” of the present invention), the process proceeds to step S6.
Vi = Vs + G × ΔT (1)
ΔT = (Qa−Qb) / A (2)
Here, G is the vehicle deceleration, Qa is the minimum liquid amount that is larger than Qb, and A is the discharge capacity (discharge amount per unit time) of the pump 62.

ステップS6では、車両制動制御装置は、車輪速度センサ28の検出信号から求めた車両速度VとステップS5で演算した所定車両速度Viとを比較し、車両速度Vが所定車両速度Viよりも高いときは、低速すり替えにより液圧制動力が増加することを予測することなく(本発明の「予測手段」に相当する)、処理を終了する。一方、車両速度Vが所定車両速度Vi以下のときは、低速すり替えにより液圧制動力が増加することを予測して、ステップS7に進む(本発明の「予測手段」に相当する)。   In step S6, the vehicle braking control device compares the vehicle speed V obtained from the detection signal of the wheel speed sensor 28 with the predetermined vehicle speed Vi calculated in step S5, and when the vehicle speed V is higher than the predetermined vehicle speed Vi. Terminates the process without predicting that the hydraulic braking force will increase due to low-speed switching (corresponding to the “predicting means” of the present invention). On the other hand, when the vehicle speed V is less than or equal to the predetermined vehicle speed Vi, it is predicted that the hydraulic braking force will increase due to low-speed switching, and the process proceeds to step S7 (corresponding to “predicting means” of the present invention).

ステップS7では、車両制動制御装置は、マスタシリンダ圧センサ29の検出信号から求めたマスタ圧および差圧弁61に対する指示値に基づいて、ホイルシリンダ27a,27b内のブレーキ液の液量Qを演算する。そして、演算したホイルシリンダ27a,27b内のブレーキ液の液量Qと最低液量Qaとを比較する。演算した液量Qが最低液量Qa以上のときは処理を終了する。一方、演算した液量Qが最低液量Qa未満のときは、ホイルシリンダ27a,27b内の液量Qが少なくとも最低液量Qaとなるようにホイルシリンダ27a,27b内にブレーキ液を導入し(図2のステップS8、本発明の「最低液量設定手段」に相当する)、処理を終了する。   In step S <b> 7, the vehicle braking control device calculates the amount Q of brake fluid in the wheel cylinders 27 a and 27 b based on the master pressure obtained from the detection signal of the master cylinder pressure sensor 29 and the instruction value for the differential pressure valve 61. . Then, the calculated fluid amount Q of the brake fluid in the wheel cylinders 27a and 27b is compared with the minimum fluid amount Qa. When the calculated liquid amount Q is equal to or greater than the minimum liquid amount Qa, the process is terminated. On the other hand, when the calculated fluid amount Q is less than the minimum fluid amount Qa, the brake fluid is introduced into the wheel cylinders 27a and 27b so that the fluid amount Q in the wheel cylinders 27a and 27b is at least the minimum fluid amount Qa ( Step S8 in FIG. 2, which corresponds to “minimum liquid amount setting means” of the present invention), and the process is terminated.

次に、低速すり替え時に上記制御を適用した場合の作動を図3のタイムチャートを参照して説明する。図3では、ブレーキペダル21の操作量が、時点t0から時点t2まで増加し、時点t2以降は所定量に保持されていることを想定している。時点t0において、プレーキペダル21が踏み込まれると(図3(b))、車両速度がVoから減速し始め(図3(a)の時点t1〜)、回生協調が開始される(図3(c)の時点t1〜)。そして、時点t1から時点t2では、ブレーキペダル21の操作量増加に伴って液圧制動力が増加し、時点t2から時点t3では、車両速度の低下に伴って液圧制動力が減少する。その結果、図3(c)の時点t3においてブレーキ液の液量Qが最低液量Qbになる。その後、ホイルシリンダ27a,27b内の液量が最低液量Qbよりも少なくなるとホイルシリンダ27a,27b内にブレーキ液が導入される(図2のステップS3、S4)ため、時点t3から時点t4ではホイルシリンダ圧がPbに保持される。時点t4において車両速度が所定車両速度Viになると、ホイルシリンダ27a,27b内の液量が最低液量Qaになるまでホイルシリンダ27a,27b内にブレーキ液が導入される(図2のステップS5〜S8)ため、時点t4から時点t5ではホイルシリンダ圧がPaに保持される。すなわち、時点t5において、低速すり替えの開始車両速度Vsになると、液圧制動力が増加し始めるが、その時点ではホイルシリンダ27a,27b内の液量が最低液量Qaになっている。   Next, the operation when the above-described control is applied during low-speed switching will be described with reference to the time chart of FIG. In FIG. 3, it is assumed that the operation amount of the brake pedal 21 increases from the time point t0 to the time point t2, and is maintained at a predetermined amount after the time point t2. When the brake pedal 21 is depressed at time t0 (FIG. 3 (b)), the vehicle speed starts to decelerate from Vo (time t1 in FIG. 3 (a)), and regenerative cooperation is started (FIG. 3 (c)). ) At time t1). From time t1 to time t2, the hydraulic braking force increases as the amount of operation of the brake pedal 21 increases, and from time t2 to time t3, the hydraulic braking force decreases as the vehicle speed decreases. As a result, the amount Q of brake fluid becomes the minimum amount Qb at time t3 in FIG. Thereafter, when the fluid amount in the wheel cylinders 27a and 27b becomes smaller than the minimum fluid amount Qb, the brake fluid is introduced into the wheel cylinders 27a and 27b (steps S3 and S4 in FIG. 2). The wheel cylinder pressure is held at Pb. When the vehicle speed reaches the predetermined vehicle speed Vi at time t4, the brake fluid is introduced into the wheel cylinders 27a and 27b until the fluid amount in the wheel cylinders 27a and 27b reaches the minimum fluid amount Qa (steps S5 to S5 in FIG. 2). Therefore, the wheel cylinder pressure is held at Pa from time t4 to time t5. That is, at the time t5, when the vehicle speed Vs for starting the low-speed replacement is reached, the hydraulic braking force starts to increase, but at that time, the liquid amount in the wheel cylinders 27a and 27b is the minimum liquid amount Qa.

このように、予測可能な低速すり替えに備えてホイルシリンダ27a,27b内の液量を最低液量Qaにすることにより、低速すり替え時(図3(c)の時点t5〜)の液圧制動力増大の応答性を確実に高めることができる。また、所定車両速度Viが車両減速度Gに基づいて設定されるため、ポンプ62の吐出能力に応じた必要最低限の期間だけホイルシリンダ27a,27b内の液量を最低液量Qbよりも多い液量にして液圧制動力増大の応答性を確実に高めることができる。すなわち、液圧制動力増大の応答性の向上と回生効率の向上との両立を図ることができる。   In this way, the hydraulic braking force is increased at the time of low-speed switching (time t5 in FIG. 3C) by setting the liquid volume in the wheel cylinders 27a and 27b to the minimum liquid volume Qa in preparation for predictable low-speed switching. The responsiveness of can be reliably increased. Further, since the predetermined vehicle speed Vi is set based on the vehicle deceleration G, the liquid amount in the wheel cylinders 27a and 27b is larger than the minimum liquid amount Qb for a necessary minimum period according to the discharge capacity of the pump 62. The responsiveness of increasing the hydraulic braking force can be reliably increased with the amount of liquid. That is, it is possible to achieve both improvement in the response of increasing the hydraulic braking force and improvement in the regeneration efficiency.

次に、踏み増し時に上記制御を適用した場合の作動を図4のタイムチャートを参照して説明する。図4では、ブレーキペダル21の操作量が、時点t0から時点t2まで増加し、時点t2から時点t7まで所定量に保持され、時点t7以降に増加することを想定している。時点t0から時点t7までの作動は、図3の時点t0から時点t4までの作動と同一である。すなわち、時点t7において、ブレーキペダル21の操作量が増加すると、目標制動力の増大に伴って液圧制動力が増加するが、その時点ではホイルシリンダ27a,27b内の液量が最低液量Qbになっている。   Next, the operation when the above-described control is applied at the time of stepping on will be described with reference to the time chart of FIG. In FIG. 4, it is assumed that the operation amount of the brake pedal 21 increases from time t0 to time t2, is held at a predetermined amount from time t2 to time t7, and increases after time t7. The operation from time t0 to time t7 is the same as the operation from time t0 to time t4 in FIG. That is, when the amount of operation of the brake pedal 21 increases at time t7, the hydraulic braking force increases as the target braking force increases. At that time, the amount of fluid in the wheel cylinders 27a and 27b reaches the minimum amount of fluid Qb. It has become.

このように、ブレーキペダル21の操作量増加(踏み増し)に備えて、ホイルシリンダ27a,27b内の液量を最低液量Qbにすることにより、踏み増し時の液圧制動力増大の応答性を高めることができる。また、最低液量Qbを最低液量Qaよりも少ない液量にすることにより、踏み増し時の液圧制動力増大の応答性の向上と回生効率の向上との両立を図ることができる。   In this way, in response to an increase in the operation amount of the brake pedal 21 (increase in the amount of depression), the fluid amount in the wheel cylinders 27a and 27b is set to the minimum amount of fluid Qb, thereby increasing the response of increasing the hydraulic braking force when the amount of depression is increased. Can be increased. In addition, by setting the minimum fluid amount Qb to a fluid amount smaller than the minimum fluid amount Qa, it is possible to achieve both improvement in the response of increasing the hydraulic braking force when stepping on and improvement in regeneration efficiency.

上記実施形態では、最低液量Qbを回生制動力の増加終了時(図3(c)の時点t3)から所定車両速度Viへの減速時(図3(c)の時点t4)まで設定する制御としたが、かかる最低液量Qbを設定せず、最低液量Qaを液圧制動力の増加直前(図3(c)の時点t4からt5)に設定する制御としてもよい。この場合、液圧制動力の少なくとも増加開始時点での応答性を高めることができる。   In the above embodiment, the control is performed to set the minimum fluid amount Qb from the end of the increase of the regenerative braking force (time t3 in FIG. 3C) to the time of deceleration to the predetermined vehicle speed Vi (time t4 in FIG. 3C). However, the minimum liquid amount Qb may not be set, and the minimum liquid amount Qa may be set immediately before the increase of the hydraulic braking force (from time t4 to time t5 in FIG. 3C). In this case, the responsiveness at least at the start of the increase of the hydraulic braking force can be improved.

また、上述の低速すり替え時および踏み増し時に上記制御を適用した場合においては、最低液量Qb,Qaに対応する液圧制動力だけ回生制動力を減少させて目標制動力を得る回生協調制御を例示したが、最低液量Qb,Qaが十分に小さいときは、回生制動力を減少させることなくホイルシリンダ27a,27b内のブレーキ液の液量を最低液量Qb,Qaにする回生協調制御としてもよい。また、最低液量Qb,Qaが十分に小さくなくても、最大の回生制動力に所定の比率を掛けた回生制動力を発生させて目標制動力を得るように構成してもよい。   Further, in the case where the above control is applied at the time of the low speed switching and the stepping increase, the regenerative cooperative control for obtaining the target braking force by reducing the regenerative braking force by the hydraulic braking force corresponding to the minimum fluid amounts Qb and Qa is exemplified. However, when the minimum fluid amounts Qb and Qa are sufficiently small, the regenerative cooperative control for reducing the brake fluid amount in the wheel cylinders 27a and 27b to the minimum fluid amounts Qb and Qa without reducing the regenerative braking force is also possible. Good. Further, even if the minimum fluid amounts Qb and Qa are not sufficiently small, a target braking force may be obtained by generating a regenerative braking force obtained by multiplying the maximum regenerative braking force by a predetermined ratio.

以上説明したように、本実施形態の車両制動制御装置によれば、液圧制動力の増加が予測されている場合にホイルシリンダ27a,27b内の液量を最低液量Qa以上にすることにより、液圧制動力増大の応答性を確実に高めることができる。また、液圧制動力の増加が予測されていない場合にホイルシリンダ27a,27b内の液量を最低液量Qa以上にしないことにより、回生効率を高めることができる。すなわち、液圧制動力増大の応答性の向上と回生効率の向上との両立を図ることができる。そして、液圧制動力が増加することを車両速度に基づいて予測することにより、コストアップすることなく、液圧制動力増大の応答性の向上と回生効率の向上との両立を図ることができる。   As described above, according to the vehicle braking control device of the present embodiment, when the increase in the hydraulic braking force is predicted, the fluid amount in the wheel cylinders 27a and 27b is set to be equal to or greater than the minimum fluid amount Qa. The response of increasing the hydraulic braking force can be reliably increased. In addition, when the increase in the hydraulic braking force is not predicted, the regenerative efficiency can be improved by not setting the liquid amount in the wheel cylinders 27a and 27b to be equal to or higher than the minimum liquid amount Qa. That is, it is possible to achieve both improvement in the response of increasing the hydraulic braking force and improvement in the regeneration efficiency. Further, by predicting that the hydraulic braking force increases based on the vehicle speed, it is possible to achieve both improvement in the response of the increase in the hydraulic braking force and improvement in the regeneration efficiency without increasing the cost.

なお、回生制動力は、バッテリ33の充電状態で変化するため、低速すり替えの開始が、車両速度Vsとなる時点よりも早まる場合がある。このような場合であっても、バッテリ33の充電状態に基づいて低速すり替えの開始時点を推測することにより、本発明を適用することができる。   Note that since the regenerative braking force changes depending on the state of charge of the battery 33, the start of low-speed switching may be earlier than the time when the vehicle speed Vs is reached. Even in such a case, the present invention can be applied by estimating the start point of low-speed switching based on the state of charge of the battery 33.

1:車両用制動装置、2:液圧制動力発生装置、3:回生制動力発生装置、4:ブレーキECU、5:ハイブリッドECU、22:ストロークセンサ、24:マスタシリンダ、26:液圧制御用アクチュエータ、27a,27b:ホイルシリンダ、28:車輪速度センサ、29:マスタシリンダ圧センサ、61:差圧弁、62:ポンプ、63:電動モータ、FR:右前輪、FL:左前輪 DESCRIPTION OF SYMBOLS 1: Vehicle braking device, 2: Hydraulic braking force generator, 3: Regenerative braking force generator, 4: Brake ECU, 5: Hybrid ECU, 22: Stroke sensor, 24: Master cylinder, 26: Actuator for hydraulic pressure control 27a, 27b: wheel cylinder, 28: wheel speed sensor, 29: master cylinder pressure sensor, 61: differential pressure valve, 62: pump, 63: electric motor, FR: right front wheel, FL: left front wheel

Claims (1)

車両の車輪(FR,FL)に設けられたホイルシリンダ(27a,27b)内にブレーキ液を供給して前記ホイルシリンダに対応する前記車輪に液圧制動力を発生させる液圧制動力発生装置(2)と、
前記車輪に回生制動力を発生させる回生制動力発生装置(3)と、を備える車両用の制動装置(1)に適用され、
前記液圧制動力発生装置および前記回生制動力発生装置を制御して前記車輪に目標とする制動力を付与する車両用制動制御装置であって、
前記液圧制動力発生装置による液圧制動力の少なくとも増加直前の前記ホイルシリンダ内の液量を所定の最低液量以上にする液量制御手段(4)と、
前記回生制動力発生装置が前記回生制動力を発生している状態において、前記車両の車両速度が所定車両速度から前記車両速度の低下に伴って前記回生制動力を前記液圧制動力にすり替える低速すり替えが開始される開始車両速度にまで減速される期間の前記最低液量を第一液量に設定し、前記期間以前の前記最低液量を前記第一液量よりも少ない第二液量に設定する最低液量設定手段(4)と、を備え、
前記最低液量は、前記ホイルシリンダ内の液量と同ホイルシリンダ内の液圧との関係において、前記ホイルシリンダ内の液量の増加に対する同ホイルシリンダ内の液圧の上昇幅が所定値以上になるように設定されている車両用制動制御装置。
A hydraulic braking force generator (2) for supplying a brake fluid into a wheel cylinder (27a, 27b) provided on a wheel (FR, FL) of a vehicle to generate a hydraulic braking force on the wheel corresponding to the wheel cylinder. When,
A regenerative braking force generator (3) for generating a regenerative braking force on the wheel; and a vehicle braking device (1) comprising:
A vehicular braking control device that controls the hydraulic braking force generation device and the regenerative braking force generation device to apply a target braking force to the wheels;
A liquid amount control means (4) for setting the amount of fluid in the wheel cylinder immediately before the increase of the fluid pressure braking force by the fluid pressure braking force generator to a predetermined minimum fluid amount or more ;
In a state where the regenerative braking force generating device generates the regenerative braking force, the vehicle speed of the vehicle is switched at a low speed that switches the regenerative braking force to the hydraulic braking force as the vehicle speed decreases from a predetermined vehicle speed. The minimum liquid amount during the period of deceleration to the starting vehicle speed at which the operation is started is set as the first liquid amount, and the minimum liquid amount before the period is set as the second liquid amount smaller than the first liquid amount. A minimum liquid amount setting means (4) for performing,
The minimum fluid amount is a relationship between the fluid amount in the wheel cylinder and the fluid pressure in the wheel cylinder, and the increase amount of the fluid pressure in the wheel cylinder with respect to the increase in the fluid amount in the wheel cylinder is a predetermined value or more. A braking control device for a vehicle that is set to be
JP2012149970A 2012-07-03 2012-07-03 Brake control device for vehicle Expired - Fee Related JP6015170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012149970A JP6015170B2 (en) 2012-07-03 2012-07-03 Brake control device for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012149970A JP6015170B2 (en) 2012-07-03 2012-07-03 Brake control device for vehicle

Publications (2)

Publication Number Publication Date
JP2014012429A JP2014012429A (en) 2014-01-23
JP6015170B2 true JP6015170B2 (en) 2016-10-26

Family

ID=50108465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012149970A Expired - Fee Related JP6015170B2 (en) 2012-07-03 2012-07-03 Brake control device for vehicle

Country Status (1)

Country Link
JP (1) JP6015170B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6300013B2 (en) * 2014-03-06 2018-03-28 株式会社アドヴィックス Braking device for vehicle
DE102015204866A1 (en) 2015-03-18 2016-09-22 Robert Bosch Gmbh Method for operating a recuperative braking system of a vehicle and control device for a recuperative braking system of a vehicle
JP6507755B2 (en) * 2015-03-19 2019-05-08 株式会社アドヴィックス Vehicle braking system
JP6595417B2 (en) * 2016-08-10 2019-10-23 株式会社アドヴィックス Braking device for vehicle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3158583B2 (en) * 1991-12-24 2001-04-23 トヨタ自動車株式会社 Electric vehicle braking control device
JP4719061B2 (en) * 2006-04-14 2011-07-06 トヨタ自動車株式会社 Vehicle and control method thereof

Also Published As

Publication number Publication date
JP2014012429A (en) 2014-01-23

Similar Documents

Publication Publication Date Title
JP5245036B2 (en) Brake control device for vehicle
JP5626168B2 (en) Brake control device for vehicle
JP5167954B2 (en) Brake control device for vehicle
JP6015170B2 (en) Brake control device for vehicle
JP2019115226A (en) Control device, control method and control system for electric vehicle
JP4816208B2 (en) Brake control device for vehicle
JP2007276684A (en) Vehicular brake control device
JP2007276655A (en) Vehicular brake control device
JP2007276683A (en) Vehicular brake control device
JP4905037B2 (en) Brake control device for vehicle
JP6455386B2 (en) Brake control device for vehicle
JP4840293B2 (en) Brake control device for vehicle
JP2014080126A (en) Vehicular brake control device
JP6689496B2 (en) Vehicle control device
JP5549690B2 (en) Brake control device for vehicle
JP2010047085A (en) Vehicle braking device
JP2016030568A (en) Vehicle brake system
JP2015006831A (en) Vehicle brake device
KR20150060175A (en) Control Method for Brake Booster System
JP5683305B2 (en) Brake control device
JP2013141338A (en) Braking device for vehicle
JP5332867B2 (en) Braking assist device
JP6020008B2 (en) Brake system for vehicles
JP5948982B2 (en) Brake control device for vehicle
JP5872412B2 (en) Brake control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160912

R150 Certificate of patent or registration of utility model

Ref document number: 6015170

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees