JP6010747B2 - Sound insulation structure unit and sound insulation structure using the same - Google Patents

Sound insulation structure unit and sound insulation structure using the same Download PDF

Info

Publication number
JP6010747B2
JP6010747B2 JP2012063129A JP2012063129A JP6010747B2 JP 6010747 B2 JP6010747 B2 JP 6010747B2 JP 2012063129 A JP2012063129 A JP 2012063129A JP 2012063129 A JP2012063129 A JP 2012063129A JP 6010747 B2 JP6010747 B2 JP 6010747B2
Authority
JP
Japan
Prior art keywords
sound insulation
insulation structure
sound
bag portion
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012063129A
Other languages
Japanese (ja)
Other versions
JP2013195729A (en
Inventor
正治 西村
正治 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tottori University
Original Assignee
Tottori University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tottori University filed Critical Tottori University
Priority to JP2012063129A priority Critical patent/JP6010747B2/en
Publication of JP2013195729A publication Critical patent/JP2013195729A/en
Application granted granted Critical
Publication of JP6010747B2 publication Critical patent/JP6010747B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Description

本発明は、住宅の仕切り壁、窓口、遮音壁体、遮音扉または航空機や車両の遮音胴体として用いる遮音構造体を構成できる遮音構造ユニットおよびこの遮音構造ユニットを複数組み合わせて構成される遮音構造体に関するものである。   The present invention relates to a sound insulation structure unit that can constitute a sound insulation structure used as a partition wall, a window, a sound insulation wall body, a sound insulation door, or a sound insulation body of an aircraft or a vehicle, and a sound insulation structure constituted by combining a plurality of the sound insulation structure units. Is.

従来では、遮音構造体として、遮音材として機能する鋼板の内側に吸音材を貼着したものや、2枚の鋼板の間に吸音材や水を充填したものが一般的に用いられており、いずれの遮音構造体も全体として平板状の外観を呈している。この平板状の遮音構造体の遮音性能は、一般に、その平板の一次固有振動数以下の周波数領域において、自体の剛性に対応して遮音効果が律則される剛性則と称される法則に依存するとともに、一次固有振動数以上の周波数領域において、遮音構造体の質量に対応して遮音効果が律則される質量則と称される法則に依存する。ところで、一般的な遮音構造体では、その一次固有振動数が数十Hz以下であるため、大部分の可聴音周波数領域において、遮音効果が質量則に依存する。この質量則によると、遮音構造体の面密度(単位面積当たりの質量)が大きいほど遮音構造体が振動し難いことから、遮音構造体に対する入射音波の透過損失が大きくなって遮音効果が高くなる。ところが、遮音構造体の面密度を大きくするためには、遮音構造体の厚みを大きく設定する必要があり、厚みが大きくなるのに伴って重量が増大し、遮音構造体を取り付け又は取り外すなどの取扱いが困難となる。   Conventionally, as a sound insulation structure, a material in which a sound absorbing material is attached to the inside of a steel plate functioning as a sound insulating material, or a material in which a sound absorbing material or water is filled between two steel plates, is generally used. All of the sound insulation structures have a flat appearance as a whole. In general, the sound insulation performance of this flat sound insulation structure depends on a law called a rigidity law in which the sound insulation effect is governed in accordance with its own rigidity in a frequency region below the primary natural frequency of the flat plate. In addition, in the frequency region of the primary natural frequency or higher, it depends on a law called a mass law in which the sound insulation effect is regulated in accordance with the mass of the sound insulation structure. By the way, in the general sound insulation structure, since the primary natural frequency is several tens Hz or less, the sound insulation effect depends on the mass law in most audible sound frequency regions. According to this mass rule, the greater the surface density (mass per unit area) of the sound insulation structure, the harder the sound insulation structure vibrates, so the transmission loss of incident sound waves to the sound insulation structure increases and the sound insulation effect increases. . However, in order to increase the surface density of the sound insulation structure, it is necessary to set the thickness of the sound insulation structure large. As the thickness increases, the weight increases, and the sound insulation structure is attached or removed. Handling becomes difficult.

上述した問題の解消を図るものとして、軽量化を図りながらも従来の平板状の遮音構造体よりも優れた遮音効果が得られる遮音構造体が提案されている(例えば、特許文献1参照)。この遮音構造体は、半球状の内部に空気を封入した気泡体が可撓性シートの片面に多数形成されてなる遮音シートを、気泡体を内側とした配置で渦巻き状に巻回することにより、全体として円柱形状としたシートロールを複数備え、これらシートロールを、一面が開口し、且つ他面が格子形状となった保持枠の内部に並べて収容し、格子状の押え枠を、前記各シートロールに圧縮力を付与しながら保持枠の他面に固定した構成になっている。この遮音構造体では、遮音シートを透過して各気泡体の内部にそれぞれ入射した音波が、気泡体の内面で多重反射して減衰するとともに互いに干渉することで音響エネルギが低減され、あるいは遮音シート自体を振動させる音響エネルギに変換されて、各気泡体が互いに密着していることから振動が減衰するとともに、互いに干渉して打ち消され、さらに、遮音シートの互いに隣接する部分の間でも入射音波が多重反射して減衰し、互いに干渉して音響エネルキが低減されるように機能する。このように、この遮音構造体は、空気を封入した気泡体を多数有するシートロールにより遮音効果を得るようになっているので、軽量化と所要の遮音効果とを共に得られるように図られている。   In order to solve the above-described problems, a sound insulation structure that has a sound insulation effect superior to that of a conventional flat sound insulation structure while reducing the weight has been proposed (for example, see Patent Document 1). This sound insulation structure is formed by winding a sound insulation sheet in which a large number of air bubbles enclosing air in a hemispherical shape are formed on one side of a flexible sheet in a spiral shape with the air bubble inside. A plurality of sheet rolls having a cylindrical shape as a whole, these sheet rolls are accommodated side by side inside a holding frame having one surface opened and the other surface in a lattice shape. It is configured to be fixed to the other surface of the holding frame while applying a compressive force to the sheet roll. In this sound insulation structure, the sound waves that have passed through the sound insulation sheet and entered the inside of each bubble are attenuated by multiple reflection on the inner surface of the bubble, and the sound energy is reduced by interfering with each other, or the sound insulation sheet It is converted into acoustic energy that vibrates itself, and since each bubble is in close contact with each other, the vibration is attenuated and canceled by interfering with each other. It functions to attenuate by multiple reflections and to interfere with each other to reduce acoustic energy. Thus, since this sound insulation structure is designed to obtain a sound insulation effect by the sheet roll having a large number of air bubbles enclosing air, both the weight reduction and the required sound insulation effect can be obtained. Yes.

特開2002−138591号公報JP 2002-138491 A

しかしながら、上記特許文献1の遮音構造体は、空気が封入された小さな気泡体を多数有するシートロールを、保持枠と押え枠との間で各気泡体間に隙間が殆ど無くなる状態にまで圧力を付与して収納する構成となっているから、構成が複雑であり、それに伴って製造コストが高くつく。また、保持枠と押え枠は、複数のシートロールを変形させて各気泡体が互いに密着状態となる圧力を付与するように合体させるものであるから、剛性の高い
素材(特許文献1では鉄)で形成する必要があり、剛性の高い素材は一般に重量も大きいことから、この遮音構造体は、既存のものに比較して格段の軽量化を達成できるものではない。さらに、この遮音構造体は、入射音波を各気泡体の内部で散乱させるのに加えて、入射音波により発生する各気泡体の振動が互いに干渉して打ち消しあうようになっているが、振動を完全に打ち消すことが困難であるため、残存する振動によって遮音構造体の透過側の空気粒子が振動して音波を放射してしまう。特許文献1に図示された測定結果のグラフによると、この遮音構造体により十分に遮音効果が得られるのは、入射音波の周波数が63Hz以下の周波数領域だけである。
However, the sound insulation structure of Patent Document 1 applies pressure to the sheet roll having a large number of small air bubbles in which air is sealed so that there is almost no gap between the air bubbles between the holding frame and the press frame. Since it is configured to be provided and stored, the configuration is complicated, and the manufacturing cost is increased accordingly. In addition, since the holding frame and the presser frame are formed so as to deform the plurality of sheet rolls so as to apply pressures in which the bubbles are brought into close contact with each other, a highly rigid material (iron in Patent Document 1) Since a highly rigid material generally has a large weight, this sound insulation structure cannot achieve a significant weight reduction as compared with existing ones. Furthermore, in addition to scattering the incident sound wave inside each bubble body, this sound insulation structure is configured so that the vibrations of the bubble bodies generated by the incident sound wave interfere with each other and cancel each other. Since it is difficult to cancel completely, air particles on the transmission side of the sound insulation structure vibrate and emit sound waves due to the remaining vibration. According to the graph of the measurement result illustrated in Patent Document 1, it is only in the frequency region where the frequency of the incident sound wave is 63 Hz or less that the sound insulation structure can sufficiently obtain a sound insulation effect.

そこで、本願と同一出願人は、格段の軽量化と、入射音波の広範な周波数領域に対して優れた遮音効果を得ることができる遮音構造体(以下、先願の遮音構造体という)を案出し、特願2010−273130として既に出願している。この先願の遮音構造体は、可撓性を有する薄いフィルム状素材により密閉袋状に形成されて、内部に空気のような気体が所定の圧力で封入された遮音部材と、多数の開口部を有する格子状の壁面により所定の内部体積を有する偏平な箱状に形成されて、前記遮音部材が内包された保形枠体と、格子状の一対の枠部材の間に前記保形枠体を挟み込んで支持する支持枠体とを備えて構成されている。   Therefore, the same applicant as the present application has proposed a sound insulation structure (hereinafter referred to as the sound insulation structure of the prior application) that can achieve a significant weight reduction and an excellent sound insulation effect over a wide frequency range of incident sound waves. It has already been filed as Japanese Patent Application No. 2010-273130. The sound insulation structure of the prior application is formed in a sealed bag shape by a thin film material having flexibility, and includes a sound insulation member in which a gas such as air is sealed at a predetermined pressure, and a number of openings. The shape-retaining frame formed between the lattice-shaped wall surface and formed into a flat box shape having a predetermined internal volume and enclosing the sound insulating member, and the shape-retaining frame between the pair of lattice-shaped frame members. And a support frame body that is sandwiched and supported.

先願の遮音構造体は、可撓性を有する薄い密閉袋状の遮音部材が、内部に封入された気体の高い圧力により膨張して保形枠体に強く押し付けられることにより、保形枠体の各開口部に対向する部分がそれぞれ開口部の内部にまで入り込む状態に保形枠体に張り付き状態となる。その結果、遮音部材は、大きな張力が付与されて入射音波に対する剛性が格段に増大するから、剛性則に基づいて極めて振動し難い状態となり、入射音波が殆ど透過しない状態にまで透過損失が高まり、入射音波の広範な周波数領域に対して優れた遮音効果が得られる。しかも、先願の遮音構造体は、薄いフィルム状素材により密閉袋状となった遮音部材に空気などの気体を所定圧力で封入することで剛性の増大を図っているので、格段の軽量化を達成できる。   The sound insulation structure of the prior application is such that a thin, airtight bag-like sound insulation member having flexibility expands due to the high pressure of the gas enclosed therein and is strongly pressed against the shape retention frame. The portion facing each of the openings is in a state of sticking to the shape-retaining frame body in a state of entering the inside of the opening. As a result, the sound insulation member is given a large tension and the rigidity with respect to the incident sound wave is remarkably increased.Therefore, the sound insulation member becomes extremely difficult to vibrate based on the rigidity law, and the transmission loss increases to a state where the incident sound wave hardly transmits, An excellent sound insulation effect can be obtained over a wide frequency range of incident sound waves. In addition, the sound insulation structure of the prior application is designed to increase rigidity by enclosing a gas such as air at a predetermined pressure in a sound insulation member formed into a sealed bag shape with a thin film-like material. Can be achieved.

ところが、先願の遮音構造体は、上述したような極めて顕著な効果を奏するものであるが、実用化して量産するに際しては、解決すべき課題が残存している。すなわち、遮音構造体の主体が遮音部材と保形枠体との二部材により構成されており、遮音部材を保形枠体内に内包した状態で遮音部材内に気体を封入する構造とする場合には、遮音部材として、遮音構造体に必要な大きさに対応するものを単一設ける必要があり、ユニット化することができない。一方、予め気体を封入した遮音部材を保形枠体内に内包する構造とする場合には、複数に分割したユニット化が可能であるが、何ら保持されていない遮音部材に気体を所要圧力に封入するのが困難であるうえに、気体が封入済みの遮音部材を保形枠体により所要圧力を加えながら保形枠体の内部に保持するように組み立てるための煩雑な製造工程を要するので、製造コストが高くつく。しかも、この構造では、ユニット化するに際し、何ら保持されていない遮音部材に気体を所要圧力に封入する必要から、大きな形状にすることができないので、所要の大きさの遮音構造体を構成するに際して比較的多くのユニットを組み立てる必要があり、この点からもさらに製造コストが高くつく。   However, although the sound insulation structure of the prior application has the extremely remarkable effect as described above, there are still problems to be solved in commercialization and mass production. That is, when the main body of the sound insulation structure is composed of two members, the sound insulation member and the shape retaining frame, and the structure is such that gas is enclosed in the sound insulation member while the sound insulation member is enclosed in the shape retention frame. In this case, it is necessary to provide a single sound insulation member corresponding to the size required for the sound insulation structure and cannot be unitized. On the other hand, in the case of a structure in which a sound insulation member in which gas is sealed in advance is included in the shape-retaining frame, it can be divided into a plurality of units, but the gas is sealed at the required pressure in a sound insulation member that is not held at all. In addition to being difficult to manufacture, it requires a complicated manufacturing process for assembling the sound insulation member in which gas has been sealed so that it is held inside the shape retaining frame while applying the required pressure to the shape retaining frame. Cost is high. In addition, in this structure, since it is necessary to enclose gas to a required pressure in a sound insulation member that is not held at all when unitized, it is not possible to make a large shape, so when configuring a sound insulation structure of a required size It is necessary to assemble a relatively large number of units, which also increases the manufacturing cost.

本発明は、薄い袋状の遮音部材に気体を所定圧力で封入して格段の軽量化と高い遮音効果が得られる構造としながらも、簡単な工程を経て容易、且つ安価に製造できる遮音構造ユニット及びこれを用いた遮音構造体を提供することを目的とする。   The present invention provides a sound insulation structure unit that can be manufactured easily and inexpensively through a simple process, while having a structure in which gas is sealed in a thin bag-like sound insulation member at a predetermined pressure to obtain a significant weight reduction and a high sound insulation effect. Another object is to provide a sound insulation structure using the same.

上記目的を達成するために、請求項1に係る発明の遮音構造ユニットは、可撓性を有する薄いフイルム状素材により袋状に形成された密閉袋部と線条体により多数の開口部を有する形状に形成され前記密閉袋部の袋面に一体化された規制線条部とを有する遮音部材と、前記密閉袋部および前記規制線条部の各々の周端部を接合する形で前記遮音部材と一体化された保形枠体と前記密閉袋部に設けられた通気口が前記保形枠体の外部に連通するように設けられた気体供給バルブとを備え、前記線条体は前記密閉袋部に気体が封入されたとき前記密閉袋部の膨出を規制できる剛性を有する材料で形成され、前記気体供給バルブを介して前記密閉袋部内に供給された気体の圧力増により前記密閉袋部の剛性を高めることによって遮音することを特徴としている。 In order to achieve the above object, the sound insulation structure unit of the invention according to claim 1 has a large number of openings by a sealed bag portion formed in a bag shape by a thin film-like material having flexibility and a linear body. A sound insulation member having a regulation line portion formed in a shape and integrated with a bag surface of the airtight bag portion, and the sound insulation member in a form of joining each of the peripheral end portions of the airtight bag portion and the restriction wire portion. A shape-retaining frame integrated with a member, and a gas supply valve provided so that a vent provided in the sealed bag portion communicates with the outside of the shape-retaining frame. When the gas is sealed in the airtight bag portion, the airtight bag portion is formed of a material having a rigidity capable of restricting the expansion of the airtight bag portion, and the gas supplied to the airtight bag portion through the gas supply valve increases the pressure. Japanese to sound insulation by increasing the rigidity of the closed bag portion It is set to.

請求項2に係る発明の遮音構造ユニットは、請求項1の遮音構造ユニットにおいて、前記気体供給バルブは、気体の供給後に止栓が圧入される逆止バルブであることを特徴としている。   A sound insulation structure unit according to a second aspect of the invention is characterized in that, in the sound insulation structure unit of the first aspect, the gas supply valve is a check valve into which a stop plug is press-fitted after the gas is supplied.

請求項3に係る発明の遮音構造体は、本発明の遮音構造ユニットを所要個数備え、保持枠体を構成する一対の枠部材が、各々の複数の開口部に前記各遮音構造ユニットの前記保形枠体をそれぞれ両側から嵌まり込ませた配置で互いに合体されてなることを特徴としている。   According to a third aspect of the present invention, there is provided a sound insulation structure including a required number of the sound insulation structure units according to the present invention, and a pair of frame members constituting the holding frame are provided in the plurality of openings, respectively. It is characterized in that the frame bodies are combined with each other in an arrangement in which the frame bodies are fitted from both sides.

請求項1に係る遮音構造ユニットによれば、遮音部材は、これの密閉袋部が、規制線条部により空気のような気体の供給時における膨出を規制された状態で、規制線条部と共に各々の周縁部が保形枠体に一体化されて、一部品として取り扱いできるので、部品点数の低減と容易な工程とにより安価に量産できる。また、遮音部材における薄いフィルム状素材からなる密閉袋部は、内部に供給された気体の圧力が高くなるのに伴って外方に向け膨出していくのに対し、遮音部材における規制線条部は、周縁部が保形枠体に固定されているから、外方に膨れ出る密閉袋部の膨張力を受けて延ばされることがなく、密閉袋部の膨出を所定量に規制する。その結果、密閉袋部における規制線条部の各開口部にそれぞれ囲まれる各部分は、大きな張力が付与されて入射音波に対する剛性が格段に増大し、極めて振動しがたい状態に保持される。   According to the sound insulation structure unit according to claim 1, the sound insulation member includes a restriction line portion in a state where the sealing bag portion is restricted from being bulged by a restriction line portion when a gas such as air is supplied. At the same time, each peripheral portion is integrated with the shape-retaining frame and can be handled as one component, so that it can be mass-produced at low cost by reducing the number of components and an easy process. In addition, the sealed bag portion made of a thin film material in the sound insulation member bulges outward as the pressure of the gas supplied to the inside increases, whereas the regulation line portion in the sound insulation member Since the peripheral edge portion is fixed to the shape retaining frame body, it is not extended by receiving the expansion force of the sealed bag portion that bulges outward, and restricts the expansion of the sealed bag portion to a predetermined amount. As a result, each portion surrounded by each opening of the restriction line portion in the sealed bag portion is given a large tension, and the rigidity against the incident sound wave is remarkably increased, so that it is held in an extremely hard to vibrate state.

これにより、遮音部材における密閉袋部に気体により大きな張力が付与される結果、遮音部材は、入射音波に対する剛性が格段に増大するので、剛性則によって極めて振動し難い状態となる。これにより、この遮音構造ユニットは、入射音波が透過しない状態にまで透過損失が高まり、優れた遮音効果が得られる。また、遮音部材の密閉袋部は、規制線条部の多数の開口部で仕切られた小さな膜状体の集合と見做すことができ、この小さな膜状体の共振周波数は非常に高いものとなるから、騒音発生が問題となる広い周波数領域において剛性則に基づく高い遮音効果が得られる。更にまた、密閉袋部の膨出を規制線条部により確実に規制して、密閉袋部を、十分な張力が付与された状態として剛性を増大させることにより、振動の発生を確実に阻止して十分な遮音効果を得ることができる。 As a result, a large tension is applied to the sealed bag portion of the sound insulation member by the gas. As a result, the rigidity of the sound insulation member is greatly increased with respect to the incident sound wave, so that the sound insulation member is hardly vibrated by the rigidity law. Thereby, this sound insulation structure unit increases transmission loss to the state where an incident sound wave does not transmit, and an excellent sound insulation effect is obtained. In addition, the sealed bag portion of the sound insulation member can be regarded as a collection of small film-like bodies partitioned by a large number of openings in the regulation line, and the resonance frequency of this small film-like body is very high. Therefore, a high sound insulation effect based on the rigidity law can be obtained in a wide frequency range where noise generation is a problem. Furthermore, the occurrence of vibrations can be reliably prevented by increasing the rigidity of the sealed bag portion with sufficient tension by securely restricting the expansion of the sealed bag portion by the regulation line portion. And sufficient sound insulation effect can be obtained.

請求項2に係る遮音構造ユニットによれば、逆止バルブを通じて気体を所定の圧力に容易に封入することができるとともに、気体の封入後に逆止バルブに止栓を圧入して閉止することにより、密閉袋部の内部を長期間にわたり所定の圧力に維持することができる。
According to the sound insulation structure unit according to claim 2, the gas can be easily sealed to a predetermined pressure through the check valve, and after sealing the gas, the stopper is press-fitted into the check valve and closed. The inside of the sealed bag portion can be maintained at a predetermined pressure for a long time.

請求項3に係る遮音構造体によれば、単一部品として取り扱いできる所要個数の遮音構造ユニットの保形枠体を保持枠体の一対の枠部材の間に挟み込んで固定するだけの極めて簡単な工程を経て容易に製作することができ、安価に量産することが可能となる。   According to the sound insulation structure according to the third aspect, it is extremely simple that the shape retaining frame of the required number of sound insulation structure units that can be handled as a single part is sandwiched and fixed between the pair of frame members of the holding frame. It can be easily manufactured through the process and can be mass-produced at low cost.

本発明の第1実施形態に係る遮音構造ユニットを示す斜視図である。It is a perspective view showing the sound insulation structure unit concerning a 1st embodiment of the present invention. (a),(b)および(c)はそれぞれ図1のA−A線拡大断面図、B−B線拡大断面図およびC−C線拡大断面図である。(A), (b), and (c) are the AA expanded sectional view of FIG. 1, the BB expanded sectional view, and the CC sectional enlarged view, respectively. 図2の遮音構造ユニットの使用状態における縦断面図である。It is a longitudinal cross-sectional view in the use condition of the sound insulation structure unit of FIG. 本発明の第2実施形態に係る遮音構造ユニットを示す横断面図である。It is a cross-sectional view which shows the sound insulation structure unit which concerns on 2nd Embodiment of this invention. 同上の各遮音構造ユニットの内圧を変えたときの入射音波の周波数と挿入損失との関係を示す特性図である。It is a characteristic view which shows the relationship between the frequency of an incident sound wave when the internal pressure of each sound insulation structure unit same as the above is changed, and insertion loss. 図5の特性を入射音波の周波数と透過損失との関係に変換した特性図である。FIG. 6 is a characteristic diagram obtained by converting the characteristics of FIG. 5 into a relationship between the frequency of incident sound waves and transmission loss. (a),(b)は本発明の第1実施形態に係る遮音構造体を示す正面図および縦断面図である。(A), (b) is the front view and longitudinal cross-sectional view which show the sound-insulation structure based on 1st Embodiment of this invention. 一般的な遮音構造体における入射音波と透過損失との関係を示す特性図である。It is a characteristic view which shows the relationship between the incident sound wave and the transmission loss in a general sound insulation structure.

以下、本発明の好ましい実施形態について図面を参照しながら詳述する。図1は、本発明の第1実施形態に係る遮音構造ユニット1Aを示す斜視図である。この遮音構造ユニット1Aは、矩形の薄い袋状となった遮音部材2の周縁部が矩形状の保形枠体3の内周面部分に溶着されて、遮音部材2と保形枠体3とが一体化された構成を有している。この遮音構造ユニット1Aは、後述の遮音構造体を構成するための一構成要素としてり扱われるが、使用に際しては、保形枠体3の通気口4に嵌着された逆止バルブ(気体供給バルブ)7を介して遮音部材2の密閉袋部8内に空気を所定の圧力に予め封入される。これの詳細については後述する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a perspective view showing a sound insulation structure unit 1A according to the first embodiment of the present invention. In the sound insulation structure unit 1A, the peripheral portion of the sound insulation member 2 in the shape of a rectangular thin bag is welded to the inner peripheral surface portion of the rectangular shape retention frame 3, and the sound insulation member 2 and the shape retention frame 3 Has an integrated configuration. The sound insulation structure unit 1A is handled as one component for constituting a sound insulation structure described later. In use, the sound insulation structure unit 1A is a check valve (gas supply) fitted into the vent 4 of the shape retaining frame 3. Air is preliminarily sealed at a predetermined pressure in the sealed bag portion 8 of the sound insulating member 2 through a valve 7. Details of this will be described later.

図2(a),(b),(c)はそれぞれ図1のA−A線拡大断面図、B−B線拡大断面図およびC−C線拡大断面図である。これらの図において、遮音部材2は、可撓性を有する薄い樹脂製フィルム状素材により形成された偏平な矩形状の密閉袋部8と、図1に明示するように格子状を形作る小径の線状体が密閉袋部8の全面にわたり配置されて溶着により密閉袋部8に一体化された規制線条部9と、この規制線条部9よりも大径の線状体が互いに交差して縦横に各2本ずつ配置された状態で溶着により密閉袋部8に一体化された補強線条部10とを有した一体物である。したがって、規制線条部9および補強線条部10は、密閉袋部8に対しこれの全面にわたり溶着されて、位置ずれしない状態で一体化されている。   2A, 2B, and 2C are respectively an AA line enlarged cross-sectional view, a BB line enlarged cross-sectional view, and a CC line enlarged cross-sectional view of FIG. In these drawings, the sound insulating member 2 includes a flat rectangular sealing bag portion 8 formed of a thin resin film material having flexibility, and a small-diameter wire forming a lattice shape as clearly shown in FIG. A regulation line portion 9 which is disposed over the entire surface of the sealed bag portion 8 and integrated with the sealed bag portion 8 by welding, and a linear body having a larger diameter than the regulation line portion 9 intersect each other. It is an integrated body having a reinforcing linear portion 10 integrated with the hermetic bag portion 8 by welding in a state where two pieces are arranged vertically and horizontally. Therefore, the regulation line part 9 and the reinforcing line part 10 are welded over the entire surface of the sealing bag part 8 and are integrated without being displaced.

上述した構成を有する遮音部材2は、例えば、以下のような製作過程を経て容易に製造することができる。すなわち、規制線条部9および補強線条部10は、密閉袋部8の成形加工に先立って、密閉袋部8の加工素材の樹脂に比べて硬質の樹脂を用いた成形加工を行うことにより、所要の径の線状体が格子状を形作る形状に予め製作する。この規制線条部9および補強線条部10を密閉袋部8を成形加工するための成形金型の内部に所要の配置で挿入して、その成形金型に例えば軟質樹脂を注入して密閉袋部8のインサート成形を行うことにより、密閉袋部8、規制線条部9および補強線条部10が溶着により互いに一体化される。但し、この製造段階での遮音部材は、規制線条部9および補強線条部10を一体に有する密閉袋部8が矩形の単なるシート状である。   The sound insulating member 2 having the above-described configuration can be easily manufactured through the following manufacturing process, for example. That is, the regulation line part 9 and the reinforcing line part 10 are formed by using a hard resin prior to the forming process of the sealed bag part 8 using a resin harder than the resin of the processed material of the sealed bag part 8. The linear body having a required diameter is manufactured in advance so as to form a lattice shape. The regulation line portion 9 and the reinforcing line portion 10 are inserted into the molding die for molding the sealed bag portion 8 in a required arrangement, and sealed with, for example, a soft resin injected into the molding die. By performing the insert molding of the bag part 8, the sealed bag part 8, the regulation line part 9, and the reinforcing line part 10 are integrated with each other by welding. However, the sound insulation member at the manufacturing stage is a simple sheet shape in which the sealed bag portion 8 integrally including the regulation line portion 9 and the reinforcing line portion 10 is rectangular.

上述のシート状の遮音部材は、密閉袋部8を二つ折りにして折り重ねた状態、または同一の密閉袋部8を二枚重ねにした状態で、この遮音部材の矩形の周縁部を、保形枠体3を成形加工するための成形金型の内部に挿入して、その成形金型に溶融樹脂を注入して保形枠体3のインサート成形を行う。これにより、遮音部材2は、矩形の二枚重ねの周縁部が互いに溶着して密閉袋部8が形成され、且つ当該周縁部が保形枠体3に溶着により一体化される。尚、逆止バルブ7は、図2に示すように、遮音部材2の二枚重ねの周縁部の間に挟み込んだ状態で保形枠体3の成形金型内に挿入して保形枠体3のインサート成形を行うことにより、保形枠体3に一体化される。   The above-mentioned sheet-like sound insulation member is formed by folding the sealed bag portion 8 in a folded state, or in a state where the same sealed bag portion 8 is two-layered. The body 3 is inserted into a molding die for molding and molten resin is injected into the molding die to insert-mold the shape-retaining frame 3. As a result, the sound insulation member 2 has two rectangular peripheral edges welded together to form a sealed bag 8, and the peripheral edges are integrated with the shape retaining frame 3 by welding. As shown in FIG. 2, the check valve 7 is inserted into the molding die of the shape retaining frame 3 while being sandwiched between the peripheral edges of the two sound insulation members 2. It is integrated with the shape-retaining frame 3 by performing insert molding.

また、遮音部材2は、同一の成形樹脂による一回の成形加工により密閉袋部8、規制線
条部9および補強線条部10を一体成形することもできる。その場合、規制線条部9および補強線条部10は、後述するように密閉袋部8に空気が所定圧力に封入される際に密閉袋部8の膨出を十分に阻止できる剛性が得られる径を有する線条体とする必要があり、それに対応した形状の成形金型を用いて成形加工する。
Moreover, the sound insulation member 2 can also integrally mold the sealed bag portion 8, the restriction linear portion 9 and the reinforcing linear portion 10 by a single molding process using the same molding resin. In that case, the restrictive striated portion 9 and the reinforcing striated portion 10 have sufficient rigidity to sufficiently prevent the sealed bag portion 8 from bulging when air is sealed in the sealed bag portion 8 at a predetermined pressure, as will be described later. It is necessary to form a linear body having a certain diameter, and molding is performed using a molding die having a corresponding shape.

つぎに、この実施形態の遮音構造ユニット1Aの遮音作用の説明に先立って、この遮音構造ユニット1Aを案出するに至った着眼点について説明する。有限の大きさを有するパネル体における音の透過は、パネル体への入射音波によってパネル体自体が振動し、その振動によってパネル体の透過側の空気粒子が振動することにより、透過側に音波を放射することによって生じる。ここで、入射音の音響インテンシティをIi、透過音の音響インテンシティをIoとすると、音の透過率τは、τ=Io/Iiとなり、音の透過損失TLは、TL=10log(1/τ)で定義される。透過損失TLが大きいほど大きな遮音効果が得られることから、パネル体の遮音効果を増大させるには、入射音波に対してパネル体が振動し難い状態とすればよいことになり、この点に着目した。   Next, prior to the description of the sound-insulating action of the sound-insulating structure unit 1A of this embodiment, the point of focus that led to the creation of the sound-insulating structure unit 1A will be described. The transmission of sound through a panel body having a finite size is caused by vibration of the panel body itself by the incident sound wave on the panel body, and vibration of air particles on the transmission side of the panel body causes the sound wave to be transmitted to the transmission side. Caused by radiation. Here, when the acoustic intensity of the incident sound is Ii and the acoustic intensity of the transmitted sound is Io, the sound transmittance τ is τ = Io / Ii, and the sound transmission loss TL is TL = 10 log (1 / τ). Since the larger the transmission loss TL, the larger the sound insulation effect is obtained. In order to increase the sound insulation effect of the panel body, it is only necessary to make the panel body difficult to vibrate with respect to the incident sound wave. did.

一般に、有限の大きさを有するパネル体の透過損失は、前述の質量則の法則に依存し、図8に二点鎖線で示すように、パネル体の面密度(単位面積当たりの質量)が大きくなるのに伴ってパネル体が振動し難くなることから、図8の周波数領域Bに示すように、高い周波数ほど透過損失が大きくなる。有限の大きさを有するパネル体は必ずその一次共振周波数fr1を持ち、その一次共振周波数fr1で非常に振動し易くなって透過損失が小さくなる。その一次共振周波数fr1以下である図8の周波数領域Aでは、パネル体の振動し易さがパネル体自体の剛性に依存し、入射音波の周波数が小さくなるにしたがって透過損失が大きくなる。この現象は剛性則と称される法則である。したがって、重量の増大を招く面密度を大きくすることなしに、換言すれば、質量則に依存せずに大きな透過損失を得るには、剛性を高めて振動し難くすればよいことになり、この技術思想を具現化したのが第1実施形態の遮音構造ユニット1Aである。   In general, the transmission loss of a panel body having a finite size depends on the above-mentioned law of mass rule, and as shown by a two-dot chain line in FIG. 8, the surface density (mass per unit area) of the panel body is large. Accordingly, the panel body is less likely to vibrate. Therefore, as shown in the frequency region B of FIG. A panel body having a finite size always has its primary resonance frequency fr1, and it is very easy to vibrate at the primary resonance frequency fr1, thereby reducing transmission loss. In the frequency region A of FIG. 8 that is equal to or lower than the primary resonance frequency fr1, the ease of vibration of the panel body depends on the rigidity of the panel body itself, and the transmission loss increases as the frequency of the incident sound wave decreases. This phenomenon is a law called stiffness law. Therefore, in order to obtain a large transmission loss without increasing the surface density that causes an increase in weight, in other words, without depending on the law of mass, it is necessary to increase the rigidity and make it difficult to vibrate. The sound insulation structure unit 1A of the first embodiment embodies the technical idea.

つぎに、この第1実施形態の遮音構造ユニット1Aの遮音作用について詳述する。図2に示す未使用の遮音構造ユニット1Aは、使用に際して、供給ホース(図示せず)を逆止バルブ7に嵌入した状態でポンプ(図示せず)を駆動して、遮音部材2の密閉袋部8内に空気を封入する。この空気を封入する際には、密閉袋部8内の空気の圧力を圧力計で計測して、所定の圧力に調整する。この遮音構造ユニット1Aは、遮音部材2の密閉袋部8が規制線条部9により空気の供給時の膨出を規制された状態で保形枠体3に一体化され、且つ逆止バルブ7を備えている。そのため、この遮音構造ユニット1Aは、空気を所定の圧力に容易に封入することができるとともに、空気の封入後に逆止バルブ7に止栓(図示せず)を圧入することにより密閉袋部8の内部を長期間にわたり所定の空気圧に維持することができる。   Next, the sound insulation effect of the sound insulation structure unit 1A of the first embodiment will be described in detail. When the unused sound insulation structure unit 1A shown in FIG. 2 is used, a pump (not shown) is driven in a state in which a supply hose (not shown) is fitted in the check valve 7, and a sealed bag for the sound insulation member 2 is used. Air is sealed in the part 8. When the air is sealed, the pressure of the air in the sealed bag 8 is measured with a pressure gauge and adjusted to a predetermined pressure. This sound insulation structure unit 1A is integrated with the shape retaining frame 3 with the airtight bag portion 8 of the sound insulation member 2 restricted by the restriction wire portion 9 when air is supplied, and the check valve 7 It has. For this reason, the sound insulation structure unit 1A can easily enclose air at a predetermined pressure, and press-fit a stopper (not shown) into the check valve 7 after enclosing the air, so The inside can be maintained at a predetermined air pressure for a long time.

このとき、図3に示すように、遮音部材2における薄いフィルム状素材からなる密閉袋部8は、内部に供給された空気11の圧力が高くなるのに伴って外方に向け膨出していく。これに対し、遮音部材2における規制線条部9は、密閉袋部8よりも格段に高い剛性を有して、格子形状を形作る周端部が保形枠体3に固定されているから、外方に膨れ出る密閉袋部8の膨張力を受けて延ばされることがなく、密閉袋部8の膨出を所定量に規制する。そのため、密閉袋部8は、規制線条部9における線条体により格子形状を形作る多数の開口部に対向する部分がそれぞれ開口部の内部に入り込む変形状態で規制線条部9に規制される。また、密閉袋部8は、空気11による最も大きな圧力を受ける中央部分が外方へ膨れ出ようとするのが補強線条部10によって確実に阻止されている。   At this time, as shown in FIG. 3, the sealed bag portion 8 made of a thin film material in the sound insulating member 2 bulges outward as the pressure of the air 11 supplied to the inside increases. . On the other hand, the regulation line portion 9 in the sound insulation member 2 has a remarkably higher rigidity than the sealed bag portion 8, and the peripheral end portion forming the lattice shape is fixed to the shape retaining frame 3. The expansion of the airtight bag portion 8 that bulges outward is not extended and the expansion of the airtight bag portion 8 is restricted to a predetermined amount. Therefore, the airtight bag part 8 is regulated by the regulation line part 9 in a deformed state in which portions facing a large number of openings forming a lattice shape by the line bodies in the regulation line part 9 enter the inside of the opening part. . Further, the sealing bag portion 8 is reliably prevented by the reinforcing linear portion 10 from bulging outward at the central portion that receives the greatest pressure by the air 11.

このようにして、遮音部材2における密閉袋部8に大きな張力が付与される結果、遮音部材2は、図3に矢印で示す入射音波に対する剛性が格段に増大するので、剛性則によっ
て極めて振動し難い状態となる。これにより、この遮音構造ユニット1Aは、入射音波が透過しない状態にまで透過損失が高まり、優れた遮音効果が得られる。また、遮音部材2の密閉袋部8は、格子状を形作る多数の開口部で仕切られた小さな矩形状の膜状体の集合と見做すことができ、この小さな膜状体の共振周波数は非常に高いものとなるから、騒音発生が問題となる広い周波数領域において剛性則に基づく高い遮音効果が得られる。また、保形枠体3の共振周波数に相当する音波が入射した場合には、その共振周波数による透過損失が若干落ち込むが、保形枠体3による振動減衰も大きいため、透過損失の大きな落ち込みが生じない。
In this way, as a result of applying a large tension to the sealed bag portion 8 in the sound insulation member 2, the sound insulation member 2 is greatly increased in rigidity against the incident sound wave indicated by an arrow in FIG. It becomes difficult. Thereby, this sound insulation structure unit 1A increases the transmission loss to the state where the incident sound wave does not transmit, and an excellent sound insulation effect is obtained. Further, the sealed bag portion 8 of the sound insulating member 2 can be regarded as a collection of small rectangular film-like bodies partitioned by a large number of openings forming a lattice shape, and the resonance frequency of this small film-like body is Since it becomes very high, a high sound insulation effect based on the rigidity law can be obtained in a wide frequency range where noise generation is a problem. Further, when a sound wave corresponding to the resonance frequency of the shape retaining frame 3 is incident, the transmission loss due to the resonance frequency is slightly reduced. However, since the vibration attenuation due to the shape retaining frame 3 is also large, the transmission loss is greatly decreased. Does not occur.

図4は本発明の第2実施形態に係る遮音構造ユニット1Bを示す横断面図である。この遮音構造ユニット1Bが第1実施形態のものに対する主な相違点は、遮音部材12の規制線条部19が、針金のような金属製の線状体により格子状に形成されていることである。この規制線条部19を、密閉袋部18を成形加工するための成形金型内に挿入した状態で、インサート成形を行って矩形シート状のユニット素体を製作する。このユニット素体を、密閉袋部18となる部分が互いに内側となる配置で2枚重ねとし、その周縁部を溶着することにより遮音部材12が形成されている。この遮音部材12は、これの周縁部が保形枠体13の一対の枠部材13A,13Bの間に挟み込まれた状態で両枠部材13A,13Bが互いに接合されることにより、保形枠体13に一体化されている。この遮音構造ユニット1Bでは、高い剛性を有する金属製の規制線条部19を備えていることから、第1実施形態の補強線条部10が割愛できるとともに、規制線条部19を、大きな開口面積の開口部を有する格子形状とすることができる。この遮音構造ユニット1Bにおいても、第1実施形態のものとほぼ同等の遮音効果を得ることができる。   FIG. 4 is a cross-sectional view showing a sound insulation structure unit 1B according to the second embodiment of the present invention. The main difference between the sound insulation structure unit 1B and that of the first embodiment is that the regulation line portions 19 of the sound insulation member 12 are formed in a lattice shape by a metal linear body such as a wire. is there. In a state where the regulation line portion 19 is inserted into a molding die for forming the hermetic bag portion 18, insert molding is performed to manufacture a rectangular sheet-like unit body. The unit body is made up of two sheets so that the portions to be the sealed bag portions 18 are inside each other, and the sound insulation member 12 is formed by welding the peripheral portions thereof. The sound insulating member 12 has a shape retaining frame body that is obtained by joining the frame members 13A and 13B to each other in a state in which the peripheral portion thereof is sandwiched between the pair of frame members 13A and 13B of the shape retaining frame body 13. 13 is integrated. Since the sound insulation structure unit 1B includes the metal restrictive line portion 19 having high rigidity, the reinforcing line portion 10 according to the first embodiment can be omitted, and the restrictive line portion 19 has a large opening. A lattice shape having an opening having an area can be used. Also in this sound insulation structure unit 1B, a sound insulation effect substantially equivalent to that of the first embodiment can be obtained.

第1実施形態の遮音構造ユニット1Aの遮音効果を確認するための実験を行い、図5に示すような測定結果を得た。その実験は、実験用の遮音構造ユニット1Aとして、遮音部材1の密閉袋部8内に空気を互いに異なる圧力、具体的には250Pa、100Pa、25Paの圧力でそれぞれ封入した3種類のものを予め用意し、これらの遮音構造ユニット1Aを、同一径の二つのパイプの間に順次挟み込むように配置した。各々の遮音構造ユニット1Aを二つのパイプの間に挟み込む毎に、音源から一定の出力で発生音を一方のパイプに入射し、他方のパイプから出力する放射音を測定した。図5は、実験の測定結果に基づいて、遮音構造ユニット1Aを配置しないときの放射音と、順次変更して配置した互いに異なる空気圧の各遮音構造ユニット1Aの各々の放射音との音圧スペクトルの差を挿入損失として算出し、入射音波の周波数に対する挿入損失の関係を表したものである。図5のH、M、Lの各特性曲線は、空気圧がそれぞれ250Pa、100Pa、25Paに設定された各遮音構造ユニット1Aに対する測定結果である。この挿入損失は、遮音構造ユニット1Aを配置しない場合に対して遮音構造ユニット1Aを配置することで得られる遮音量に相当するから、遮音部材2の空気圧が高くなるのに伴って密閉袋部8の剛性が高くなり、遮音量が増大することが判明した。   An experiment for confirming the sound insulation effect of the sound insulation structure unit 1A of the first embodiment was performed, and measurement results as shown in FIG. 5 were obtained. In the experiment, as the sound insulation structure unit 1A for the experiment, three types in which air is sealed in the sealed bag portion 8 of the sound insulation member 1 at different pressures, specifically 250 Pa, 100 Pa, and 25 Pa, respectively. These sound insulation structure units 1A were prepared and arranged so as to be sandwiched sequentially between two pipes having the same diameter. Each time each sound insulation structure unit 1A was sandwiched between two pipes, the generated sound was incident on one pipe with a constant output from the sound source, and the radiated sound output from the other pipe was measured. FIG. 5 shows the sound pressure spectrum of the radiated sound when the sound insulation structure unit 1A is not arranged and the radiated sound of the sound insulation structure units 1A having different air pressures that are sequentially changed based on the measurement result of the experiment. This difference is calculated as the insertion loss, and the relationship between the insertion loss and the frequency of the incident sound wave is expressed. Each characteristic curve of H, M, and L in FIG. 5 is a measurement result for each sound insulation structure unit 1A in which the air pressure is set to 250 Pa, 100 Pa, and 25 Pa, respectively. This insertion loss corresponds to the sound insulation volume obtained by disposing the sound insulation structure unit 1A with respect to the case where the sound insulation structure unit 1A is not disposed. Therefore, as the air pressure of the sound insulation member 2 increases, the sealed bag portion 8 It has been found that the rigidity of the sound increases and the sound insulation volume increases.

図6は、図5の入射音波の周波数と挿入損失の関係を入射音波の周波数と透過損失との関係に変換して遮音部材2の空気圧による遮音効果を定性的に表したものである。図6のh、m、lの各特性曲線は、空気圧がそれぞれ250Pa、100Pa、25Paに設定された各遮音部材2に対する測定結果であり、zの特性曲線は空気圧が0に設定された遮音部材2に対する測定結果である。図6から明らかなように、遮音部材2の空気圧が高く設定されるのに伴って遮音部材2の密閉袋部8の剛性が高くなっていき、それに対応して遮音効果が確実に増大することが確認できた。特に、この遮音構造ユニット1Aは、既存の遮音構造体において大きな遮音効果が得られ難い低周波領域での入射音波に対して大きな遮音効果が得られることも確認できた。この遮音構造ユニット1Aでは、遮音部材2を任意の空気圧に設定することにより、図6に示すような所望の周波数特性を持つ透過損失が得られるように設定することができる。尚、第2実施形態の遮音構造ユニット1Bを用
いた実験においても図5および図6に示す特性曲線とほぼ同等の遮音効果を得ることができた。
FIG. 6 qualitatively represents the sound insulation effect due to the air pressure of the sound insulation member 2 by converting the relationship between the frequency of the incident sound wave and the insertion loss in FIG. 5 into the relationship between the frequency of the incident sound wave and the transmission loss. The characteristic curves h, m, and l in FIG. 6 are the measurement results for the respective sound insulation members 2 in which the air pressure is set to 250 Pa, 100 Pa, and 25 Pa, respectively, and the z characteristic curve is the sound insulation member in which the air pressure is set to 0. 2 is a measurement result for 2. As is apparent from FIG. 6, the rigidity of the sealed bag portion 8 of the sound insulation member 2 increases as the air pressure of the sound insulation member 2 is set higher, and the sound insulation effect is reliably increased correspondingly. Was confirmed. In particular, it was also confirmed that the sound insulation structure unit 1A can obtain a large sound insulation effect against incident sound waves in a low frequency region where it is difficult to obtain a large sound insulation effect in the existing sound insulation structure. In this sound insulation structure unit 1A, by setting the sound insulation member 2 to an arbitrary air pressure, it is possible to set so as to obtain a transmission loss having a desired frequency characteristic as shown in FIG. In the experiment using the sound insulation structure unit 1B of the second embodiment, a sound insulation effect almost equivalent to the characteristic curves shown in FIGS. 5 and 6 could be obtained.

上述した実施形態の遮音構造ユニット1A,1Bは、密閉袋部8,18を有する遮音部材2,12が保形枠体3,13内に嵌め込む配置で一体化されただけのものであるから、上述した特許文献1の遮音構造体のように、空気を封入した気泡体が多数形成された可撓性の遮音シートを渦巻き状に巻回して円柱状としたシートロールを保持枠と押え枠とで挟み込んで圧縮力を付与する構造に比較して、構成が格段に簡素化されているのに伴って安価なものになっている。また、この遮音構造ユニット1A,1Bは、先願の遮音構造体のように別体の遮音部材を保形枠体に内包した状態を支持部材で挟み込むことにより固定する構造に比較して、遮音部材2,12と保形枠体3,13とが一体化された単一部品として取り扱いできることから、後述の遮音構造体を、部品点数の低減と製造工程の簡略化とに伴って安価な製造コストで量産化することが可能となる。尚、遮音部材2の規制線条部9,19は、実施形態で例示した格子形状に限らず、三角形や六角形が連続した形状としてもよく、要は多数の開口部を有する形状であればよい。この遮音構造ユニット1A,1Bは、規制線条部9,19における開口部の開口面積や全体の大きさを種々に変えることにより、効果的に遮音できる周波数をチューニングすることができる。   Since the sound insulation structure units 1A and 1B of the above-described embodiment are simply integrated by disposing the sound insulation members 2 and 12 having the sealed bag portions 8 and 18 into the shape retaining frames 3 and 13, respectively. As in the sound insulation structure of Patent Document 1 described above, a sheet roll made of a cylindrical shape by spirally winding a flexible sound insulation sheet in which a large number of bubbles encapsulating air are formed is used as a holding frame and a press frame. Compared to a structure in which a compression force is applied by sandwiching between the two, the structure is greatly simplified and the cost is low. In addition, the sound insulation structure units 1A and 1B have a sound insulation structure compared to a structure in which a separate sound insulation member enclosed in a shape-retaining frame body is sandwiched between support members like the sound insulation structure body of the prior application. Since the members 2 and 12 and the shape retaining frames 3 and 13 can be handled as an integrated single part, a sound insulation structure to be described later can be manufactured at a low cost by reducing the number of parts and simplifying the manufacturing process. Mass production is possible at a low cost. In addition, the regulation linear strips 9 and 19 of the sound insulating member 2 are not limited to the lattice shape exemplified in the embodiment, but may be a shape in which a triangle or a hexagon is continuous. Good. The sound insulation structure units 1A and 1B can tune the frequency at which sound can be effectively insulated by variously changing the opening area and the overall size of the openings in the regulation line portions 9 and 19.

図7(a),(b)は、遮音構造ユニット1Aを複数用いて構成された本発明の1実施形態の遮音構造体20を示す正面図および縦断面図である。この遮音構造体20は、空気が所定の圧力に封入された複数の遮音構造ユニット1Aが、保持枠体21を構成する一対の保持枠21a,21bの間に挟み込まれて保持された状態で、一対の保持枠21a,21bが合体された構造になっている。一対の保持枠21a,21bは、各々の対向内面の外周縁から一体に突設された連結突部21c,21dが互いに当接して連結具22で連結されているとともに、各枠部材21a,21bの格子状を形作る桟部21e,21fも互いに当接している。したがって、この保持枠体21は、桟部21e,21fにより正方形に区画された複数の開口部が形成されており、その開口部にそれぞれ、空気が所定圧力に封入された複数の遮音構造ユニット1Aが嵌め込まれた状態で固定されている。なお、前記開口部は正方形に限らず遮音構造ユニットの形状に合わせることはいうまでもない。各遮音構造ユニット1Aは、保持枠体21の両枠部材21a,21bの連結突部21c,21dの内面および各桟部21e,21fの先端面近傍の両側部からそれぞれ一体に突設された固定突部21g,21hにより、自体の外周縁部が両側から挟み込まれる状態で固定化されている。   FIGS. 7A and 7B are a front view and a longitudinal sectional view showing a sound insulation structure 20 according to an embodiment of the present invention configured by using a plurality of sound insulation structure units 1A. The sound insulation structure 20 is a state in which a plurality of sound insulation structure units 1A in which air is sealed at a predetermined pressure are sandwiched and held between a pair of holding frames 21a and 21b constituting the holding frame 21. The pair of holding frames 21a and 21b are combined. The pair of holding frames 21a and 21b are connected to each other by connecting tools 22 with connecting projections 21c and 21d protruding integrally from the outer peripheral edge of each opposing inner surface, and each frame member 21a and 21b. The crosspieces 21e and 21f forming the lattice shape are also in contact with each other. Accordingly, the holding frame body 21 is formed with a plurality of openings partitioned into squares by the crosspieces 21e and 21f, and a plurality of sound insulation structure units 1A in which air is sealed at a predetermined pressure in the openings. Is fixed in a state of being fitted. Needless to say, the opening is not limited to a square, but is matched to the shape of the sound insulation structure unit. Each sound insulation structure unit 1A is fixed in a projecting manner integrally from the inner surfaces of the connecting projections 21c and 21d of both frame members 21a and 21b of the holding frame 21 and from both sides in the vicinity of the front end surfaces of the crosspieces 21e and 21f. By the protrusions 21g and 21h, the outer peripheral edge of itself is fixed in a state of being sandwiched from both sides.

この遮音構造体20は、単一部品として取り扱いできる所要個数の遮音構造ユニット1Aを保持枠体21の一対の枠部材21a,21bの間に挟み込んで固定するだけの極めて簡単な工程を経て容易に製作することができるから、安価に量産化することが可能である。なお、第1実施形態の遮音構造体20は、保持枠体21の一対の枠部材21a,21bを合体する構造になっているが、この構造に代えて、複数の保持孔を有する一体構成の保持枠体を設け、この保持枠体の各保持孔にそれぞれ遮音構造ユニット1Aを嵌め込んで固定する構成とすることもできる。   The sound insulation structure 20 can be easily obtained through an extremely simple process in which a required number of sound insulation structure units 1A that can be handled as a single part are sandwiched and fixed between the pair of frame members 21a and 21b of the holding frame 21. Since it can be manufactured, it can be mass-produced at low cost. In addition, although the sound insulation structure 20 of 1st Embodiment becomes a structure which unites a pair of frame members 21a and 21b of the holding frame 21, it replaces with this structure and has the integral structure which has several holding holes. A holding frame body may be provided, and the sound insulation structure unit 1A may be fitted and fixed to each holding hole of the holding frame body.

なお、本発明は、以上の実施形態で示した内容に限定されるものでなく、本発明の要旨を逸脱しない範囲内で、種々の追加、変更または削除が可能であり、そのような形態も本発明の範囲内に含まれる。   The present invention is not limited to the contents shown in the above embodiment, and various additions, changes, or deletions can be made without departing from the gist of the present invention. It is included within the scope of the present invention.

本発明の遮音構造ユニットを用いて構成する遮音構造体は、部屋の仕切り壁や窓口の遮蔽体として好適に用いられる他に、軽量で高い遮音効果が要求される航空機や車両の胴体部分にも好適に採用することができ、さらに、住宅の壁や天井などの構成にも用いること
ができる。
The sound insulation structure constituted by using the sound insulation structure unit of the present invention is suitably used as a partition wall of a room or a shield of a window, and also for a fuselage part of an aircraft or a vehicle that is required to be lightweight and have a high sound insulation effect. It can be used preferably, and can also be used for the construction of a wall or ceiling of a house.

1A,1B 遮音構造ユニット
2,12 遮音部材
3,13 保形枠体
7 逆止バルブ(気体供給バルブ)
8,18 密閉袋部
9,19 規制線条部
11 空気(気体)
20 遮音構造体
21a,21b 枠部材
1A, 1B Sound insulation structure unit 2, 12 Sound insulation member 3, 13 Shape retaining frame 7 Check valve (gas supply valve)
8, 18 Sealed bag part 9, 19 Regulated line part 11 Air (gas)
20 Sound insulation structure 21a, 21b Frame member

Claims (3)

可撓性を有する薄いフイルム状素材により袋状に形成された密閉袋部と線条体により多数の開口部を有する形状に形成され前記密閉袋部の袋面に一体化された規制線条部とを有する遮音部材と、前記密閉袋部および前記規制線条部の各々の周端部を接合する形で前記遮音部材と一体化された保形枠体と前記密閉袋部に設けられた通気口が前記保形枠体の外部に連通するように設けられた気体供給バルブとを備え、前記線条体は前記密閉袋部に気体が封入されたとき前記密閉袋部の膨出を規制できる剛性を有する材料で形成され、前記気体供給バルブを介して前記密閉袋部内に供給された気体の圧力増により前記密閉袋部の剛性を高めることによって遮音することを特徴とする遮音構造ユニット。 A regulation line portion formed into a shape having a large number of openings by a sealed bag portion formed by a thin film-like material having flexibility and a linear body and integrated with the bag surface of the sealed bag portion. a sound insulating member having bets, and the shape retaining frame body integrated with the sound insulating member in the form of joining the peripheral edge portion of each of the closed bag portion and the restricting linear portions, provided on the sealing bag portion A gas supply valve provided to communicate with the outside of the shape-retaining frame body, and the linear body regulates expansion of the sealed bag portion when gas is sealed in the sealed bag portion A sound insulation structure unit that is made of a material having a rigidity that can be produced and that performs sound insulation by increasing the rigidity of the airtight bag portion by increasing the pressure of the gas supplied into the airtight bag portion via the gas supply valve . 記気体供給バルブは、気体の供給後に止栓が圧入される逆止バルブである請求項1に記載の遮音構造ユニット。 Before SL gas supply valve, sound insulation structure unit according to claim 1 stopcock after the supply of gas is check valve to be pressed. 請求項1または2に記載の遮音構造ユニットを所要個数備え、保持枠体を構成する一対の枠部材が、各々の複数の開口部に前記各遮音構造ユニットの前記保形枠体をそれぞれ両側から嵌まり込ませた配置で互いに合体されてなることを特徴とする遮音構造体。   A required number of the sound insulation structure units according to claim 1 or 2 are provided, and a pair of frame members constituting the holding frame body has the shape retaining frame bodies of the respective sound insulation structure units in each of a plurality of openings from both sides. A sound insulation structure characterized by being combined with each other in a fitted arrangement.
JP2012063129A 2012-03-21 2012-03-21 Sound insulation structure unit and sound insulation structure using the same Expired - Fee Related JP6010747B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012063129A JP6010747B2 (en) 2012-03-21 2012-03-21 Sound insulation structure unit and sound insulation structure using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012063129A JP6010747B2 (en) 2012-03-21 2012-03-21 Sound insulation structure unit and sound insulation structure using the same

Publications (2)

Publication Number Publication Date
JP2013195729A JP2013195729A (en) 2013-09-30
JP6010747B2 true JP6010747B2 (en) 2016-10-19

Family

ID=49394745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012063129A Expired - Fee Related JP6010747B2 (en) 2012-03-21 2012-03-21 Sound insulation structure unit and sound insulation structure using the same

Country Status (1)

Country Link
JP (1) JP6010747B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201400179D0 (en) 2014-01-06 2014-02-19 Mbda Uk Ltd Structure for controlling the aero-acoustic environment in an aircraft weapons bay
JP6326882B2 (en) * 2014-03-17 2018-05-23 コニカミノルタ株式会社 Sound insulation structure
JP6398394B2 (en) * 2014-07-07 2018-10-03 コニカミノルタ株式会社 Sound insulation structure
JP6470660B2 (en) * 2015-08-21 2019-02-13 鹿島建設株式会社 Soundproof structure, tunnel soundproof structure
JP6607499B2 (en) * 2016-06-03 2019-11-20 東急建設株式会社 Sound insulation structure
JP6603689B2 (en) * 2017-06-30 2019-11-06 東急建設株式会社 Sound insulation structure
JP6865442B2 (en) * 2019-03-14 2021-04-28 本田技研工業株式会社 Sound insulation structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4935441B1 (en) * 1970-03-10 1974-09-21
JPS6036408U (en) * 1983-08-18 1985-03-13 東洋建設株式会社 soundproof pine
JP2003041681A (en) * 2001-08-02 2003-02-13 Yamaha Corp Sound insulation material and method for constructing soundproof chamber using the same
JP4227618B2 (en) * 2003-05-29 2009-02-18 リオン株式会社 Sound insulation structure and structure using the same

Also Published As

Publication number Publication date
JP2013195729A (en) 2013-09-30

Similar Documents

Publication Publication Date Title
JP6010747B2 (en) Sound insulation structure unit and sound insulation structure using the same
JP5209037B2 (en) Sound insulation structure
CN108731838B (en) Acoustic material structure and assembling method of acoustic material structure and acoustic radiation structure
JP5404789B2 (en) Noise reduced device and method for noise reduction
US8439158B2 (en) Acoustic resonator and sound chamber
US11962969B2 (en) Acoustic device and electronic apparatus
JP7278048B2 (en) Composite Acoustic Panel Assembly
EP2157567A2 (en) Sound absorbing structure using closed-cell porous medium
TWI559780B (en) Improved speaker enclosure
CN103249941B (en) For silencer and the heating equipment with silencer of fluid circuit
US20090223738A1 (en) Sound absorbing structure and vehicle component having sound absorption property
WO2008010554A1 (en) Solid-borne sound reduction structure
WO2007029697A1 (en) Double wall structure
WO2019227924A1 (en) Miniature loudspeaker module
US20160210955A1 (en) Acoustic panel
CN113096626A (en) Silent box
WO2020024522A1 (en) Sound generation apparatus and portable terminal
JP2005099789A (en) Sound absorbing structure and method of producing the same
Bécot et al. Noise control strategies using composite porous materials–Simulations and experimental validations on plate/cavity systems
US9674594B2 (en) Speaker
JP2007193269A (en) Outer case
JP2008261310A (en) Intake noise muffler device
CN107682778B (en) Electroacoustic device and mobile terminal
JP2009019413A (en) Acoustic panel
CN220505265U (en) Noise reduction structure, compressor and refrigeration equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160822

R150 Certificate of patent or registration of utility model

Ref document number: 6010747

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees