JP6014954B2 - Method for manufacturing sintered parts - Google Patents

Method for manufacturing sintered parts Download PDF

Info

Publication number
JP6014954B2
JP6014954B2 JP2012127146A JP2012127146A JP6014954B2 JP 6014954 B2 JP6014954 B2 JP 6014954B2 JP 2012127146 A JP2012127146 A JP 2012127146A JP 2012127146 A JP2012127146 A JP 2012127146A JP 6014954 B2 JP6014954 B2 JP 6014954B2
Authority
JP
Japan
Prior art keywords
gas
sintered
decarburization
change
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012127146A
Other languages
Japanese (ja)
Other versions
JP2013249529A (en
Inventor
裕彬 本山
裕彬 本山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Sintered Alloy Ltd
Original Assignee
Sumitomo Electric Sintered Alloy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Sintered Alloy Ltd filed Critical Sumitomo Electric Sintered Alloy Ltd
Priority to JP2012127146A priority Critical patent/JP6014954B2/en
Publication of JP2013249529A publication Critical patent/JP2013249529A/en
Application granted granted Critical
Publication of JP6014954B2 publication Critical patent/JP6014954B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は焼結部品の製造方法に関する。さらに詳しくは、鉄系金属粉末の成形体を雰囲気ガス中で焼成する工程を含む焼結部品の製造方法に関する。   The present invention relates to a method for manufacturing a sintered part. More specifically, the present invention relates to a method for manufacturing a sintered part including a step of firing a compact of an iron-based metal powder in an atmospheric gas.

近年、自動二輪車、自動車などに用いられる各種部品を、鉄を主成分とする金属粉末を加圧成形した成形体を雰囲気ガス中で焼成することで製造する場合がある。例えば、チェーン伝動に使用されるスプロケットは、重量比で銅を1.5〜6.0%、炭素を0.2〜1.0%含み、残部が鉄である金属粉末を加圧成形して粉末成形体を作製し、この粉末成形体を所定の雰囲気ガスおよび焼成温度にて焼結し、得られた焼結体に高周波焼入れ・焼き戻しなどの熱処理を施すことで製造されている。そして、焼結工程における雰囲気ガスとしては、浸炭性ガスであるRXガスが多用されている。   In recent years, various parts used in motorcycles, automobiles, and the like are sometimes manufactured by firing a molded body obtained by press-molding a metal powder containing iron as a main component in an atmospheric gas. For example, a sprocket used for chain transmission is formed by pressure forming metal powder containing 1.5 to 6.0% copper, 0.2 to 1.0% carbon, and the balance being iron. It is manufactured by producing a powder molded body, sintering the powder molded body at a predetermined atmospheric gas and firing temperature, and subjecting the obtained sintered body to heat treatment such as induction hardening and tempering. And RX gas which is carburizing gas is used abundantly as atmospheric gas in a sintering process.

雰囲気ガスとして浸炭性ガスを用いると、焼結工程における加熱ゾーンで脱炭されたとしても、その後の冷却ゾーンで復炭されるので、焼結品に含まれる炭素量は焼結前の炭素量にほぼ戻っている。したがって、脱炭によって製品の硬度や強度が低下することがない。   When carburizing gas is used as the atmosphere gas, even if decarburized in the heating zone in the sintering process, it is re-coalized in the subsequent cooling zone, so the amount of carbon contained in the sintered product is the amount of carbon before sintering. Almost returned to. Therefore, the hardness and strength of the product are not reduced by decarburization.

しかしながら、浸炭性ガスを雰囲気ガスとして用いる場合、加熱時における脱炭と、冷却時における復炭というプロセスを経ることにより、製品に大きな寸法バラツキが生じることがある。焼結部品の製造工程において、粉末成形体を成形する工程や、焼結品に高周波熱処理を施す工程では、寸法変化や歪が発生することがほとんどないことから、焼結工程における寸法バラツキが製品の寸法精度を決定する。したがって、製品の寸法バラツキを抑え、歩留まりを向上させるためには、焼結工程での寸法バラツキを抑えることが必要である。このことは、スプロケットのように、その機能上、寸法や歯形に高い精度が要求される製品においては特に必要とされることであり、寸法がばらつくと歩留まりが低下してコストに多大の影響を与えることになる。   However, when a carburizing gas is used as the atmospheric gas, there may be a large dimensional variation in the product through a process of decarburization during heating and re-coalification during cooling. In the manufacturing process of sintered parts, there is almost no dimensional change or distortion in the process of forming a powder compact or the process of subjecting a sintered product to high-frequency heat treatment. Determine the dimensional accuracy of. Therefore, in order to suppress the dimensional variation of the product and improve the yield, it is necessary to suppress the dimensional variation in the sintering process. This is particularly necessary for products that require high accuracy in terms of dimensions and tooth profile, such as sprockets. If the dimensions vary, the yield decreases and the cost is greatly affected. Will give.

本発明は、このような事情に鑑みてなされたものであり、脱炭による硬度・強度の低下を防ぎつつ、製品の寸法バラツキを抑えることができる焼結部品の製造方法を提供することを目的としている。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a method for manufacturing a sintered part capable of suppressing dimensional variation of a product while preventing a decrease in hardness and strength due to decarburization. It is said.

(1)本発明の焼結部品の製造方法(以下、単に「製造方法」ともいう)は、鉄を主成分とし、残部に炭素および銅を含む鉄系の金属粉末を加圧成形して粉末成形体を作製する工程、粉末成形体を雰囲気ガス中で焼成して焼結体を得る焼結工程、および焼結体に熱処理を施す工程を含む焼結部品の製造方法であって、
前記焼結工程における雰囲気ガスが、79〜94体積%の窒素ガス、5〜20体積%のRXガスおよび1体積%の水素ガスであることを特徴としている。
(1) A method for manufacturing a sintered part according to the present invention (hereinafter also simply referred to as “manufacturing method”) is a powder obtained by pressure-forming iron-based metal powder containing iron as a main component and carbon and copper in the balance. A method for manufacturing a sintered part, including a step of producing a molded body, a sintering step of firing a powder molded body in an atmospheric gas to obtain a sintered body, and a step of heat-treating the sintered body,
Atmospheric gas in the sintering step, from 79 to 94% by volume of nitrogen gas, is characterized by a RX gas and one body product% hydrogen gas of 5 to 20 vol%.

本発明の製造方法では、焼結工程における雰囲気ガスとして、79〜94体積%の窒素ガス、5〜20体積%のRXガスおよび1体積%の水素ガを用いているので、寸法バラツキを最小限に抑えつつ、脱炭とそれに伴う硬度・強度の低下を抑制することができる。焼結工程における雰囲気ガスを窒素ガスにすると、脱炭および復炭というプロセスがないので焼結工程における寸法バラツキを抑えることができる。しかし、窒素ガスだけの雰囲気中の焼結では、焼結品に脱炭が起き、熱処理後の組織に硬度・強度の低下をもたらすフェライトが生じてしまう。そこで、本発明では、窒素ガスにRXガスを体積比で5〜20%混入させた雰囲気ガス中で焼結を行っている。また、1体積%の水素ガスを用いることで、この水素ガスがサビとして存在する酸素と結合し、かかる酸素がカーボンと結合しガスとして抜け出るのを防止することができる。これらにより、前述したように、寸法バラツキを最小限に抑えつつ、脱炭とそれに伴う硬度・強度の低下を抑制することができる。浸炭性ガスの割合が5%未満であると、脱炭防止効果が不十分であり、また、20%よりも多くなると寸法バラツキが大きくなってしまう。


In the production method of the present invention, as the atmospheric gas in the sintering step, from 79 to 94 vol% of nitrogen gas, because of the use of RX gas and one body product% hydrogen gas of 5 to 20 vol%, dimensional variations It is possible to suppress decarburization and the accompanying decrease in hardness and strength while minimizing the above. When the atmosphere gas in the sintering process is nitrogen gas, there is no process of decarburization and re-coalization, so that dimensional variations in the sintering process can be suppressed. However, when sintering in an atmosphere containing only nitrogen gas, decarburization occurs in the sintered product, and ferrite that causes a decrease in hardness and strength occurs in the structure after heat treatment. Therefore, in the present invention, it is carried out sintering in a nitrogen gas atmosphere gas obtained by mixing 5-20% of RX gas by volume. Further, by using the one body product% of hydrogen gas can be hydrogen gas is combined with oxygen present as rust, such oxygen is prevented from escaping as combined gas and carbon. Accordingly, as described above, decarburization and the accompanying decrease in hardness and strength can be suppressed while minimizing dimensional variations. When the ratio of the carburizing gas is less than 5%, the effect of preventing decarburization is insufficient, and when it exceeds 20%, the dimensional variation increases.


本発明の製造方法によれば、脱炭による硬度・強度の低下を防ぎつつ、製品の寸法バラツキを抑えることができる。   According to the production method of the present invention, it is possible to suppress dimensional variation of products while preventing a decrease in hardness and strength due to decarburization.

RXガス割合の変化に対する焼結体脱炭量の変化を示す図である。It is a figure which shows the change of the sintered compact decarburization amount with respect to the change of a RX gas ratio. RXガス割合の変化に対する焼結体硬度(HRB)の変化を示す図である。It is a figure which shows the change of sintered compact hardness (HRB) with respect to the change of a RX gas ratio. RXガス割合の変化に対する焼結体寸法バラツキの変化を示す図である。It is a figure which shows the change of the sintered compact dimension variation with respect to the change of a RX gas ratio. RXガス割合の変化に対する熱処理品硬度(HRA)の変化を示す図である。It is a figure which shows the change of the heat-treated goods hardness (HRA) with respect to the change of a RX gas ratio. RXガス割合の変化に対する熱処理品寸法バラツキの変化を示す図である。It is a figure which shows the change of the heat processing goods dimension variation with respect to the change of a RX gas ratio. 窒素ガス+1%水素の雰囲気ガス中で焼結された焼結体の組織を示す図である。It is a figure which shows the structure | tissue of the sintered compact sintered in the atmosphere gas of nitrogen gas + 1% hydrogen. RXガスだけの雰囲気ガス中で焼結された焼結体の組織を示す図である。It is a figure which shows the structure | tissue of the sintered compact sintered in the atmospheric gas only of RX gas. 窒素ガス+1%水素の雰囲気ガス中で焼結され、その後熱処理された熱処理品の組織を示す図である。It is a figure which shows the structure | tissue of the heat processing goods sintered in the atmosphere gas of nitrogen gas + 1% hydrogen, and was heat-processed after that. RXガスだけの雰囲気ガス中で焼結され、その後熱処理された熱処理品の組織を示す図である。It is a figure which shows the structure | tissue of the heat processing goods sintered in the atmospheric gas only of RX gas, and was heat-processed after that.

以下、添付図面を参照しつつ、本発明の製造方法の実施の形態を詳細に説明する。
本発明の製造方法には、粉末成形体を作製する工程、この粉末成形体を焼成して焼結体を得る工程、およびこの焼結体に熱処理を施す工程が含まれるが、これら以外に、例えば、焼結体に反りが生じた場合に、この反りを矯正するサイジング工程などが含まれていてもよい。
Hereinafter, an embodiment of a manufacturing method of the present invention will be described in detail with reference to the accompanying drawings.
The production method of the present invention includes a step of producing a powder molded body, a step of firing the powder molded body to obtain a sintered body, and a step of applying a heat treatment to the sintered body. For example, when warping occurs in the sintered body, a sizing process for correcting the warping may be included.

粉末成形体は、鉄を主成分とし、残部に炭素および銅を含む鉄系の金属粉末、例えばFe−2%Cu−0.8%Cの金属粉末を金型内に給粉し、パンチで押圧成形することで得ることができ、その成分割合は、本発明において特に限定されるものではない。また、粉末成形体は、必要に応じて金型潤滑剤などを含んでいてもよい。   The powder compact is made of iron-based metal powder containing iron and iron and containing carbon and copper in the balance, for example, Fe-2% Cu-0.8% C metal powder in a mold, It can obtain by press-molding, The component ratio is not specifically limited in this invention. The powder compact may contain a mold lubricant or the like as necessary.

粉末成形体は、通常の焼成炉において、例えば1130℃程度の焼成温度にて焼成され、焼結体となる。この焼結工程における雰囲気ガスとして、本発明では、窒素ガスを主成分とし、5〜20体積%の浸炭性ガスおよび1〜5体積%の水素ガスを含むガスを用いている。浸炭性ガスとしては、例えばRXガス、炭化水素ガス(メタン、プロパン、ブタンなど)などを用いることができるが、雰囲気の制御が容易である点より、RXガスを用いることが好ましい。   The powder compact is fired at a firing temperature of, for example, about 1130 ° C. in a normal firing furnace to form a sintered body. As the atmospheric gas in this sintering process, in the present invention, a gas containing nitrogen gas as a main component and containing 5 to 20% by volume carburizing gas and 1 to 5% by volume hydrogen gas is used. As the carburizing gas, for example, RX gas, hydrocarbon gas (methane, propane, butane, etc.) can be used, and RX gas is preferably used from the viewpoint of easy control of the atmosphere.

前述したように、雰囲気ガスとして浸炭性ガスだけを用いた場合における寸法バラツキを防ぐためには、浸炭性ガスに代えて窒素ガスを用いればよい。焼結工程における雰囲気ガスを窒素ガスにすると、浸炭性ガスの場合のような脱炭および復炭というプロセスがないので焼結工程における寸法バラツキを抑えることができる。しかし、窒素ガスだけの雰囲気中の焼結では、焼結品に脱炭が起き、熱処理後の組織に硬度・強度の低下をもたらすフェライトが生じてしまう。これに対し、窒素ガスにRXガスなどの浸炭性ガスを体積比で5〜20%混入させると、寸法バラツキを最小限に抑えつつ、脱炭とそれに伴う硬度・強度の低下を抑制することができる。浸炭性ガスの割合が5%未満であると、脱炭防止効果が不十分であり、また、20%よりも多くなると寸法バラツキが大きくなってしまう。   As described above, nitrogen gas may be used in place of the carburizing gas in order to prevent dimensional variation when only the carburizing gas is used as the atmospheric gas. When the atmosphere gas in the sintering process is nitrogen gas, there is no process of decarburization and re-coalizing as in the case of a carburizing gas, so that dimensional variation in the sintering process can be suppressed. However, when sintering in an atmosphere containing only nitrogen gas, decarburization occurs in the sintered product, and ferrite that causes a decrease in hardness and strength occurs in the structure after heat treatment. In contrast, when carburizing gas such as RX gas is mixed in nitrogen gas by 5 to 20% by volume, decarburization and the accompanying decrease in hardness and strength can be suppressed while minimizing dimensional variation. it can. When the ratio of the carburizing gas is less than 5%, the effect of preventing decarburization is insufficient, and when it exceeds 20%, the dimensional variation increases.

また、本実施の形態では、雰囲気ガス中に1〜5体積%の水素ガスを含有させている。還元性の強い水素ガスを1〜5体積%用いることで、脱炭を防ぐことできる。すなわち、水素ガスを混入させない場合、サビとして存在する酸素が混合してあるカーボン(C)と結合し、ガスとして抜け出てしまう(脱炭)が、水素を入れることで、この水素がサビとして存在する酸素と結合し、カーボンが酸素にとられるのを防ぐことができる。   Moreover, in this Embodiment, 1-5 volume% hydrogen gas is contained in atmospheric gas. Decarburization can be prevented by using 1 to 5% by volume of highly reducible hydrogen gas. In other words, when hydrogen gas is not mixed, it is combined with carbon (C) mixed with oxygen present as rust and escapes as gas (decarburization), but this hydrogen is present as rust when hydrogen is added. It can be combined with oxygen to prevent carbon from being taken by oxygen.

焼結体は、高周波焼入れ、焼き戻しなどの熱処理工程やサイジング工程などを経て、焼結部品とされる。   The sintered body is made into a sintered part through a heat treatment process such as induction hardening and tempering and a sizing process.

つぎに本発明の製造方法の効果を検証するために、焼結工程における雰囲気ガスの組成を種々変更させて、得られる焼結体(スプロケット)の脱炭量、硬度(HRB)および寸法バラツキ、ならびに焼結体に熱処理(スプロケット歯部への高周波焼入れと焼き戻し炉による焼き戻し)を施した熱処理品の硬度(HRA)および寸法バラツキについて調べた。結果を表1に示す。なお、寸法バラツキに関し、焼結寸法バラツキは、50個のサンプルについて焼結体歯底径と成形体歯底径とのバラツキ(σ)をとることにより評価し、熱処理寸法バラツキは、同じく50個のサンプルについて熱処理品歯底径と焼結体歯底径とのバラツキ(σ)をとることにより評価した。また、雰囲気ガス中の水素ガスの割合は、1体積%であった。   Next, in order to verify the effect of the production method of the present invention, the composition of the atmospheric gas in the sintering process is variously changed, the decarburization amount, hardness (HRB) and dimensional variation of the obtained sintered body (sprocket), In addition, the hardness (HRA) and dimensional variation of the heat-treated product obtained by heat-treating the sintered body (high-frequency quenching of the sprocket teeth and tempering by a tempering furnace) were examined. The results are shown in Table 1. Regarding the dimensional variation, the sintered dimensional variation was evaluated by taking the variation (σ) between the sintered product root diameter and the molded product base diameter for 50 samples, and the heat treatment dimensional variation was also 50 pieces. This sample was evaluated by taking the variation (σ) between the root diameter of the heat-treated product and the root diameter of the sintered body. Moreover, the ratio of the hydrogen gas in atmospheric gas was 1 volume%.

図1〜5は、表1に示される結果をグラフ化したものである。図1は、RXガス割合の変化に対する焼結体脱炭量の変化を示す図であり、図2は、RXガス割合の変化に対する焼結体硬度(HRB)の変化を示す図であり、図3は、RXガス割合の変化に対する焼結体寸法バラツキの変化を示す図である。また、図4は、RXガス割合の変化に対する熱処理品硬度(HRA)の変化を示す図であり、図5は、RXガス割合の変化に対する熱処理品寸法バラツキの変化を示す図である。   1 to 5 are graphs of the results shown in Table 1. FIG. 1 is a diagram showing a change in the amount of decarburized sintered body with respect to a change in RX gas ratio, and FIG. 2 is a diagram showing a change in sintered body hardness (HRB) with respect to a change in RX gas ratio. FIG. 3 is a diagram showing changes in the size variation of the sintered body with respect to changes in the RX gas ratio. FIG. 4 is a diagram showing a change in heat-treated product hardness (HRA) with respect to a change in the RX gas ratio, and FIG. 5 is a diagram showing a change in dimensional variation in the heat-treated product with respect to a change in the RX gas ratio.

表1および図1〜5より、窒素ガスを主成分とし、5〜20体積%の浸炭性ガスおよび1体積%の水素ガスを含むガスを雰囲気ガスとすることで、寸法バラツキを抑えつつ、硬度の低下を抑制できることが分かる。   From Table 1 and FIGS. 1 to 5, hardness is suppressed while suppressing variation in dimensions by using nitrogen gas as a main component and gas containing 5 to 20% by volume of carburizing gas and 1% by volume of hydrogen gas as atmosphere gas. It can be seen that the decrease of the can be suppressed.

また、焼結体の組織を示す図6〜7、および熱処理品の組織を示す図8〜9より、窒素ガスと1%水素ガスからなる雰囲気ガス中で焼成を行った場合、フェライト(脱炭組織)が組織中に混在することが分かる。一方、RXガスだけからなる雰囲気ガス中で焼成を行った場合は、全面パーライト(焼結体)または全面マルテンサイト(熱処理品)という良好な組織となった。   Further, from FIGS. 6 to 7 showing the structure of the sintered body and FIGS. 8 to 9 showing the structure of the heat-treated product, ferrite (decarburization) is obtained when firing is performed in an atmosphere gas composed of nitrogen gas and 1% hydrogen gas. It can be seen that the organization) is mixed in the organization. On the other hand, when firing was performed in an atmosphere gas composed only of RX gas, a good structure of full-surface pearlite (sintered body) or full-surface martensite (heat-treated product) was obtained.

なお、今回開示された実施の形態はすべての点において単なる例示であって制限的なものではないと考えられるべきである。本発明の範囲は、前記した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内のすべての変更が含まれることが意図される。   It should be noted that the embodiment disclosed this time is merely an example in all respects and is not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the meanings described above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

例えば、本発明の製造方法は、特定の焼結部品に限定されず、スプロケットや遊星歯車機構(プラネタリキャリヤ)などを含むあらゆる焼結部品に対し適用することができる。
また、焼成時における加熱、徐冷、冷却などの時間や温度条件も適宜設定することができる。さらに、熱処理方法も高周波焼入れ、焼き戻しに限らず、種々の熱処理を行うことができる。
For example, the manufacturing method of the present invention is not limited to a specific sintered part, and can be applied to any sintered part including a sprocket and a planetary gear mechanism (planetary carrier).
Moreover, time and temperature conditions such as heating, gradual cooling, and cooling during firing can be appropriately set. Furthermore, the heat treatment method is not limited to induction hardening and tempering, and various heat treatments can be performed.

Claims (1)

鉄を主成分とし、残部に炭素および銅を含む鉄系の金属粉末を加圧成形して粉末成形体を作製する工程、粉末成形体を雰囲気ガス中で焼成して焼結体を得る焼結工程、および焼結体に熱処理を施す工程を含む焼結部品の製造方法であって、
前記焼結工程における雰囲気ガスが、79〜94体積%の窒素ガス、5〜20体積%のRXガスおよび1体積%の水素ガスであることを特徴とする焼結部品の製造方法。
A process of producing a powder compact by pressing iron-based metal powder containing iron as the main component and carbon and copper in the balance, sintering to obtain a sintered compact by firing the powder compact in an atmospheric gas A method of manufacturing a sintered part including a step and a step of heat-treating the sintered body,
Atmospheric gas in the sintering step, from 79 to 94% by volume of nitrogen gas, the production method of the sintered part, which is a RX gas and one body product% hydrogen gas of 5 to 20 vol%.
JP2012127146A 2012-06-04 2012-06-04 Method for manufacturing sintered parts Active JP6014954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012127146A JP6014954B2 (en) 2012-06-04 2012-06-04 Method for manufacturing sintered parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012127146A JP6014954B2 (en) 2012-06-04 2012-06-04 Method for manufacturing sintered parts

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016180518A Division JP2017043851A (en) 2016-09-15 2016-09-15 Sintered compact and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013249529A JP2013249529A (en) 2013-12-12
JP6014954B2 true JP6014954B2 (en) 2016-10-26

Family

ID=49848508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012127146A Active JP6014954B2 (en) 2012-06-04 2012-06-04 Method for manufacturing sintered parts

Country Status (1)

Country Link
JP (1) JP6014954B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016023349A (en) * 2014-07-23 2016-02-08 Ntn株式会社 Sinter machine component

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5544567A (en) * 1978-09-25 1980-03-28 Sumitomo Electric Ind Ltd Production of sintered parts
JPS55128504A (en) * 1979-03-28 1980-10-04 Sumitomo Electric Ind Ltd Manufacture of high strength sintered parts
JPS62278206A (en) * 1986-05-23 1987-12-03 Sumitomo Metal Ind Ltd Heat treatment of sintered mn-cr steel product
JPH01259103A (en) * 1988-04-08 1989-10-16 Toyota Motor Corp Method for sintering fe-c-cu series multi-component alloy powder
JP2737358B2 (en) * 1990-05-11 1998-04-08 トヨタ自動車株式会社 Sintering forging method
JPH05271713A (en) * 1992-01-27 1993-10-19 Ngk Insulators Ltd Method for sintering alloy containing easily oxidizable element
JPH1180807A (en) * 1997-07-07 1999-03-26 Sumitomo Electric Ind Ltd Production of ferrous sintered body parts
EP1407877B1 (en) * 2001-04-27 2007-02-14 Toyota Jidosha Kabushiki Kaisha Composite powder filling method and composite powder filling device and composite powder molding method and composite powder molding device
JP3704100B2 (en) * 2002-03-01 2005-10-05 Jfeスチール株式会社 High wear-resistant and high-strength sintered parts and manufacturing method thereof
JP4570066B2 (en) * 2003-07-22 2010-10-27 日産自動車株式会社 Method for manufacturing sintered sprocket for silent chain
JP4234619B2 (en) * 2004-02-04 2009-03-04 株式会社神戸製鋼所 Method for manufacturing sintered body
JP2006348335A (en) * 2005-06-14 2006-12-28 Jfe Steel Kk Iron-based mixed powder for powder metallurgy
JP2007100115A (en) * 2005-09-30 2007-04-19 Jfe Steel Kk Alloy steel powder for powder metallurgy
AT505699B1 (en) * 2007-09-03 2010-10-15 Miba Sinter Austria Gmbh METHOD FOR PRODUCING A SINTERED CERTAIN COMPONENT
JP4295350B1 (en) * 2008-09-17 2009-07-15 エア・ウォーター株式会社 Method of using heat treatment furnace, heat treatment method and heat treatment furnace
JP2010285642A (en) * 2009-06-10 2010-12-24 Ntn Corp Heat-treatment method of steel, manufacturing method of machine part and machine part
JP2011074420A (en) * 2009-09-29 2011-04-14 Ntn Corp Heat-treatment method for steel, method for manufacturing machine component, and machine component
JP5508154B2 (en) * 2010-06-17 2014-05-28 ポップリベット・ファスナー株式会社 Blind fastener and manufacturing method thereof

Also Published As

Publication number Publication date
JP2013249529A (en) 2013-12-12

Similar Documents

Publication Publication Date Title
CN104428085B (en) Sintered component and starter little gear and their manufacture method
CN109695004A (en) A kind of manufacturing method of iron-based powder metallurgy parts
RU2699882C2 (en) Pre-alloyed iron-based powder, iron-based powder mixture containing pre-alloyed iron-based powder, and method of making pressed and sintered parts from iron-based powder mixture
US20160214171A1 (en) Alloy steel powder for powder metallurgy and method of producing iron-based sintered body
EP2200769B1 (en) Method of producing a sinter-hardened component
CN104368816A (en) Method for manufacturing iron-based powder metallurgy components
JP2010100932A (en) Process for production of sintered compact by powder metallurgy
CN109128183A (en) A kind of manufacturing method of iron-based powder metallurgy parts
CN110919007A (en) Manufacturing process of 17-4PH stainless steel MIM part
KR101719560B1 (en) Heat treatment method for surface hardened alloy steel
JP6720643B2 (en) Carburized parts
JP6014954B2 (en) Method for manufacturing sintered parts
JP2016023346A (en) Carburization method of gear
JP2014227561A (en) Method for manufacturing ferrous sintered component and sintered component manufactured by the same
JP2013204112A (en) Ferrous sintered alloy and method of producing the same
JP2017043851A (en) Sintered compact and method for producing the same
Dahlström et al. High performance PM components heat treated by low pressure carburizing and gas quenching
MX2012000438A (en) Method and apparatus for heat treating a metal.
JP6191357B2 (en) Steel heat treatment method
CN102676979B (en) Promote the method for powder metallurgical stainless steel intensity and hardness
JP6171910B2 (en) Manufacturing method of ferrous metal parts
JP2009167489A (en) Method for producing sintered component having excellent dimensional precision
JP6542381B2 (en) Method and apparatus for processing an article
JP2015004099A (en) METHOD FOR PRODUCING Fe-Cu-C BASED SINTERING MATERIAL
JP7039692B2 (en) Iron-based mixed powder for powder metallurgy and iron-based sintered body

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20150223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160909

R150 Certificate of patent or registration of utility model

Ref document number: 6014954

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250