JP6014282B1 - Soft structure protective structure - Google Patents

Soft structure protective structure Download PDF

Info

Publication number
JP6014282B1
JP6014282B1 JP2015558679A JP2015558679A JP6014282B1 JP 6014282 B1 JP6014282 B1 JP 6014282B1 JP 2015558679 A JP2015558679 A JP 2015558679A JP 2015558679 A JP2015558679 A JP 2015558679A JP 6014282 B1 JP6014282 B1 JP 6014282B1
Authority
JP
Japan
Prior art keywords
support
protective structure
depressing
reducing
flexible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015558679A
Other languages
Japanese (ja)
Other versions
JPWO2016084337A1 (en
Inventor
利充 野村
利充 野村
昭一 井上
昭一 井上
智弘 藤井
智弘 藤井
陽一 西田
陽一 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Protec Engineering Inc
Original Assignee
Protec Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Protec Engineering Inc filed Critical Protec Engineering Inc
Application granted granted Critical
Publication of JP6014282B1 publication Critical patent/JP6014282B1/en
Publication of JPWO2016084337A1 publication Critical patent/JPWO2016084337A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01FADDITIONAL WORK, SUCH AS EQUIPPING ROADS OR THE CONSTRUCTION OF PLATFORMS, HELICOPTER LANDING STAGES, SIGNS, SNOW FENCES, OR THE LIKE
    • E01F7/00Devices affording protection against snow, sand drifts, side-wind effects, snowslides, avalanches or falling rocks; Anti-dazzle arrangements ; Sight-screens for roads, e.g. to mask accident site
    • E01F7/04Devices affording protection against snowslides, avalanches or falling rocks, e.g. avalanche preventing structures, galleries

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Devices Affording Protection Of Roads Or Walls For Sound Insulation (AREA)

Abstract

[要約][課題]雪崩等の崩落物を減勢しつつ、防護構造体に伝わる衝撃力を小さくして防護構造体の支持力を小さくできる、柔構造の防護構造体を提供すること。[解決手段]崩落物を構成する粒体の透過を許容する開口を形成した可撓性を有する複数の減勢材10と、減勢材10を支持する支持手段20とからなり、複数の減勢材10,10を所定の間隔を隔てて積層するとともに、複数の減勢材10,10を斜面31に対して交差方向に向けて配置する。[Summary] [Problem] To provide a flexible protective structure capable of reducing the impact force transmitted to the protective structure and reducing the support force of the protective structure while reducing the fallen objects such as avalanches. [Solution] It comprises a plurality of flexible depressing members 10 having openings that allow permeation of granules constituting a collapsed object, and support means 20 for supporting the depressing members 10. The force members 10 and 10 are stacked at a predetermined interval, and the plurality of force reducers 10 and 10 are arranged in the crossing direction with respect to the inclined surface 31.

Description

本発明は各種の崩落物、特に雪崩を減勢して捕捉する柔構造の防護構造体に関する。   The present invention relates to a flexible protective structure for depressing and capturing various collapsed objects, particularly avalanches.

雪崩防護構造体としては、コンクリート製擁壁や間隔を隔てて横材を並設した防護壁に代表される剛構造物(特許文献1、2)と、複数の支柱間に可撓性のネットを張り巡らした防護柵に代表される柔構造物(特許文献3、4)に大別される。
剛構造物の受撃面はコンクリートや鋼材等の硬質材で剛の面として形成し、柔構造物は受撃面をワイヤーロープ、金網等の可撓材で柔の面として形成している。
As an avalanche protection structure, a rigid structure represented by a concrete retaining wall or a protection wall in which transverse members are arranged side by side with a gap (Patent Documents 1 and 2), and a flexible net between a plurality of support columns It is roughly classified into flexible structures represented by protective fences (Patent Documents 3 and 4).
The receiving surface of the rigid structure is formed as a rigid surface with a hard material such as concrete or steel, and the flexible structure is formed as a flexible surface with a flexible material such as a wire rope or a wire mesh.

特開平7−180116号公報Japanese Patent Laid-Open No. 7-180116 特開平8−13425号公報JP-A-8-13425 特開2001−107322号公報JP 2001-107322 A 特開2012−225036号公報JP 2012-225036 A

従来の防護構造体にはつぎのような問題点がある。
<1>落石のような不変形の固形物に対する減勢技術の評価や開発が進められている一方で、雪崩のような微小粒からなる変形物に対する減勢技術の評価や開発が大幅に遅れている。
例えば柔構造物への作用荷重の評価方法については、剛構造物に衝突させた流体の衝撃力で評価を代用しているのが現状である。
<2>そのため、雪崩用の柔構造物を構築する場合には、受撃面を支える支柱や支持基礎が大きく高強度なものとなって、工費が嵩むうえに工期も長くかかる。
<3>従来の柔構造物は、雪崩の発生予防には効果を発揮するが、雪崩に対しては雪の粒子が受撃面を透過してしまい、雪崩の減勢効果が十分であるとはいい難く、改善の余地がある。
Conventional protection structures have the following problems.
<1> While the evaluation and development of the de-energization technology for indestructible solids such as falling rocks is ongoing, the evaluation and development of the de-energization technology for deformations consisting of fine particles such as avalanches is significantly delayed. ing.
For example, regarding the evaluation method of the acting load on the flexible structure, the evaluation is substituted by the impact force of the fluid collided with the rigid structure.
<2> Therefore, when constructing a soft structure for an avalanche, the struts and support bases that support the receiving surface become large and high in strength, which increases the construction cost and the construction period.
<3> The conventional flexible structure is effective for preventing the occurrence of avalanches, but the snow particles permeate the receiving surface against the avalanche, and the avalanche reduction effect is sufficient. It's difficult and there is room for improvement.

本発明は上記した問題点に鑑みて成されたもので、その目的とするところは、雪崩等の崩落物を減勢しつつ、防護構造体に伝わる衝撃力を小さくして防護構造体の支持力を小さくできる、柔構造の防護構造体を提供することにある。   The present invention has been made in view of the above-described problems, and the object of the present invention is to support the protective structure by reducing the impact force transmitted to the protective structure while reducing the amount of fallen objects such as avalanches. The object is to provide a flexible protective structure that can reduce the force.

本発明は、崩落物を構成する粒体の透過を許容する開口を形成した可撓性を有する複数の減勢材と、減勢材を起立状態で支持する支持手段とからなり、前記複数の減勢材の開口を透過する際の透過抵抗により該崩落物が保有するエネルギーを段階的に減勢する柔構造の防護構造体であって、前記減勢材がネット状物であり、前記複数の減勢材を所定の間隔を隔てて積層するとともに、前記複数の減勢材を斜面に対して交差方向に向けて配置し、前記複数の減勢材の間に、透過した崩落物が仮貯留されて壁状の緩衝受撃層を形成するための緩衝空間を有することを特徴とする。
本発明に係る柔構造の防護構造体では、前記支持手段が、支柱と、該支柱の下部を支える支持基礎と、該支柱の頭部に接続したサポートロープとを具備する。
本発明に係る柔構造の防護構造体では、間に支柱を介装することで前記複数の減勢材の間に所定の間隔を形成する。
本発明に係る柔構造の防護構造体では、他の減勢手段2が斜面に対する減勢材の立設角度であり、斜面に対する前記減勢材の設置角度が直角、又は略直角である。
本発明に係る柔構造の防護構造体では、他の減勢手段3が減勢材の開口寸法であり、前記減勢材の開口寸法が20×20mm以上である。
本発明の他の形態において、前記崩落物は例えば雪崩を含む。
本発明に係る柔構造の防護構造体では、上記減勢手段2,3を適宜組み合せてもよい。
The present invention comprises a plurality of flexible depressants having openings that allow permeation of particles constituting the collapsed object, and support means for supporting the depressants in an upright state, A flexible protective structure that gradually reduces the energy held by the collapsed object by permeation resistance when passing through the opening of the derating material, wherein the derating material is a net-like material, And a plurality of the depressing materials are arranged in a crossing direction with respect to the inclined surface, and a permeated collapsed object is temporarily placed between the plurality of depressing materials. It has the buffer space for storing and forming a wall-shaped buffer receiving layer.
In the flexible protective structure according to the present invention, the support means includes a support column, a support base that supports a lower portion of the support column, and a support rope connected to the head of the support column.
In the flexible structure protection structure according to the present invention, a predetermined interval is formed between the plurality of depressing members by interposing a support in between.
In the flexible protective structure according to the present invention, the other depressing means 2 is the standing angle of the derating material with respect to the slope, and the installation angle of the depressing material with respect to the inclined surface is a right angle or a substantially right angle.
In the flexible protective structure according to the present invention, the other depressing means 3 has an opening size of the derating material, and the opening size of the derating material is 20 × 20 mm or more.
In another form of the present invention, before Symbol collapse comprises an avalanche example.
The protective structure of the flexible structure of the present invention may be combined on the Symbol energy dissipation means 2,3 appropriately.

本発明は、減勢手段1〜3を適宜組み合せることで、特に複数の減勢材を所定の間隔を隔てて積層するとともに、複数の減勢材を斜面に対して交差方向に向けて配置することで、雪崩等の崩落物を効率的に減勢しつつ、減勢材に伝わる衝撃力を小さくして減勢材の支持手段の支持力を小さくすることができる。   In the present invention, by appropriately combining the depressing means 1 to 3, in particular, a plurality of depressing materials are stacked at a predetermined interval, and a plurality of depressing materials are arranged in an intersecting direction with respect to the slope. By doing so, it is possible to reduce the impact force transmitted to the force-reducing material and reduce the support force of the support member of the force-reducing material while efficiently reducing the fallen objects such as avalanches.

本発明の実施形態1に係る柔構造の防護構造体の斜視図The perspective view of the protective structure of the flexible structure which concerns on Embodiment 1 of this invention 斜面に配置した減勢材のモデル図Model diagram of the derating material placed on the slope 一部を省略した減勢材の説明図で、(a)は減勢材の正面図、(b)は減勢材の側面図It is explanatory drawing of the damping material which abbreviate | omitted one part, (a) is a front view of a damping material, (b) is a side view of a damping material 減勢材を積層構造とした実施形態2に係る柔構造の防護構造体のモデル図Model diagram of flexible structure protection structure according to embodiment 2 in which derating material is laminated structure 崩落物が積層構造の減衰材を透過する柔構造の防護構造体のモデル図Model diagram of a flexible protective structure in which a collapsed object passes through a laminated damping material 減衰材を積層構造とした防護構造体の平面モデル図Plan model diagram of a protective structure with a damping material laminated structure 崩落物が積層構造の減衰材を透過する柔構造の防護構造体の拡大平面図An enlarged plan view of a flexible protective structure in which a collapsed object penetrates a laminated damping material 雪崩模型のモデル図Avalanche model diagram

図1〜3を参照しながら本発明の実施形態について説明する。   An embodiment of the present invention will be described with reference to FIGS.

[実施形態1]
<1>柔構造の防護構造体。
図1、2を参照して説明すると、柔構造の防護構造体は可撓性を有する単数又は複数のネット状の減勢材10と、減勢材10を起立状態で支持する支持手段20とからなり、斜面31に対する減勢材10の起立角度、及び減勢材10に開設する開口11の寸法を選択して組み合せることで、雪崩等の崩落物30の粒子の透過を許容しつつ、崩落物30が保有するエネルギーを減勢するための装置である。
本例では減勢材10が単数である場合について説明する。
[Embodiment 1]
<1> A flexible protective structure.
Referring to FIGS. 1 and 2, the flexible protective structure includes one or more flexible net-like depressing members 10 and support means 20 for supporting the depressing members 10 in an upright state. By selecting and combining the standing angle of the depressant 10 with respect to the slope 31 and the size of the opening 11 opened in the depressant 10, while allowing the permeation of particles of the fallen object 30 such as an avalanche, It is a device for reducing the energy held by the collapsed object 30.
In this example, the case where the number of the energy reducing members 10 is single will be described.

<2>減勢材。
減勢材10は受撃面12に多数の開口11を有する可撓性を有するネット状物であり、例えば菱形金網、亀甲金網等の金属製ネット、樹脂製ネット、繊維製ネット、樹脂と繊維の複合ネット等を含む。金属製ネットは、鋼線、高強度鋼線の他に、交差部を固定したワイヤーロープを含む。
減勢材10は予想される崩落物30の落下エネルギーに耐え得るだけの強度を有していて、斜面31の傾斜方向に対して交差方向へ向けて配設する。
減勢材10は隣り合う支持手段20、20の1スパン間、又は複数スパンの間に跨って横架可能な長さを有する。
本例では支持手段20の斜面山側に減勢材10を配置した形態を示すが、支持手段20に対して減勢材10を斜面谷側、又は支持手段20の中心部間に配置した形態を含む。
<2> Decreasing material.
The stress reducing member 10 is a flexible net having a large number of openings 11 on the receiving surface 12. For example, a metal net such as a rhombus metal net or a turtle shell metal net, a resin net, a fiber net, a resin and a fiber Including complex nets. The metal net includes a wire rope having a fixed intersection in addition to the steel wire and the high-strength steel wire.
The stress reducing member 10 has a strength sufficient to withstand the expected fall energy of the collapsed object 30, and is disposed in the crossing direction with respect to the inclination direction of the slope 31.
The derating member 10 has a length that can be horizontally laid across one span or between a plurality of spans of the adjacent support means 20, 20.
In this example, the mode in which the depressant 10 is arranged on the slope mountain side of the support means 20 is shown. However, the form in which the depressant 10 is arranged with respect to the support means 20 on the slope valley side or between the central portions of the support means 20. Including.

<3>支持手段。
支持手段20は斜面31に間隔を隔てて立設した複数の支柱21と、支柱21の下部を固定する支持基礎22と、支柱21の頭部に接続する単数、又は複数のサポートロープ23と、これらの各サポートロープ23を斜面31に固定するアンカーとを具備する。
支柱21は、例えば形鋼、鋼管、コンクリート充填鋼管、又はPC材入りコンクリート充填鋼管等の公知の支柱を含む。
支持基礎22はコンクリート基礎、又は支柱21の下部を直接地面に建て込む地盤基礎を含む。
必要に応じてサポートロープ23に公知のブレーキ装置を介挿する場合もある。
又、支持手段20の他の構成材としては、斜面31に立設する立木で構成する場合もある。
<3> Support means.
The support means 20 includes a plurality of support columns 21 erected on the inclined surface 31 at intervals, a support foundation 22 for fixing the lower part of the support column 21, and a single or a plurality of support ropes 23 connected to the heads of the support columns 21. An anchor for fixing each of these support ropes 23 to the slope 31 is provided.
The strut 21 includes a known strut such as a shape steel, a steel pipe, a concrete-filled steel pipe, or a concrete-filled steel pipe containing a PC material.
The support foundation 22 includes a concrete foundation or a ground foundation in which the lower part of the support column 21 is directly built on the ground.
A known brake device may be inserted into the support rope 23 as necessary.
In addition, as another constituent material of the support means 20, there are cases where the support means 20 is configured by standing trees standing on the slope 31.

<4>崩落物のエネルギー減勢手段。
柔構造の防護構造体は斜面31に対する減勢材10の起立角度、及び減勢材10に開設する開口11の寸法を選択して組み合せることで、雪崩等の崩落物30の粒子の透過を許容しつつ、崩落物30が保有するエネルギーを効果的に減勢することが可能である。
<4> Means for energy reduction of collapsed objects.
The protective structure of the flexible structure selects and combines the standing angle of the derating material 10 with respect to the slope 31 and the size of the opening 11 opened in the derating material 10, thereby allowing permeation of particles of the collapsed object 30 such as an avalanche. It is possible to effectively reduce the energy held by the collapsed object 30 while allowing it.

<4.1>減勢材の設置角度。
図2を参照して崩落物のエネルギー減勢手段の一つについて説明すると、斜面31に対する減勢材10の角度θを直角、又は略直角に起立させることで、崩落物30が保有するエネルギーを効果的に減勢すること可能となる(減勢手段1)。
斜面31の山側、又は谷側に傾倒させて減勢材10を起立すると、崩落物30のエネルギー減勢性能が低下することが後述する実験結果により確認された。
<4.1> Installation angle of the derating material.
Referring to FIG. 2, one of the energy reducing means for the fallen object will be described. The energy held by the fallen object 30 is increased by raising the angle θ of the reducer 10 with respect to the slope 31 to a right angle or a substantially right angle. It becomes possible to effectively de-energize (de-energizing means 1).
It was confirmed by an experimental result described later that the energy reducing performance of the collapsed object 30 is lowered when the reducing material 10 is tilted to the mountain side or the valley side of the slope 31 to stand.

<4.2>減勢材の開口寸法。
図3を参照して崩落物のエネルギー減勢手段のもう一つについて説明すると、減勢材10の開口11の寸法(網目寸法)を、20×20mm以上に形成すると、崩落物30が保有するエネルギーを効果的に減勢すること可能となる(減勢手段件2)。
減勢材10の開口11の寸法(網目寸法)Lが、20×20mmより小さい寸法であると、崩落物30のエネルギー減勢性能が低下することが後述する実験結果により確認された。
<4.2> Opening size of the derating material.
Referring to FIG. 3, another one of the energy reducing means for the collapsed material will be described. When the size (mesh size) of the opening 11 of the energy reducing material 10 is set to 20 × 20 mm or more, the collapsed material 30 holds. It becomes possible to effectively deenergize energy (decreasing means 2).
It was confirmed by the experimental results described later that the energy suppression performance of the collapsed object 30 is reduced when the size (mesh size) L of the opening 11 of the stress reducing material 10 is smaller than 20 × 20 mm.

〔減勢材による崩落物のエネルギー減勢作用〕
<1>減勢材の変形によるエネルギー減勢作用。
図1、2に示すように、斜面山側から斜面谷側へ向けて流下した雪崩等の崩落物30が減勢材10の受撃面12に衝突すると、減勢材10が斜面谷側へ向けて変形し、減勢材10の変形抵抗によりエネルギーを吸収する。
そのため、エネルギーが減衰された分だけ、柔構造の防護構造体の負担荷重が小さくなる。
[Energy-dissipating action of collapsible materials by the energy-reducing material]
<1> Energy reducing action by deformation of the reducing material.
As shown in FIGS. 1 and 2, when a fallen object 30 such as an avalanche that flows down from the slope mountain side toward the slope valley side collides with the receiving surface 12 of the reduction material 10, the reduction material 10 moves toward the slope valley side. And the energy is absorbed by the deformation resistance of the derating material 10.
Therefore, the burden load of the flexible protective structure is reduced by the amount of energy attenuation.

<2>減勢材によるエネルギー減勢作用。
図2、3に示した柔構造の防護構造体を構成する減勢材10はその斜面31に対する角度θが直角、又は略直角で起立することと、減勢材10の開口11の寸法Lが、20×20mm以上であることの2条件を有することで、崩落物30の一部が開口11を通じて透過しつつ、減勢材10の受撃面12に作用する崩落物30のエネルギーを最も効率よく減勢することができる。
<2> Energy depressing action by the derating material.
2 and 3, the stress reducing member 10 constituting the soft structure protection structure is erected at an angle θ with respect to the inclined surface 31 at a right angle or a substantially right angle, and the dimension L of the opening 11 of the force reducing material 10 is By having two conditions of being 20 × 20 mm or more, a part of the fallen object 30 is transmitted through the opening 11 and the energy of the fallen object 30 acting on the receiving surface 12 of the depressant 10 is most efficient. Can be de-energized well.

<3>支持手段の荷重軽減作用。
上記したように、崩落物30の一部が減勢材10を透過するために減勢材10を支持する支持手段20の負担過重が小さくなる。
したがって、支持手段20を構成する支持基礎22を小型化できるとともに、サポートロープ23により支持荷重も小さくて済む。
そのため、支持手段20を構成する支柱21や支持基礎22等に高強度なものを用いる必要がなくなり、工費を低減できるうえに工期も短縮できる。
<3> The load reducing action of the support means.
As described above, since a part of the collapsed object 30 permeates the reducing material 10, the burden on the supporting means 20 that supports the reducing material 10 is reduced.
Accordingly, the support base 22 constituting the support means 20 can be reduced in size, and the support load can be reduced by the support rope 23.
For this reason, it is not necessary to use a high-strength column 21 or support base 22 that constitutes the support means 20, thereby reducing the construction cost and shortening the construction period.

[実施形態2]
<1>複数の減衰材を具備した柔構造の防護構造体
図4を参照して複数の減衰材10,10を具備した柔構造の防護構造体について説明する。
減勢材10は単数に限定されず、所定の間隔Gを隔てて複数の減勢材10、10を積層して配置してもよい(減勢手段3)。
本例における柔構造の防護構造体の構成は、減衰材10の設置数を除いて、複数のネット状の減勢材10と、減勢材10を起立状態で支持する支持手段20とにより構成することや、減勢材10の立設する角度θと開口11の寸法L等は先の実施形態1で説明したとおりである。

[Embodiment 2]
<1> Soft structure protection structure having a plurality of damping materials A soft structure protection structure having a plurality of damping materials 10, 10 will be described with reference to FIG.
The number of the depressing materials 10 is not limited to a single number, and a plurality of depressing materials 10 and 10 may be stacked and disposed with a predetermined gap G (depressing means 3).
The configuration of the flexible structure protective structure in this example is configured by a plurality of net-like depressing materials 10 and support means 20 that supports the depressing materials 10 in an upright state, except for the number of damping materials 10 installed. The angle θ at which the derating member 10 stands and the dimension L of the opening 11 are as described in the first embodiment.

<2>減勢材の積層数。
本例では間に間隙Gを隔てて二枚の減勢材10a,10bを積層して配置した形態を説明するが、その積層枚数は3枚以上であってもよい。
<2> Number of layers of the derating material.
In this example, a mode in which the two depressing materials 10a and 10b are stacked with a gap G therebetween will be described. However, the number of stacked layers may be three or more.

<3>間隔の形成手段。
図6を参照して説明すると、例えば積層した減勢材10a,10bの間に支柱21を介装し、支柱21をスペーサとして用いることで、積層した減勢材10a,10bの間に支柱21の断面幅に見合った間隔Gを形成することができる。
換言すれば、支柱21の山側と谷側を2枚の減勢材10a,10bで挟み込むことで間隔Gを形成する。
<3> Space forming means.
Referring to FIG. 6, for example, a support column 21 is interposed between stacked depressing materials 10 a and 10 b, and the support column 21 is used as a spacer, so that the support column 21 is interposed between the stacked depressing materials 10 a and 10 b. An interval G corresponding to the cross-sectional width of the first can be formed.
In other words, the gap G is formed by sandwiching the crest and trough sides of the support column 21 with the two depressing materials 10a and 10b.

<4>各減勢材の開口寸法の関係。
複数の減勢材10a,10bを配置する場合、各減勢材10a,10bの開口11の寸法Lは同一でもよいが、斜面山側の減勢材10の開口11の寸法Lを斜面谷側の減勢材10より大きい寸法関係にしてもよいし、逆の寸法関係にしてもよい。
<4> Relationship between opening sizes of the respective reducing materials.
When arranging a plurality of the depressing materials 10a and 10b, the size L of the opening 11 of each depressing material 10a and 10b may be the same, but the size L of the opening 11 of the depressing material 10 on the slope mountain side is set to the slope valley side. The dimensional relationship may be larger than that of the depressing material 10 or may be reversed.

<5>減勢材と支柱の取付け関係。
各支柱21に対して山側の減勢材10aと谷側の減勢材10bを取り付ける場合、谷側の減勢材10bを支柱21に取り付けにはつぎの二つの取付形態がある。
一つ目は、谷側の減勢材10bをすべての支柱21a〜21cに分離不能に取り付ける形態である。
この取付形態にあっては、崩落物30が衝突したときの山側と谷側の減勢材10a,10bは共に谷側へ向けてほぼ同じ変形挙動を示す。
二つ目は、図6に示すように単数又は複数の支柱21bを飛ばして谷側の減勢材10bを支柱21a,21cに取り付ける形態である。
この取付形態にあっては、崩落物30が衝突したときの山側の減勢材10aに対して谷側の減勢材10bが大きな変形挙動を示すことになる。
<5> Relationship between the depressurizing material and the column.
When attaching the mountain side depressing material 10 a and the valley side depressing material 10 b to each column 21, there are the following two attachment modes for attaching the valley side depressing material 10 b to the column 21.
The first is a form in which the trough-side depressing material 10b is attached to all the columns 21a to 21c in an inseparable manner.
In this mounting configuration, the crest members 10a and 10b on the mountain side and the valley side when the collapsing object 30 collides both show substantially the same deformation behavior toward the valley side.
The second is a form in which one or a plurality of struts 21b are skipped and the trough-side depressant 10b is attached to the struts 21a and 21c as shown in FIG.
In this mounting configuration, the trough-side depressing material 10b exhibits a large deformation behavior with respect to the mountain-side depressing material 10a when the collapsing object 30 collides.

<6>減勢材の間に間隙を設けた理由。
減勢材10,10の間に間隔Gを設けたのは、崩落物30をエネルギー減衰材として活用して防護構造体の減衰性能を格段に高めるためである。
間隙Gは減勢材10,10の間に緩衝空間を確保し、この緩衝空間内に後述する壁状の緩衝受撃層32を形成するために機能する。
図7を参照して説明する。
山側の減勢材10aの崩落物30は間隔Gを隔てて立設した複数の減勢材10a,10bに夫々衝突し、その開口を通じて透過する透過抵抗により段階的にエネルギーが減衰される。
この際、山側の減勢材10aを透過する崩落物30の速度vに対し、谷側の減勢材10bを透過する崩落物30の速度vが小さくなり、単位時間当たりの崩落物30の透過量に差を生じる。
この差により両減勢材10a,10bの間の緩衝空間内に崩落物30が一時的に貯留されて壁状の緩衝受撃層32を形成し、壁状の緩衝受撃層32が後続の崩落物30のエネルギーを効果的に減衰する。
両減勢材10a,10b間に形成した緩衝空間内において、緩衝受撃層32の粒子はある程度締め固められるが、後続する崩落物30の透過によって谷側へ押し出されて新たなものと入れ替わりながら、緩衝空間内において壁状の緩衝受撃層32を形成し続ける。
さらに、緩衝受撃層32が崩落物30の透過抵抗体として機能することから、山側の減勢材10aの受撃面側(山側)に崩落物30による壁状の補助緩衝受撃層33がさらに形成され、緩衝受撃層32および補助緩衝受撃層33が協働して崩落物30のエネルギーを効率よく減衰する。
<6> The reason for providing a gap between the energy reducing materials.
The reason why the gap G is provided between the force-absorbing members 10 and 10 is to use the collapsed object 30 as an energy attenuating material to significantly improve the damping performance of the protective structure.
The gap G functions to secure a buffer space between the depressing materials 10 and 10 and form a wall-shaped buffer receiving layer 32 described later in the buffer space.
This will be described with reference to FIG.
The collapsed material 30 of the mountain side depressant 10a collides with each of the plurality of depressants 10a and 10b erected with a gap G, and the energy is attenuated stepwise by the permeation resistance transmitted through the opening.
At this time, with respect to the speed v 1 of collapse was 30 which transmits energy dissipation material 10a of the mountain side, the smaller the velocity v 2 of collapse was 30 which transmits energy dissipation member 10b of the valley side, per unit time collapse was 30 A difference is produced in the amount of transmission.
Due to this difference, the collapsed object 30 is temporarily stored in the buffer space between the two depressing materials 10a and 10b to form a wall-shaped buffer receiving layer 32, and the wall-shaped buffer receiving layer 32 follows. The energy of the fallen object 30 is effectively attenuated.
In the buffer space formed between both the depressing materials 10a and 10b, the particles of the buffer receiving layer 32 are compacted to some extent, but are pushed out to the valley side by the permeation of the subsequent collapsed object 30 and replaced with new ones. The wall-shaped buffer receiving layer 32 is continuously formed in the buffer space.
Further, since the buffer receiving layer 32 functions as a transmission resistor for the fallen object 30, the wall-shaped auxiliary buffer receiving layer 33 by the fallen object 30 is provided on the receiving surface side (mountain side) of the mountain-side depressant 10 a. Further, the buffer receiving layer 32 and the auxiliary buffer receiving layer 33 cooperate to efficiently attenuate the energy of the fallen object 30.

<7>本例の効果。
本例にあってはつぎの効果を奏する。
a)減勢材10,10の間に間隔Gを設けることで、複数の減勢材10、10を互いに密着させて配置した場合と比べて、減勢材10、10と、支持手段20の負担荷重を大幅に軽減することができる。
b)複数の減勢材10a,10bによる崩落物30の透過抵抗だけでなく、緩衝受撃層32および補助緩衝受撃層33による緩衝作用が伴うことによって崩落物30のエネルギー減衰量を格段に増加させることができる。
<7> Effects of this example.
This example has the following effects.
a) By providing the gap G between the depressant materials 10 and 10, the depressant materials 10 and 10 and the support means 20 are compared with the case where the depressant materials 10 and 10 are arranged in close contact with each other. The burden load can be greatly reduced.
b) Not only the permeation resistance of the fallen object 30 by the plurality of depressing materials 10a and 10b, but also the buffering effect by the buffer receiving layer 32 and the auxiliary buffer receiving layer 33 is accompanied, so that the energy attenuation amount of the fallen object 30 is remarkably increased. Can be increased.

[実施形態3]
本発明に係る柔構造の防護構造体は、既述した減勢手段1〜3の何れか2つの組み合せ(減勢手段1+2,減勢手段1+3,減勢手段2+3)、又はこれら3つの組み合せ(減勢手段1+2+3)を含む。
[Embodiment 3]
The flexible protective structure according to the present invention is a combination of any two of the previously described depressing means 1 to 3 (depressing means 1 + 2, depressing means 1 + 3, depressing means 2 + 3), or a combination of these three ( Including depressing means 1 + 2 + 3).

[雪崩模型による衝撃試験]
上記した本発明に係る柔構造の防護構造体に作用する雪崩の経時的な衝撃特性を解明するため、減勢手段1〜3を適宜組み合せた雪崩模型を用いて実験を行った。
[Shock test with avalanche model]
In order to elucidate the impact characteristics over time of the avalanche acting on the above-described flexible protective structure according to the present invention, an experiment was conducted using an avalanche model appropriately combined with the depressing means 1 to 3.

<1>雪崩模型。
図8に低温室内に設置した雪崩模型のモデル図を示す。
雪崩模型は高さH、全長Lのスロープ状の斜面31を有し、斜面31の裾部に受圧版34を立設している。
受圧版34の上流側の斜面31には、減勢材である菱形金網を減勢手段1〜3の組み合せを変えて設置し、粉砕機で2mm程度の粒状にした人工雪(密度550〜600kg/m)を斜面31の上流から連続して落下させて、各減勢手段1〜3における人工雪崩の衝撃特性について試験を行った。
減勢手段1〜3を組み合せたケース1〜13の条件はつぎのとおりである。
なお、ケース5,9,13は積層した2枚の金網間に隙間を設けたものである。
<1> Avalanche model.
FIG. 8 shows a model diagram of an avalanche model installed in a low-temperature room.
The avalanche model has a slope-like slope 31 having a height H and an overall length L, and a pressure receiving plate 34 is erected on the bottom of the slope 31.
On the slope 31 on the upstream side of the pressure receiving plate 34, artificial snow (density 550 to 600 kg) having a rhombus metal mesh, which is a depressurizing material, is installed by changing the combination of the depressurizing means 1 to 3 and granulated to about 2 mm by a pulverizer. / M 3 ) was continuously dropped from the upstream of the slope 31, and the impact characteristics of the artificial avalanche in each of the depressing means 1 to 3 were tested.
Conditions for cases 1 to 13 combining the depressing means 1 to 3 are as follows.
Cases 5, 9, and 13 are provided with a gap between two laminated wire meshes.

Figure 0006014282
Figure 0006014282

<2>試験結果。 <2> Test results.

a.金網の設置角度の影響について
斜面31に対する金網の設置角度αについては、水平に対して金網を45°の角度で金網を設置したケース6〜9が人工雪崩による衝撃の減衰効果が最も小さく、つぎに90°の角度で金網を設置したケース2〜5ではある程度の衝撃減衰効果が確認できた。金網を斜面31に対して直角に立設したケース10〜13が人工雪崩による衝撃減衰効果が最も高かった。
以上のことから、斜面31に対する金網の設置角度が雪崩の減衰効果に大きな影響を及ぼす一因となることが確認できた。
斜面31に対する金網の設置角度については、金網を斜面31に対して直角に立設することが望ましい。
a. About the influence of the installation angle of the wire mesh As for the installation angle α of the wire mesh with respect to the slope 31, the cases 6 to 9 in which the wire mesh is installed at an angle of 45 ° with respect to the horizontal have the smallest impact attenuation effect due to artificial avalanches. In cases 2 to 5 in which a metal mesh was installed at an angle of 90 °, a certain degree of impact damping effect was confirmed. Cases 10 to 13 in which a wire mesh was erected at right angles to the slope 31 had the highest impact attenuation effect due to an artificial avalanche.
From the above, it was confirmed that the installation angle of the wire mesh with respect to the slope 31 is one of the factors that greatly influence the avalanche attenuation effect.
As for the installation angle of the wire mesh with respect to the slope 31, it is desirable that the wire mesh is erected at a right angle to the slope 31.

b.減衰材の開口の影響について
金網の目合いが小さくなるほど人工雪崩の減衰効果が高くなる一方、金網への衝撃力が大きくなり、支柱や支持基礎の荷重負担が増していた。
逆に金網の目合いが大きくなるほど人工雪崩の減衰効果が低くなる一方、金網への衝撃力が小さくなり、支柱や支持基礎の荷重負担が軽減する。
以上のことから、金網の目合い寸法が雪崩の減衰効果に大きな影響を及ぼす一因であることが確認できた。
試験では金網の目合いが30mmを用いたが、別途の自然界の実証実験では一般的な強度を有する支柱や支持基礎が耐えられる限界は20mmの目合いが限界であることから、金網の目合いは20mm以上が望ましい。
b. Regarding the influence of the opening of the damping material, the attenuation effect of the artificial avalanche increases as the mesh of the wire mesh decreases, while the impact force on the wire mesh increases and the load load on the support and support foundation increases.
Conversely, the greater the mesh of the wire mesh, the lower the attenuation effect of the artificial avalanche, while the impact force on the wire mesh is reduced, reducing the load burden on the support and the support foundation.
From the above, it was confirmed that the mesh size of the wire mesh is one of the factors that greatly affect the avalanche attenuation effect.
In the test, a mesh size of 30 mm was used, but in a separate demonstration experiment in the natural world, the limit that the struts and support foundations with general strength can withstand is 20 mm. Is preferably 20 mm or more.

c.減衰材の枚数
金網の積層枚数が増えるほど、人工雪崩の減衰効果が高まることが確認できた。
2枚の金網を積層したケース5,9,13では、一枚ものの金網を設置したケース3,4,7,8,12と比較して、人工雪崩の減衰効果が高かった。
特に、目合いの異なる2枚の金網を積層したケース5,9に対し、目合いが同じ2枚の金網を積層したケース13が人工雪崩の減衰効果が格段に高かった。
c. It was confirmed that the attenuation effect of artificial avalanche increased as the number of damping materials increased.
Cases 5, 9, and 13 in which two wire meshes were laminated had a higher attenuation effect of artificial avalanche than Cases 3, 4, 7, 8, and 12 in which a single wire mesh was installed.
In particular, in contrast to cases 5 and 9 in which two metal meshes having different meshes are laminated, case 13 in which two metal meshes having the same mesh are laminated has a much higher attenuation effect of artificial avalanche.

d.総合評価
ケース2〜13において、人工雪崩に対する減衰効果のあることが衝撃力の経時変化の計測データにより確認することができた。
最終的に、ケース2〜13のうち、ケース13が人工雪崩の減衰効果が最も高かった。
すなわち、人工雪崩に対して最も減衰性能が高い柔構造の防護構造体における減衰条件は、複数の金網を隔てて積層して設置すること、金網の目合いは20mm以上であること、金網は斜面31に対して直角に設置することの組み合わせであることを知得した。
d. In the comprehensive evaluation cases 2 to 13, it was confirmed from the measurement data of the change over time of the impact force that there was an attenuation effect against the artificial avalanche.
Finally, out of cases 2 to 13, case 13 had the highest attenuation effect of artificial avalanche.
That is, the damping conditions in the flexible protective structure having the highest damping performance against artificial avalanche are to be installed by laminating a plurality of wire meshes, the mesh of the wire mesh is 20 mm or more, the wire mesh is a slope It was found that this was a combination of installation at a right angle to 31.

10・・・・・減勢材
11・・・・・減勢材の開口
12・・・・・減勢材の受撃面
20・・・・・支持手段
21・・・・・支柱
22・・・・・支持基礎
23・・・・・サイドロープ
30・・・・・崩落物
31・・・・・斜面
10 ········································································································· ···· Support base 23 ··· Side rope 30 ··· Collapsed object 31 · · · Slope

Claims (6)

崩落物を構成する粒体の透過を許容する開口を形成した可撓性を有する複数の減勢材と、減勢材を起立状態で支持する支持手段とからなり、前記複数の減勢材の開口を透過する際の透過抵抗により該崩落物が保有するエネルギーを段階的に減勢する柔構造の防護構造体であって、
前記減勢材がネット状物であり、
前記複数の減勢材を所定の間隔を隔てて積層するとともに、前記複数の減勢材を斜面に対して交差方向に向けて配置し、
前記複数の減勢材の間に、透過した崩落物が仮貯留されて壁状の緩衝受撃層を形成するための緩衝空間を有することを特徴とする、
柔構造の防護構造体。
A plurality of flexible reducing members formed with openings that allow permeation of the particles constituting the collapsed object, and support means for supporting the reducing members in an upright state. A flexible protective structure that gradually reduces the energy held by the collapsed object by permeation resistance when passing through an opening,
The depressant is a net-like material;
Laminating the plurality of depressing materials at a predetermined interval, and arranging the plurality of depressing materials in an intersecting direction with respect to the slope,
Between the plurality of stress-reducing materials, a permeated collapsed object is temporarily stored to have a buffer space for forming a wall-shaped buffer receiving layer,
Soft structure protective structure.
前記支持手段が、支柱と、該支柱の下部を支える支持基礎と、該支柱の頭部に接続したサポートロープとを具備することを特徴とする、請求項1に記載の柔構造の防護構造体。   2. The flexible protective structure according to claim 1, wherein the support means includes a support, a support foundation that supports a lower portion of the support, and a support rope connected to a head of the support. 3. . 間に支柱を介装して前記複数の減勢材の間に所定の間隔を形成したことを特徴とする、請求項1又は2に記載の柔構造の防護構造体。   The flexible protective structure according to claim 1 or 2, wherein a predetermined interval is formed between the plurality of depressing materials with a support interposed therebetween. 斜面に対する前記減勢材の設置角度が直角、又は略直角であることを特徴とする、請求項1乃至3の何れか一項に記載の柔構造の防護構造体。   The flexible protective structure according to any one of claims 1 to 3, wherein an installation angle of the reducing member with respect to the slope is a right angle or a substantially right angle. 前記減勢材の開口寸法が20×20mm以上であることを特徴とする、請求項1乃至4の何れか一項に記載の柔構造の防護構造体。   5. The flexible protective structure according to claim 1, wherein an opening size of the depressurizing material is 20 × 20 mm or more. 6. 前記崩落物が雪崩であることを特徴とする、請求項1乃至の何れか一項に記載の柔構造の防護構造体。 The soft structure protection structure according to any one of claims 1 to 5 , wherein the collapsed object is an avalanche.
JP2015558679A 2014-11-28 2015-11-17 Soft structure protective structure Active JP6014282B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014240818 2014-11-28
JP2014240818 2014-11-28
PCT/JP2015/005725 WO2016084337A1 (en) 2014-11-28 2015-11-17 Protective structural body with flexible structure

Publications (2)

Publication Number Publication Date
JP6014282B1 true JP6014282B1 (en) 2016-10-25
JPWO2016084337A1 JPWO2016084337A1 (en) 2017-04-27

Family

ID=56073932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015558679A Active JP6014282B1 (en) 2014-11-28 2015-11-17 Soft structure protective structure

Country Status (3)

Country Link
JP (1) JP6014282B1 (en)
KR (1) KR20170008310A (en)
WO (1) WO2016084337A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6990474B1 (en) 2021-07-20 2022-01-12 株式会社プロテックエンジニアリング Guard rail

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2831328T3 (en) * 2018-04-05 2021-06-08 Desnivel Agranaltura S A Support structure for a dynamic barrier to protect against falling rocks
JP7450996B1 (en) 2023-06-16 2024-03-18 ベルテクス株式会社 protective fence

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4335868A (en) * 1979-03-15 1982-06-22 Hans Ribbert Device adapted to afford protection against falling rocks and avalanches in mountainous terrain
JPS62280405A (en) * 1986-05-27 1987-12-05 株式会社神戸製鋼所 Snowslide deenergizing structure
JP2001049626A (en) * 1999-08-10 2001-02-20 Tsutomu Sasaki Large-sized avalanche preventive fence
JP2007032032A (en) * 2005-07-25 2007-02-08 Raiteku:Kk Guard fence and method of constructing the same
JP2010168833A (en) * 2009-01-23 2010-08-05 Tokyo Seiko Co Ltd Protective fence against rockfall or the like

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2513175B2 (en) 1993-12-21 1996-07-03 富士化工株式会社 Avalanche / fall rock protection wall
JP2785177B2 (en) 1994-04-28 1998-08-13 東京製綱株式会社 Rock fall, earth and sand, driftwood, avalanche, snow pressure prevention facilities
JP3457583B2 (en) * 1999-08-04 2003-10-20 益男 勘田 Rockfall protection fence
JP3682761B2 (en) 1999-10-06 2005-08-10 東亜グラウト工業株式会社 A protective fence that receives rocks and absorbs kinetic energy
JP3860741B2 (en) * 2001-12-12 2006-12-20 有限会社吉田構造デザイン Shock absorbing fence and shock absorbing method
JP3692457B2 (en) * 2001-06-04 2005-09-07 有限会社吉田構造デザイン Shock absorbing fence and shock absorbing method
JP5595325B2 (en) 2011-04-19 2014-09-24 株式会社ライテク Protective fence

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4335868A (en) * 1979-03-15 1982-06-22 Hans Ribbert Device adapted to afford protection against falling rocks and avalanches in mountainous terrain
JPS62280405A (en) * 1986-05-27 1987-12-05 株式会社神戸製鋼所 Snowslide deenergizing structure
JP2001049626A (en) * 1999-08-10 2001-02-20 Tsutomu Sasaki Large-sized avalanche preventive fence
JP2007032032A (en) * 2005-07-25 2007-02-08 Raiteku:Kk Guard fence and method of constructing the same
JP2010168833A (en) * 2009-01-23 2010-08-05 Tokyo Seiko Co Ltd Protective fence against rockfall or the like

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6990474B1 (en) 2021-07-20 2022-01-12 株式会社プロテックエンジニアリング Guard rail
JP2023015665A (en) * 2021-07-20 2023-02-01 株式会社プロテックエンジニアリング protective fence

Also Published As

Publication number Publication date
WO2016084337A1 (en) 2016-06-02
JPWO2016084337A1 (en) 2017-04-27
KR20170008310A (en) 2017-01-23

Similar Documents

Publication Publication Date Title
JP6014282B1 (en) Soft structure protective structure
CN103882803B (en) A kind of replaceable landscape configuration presstressed reinforcing steel Self-resetting power consumption bridge pier
CN107938527B (en) A kind of flexible blocking backstop and its design method
CN104652251A (en) Novel anti-drop-beam device
JP2017193882A (en) Impact absorber
JP2018115420A (en) Guard fence
CN105256730A (en) Active and passive combined trailing high-performance protective screen
JP5204462B2 (en) Rockfall protection facility
JP4278170B1 (en) Rock fall guidance protective structure
JP2016172953A (en) Impact absorber
JP5557166B2 (en) Protective fence
JP5793633B1 (en) Protective fence
JP5414555B2 (en) Protective fence
JP2012117360A (en) Protective surface structure
KR101747284B1 (en) Multi net for reducing damages of debris flow
JPWO2015092829A1 (en) Protective fence
JP6341884B2 (en) Shed and retaining wall
JP5105321B2 (en) Protective surface structure
JP5931001B2 (en) Retaining wall and its construction method
RU131013U1 (en) Geocell
JP6976820B2 (en) Protective facilities and energy absorbers
JP3859550B2 (en) Shock absorbing dam body and design method thereof
JP4890639B1 (en) Protective surface structure
JP3214971U (en) Composite diamond wire mesh and rock fall protection mesh
JP6471042B2 (en) Retaining wall with rock fall and earth protection fence

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160923

R150 Certificate of patent or registration of utility model

Ref document number: 6014282

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250