JP6012502B2 - Engine simulation test method - Google Patents

Engine simulation test method Download PDF

Info

Publication number
JP6012502B2
JP6012502B2 JP2013029717A JP2013029717A JP6012502B2 JP 6012502 B2 JP6012502 B2 JP 6012502B2 JP 2013029717 A JP2013029717 A JP 2013029717A JP 2013029717 A JP2013029717 A JP 2013029717A JP 6012502 B2 JP6012502 B2 JP 6012502B2
Authority
JP
Japan
Prior art keywords
engine
vehicle speed
vehicle
load
speed data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013029717A
Other languages
Japanese (ja)
Other versions
JP2014159966A (en
Inventor
佳弘 田上
佳弘 田上
保則 浦野
保則 浦野
賢介 星谷
賢介 星谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2013029717A priority Critical patent/JP6012502B2/en
Publication of JP2014159966A publication Critical patent/JP2014159966A/en
Application granted granted Critical
Publication of JP6012502B2 publication Critical patent/JP6012502B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Engines (AREA)

Description

本発明は、実車での運転状態を模擬的に再現しながらエンジンの性能及び信頼性試験を実施するためのエンジン模擬試験方法に関するものである。   The present invention relates to an engine simulation test method for performing an engine performance and reliability test while simulating a driving state in an actual vehicle.

近年、自動車のエンジンを開発する場合には、該エンジンを搭載した試験車両を実際に走行させて試験を行う替わりに、エンジンを台上ベンチに載せて実車での運転状態を模擬的に再現しながら性能及び信頼性試験を実施することが行われており、開発されたエンジンが所定の性能を備えているかどうかを効率良く評価できるようにしている。   In recent years, when developing an engine for an automobile, instead of actually running a test vehicle equipped with the engine and performing a test, the engine is placed on a bench on a bench to simulate the actual driving state of the vehicle. However, performance and reliability tests are performed, and it is possible to efficiently evaluate whether or not the developed engine has a predetermined performance.

図4は台上ベンチでエンジンの性能及び信頼性試験を実施するための台上試験装置の一例を示すもので、図4中における符号の1は台上ベンチ(図示省略)に載せられたエンジン、2は該エンジン1の出力軸1aを接続されて実車の負荷条件を再現するように前記エンジン1のトルクを制御する動力計、3は前記エンジン1の運転状態を制御するエンジン制御装置、4は該エンジン制御装置3にアクセル開度の情報を与えるアクセル開度センサ、5は該アクセル開度センサ4を運転者のアクセルペダル操作に替えて操作するアクチュエータ、6は該アクチュエータ5及び前記動力計2の作動を制御し且つ該動力計2で検出された前記エンジン1のトルクの情報を取り込む模擬運転制御装置である。   FIG. 4 shows an example of a bench test apparatus for performing an engine performance and reliability test on a bench bench. Reference numeral 1 in FIG. 4 denotes an engine mounted on a bench bench (not shown). Reference numeral 2 denotes a dynamometer for controlling the torque of the engine 1 so that the output shaft 1a of the engine 1 is connected to reproduce the load condition of the actual vehicle, and 3 is an engine control device for controlling the operating state of the engine 1. Is an accelerator position sensor that gives information on the accelerator position to the engine control device 3, 5 is an actuator that operates the accelerator position sensor 4 in place of the driver's accelerator pedal operation, and 6 is the actuator 5 and the dynamometer. 2 is a simulated operation control device that controls the operation of the engine 2 and takes in the information of the torque of the engine 1 detected by the dynamometer 2.

而して、実車から得られた時系列の目標車速データを元に模擬運転制御装置6にて車両の走行抵抗を算出し、これを動力計2の負荷とエンジン1の回転数とに置き換えてアクチュエータ5及び前記動力計2の作動を制御すると、該動力計2により負荷条件がエンジン1に与えられる一方、前記アクチュエータ5によりアクセル開度センサ4が操作されてエンジン制御装置3により燃料噴射量が制御され、目標車速に対応したエンジン1の運転状態が模擬されることになる。   Thus, the simulated driving control device 6 calculates the running resistance of the vehicle based on the time-series target vehicle speed data obtained from the actual vehicle, and replaces it with the load of the dynamometer 2 and the rotational speed of the engine 1. When the operation of the actuator 5 and the dynamometer 2 is controlled, a load condition is given to the engine 1 by the dynamometer 2, while the accelerator opening sensor 4 is operated by the actuator 5 and the fuel injection amount is controlled by the engine control device 3. It is controlled and the operating state of the engine 1 corresponding to the target vehicle speed is simulated.

尚、この種の模擬運転制御装置に関連する先行技術文献情報としては下記の特許文献1等がある。   As prior art document information related to this type of simulated operation control apparatus, there is the following Patent Document 1 and the like.

特開2007−285931号公報JP 2007-285931 A

しかしながら、実車から得られた時系列の目標車速データを元に模擬運転制御装置6にて車両の走行抵抗を算出するにあたり、正確な積載状況や路面勾配等の計測データまでは測定できていない場合が多く、積荷重量の変化と路面勾配が無いものと仮定して車両の走行抵抗を算出するようにしていたため、模擬運転制御装置6で算出された走行抵抗と実車での走行抵抗との間に乖離が生じ、台上試験装置にて実車の車速を目標に走行しても、アクセル開度に差が生じる結果となり、実車の走行状態を正確に再現することが難しいという問題があった。   However, when calculating the running resistance of the vehicle by the simulated operation control device 6 based on the time-series target vehicle speed data obtained from the actual vehicle, measurement data such as accurate loading conditions and road gradients cannot be measured. In many cases, the running resistance of the vehicle is calculated on the assumption that there is no change in the product load amount and no road surface gradient. There is a problem that even if the platform test device runs with the vehicle speed of the actual vehicle as a target, a difference occurs in the accelerator opening, and it is difficult to accurately reproduce the running state of the actual vehicle.

本発明は上述の実情に鑑みてなしたもので、実車の走行状態を正確に再現し得るエンジン模擬試験方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide an engine simulation test method capable of accurately reproducing the running state of an actual vehicle.

本発明は、台上ベンチに載せたエンジンの出力軸を動力計と連結し、該動力計により前記エンジンに走行時の負荷条件を与えながらアクセル開度を制御して実車の走行状態を模擬するエンジン模擬試験方法であって、実車から得られた時系列の目標車速データを元に車両諸元情報を使用し且つ積荷重量の変化と路面勾配が無いものと仮定して車両の走行抵抗を算出し、その算出された走行抵抗を負荷条件として動力計によりエンジンに与えながら前記目標車速データ通りに車速が再現されるようにアクセル開度を制御した時のトルクの推移を第一トルク推移として求める一方、前記目標車速データの計測時に併せてエンジンの回転数とアクセル開度を計測しておき、これら目標車速データの計測時におけるエンジンの回転数とアクセル開度が同時に再現されるようにアクセル開度を制御し且つ動力計により負荷条件を制御した時のトルクの推移を第二トルク推移として求め、この第二トルク推移と前記第一トルク推移とを比較して差分を求め、そのトルク推移の差分を補正負荷分として走行抵抗の差分に置き換え、この走行抵抗の差分を前記目標車速データを元に算出した走行抵抗に加算して実車相当の走行抵抗に補正し、この実車相当の走行抵抗を負荷条件として動力計によりエンジンに与えながら前記目標車速データの車速が再現されるようにアクセル開度を制御することを特徴とするものである。   In the present invention, an output shaft of an engine mounted on a bench is connected to a dynamometer, and the accelerator opening is controlled by the dynamometer while applying a load condition during running to the engine to simulate the running state of an actual vehicle. This is an engine simulation test method that uses vehicle specification information based on time-series target vehicle speed data obtained from a real vehicle and calculates the running resistance of the vehicle on the assumption that there is no change in product load and no road gradient. Then, a transition of torque when the accelerator opening is controlled so that the vehicle speed is reproduced according to the target vehicle speed data while the calculated running resistance is applied to the engine by a dynamometer as a load condition is obtained as a first torque transition. On the other hand, the engine speed and the accelerator opening are measured together with the measurement of the target vehicle speed data, and the engine speed and the accelerator opening at the time of measuring the target vehicle speed data are determined. When the accelerator opening is controlled and the load condition is controlled by a dynamometer, the torque transition is obtained as the second torque transition, and the second torque transition is compared with the first torque transition. The difference is obtained, the difference in torque transition is replaced with the difference in travel resistance as a correction load, and the difference in travel resistance is added to the travel resistance calculated based on the target vehicle speed data to correct the travel resistance equivalent to the actual vehicle. The accelerator opening is controlled so that the vehicle speed of the target vehicle speed data is reproduced while applying the running resistance equivalent to the actual vehicle to the engine by a dynamometer as a load condition.

而して、実車から得られた時系列の目標車速データを元に車両諸元情報を使用し且つ積荷重量の変化と路面勾配が無いものと仮定して車両の走行抵抗を算出し、その算出された走行抵抗を負荷条件として動力計によりエンジンに与えながら前記目標車速データ通りに車速が再現されるようにアクセル開度を制御すると、実車と同じ走行抵抗が得られていないことからエンジンに対し実車と同じ負荷条件を与えることができず、前記目標車速データ通りに車速を再現しても、アクセル開度が実車の場合と異なり、この時に計測されるトルクの推移(第一トルク推移)は、実車の負荷条件に対応したものとはならないが、前記目標車速データの計測時に併せて計測されていたエンジンの回転数とアクセル開度が同時に再現されるようにアクセル開度を制御し且つ動力計により負荷条件を制御すれば、その時に計測されるトルクの推移(第二トルク推移)が実車の負荷条件に対応したものとなる。   Thus, based on the time-series target vehicle speed data obtained from the actual vehicle, the vehicle specification information is used and the running resistance of the vehicle is calculated on the assumption that there is no change in the load load and no road surface gradient. If the accelerator opening is controlled so that the vehicle speed is reproduced according to the target vehicle speed data while giving the measured running resistance to the engine with a dynamometer as a load condition, the same running resistance as that of the actual vehicle is not obtained. Even if the same load conditions as the actual vehicle cannot be given and the vehicle speed is reproduced according to the target vehicle speed data, the torque change (first torque change) measured at this time is different from the case of the actual vehicle. Although it does not correspond to the load conditions of the actual vehicle, the accelerator is opened so that the engine speed and the accelerator opening that are measured at the time of measuring the target vehicle speed data are reproduced simultaneously. By controlling the load conditions by controlling and power meter, and that changes in torque which is measured at that time (the second torque transition) is corresponding to the load condition of the vehicle.

このため、第二トルク推移と第一トルク推移とを比較して差分を求め、そのトルク推移の差分を補正負荷分として走行抵抗の差分に置き換え、この走行抵抗の差分を前記目標車速データを元に算出した走行抵抗に加算すれば、この走行抵抗は実車の負荷条件に対応したものとなり、この実車相当の走行抵抗を負荷条件として動力計によりエンジンに与えながら前記目標車速データの車速が再現されるようにアクセル開度を制御すれば、実車の走行状態が正確に再現されることになる。   Therefore, the second torque transition and the first torque transition are compared to obtain a difference, and the difference in the torque transition is replaced with a difference in travel resistance as a correction load, and the difference in travel resistance is based on the target vehicle speed data. In addition, the running resistance corresponds to the load condition of the actual vehicle, and the vehicle speed of the target vehicle speed data is reproduced while applying the running resistance equivalent to the actual vehicle to the engine with the dynamometer as the load condition. If the accelerator opening is controlled as described above, the traveling state of the actual vehicle is accurately reproduced.

更に、本発明においては、前記目標車速データを元に別の車両諸元情報を使用し且つ積荷重量の変化と路面勾配が無いものと仮定して車型違いの場合の走行抵抗を算出し、その算出された走行抵抗に前記補正負荷分を加算して車型違いの場合についての実車相当の走行抵抗を求め、この実車相当の走行抵抗を負荷条件として動力計によりエンジンに与えながら前記目標車速データの車速が再現されるようにアクセル開度を制御することも可能である。   Furthermore, in the present invention, using another vehicle specification information based on the target vehicle speed data, and assuming that there is no change in the product load amount and no road surface gradient, the running resistance in the case of different vehicle types is calculated, The corrected load is added to the calculated running resistance to obtain a running resistance equivalent to the actual vehicle in the case of a different vehicle type, and the target vehicle speed data of the target vehicle speed data is obtained while applying the running resistance equivalent to the actual vehicle to the engine as a load condition. It is also possible to control the accelerator opening so that the vehicle speed is reproduced.

即ち、先に求めた補正負荷分には、積荷重量の変化と路面勾配が大きく寄与しており、同じ道路を同じ運行条件(積荷重量の変化)で走行する限り、大きく変化することなく同じように加わる負荷分であると考えられるので、車型違いの場合であっても、その車型に応じた車両諸元情報を使用し且つ積荷重量の変化と路面勾配が無いものと仮定して算出した走行抵抗に加算すれば、同じ道路を同じ運行条件(積荷重量の変化)で走行した時の実車相当の走行抵抗が求められ、この実車相当の走行抵抗を負荷条件として動力計によりエンジンに与えながら前記目標車速データの車速が再現されるようにアクセル開度を制御すれば、車型違いの場合における実車の走行状態が正確に再現されることになる。   In other words, the change in the product load and the road gradient greatly contribute to the correction load obtained earlier, and as long as the vehicle travels on the same road under the same driving conditions (change in product load), it does not change much. Since it is considered that the load is applied to the vehicle, even if the vehicle type is different, it is calculated using the vehicle specification information according to the vehicle type and assuming that there is no change in the load load and no road gradient If it is added to the resistance, the driving resistance equivalent to the actual vehicle when traveling on the same road under the same driving conditions (change in the load load) is obtained, and the driving resistance equivalent to the actual vehicle is applied to the engine by the dynamometer as a load condition. If the accelerator opening is controlled so that the vehicle speed of the target vehicle speed data is reproduced, the running state of the actual vehicle in the case of different vehicle types can be accurately reproduced.

また、本発明においては、第二トルク推移と第一トルク推移との差分を補正負荷分として走行抵抗の差分に置き換えるにあたり、走行している任意の区間毎に走行抵抗の差分に平均処理を施して平滑化しておくことが好ましく、このようにすれば、極端な負荷変動を抑えることが可能となる。   Further, in the present invention, when the difference between the second torque transition and the first torque transition is replaced with the difference in travel resistance as a correction load, an average process is performed on the difference in travel resistance for each section that is traveling. In this way, it is possible to suppress extreme load fluctuations.

上記した本発明のエンジン模擬試験方法によれば、下記の如き種々の優れた効果を奏し得る。   According to the engine simulation test method of the present invention described above, various excellent effects as described below can be obtained.

(I)正確な積載状況や路面勾配等の計測データが測定できていなくても、実車から得られた時系列の目標車速データを元に不明な車両諸元情報を仮値として算出した走行抵抗を実車相当の走行抵抗に補正することができるので、この実車相当の走行抵抗を負荷条件として動力計によりエンジンに与えながら前記目標車速データの車速が再現されるようにアクセル開度を制御することにより実車の走行状態を正確に再現することができる。   (I) Even if measurement data such as accurate loading conditions and road surface gradients cannot be measured, running resistance calculated based on time-series target vehicle speed data obtained from an actual vehicle as unknown provisional vehicle information Therefore, the accelerator opening is controlled so that the vehicle speed of the target vehicle speed data is reproduced while applying the running resistance equivalent to the actual vehicle to the engine with the dynamometer as a load condition. Thus, the running state of the actual vehicle can be accurately reproduced.

(II)前記目標車速データを元に別の車両諸元情報を使用し且つ積荷重量の変化と路面勾配が無いものと仮定して車型違いの場合の走行抵抗を算出し、その算出された走行抵抗に前記補正負荷分を加算して車型違いの場合についての実車相当の走行抵抗を求め、この実車相当の走行抵抗を負荷条件として動力計によりエンジンに与えながら前記目標車速データの車速が再現されるようにアクセル開度を制御すれば、車型違いの場合における実車の走行状態を正確に再現することができ、車両諸元情報の変更点の性能及び信頼性への影響を確認することができる。   (II) Based on the target vehicle speed data, another vehicle specification information is used, and it is assumed that there is no change in the product load and no road surface gradient. The correction load is added to the resistance to obtain a running resistance equivalent to the actual vehicle in the case of a different vehicle type, and the vehicle speed of the target vehicle speed data is reproduced while giving the running resistance equivalent to the actual vehicle to the engine with a dynamometer as a load condition. By controlling the accelerator opening as described above, it is possible to accurately reproduce the running state of the actual vehicle in the case of different vehicle types, and to confirm the effect on the performance and reliability of the changes in the vehicle specification information. .

(III)第二トルク推移と第一トルク推移との差分を補正負荷分として走行抵抗の差分に置き換えるにあたり、走行している任意の区間毎に走行抵抗の差分に平均処理を施して平滑化しておくようにすれば、極端な負荷変動を抑えることができる。   (III) In replacing the difference between the second torque transition and the first torque transition with the difference in travel resistance as a correction load, the difference in travel resistance is averaged and smoothed for each traveling section. If this is done, extreme load fluctuations can be suppressed.

本発明に用いられる目標車速データの一例を概略的に示すグラフである。It is a graph which shows roughly an example of target vehicle speed data used for the present invention. 第一トルク推移と第二トルク推移について示すグラフである。It is a graph shown about a 1st torque transition and a 2nd torque transition. 計算して求めた走行抵抗と実車相当の走行抵抗を示すグラフである。It is a graph which shows the running resistance calculated | required by calculation, and the running resistance equivalent to a real vehicle. 台上試験装置の一例を示す概略図である。It is the schematic which shows an example of a bench test apparatus.

以下本発明の実施の形態を図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1〜図3は本発明を実施する形態の一例を示すもので、本発明のエンジン模擬試験方法を実施するために用いられる台上試験装置については、先に背景技術の説明に用いた図4の構成のものと特に変わるところがないため、本形態例の説明においても、台上試験装置の各構成要素に関連して述べた部分については図4を参照することとする。   FIGS. 1 to 3 show an example of an embodiment for carrying out the present invention. The bench test apparatus used for carrying out the engine simulation test method of the present invention is a diagram used for explaining the background art. Since there is no particular difference from the configuration of 4, reference is made to FIG. 4 for the portions described in relation to each component of the bench test apparatus in the description of this embodiment.

先ず、本形態例では、台上ベンチに載せたエンジン1の出力軸1aを動力計2と連結し、該動力計2により前記エンジン1に走行時の負荷条件を与えながらアクセル開度を制御して実車の走行状態を模擬するに際し、模擬運転制御装置6において、実車から得られた時系列の目標車速データS1(図1参照)を元に車両諸元情報を使用し且つ積荷重量の変化と路面勾配が無いものと仮定して車両の走行抵抗を算出する。 First, in this embodiment, the output shaft 1a of the engine 1 mounted on the bench is connected to the dynamometer 2, and the accelerator opening is controlled by the dynamometer 2 while giving the engine 1 a load condition during traveling. When simulating the running state of the actual vehicle, the simulated operation control device 6 uses the vehicle specification information based on the time-series target vehicle speed data S 1 (see FIG. 1) obtained from the actual vehicle and changes the product load amount. The running resistance of the vehicle is calculated on the assumption that there is no road surface gradient.

ここで、目標車速データS1を元に車両の走行抵抗を算出するにあたっては、例えば、下記の式(1)に示されるような一般的な走行抵抗演算式を使用すれば良く、不明な車両諸元情報については仮値を代入して計算すれば良い。 Here, when calculating the original to the running resistance of the vehicle to the target vehicle speed data S 1, for example, it may be used a general running resistance calculation formula as shown in the following formula (1), Unknown vehicle The specification information may be calculated by substituting a provisional value.

尚、ここでは説明を判り易くする観点から比較的シンプルな走行抵抗演算式を用いた場合で例示しているが、エンジントルクマップやトランスミッションの変速位置情報等を加味して更に複雑な走行抵抗演算式を用いることも可能である。
[数1]
F(走行抵抗)=Ra+Rc+Rr+Re…(1)

Ra(空気抵抗)=λSV2
λ:空気抵抗係数(仮値)
S:車両前面投影面積(仮値)
V:車速(目標車速データS1の時系列値)
Rc(加速抵抗)=b/g(W+ΔW)
b:車両加速度(車速Vから求めた加速度)
g:重力加速度(定数)
W:車両総重量(カタログ値)
ΔW:回転部慣性重量=空車重量×0.07(仮値)
Rr(ころがり抵抗)=Wμ
μ:タイヤ摩擦抵抗係数
Re(勾配抵抗)=W・sinθ(ここでは0として計算)
θ:勾配角度
Note that, here, a comparatively simple driving resistance calculation formula is used from the viewpoint of making the explanation easy to understand, but more complicated driving resistance calculation is taken into account by taking into account the engine torque map, transmission shift position information, etc. It is also possible to use an equation.
[Equation 1]
F (running resistance) = Ra + Rc + Rr + Re (1)

Ra (air resistance) = λSV 2
λ: Air resistance coefficient (provisional value)
S: Projected front area of vehicle (tentative value)
V: vehicle speed (the time-series value of the target vehicle speed data S 1)
Rc (acceleration resistance) = b / g (W + ΔW)
b: Vehicle acceleration (acceleration obtained from vehicle speed V)
g: Gravitational acceleration (constant)
W: Gross vehicle weight (catalog value)
ΔW: rotating part inertia weight = empty car weight × 0.07 (temporary value)
Rr (rolling resistance) = Wμ
μ: Tire frictional coefficient Re (gradient resistance) = W · sinθ (calculated as 0 here)
θ: Gradient angle

そして、この式(1)により算出された走行抵抗を負荷条件として動力計2によりエンジン1に与えながら前記目標車速データS1通りに車速S2(図1参照)が再現されるようにアクチュエータ5によりアクセル開度センサ4を操作してアクセル開度を制御し、この時のトルクの推移を第一トルク推移T1(図2参照)として模擬運転制御装置6に記録しておく。 Then, the actuator 5 is reproduced so that the vehicle speed S 2 (see FIG. 1) is reproduced in accordance with the target vehicle speed data S 1 while applying the running resistance calculated by the equation (1) to the engine 1 by the dynamometer 2 as a load condition. The accelerator opening sensor 4 is operated to control the accelerator opening, and the torque change at this time is recorded in the simulated operation control device 6 as the first torque change T 1 (see FIG. 2).

一方、前記目標車速データS1の計測時に併せてエンジン1の回転数とアクセル開度を計測しておき、これら目標車速データS1の計測時におけるエンジン1の回転数とアクセル開度が同時に再現されるようにアクセル開度をアクチュエータ5によりアクセル開度センサ4を介して制御し且つ動力計2により負荷条件を制御した時のトルクの推移を第二トルク推移T2(図2参照)として模擬運転制御装置6に記録する。 Meanwhile, the advance by measuring the rotational speed and the accelerator opening of the target vehicle speed data S engine 1 in accordance with the time of measurement of 1, the rotational speed and the accelerator opening the engine 1 at the time of the target vehicle speed data S 1 measured simultaneously reproduce As shown, the torque change when the accelerator opening is controlled by the actuator 5 via the accelerator opening sensor 4 and the load condition is controlled by the dynamometer 2 is simulated as a second torque change T 2 (see FIG. 2). Record in the operation control device 6.

そして、前記模擬運転制御装置6内において、第二トルク推移T2と第一トルク推移T1とを比較して差分を求め、そのトルク推移の差分を補正負荷分として走行抵抗の差分に置き換え、図3に示す如く、この走行抵抗の差分を前記目標車速データS1を元に算出した走行抵抗F1に加算して実車相当の走行抵抗F2に補正し、この実車相当の走行抵抗F2を負荷条件として動力計2によりエンジン1に与えながら前記目標車速データS1の車速が再現されるようにアクセル開度を制御する。 Then, in the simulated operation control device 6 calculates a difference as compared to the second torque transition T 2 and a first torque transition T 1, replacing the difference between running resistance difference of the torque changes as the correction load-, as shown in FIG. 3, the difference between the running resistance is added to the running resistance F 1 that is calculated based on the target vehicle speed data S 1 is corrected to the running resistance F 2 of the actual vehicle equivalent running resistance F 2 of the actual vehicle equivalent The accelerator opening is controlled so that the vehicle speed of the target vehicle speed data S 1 is reproduced while being applied to the engine 1 by the dynamometer 2 under the load condition.

尚、第二トルク推移T2と第一トルク推移T1との差分を補正負荷分として走行抵抗の差分に置き換えるにあたっては、走行している任意の区間毎に走行抵抗の差分に平均処理を施して平滑化しておくことが好ましく、このようにすれば、極端な負荷変動を抑えることが可能となる。 In addition, when replacing the difference between the second torque transition T 2 and the first torque transition T 1 as a correction load with a difference in travel resistance, an average process is performed on the difference in travel resistance for each of the traveling sections. In this way, it is possible to suppress extreme load fluctuations.

而して、前述したように、実車から得られた時系列の目標車速データS1を元に車両の走行抵抗F1を不明な車両諸元情報を仮値として算出し、その算出された走行抵抗F1を負荷条件として動力計2によりエンジン1に与えながら前記目標車速データS1通りに車速S2が再現されるようにアクセル開度を制御すると、実車と同じ走行抵抗が得られていないことからエンジン1に対し実車と同じ負荷条件を与えることができず、前記目標車速データS1通りに車速S2を再現しても、アクセル開度が実車の場合と異なり、この時に計測されるトルクの推移(第一トルク推移T1)は、実車の負荷条件に対応したものとはならないが、前記目標車速データS1の計測時に併せて計測されていたエンジン1の回転数とアクセル開度が同時に再現されるようにアクセル開度をアクチュエータ5によりアクセル開度センサ4を介して制御し且つ動力計2により負荷条件を制御すれば、その時に計測されるトルクの推移(第二トルク推移T2)が実車の負荷条件に対応したものとなる。 Thus, as described above, based on the time-series target vehicle speed data S 1 obtained from the actual vehicle, the running resistance F 1 of the vehicle is calculated using unknown vehicle specification information as a provisional value, and the calculated running is calculated. When the vehicle speed S 2 to 1 ways the target vehicle speed data S while giving resistance F 1 to the engine 1 by the dynamometer 2 as load conditions to control the accelerator opening to be reproduced, not the same running resistance vehicle is obtained Therefore, the same load condition as the actual vehicle cannot be given to the engine 1, and even if the vehicle speed S 2 is reproduced as the target vehicle speed data S 1 , the accelerator opening is measured at this time, unlike the actual vehicle. The torque transition (first torque transition T 1 ) does not correspond to the load condition of the actual vehicle, but the rotational speed of the engine 1 and the accelerator opening that were measured together with the measurement of the target vehicle speed data S 1. Are reproduced at the same time Thus, if the accelerator opening is controlled by the actuator 5 via the accelerator opening sensor 4 and the load condition is controlled by the dynamometer 2, the torque transition (second torque transition T 2 ) measured at that time is It corresponds to the load condition.

このため、第二トルク推移T2と第一トルク推移T1とを比較して差分を求め、そのトルク推移の差分を補正負荷分として走行抵抗の差分に置き換え、この走行抵抗の差分を前記目標車速データS1を元に算出した走行抵抗F1に加算すれば、その走行抵抗の差分を加算された走行抵抗F2は実車の負荷条件に対応したものとなり、この実車相当の走行抵抗F2を負荷条件として動力計2によりエンジン1に与えながら前記目標車速データS1の車速が再現されるようにアクセル開度を制御すれば、実車の走行状態が正確に再現されることになる。 For this reason, the second torque transition T 2 and the first torque transition T 1 are compared to obtain a difference, the difference in torque transition is replaced with a difference in traveling resistance as a correction load, and the difference in traveling resistance is converted into the target resistance. If added to the travel resistance F 1 calculated based on the vehicle speed data S 1 , the travel resistance F 2 to which the difference of the travel resistance is added corresponds to the load condition of the actual vehicle, and the travel resistance F 2 equivalent to this actual vehicle. if the control of the accelerator opening degree as the vehicle speed of the target vehicle speed data S 1 while giving to the engine 1 by the dynamometer 2 is reproduced as the load condition, so that the running state of the vehicle is accurately reproduced.

従って、上記形態例によれば、正確な積載状況や路面勾配等の計測データが測定できていなくても、実車から得られた時系列の目標車速データS1を元に不明な車両諸元情報を仮値として算出した走行抵抗F1を実車相当の走行抵抗F2に補正することができるので、この実車相当の走行抵抗F2を負荷条件として動力計2によりエンジン1に与えながら前記目標車速データS1の車速が再現されるようにアクセル開度を制御することにより実車の走行状態を正確に再現することができる。 Therefore, according to the above embodiment, unknown vehicle specification information based on the time-series target vehicle speed data S 1 obtained from the actual vehicle, even if measurement data such as accurate loading conditions and road surface gradients cannot be measured. it is possible to correct the running resistance F 1 that is calculated as a provisional value in the running resistance F 2 of the actual vehicle equivalent, the target vehicle speed while giving to the engine 1 by the dynamometer 2 running resistance F 2 of the actual vehicle equivalent as load conditions By controlling the accelerator opening so that the vehicle speed of the data S 1 is reproduced, the traveling state of the actual vehicle can be accurately reproduced.

また、本形態例においては、前記目標車速データS1を元に別の車両諸元情報を使用し且つ積荷重量の変化と路面勾配が無いものと仮定して車型違いの場合の走行抵抗を算出し、その算出された走行抵抗に前記補正負荷分を加算して車型違いの場合についての実車相当の走行抵抗を求め、この実車相当の走行抵抗を負荷条件として動力計2によりエンジン1に与えながら前記目標車速データS1の車速が再現されるようにアクセル開度を制御することも可能である。 Further, in the present embodiment, the running resistance in the case of different vehicle types is calculated on the basis of the target vehicle speed data S 1 on the assumption that different vehicle specification information is used and there is no change in the product load amount and no road surface gradient. Then, the corrected load is added to the calculated running resistance to obtain a running resistance equivalent to the actual vehicle in the case of a different vehicle type, and the running resistance equivalent to the actual vehicle is given to the engine 1 by the dynamometer 2 as a load condition. It is also possible to control the accelerator opening so that the vehicle speed of the target vehicle speed data S 1 is reproduced.

即ち、先に求めた補正負荷分には、積荷重量の変化と路面勾配が大きく寄与しており、同じ道路を同じ運行条件(積荷重量の変化)で走行する限り、大きく変化することなく同じように加わる負荷分であると考えられるので、車型違いの場合であっても、その車型に応じた車両諸元情報を使用し且つ積荷重量の変化と路面勾配が無いものと仮定して算出した走行抵抗に加算すれば、同じ道路を同じ運行条件(積荷重量の変化)で走行した時の実車相当の走行抵抗が求められ、この実車相当の走行抵抗を負荷条件として動力計2によりエンジン1に与えながら前記目標車速データS1の車速が再現されるようにアクセル開度を制御すれば、車型違いの場合における実車の走行状態を正確に再現することができ、車両諸元情報の変更点の性能及び信頼性への影響を確認することができる。 In other words, the change in the product load and the road gradient greatly contribute to the correction load obtained earlier, and as long as the vehicle travels on the same road under the same driving conditions (change in product load), it does not change much. Since it is considered that the load is applied to the vehicle, even if the vehicle type is different, it is calculated using the vehicle specification information according to the vehicle type and assuming that there is no change in the load load and no road gradient If it is added to the resistance, a running resistance equivalent to that of the actual vehicle when traveling on the same road under the same driving conditions (change in product load) is obtained, and this running resistance equivalent to the actual vehicle is given to the engine 1 by the dynamometer 2 as a load condition. However, if the accelerator opening is controlled so that the vehicle speed of the target vehicle speed data S 1 is reproduced, the running state of the actual vehicle in the case of different vehicle types can be accurately reproduced, and the performance of the changes in the vehicle specification information as well as It is possible to see the impact of the dependability.

尚、本発明のエンジン模擬試験方法は、上述の形態例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   It should be noted that the engine simulation test method of the present invention is not limited to the above-described embodiment, and it is needless to say that various modifications can be made without departing from the gist of the present invention.

1 エンジン
1a 出力軸
2 動力計
3 エンジン制御装置
4 アクセル開度センサ
5 アクチュエータ
6 模擬運転制御装置
1 Engine 1a Output shaft 2 Dynamometer 3 Engine control device 4 Accelerator opening sensor 5 Actuator 6 Simulated operation control device

Claims (3)

台上ベンチに載せたエンジンの出力軸を動力計と連結し、該動力計により前記エンジンに走行時の負荷条件を与えながらアクセル開度を制御して実車の走行状態を模擬するエンジン模擬試験方法であって、実車から得られた時系列の目標車速データを元に車両諸元情報を使用し且つ積荷重量の変化と路面勾配が無いものと仮定して車両の走行抵抗を算出し、その算出された走行抵抗を負荷条件として動力計によりエンジンに与えながら前記目標車速データ通りに車速が再現されるようにアクセル開度を制御した時のトルクの推移を第一トルク推移として求める一方、前記目標車速データの計測時に併せてエンジンの回転数とアクセル開度を計測しておき、これら目標車速データの計測時におけるエンジンの回転数とアクセル開度が同時に再現されるようにアクセル開度を制御し且つ動力計により負荷条件を制御した時のトルクの推移を第二トルク推移として求め、この第二トルク推移と前記第一トルク推移とを比較して差分を求め、そのトルク推移の差分を補正負荷分として走行抵抗の差分に置き換え、この走行抵抗の差分を前記目標車速データを元に算出した走行抵抗に加算して実車相当の走行抵抗に補正し、この実車相当の走行抵抗を負荷条件として動力計によりエンジンに与えながら前記目標車速データの車速が再現されるようにアクセル開度を制御することを特徴とするエンジン模擬試験方法。   Engine simulation test method for connecting the output shaft of an engine mounted on a bench and a dynamometer, and controlling the accelerator opening while applying load conditions during running to the engine by the dynamometer to simulate the running state of an actual vehicle The vehicle running resistance is calculated based on the time-series target vehicle speed data obtained from the actual vehicle, using the vehicle specification information and assuming that there is no change in the product load and no road gradient. While obtaining the travel resistance as a load condition to the engine with a dynamometer, the transition of torque when the accelerator opening is controlled so that the vehicle speed is reproduced according to the target vehicle speed data is obtained as the first torque transition, The engine speed and accelerator opening are measured together with the measurement of vehicle speed data, and the engine speed and accelerator opening at the time of measurement of the target vehicle speed data are reproduced simultaneously. The torque change when the accelerator opening is controlled and the load condition is controlled by the dynamometer is obtained as the second torque change, and the difference is obtained by comparing the second torque change with the first torque change. The difference in torque transition is replaced with a difference in travel resistance as a correction load, and the difference in travel resistance is added to the travel resistance calculated based on the target vehicle speed data to correct the travel resistance equivalent to the actual vehicle. An engine simulation test method, wherein the accelerator opening is controlled so that the vehicle speed of the target vehicle speed data is reproduced while applying a considerable running resistance to the engine by a dynamometer as a load condition. 前記目標車速データを元に別の車両諸元情報を使用し且つ積荷重量の変化と路面勾配が無いものと仮定して車型違いの場合の走行抵抗を算出し、その算出された走行抵抗に前記補正負荷分を加算して車型違いの場合についての実車相当の走行抵抗を求め、この実車相当の走行抵抗を負荷条件として動力計によりエンジンに与えながら前記目標車速データの車速が再現されるようにアクセル開度を制御することを特徴とする請求項1に記載のエンジン模擬試験方法。   Using another vehicle specification information based on the target vehicle speed data and assuming that there is no change in the load load and no road surface gradient, a running resistance in the case of a different vehicle type is calculated, and the calculated running resistance The correction load is added to determine the running resistance equivalent to the actual vehicle in the case of a different vehicle type, and the vehicle speed of the target vehicle speed data is reproduced while applying the running resistance equivalent to the actual vehicle to the engine with a dynamometer as a load condition. The engine simulation test method according to claim 1, wherein the accelerator opening is controlled. 第二トルク推移と第一トルク推移との差分を補正負荷分として走行抵抗の差分に置き換えるにあたり、走行している任意の区間毎に走行抵抗の差分に平均処理を施して平滑化することを特徴とする請求項1又は2に記載のエンジン模擬試験方法。   When replacing the difference between the second torque transition and the first torque transition with the difference in travel resistance as a correction load, the difference in travel resistance is averaged and smoothed for each section that is traveling. The engine simulation test method according to claim 1 or 2.
JP2013029717A 2013-02-19 2013-02-19 Engine simulation test method Active JP6012502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013029717A JP6012502B2 (en) 2013-02-19 2013-02-19 Engine simulation test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013029717A JP6012502B2 (en) 2013-02-19 2013-02-19 Engine simulation test method

Publications (2)

Publication Number Publication Date
JP2014159966A JP2014159966A (en) 2014-09-04
JP6012502B2 true JP6012502B2 (en) 2016-10-25

Family

ID=51611758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013029717A Active JP6012502B2 (en) 2013-02-19 2013-02-19 Engine simulation test method

Country Status (1)

Country Link
JP (1) JP6012502B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6071659B2 (en) * 2013-03-11 2017-02-01 日野自動車株式会社 Engine simulation test method
JP6113577B2 (en) * 2013-05-23 2017-04-12 日野自動車株式会社 Engine simulation test method
CN112800549B (en) * 2021-03-04 2022-05-27 山东大学 Automobile road spectrum synthesis method and system based on horizontal speed and vertical speed
CN114088406B (en) * 2021-11-30 2024-03-12 浙江吉利控股集团有限公司 Calibration method, device and equipment for engine cold start and computer storage medium
CN114739554B (en) * 2022-04-02 2024-02-02 中国第一汽车股份有限公司 Test experiment method and evaluation method for torsional strength of four-wheel drive train
GB2617870B (en) * 2022-05-30 2024-06-19 Autoneura Ltd A method of transient testing a prime mover

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS567035A (en) * 1979-06-30 1981-01-24 Nippon Denshi Kagaku Kk Running-resistance detector for car on bench
JPS5664636A (en) * 1979-10-31 1981-06-01 Ono Sokki Co Ltd Travelling resistance control method and system thereof
JPS57160042A (en) * 1981-03-30 1982-10-02 Toyota Motor Corp Method of running test for automobile
JPS61116636A (en) * 1984-11-12 1986-06-04 Toyota Motor Corp Oil consumption tester for engine
JP2004340878A (en) * 2003-05-19 2004-12-02 Yamakatsu Electronics Industry Co Ltd Engine power identification device
JP4735841B2 (en) * 2006-04-18 2011-07-27 株式会社デンソー Vehicle running tester
JP2009186377A (en) * 2008-02-07 2009-08-20 Yamaha Motor Co Ltd Bench performance testing device

Also Published As

Publication number Publication date
JP2014159966A (en) 2014-09-04

Similar Documents

Publication Publication Date Title
JP6071659B2 (en) Engine simulation test method
JP6012502B2 (en) Engine simulation test method
JP6549892B2 (en) Vehicle test system, test management device, test management program, and vehicle test method
KR102401758B1 (en) Vehicle test system, test condition data generation apparatus, test condition data generation program and vehicle test mothod
JP6509631B2 (en) Vehicle test system
JP7317019B2 (en) Apparatus and method for testing using a dynamometer
JP6505414B2 (en) Test apparatus and method for electric vehicle
JP7289837B2 (en) Testbench and method for performing tests
JP5316151B2 (en) Power system test apparatus and control method thereof
JP6113577B2 (en) Engine simulation test method
Bäcker et al. The hybrid road approach for durability loads prediction
US10161832B2 (en) Method for simulating cornering
JP6260700B2 (en) A method of simulating the deflection radius of an automobile tire
JP4084254B2 (en) Powertrain testing equipment
JP4546752B2 (en) Vehicle running state simulation apparatus equipped with drive motor and method thereof
JP6031504B2 (en) Method for obtaining stress to be applied to tire during high-efficiency indoor durability test
JP5722144B2 (en) Vehicle test equipment
Mayyas et al. Chassis dynamometer as a development platform for vehicle hardware in-the-loop “VHiL”
JP2020516875A (en) Method for controlling a powertrain test bench with a physical transmission, in particular for closed-loop control
WO2023228795A1 (en) Machine learning device, vehicle testing system, machine learning method, and vehicle testing method
JP2754821B2 (en) Travel distance measuring device for uneven roads
Murray Vehicle dynamic validation and analysis from suspension forces
JP2006170944A (en) Apparatus for simulating traveling state of vehicle to which drive motor is mounted and travel simulation test system
JP2023025790A (en) Road grade calculation apparatus
JP2005180956A (en) Testing device and its control method for power transmission system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160920

R150 Certificate of patent or registration of utility model

Ref document number: 6012502

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250