JP6008272B2 - Method for producing metal nano-x raster-supported carbon porous body - Google Patents

Method for producing metal nano-x raster-supported carbon porous body Download PDF

Info

Publication number
JP6008272B2
JP6008272B2 JP2012099104A JP2012099104A JP6008272B2 JP 6008272 B2 JP6008272 B2 JP 6008272B2 JP 2012099104 A JP2012099104 A JP 2012099104A JP 2012099104 A JP2012099104 A JP 2012099104A JP 6008272 B2 JP6008272 B2 JP 6008272B2
Authority
JP
Japan
Prior art keywords
metal
carbon porous
porous body
raster
supported carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012099104A
Other languages
Japanese (ja)
Other versions
JP2013226490A (en
Inventor
永宏 齋藤
永宏 齋藤
信行 是津
信行 是津
智永 上野
智永 上野
高井 治
治 高井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Tokai National Higher Education and Research System NUC
Original Assignee
Nagoya University NUC
Tokai National Higher Education and Research System NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, Tokai National Higher Education and Research System NUC filed Critical Nagoya University NUC
Priority to JP2012099104A priority Critical patent/JP6008272B2/en
Publication of JP2013226490A publication Critical patent/JP2013226490A/en
Application granted granted Critical
Publication of JP6008272B2 publication Critical patent/JP6008272B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、触媒性能が高い金属ナノクスラスター担持カーボン多孔体の製造方法に関する。 The present invention relates to a method for producing a metal nanocus raster-supported carbon porous body having high catalytic performance.

近年、電気自動車やハイブリット自動車等に使用可能な燃料電池、二次電池の研究開発が行われている。燃料電池、二次電池の電極材料として、種々の多孔体が用いられている(特許文献1参照)。   In recent years, research and development have been conducted on fuel cells and secondary batteries that can be used in electric vehicles, hybrid vehicles, and the like. Various porous bodies are used as electrode materials for fuel cells and secondary batteries (see Patent Document 1).

特開2004−362859号公報JP 2004-362859 A

電極材料として、カーボン多孔体に触媒を担持したもの(以下、触媒担持カーボン多孔体とする)を用いることが考えられる。従来の触媒担持カーボン多孔体は、以下の(i)又は(ii)の方法で製造されていた。   As the electrode material, it is conceivable to use a catalyst in which a catalyst is supported on a carbon porous body (hereinafter referred to as catalyst-supporting carbon porous body). The conventional catalyst-supporting carbon porous body has been produced by the following method (i) or (ii).

(i)カーボン多孔体と、触媒粒子とを、それぞれ作成しておき、それらを混合する製造方法。
(ii) カーボン多孔体を作成しておき、その中で触媒粒子を生成する製造方法。
(i) A production method in which a carbon porous body and catalyst particles are respectively prepared and mixed.
(ii) A production method in which a carbon porous body is prepared and catalyst particles are generated therein.

上記(i)、(ii)の製造方法で製造した触媒担持カーボン多孔体では、触媒粒子が粗大になってしまい、触媒としての性能が充分ではなく、電極材料として使用した場合に充分な特性を発現できなかった。また、上記(i)、(ii)の方法で作成した触媒担持カーボン多孔体は触媒粒子の作製において保護剤を用いるために、カーボンと触媒との密着性が低く、使用環境下において粒子が凝集し、粗大化してしまい、触媒機能が低下する問題があった。
本発明は以上の点に鑑みなされたものであり、触媒性能が高い金属ナノクスラスター担持カーボン多孔体製造方法を提供することを目的とする。
In the catalyst-carrying carbon porous body produced by the production methods (i) and (ii) above, the catalyst particles become coarse, the performance as a catalyst is not sufficient, and sufficient characteristics are obtained when used as an electrode material. It could not be expressed. In addition, the catalyst-carrying carbon porous material prepared by the above methods (i) and (ii) uses a protective agent in the preparation of the catalyst particles, so the adhesion between the carbon and the catalyst is low, and the particles aggregate in the environment of use. However, there is a problem that the catalyst function is lowered due to coarsening.
The present invention has been made in view of the above, and an object thereof is to provide a method of manufacturing a catalytic performance is high metal nano box raster carrying carbon porous body.

本発明の金属ナノクラスター担持カーボン多孔体は、カーボン多孔体と、前記カーボン多孔体に担持された、有機物を含む保護材によって被覆されていない平均粒径2nm以下の金属ナノクラスターとを有することを特徴とする。   The metal nanocluster-carrying carbon porous body of the present invention has a carbon porous body and metal nanoclusters having an average particle diameter of 2 nm or less that are supported by the carbon porous body and are not covered with a protective material containing an organic substance. Features.

本発明の金属ナノクラスター担持カーボン多孔体は、担持する金属ナノクラスターの粒径が2nm以下と小さい。金属は2nm以下になると量子効果によってエネルギー準位の縮退がとけて、バンドギャップ構造が出現するが、このバンドギャップ構造によって、金属の導電性の性質から、半導体、絶縁体の性質に変化する。このような電子構造の大きな変化によって、粒径サイズを2nm以下のナノクラスターにすることによって、新たな触媒性の発現もしくは、触媒性能の向上が期待される。ここでは、2nm以下の金属の導電性の性質から、半導体、絶縁体の性質に変化した金属ナノ粒子を「金属ナノクラスター」と定義する。
ここで、金属ナノクラスターは互いに凝集して粗大化するため、一般的には有機物を含む保護材を加えることによって凝集を防ぐ必要がある。しかし、この保護材は触媒活性の発現においては、大きな性能の低下をもたらす可能性があるが、本願の発明では、有機物を含む保護材によって被覆されていない平均粒径2nm以下の金属ナノクラスターを利用するため、触媒機能の向上が期待される。
In the metal nanocluster-carrying carbon porous body of the present invention, the particle size of the supported metal nanocluster is as small as 2 nm or less. When the metal becomes 2 nm or less, the energy level is degenerated due to the quantum effect, and a bandgap structure appears. This bandgap structure changes from the conductive property of the metal to the properties of a semiconductor and an insulator. By making such a large change in the electronic structure a nanocluster having a particle size of 2 nm or less, it is expected that new catalytic properties will be developed or catalytic performance will be improved. Here, a metal nanoparticle that has changed from a conductive property of a metal of 2 nm or less to a property of a semiconductor or an insulator is defined as a “metal nanocluster”.
Here, since metal nanoclusters aggregate and coarsen, it is generally necessary to prevent aggregation by adding a protective material containing an organic substance. However, although this protective material may bring about a significant decrease in performance in the expression of catalytic activity, in the invention of the present application, metal nanoclusters having an average particle size of 2 nm or less that are not covered with a protective material containing an organic substance. Improvement in catalytic function is expected for use.

また、「有機物を含む保護材によって被覆されていない」とは、「平均粒径2nm以下の金属ナノクラスターが触媒機能の発揮できる程度に保護材によって被覆されていない」ことを意味し、「平均粒径2nm以下の金属ナノクラスターが、一切の保護材によって被覆されていない」ことを意味するものではない。   Moreover, “not covered with a protective material containing an organic substance” means “a metal nanocluster having an average particle size of 2 nm or less is not covered with a protective material to such an extent that a catalytic function can be exerted”. This does not mean that metal nanoclusters having a particle size of 2 nm or less are not covered with any protective material.

前記金属ナノクラスターは、例えば、1種のみの金属から成っていてもよいし、2種以上の金属の合金であってもよい。合金の場合、金属ナノクラスター担持カーボン多孔体の触媒性能が一層高い。また、前記金属ナノクラスターは、例えば、Au、Ag、Pt、又はそれらの合金とすることができる。この場合、金属ナノクラスター担持カーボン多孔体の触媒性能が一層高い。   The metal nanocluster may be made of, for example, only one kind of metal or an alloy of two or more kinds of metals. In the case of an alloy, the catalytic performance of the metal nanocluster-supported carbon porous body is higher. Moreover, the said metal nanocluster can be made into Au, Ag, Pt, or those alloys, for example. In this case, the catalytic performance of the metal nanocluster-supported carbon porous body is higher.

前記金属ナノクラスターの平均粒径は、金属ナノクスラスター担持カーボン多孔体のTEM(透過型電子顕微鏡)写真を撮り、その写真において、複数の金属ナノクラスターの粒径を計測し、それらの測定結果を平均することで得ることができる。   For the average particle size of the metal nanoclusters, take a TEM (transmission electron microscope) photograph of the carbon nanoporous metal nanocarrier, and measure the particle size of the metal nanoclusters in the photograph, It can be obtained by averaging.

本発明の金属ナノクスラスター担持カーボン多孔体の製造方法は、有機溶媒を含む液中において、少なくとも一方が金属触媒から成る少なくとも一対の電極間に電圧を間欠的に印加し、前記液中でグロー放電を生じさせることを特徴とする。本発明によれば、このグロー放電中で電極がスパッタリングされることで平均粒径2nm以下の金属ナノクラスターをカーボン多孔体に保護材などを用いることなく直接担持し、金属ナノクラスターとカーボン多孔体材料が直接密着した触媒性能が高い金属ナノクラスター担持カーボン多孔体を容易に(少ないプロセスで)製造することができる。   The method for producing a carbon nanoporous metal nano support according to the present invention includes a method in which a voltage is intermittently applied between at least one pair of electrodes each made of a metal catalyst in a liquid containing an organic solvent, and glow discharge is performed in the liquid. It is characterized by producing. According to the present invention, the metal nanoclusters having an average particle diameter of 2 nm or less are directly supported on the carbon porous body without using a protective material or the like by sputtering the electrode in the glow discharge. A metal nanocluster-carrying carbon porous body with high catalytic performance, in which the material is in direct contact, can be easily produced (with fewer processes).

前記一対の電極は、例えば、互いに異なる金属から成るものとすることができる。この場合、金属ナノクラスターは、1種のみの金属から成っていてもよいし、2種以上の金属の合金であってもよい。また、前記金属は、例えば、Au、Ag、Pt、又はそれらの合金とすることができる。この場合、製造した金属ナノクラスター担持カーボン多孔体の触媒性能が一層高い。   For example, the pair of electrodes may be made of different metals. In this case, the metal nanocluster may be made of only one kind of metal or may be an alloy of two or more kinds of metals. Moreover, the said metal can be Au, Ag, Pt, or those alloys, for example. In this case, the catalytic performance of the produced metal nanocluster-supported carbon porous body is even higher.

本発明の製造方法で用いる電圧は、例えば、パルス状の電圧であることが好ましい。この場合、製造した金属ナノクラスター担持カーボン多孔体の触媒性能が一層向上する。また、パルス状の電圧は、パルスごとに極性(正/負)が反転するものであることが好ましい。この場合、製造した金属ナノクラスター担持カーボン多孔体の触媒性能が一層向上する。パルスの形状は、矩形が好ましい。また、パルスとパルスの間には、電圧が所定値以下であるか、実質的に0Vである期間があることが好ましい。また、パルスの電圧は1000〜3000Vの範囲が好ましく、パルス幅は0.5〜5(さらに好ましくは0.5〜2)μsの範囲が好ましく、周波数は10〜30kHzの範囲が好ましい。これらの範囲内とすることにより、液中でグロー放電を生じさせることが容易になる。   The voltage used in the production method of the present invention is preferably a pulsed voltage, for example. In this case, the catalytic performance of the produced metal nanocluster-supported carbon porous body is further improved. Moreover, it is preferable that the pulsed voltage is one whose polarity (positive / negative) is reversed for each pulse. In this case, the catalytic performance of the produced metal nanocluster-supported carbon porous body is further improved. The shape of the pulse is preferably rectangular. Further, it is preferable that there is a period in which the voltage is equal to or lower than a predetermined value or substantially 0 V between the pulses. The pulse voltage is preferably in the range of 1000 to 3000 V, the pulse width is preferably in the range of 0.5 to 5 (more preferably 0.5 to 2) μs, and the frequency is preferably in the range of 10 to 30 kHz. By making it within these ranges, it becomes easy to cause glow discharge in the liquid.

本発明の金属ナノクラスター担持カーボン多孔体の製造方法は、不活性雰囲気(例えば窒素雰囲気)において、200℃以上の温度で熱処理する工程を有することが好ましい。熱処理することにより、触媒担持カーボン多孔体の結晶性が一層向上する。熱処理の温度は、200〜500℃の範囲が好ましく、350〜500℃の範囲が一層好ましい。また、熱処理の時間は、1〜3時間の範囲が好ましい。このような熱処理においても、金属ナノクラスターの凝集がおこらないことを特徴とする。   The method for producing a metal nanocluster-supported carbon porous body of the present invention preferably includes a step of heat treatment at a temperature of 200 ° C. or higher in an inert atmosphere (for example, a nitrogen atmosphere). By performing the heat treatment, the crystallinity of the catalyst-supporting carbon porous body is further improved. The temperature of the heat treatment is preferably in the range of 200 to 500 ° C, more preferably in the range of 350 to 500 ° C. The heat treatment time is preferably in the range of 1 to 3 hours. Even in such a heat treatment, the metal nanoclusters are not aggregated.

金属ナノクラスター担持カーボン多孔体の製造装置を表す説明図である。It is explanatory drawing showing the manufacturing apparatus of a metal nanocluster carrying | support carbon porous body. 金属ナノクラスター担持カーボン多孔体の製造時に用いる電圧を表す説明図である。It is explanatory drawing showing the voltage used at the time of manufacture of a metal nanocluster carrying | support carbon porous body. 金属ナノクラスター担持カーボン多孔体S1(熱処理前)のTEM画像である。It is a TEM image of metal nanocluster carrying | support carbon porous body S1 (before heat processing). 金属ナノクラスター担持カーボン多孔体S1(熱処理後)のTEM画像である。It is a TEM image of metal nanocluster carrying | support carbon porous body S1 (after heat processing). 金属ナノクラスター担持カーボン多孔体S2(熱処理後)のTEM画像である。It is a TEM image of metal nanocluster carrying | support carbon porous body S2 (after heat processing). 金属ナノクラスター担持カーボン多孔体S3(熱処理後)のTEM画像である。It is a TEM image of metal nanocluster carrying | support carbon porous body S3 (after heat processing). 金属ナノクラスター担持カーボン多孔体S3(熱処理後)における検出元素の分布を表す画像である。It is an image showing distribution of the detection element in metal nanocluster carrying | support carbon porous body S3 (after heat processing). サイクリックボルタメトリーによる触媒活性評価の結果を表すグラフである。It is a graph showing the result of catalytic activity evaluation by cyclic voltammetry. 金属ナノクラスター担持カーボン多孔体について説明する図である。It is a figure explaining a metal nanocluster carrying | support carbon porous body. 金属ナノクラスター担持カーボン多孔体を拡大した説明する概略図である。It is the schematic explaining the metal nanocluster carrying | support carbon porous body which expanded.

本発明を実施するための形態を図面に基づいて説明する。
図10は、カーボン多孔体Rに担持された、有機物を含む保護材によって被覆されていない平均粒径2nm以下の金属ナノクラスターPを示す。なお、本実施の形態で、触媒活性を低下させる要因となる有機物を含む保護材によって被覆されていない平均粒径2nm以下の金属ナノクラスターPを利用するため、触媒機能が期待される(後述)。
ここで、「有機物を含む保護剤」とは、ナノ粒子合成の際に用いる保護剤(例えば、クエン酸、オレイルアミンなどのイオン性分子や、1-ドデカンスルホン酸ナトリウム等の界面活性剤ポリビニルピロリ等の高分子が挙げられる。)をいう。仮に、平均粒径2nm以下の金属ナノクラスターが有機物を含む保護剤によって被覆されている場合、保護剤が表面を被覆して触媒活性点を覆ってしまうため、反応サイトが減少し、平均粒径2nm以下の金属ナノクラスターであっても、その触媒活性が低下する現象が生じるのに対し、有機物を含む保護剤によって被覆されていない場合は触媒活性は低下しない。
DESCRIPTION OF EMBODIMENTS Embodiments for carrying out the present invention will be described with reference to the drawings.
FIG. 10 shows metal nanoclusters P having an average particle diameter of 2 nm or less that are supported on the carbon porous body R and are not covered with a protective material containing an organic substance. In addition, in this Embodiment, since the metal nanocluster P with an average particle diameter of 2 nm or less which is not coat | covered with the protective material containing the organic substance used as the factor which reduces catalyst activity is utilized, a catalyst function is anticipated (after-mentioned). .
Here, the “protective agent containing an organic substance” refers to a protective agent used in the synthesis of nanoparticles (for example, ionic molecules such as citric acid and oleylamine, and surfactants such as sodium 1-dodecanesulfonate and the like. Of the polymer). If metal nanoclusters having an average particle size of 2 nm or less are coated with a protective agent containing an organic substance, the protective agent covers the surface of the catalyst and covers the catalytic active sites, resulting in a decrease in reaction sites and an average particle size. Even if it is a metal nanocluster of 2 nm or less, the phenomenon in which the catalytic activity is reduced occurs, whereas the catalytic activity does not decrease when it is not coated with a protective agent containing an organic substance.

1.金属ナノクスラスター担持カーボン多孔体の製造
図1に示すように、容器1内に、200mlのトルエン(有機溶媒)を入れ、そのトルエン中に、それぞれAuから成る一対の電極3、5を浸漬した。電極3、5の先端同士は対向しており、それらの間には所定の間隔が存在する。電極3はバイポーラ高圧パルス電源7に接続しており、電極5は接地している。電極3、5は、先端部分を除き、テフロンホルダー9、11に収容されている。
1. Production of Metal Nanox Raster-Supported Carbon Porous Material As shown in FIG. 1, 200 ml of toluene (organic solvent) was placed in a container 1, and a pair of electrodes 3 and 5 each made of Au were immersed in the toluene. The tips of the electrodes 3 and 5 are opposed to each other, and a predetermined interval exists between them. The electrode 3 is connected to a bipolar high-voltage pulse power source 7, and the electrode 5 is grounded. The electrodes 3 and 5 are accommodated in the Teflon holders 9 and 11 except for the tip portion.

そして、電極3、5間に、図2に示す間欠的な(パルス状の)電圧を印加した。この電圧は、パルスごとに極性(正/負)が反転するものである。パルスの頂点における電圧の絶対値は1600Vであり、各パルスのパルス幅t1は0.7μmである。また、パルスの周波数(1/T(周期)は、15kHzである。各パルスの形状は矩形であり、パルスとパルスの間には、電圧が0Vである期間が存在する。電圧の印加は60分間行った。電圧の印加中、液中では、グロー放電(ソリューションプラズマ)が発生していた。その結果、液中に金属ナノクスラスター担持カーボン多孔体S1が生じた。 Then, an intermittent (pulse-like) voltage shown in FIG. 2 was applied between the electrodes 3 and 5. This voltage is one whose polarity (positive / negative) is inverted every pulse. The absolute value of the voltage at the peak of the pulse is 1600 V, and the pulse width t 1 of each pulse is 0.7 μm. The frequency (1 / T (cycle)) of the pulse is 15 kHz. Each pulse has a rectangular shape, and there is a period in which the voltage is 0 V between the pulses. During the application of voltage, glow discharge (solution plasma) was generated in the liquid, resulting in the formation of metal nano-x raster-supported carbon porous body S1 in the liquid.

上記の製造条件をA1とする。製造条件A1の他に、表1に示す製造条件A2〜A3においても、金属ナノクラスター担持カーボン多孔体を製造した。なお、製造条件A1と製造条件A2〜A3との違いは、電極3、5の材質のみである。以下では、製造条件A2〜A3で製造したカーボン多孔体はそれぞれ、金属ナノクラスター担持カーボン多孔体S2〜S3となる。   The manufacturing condition is A1. In addition to the production conditions A1, metal nanocluster-supported carbon porous bodies were produced also under the production conditions A2 to A3 shown in Table 1. The difference between the manufacturing condition A1 and the manufacturing conditions A2 to A3 is only the material of the electrodes 3 and 5. Below, the carbon porous body manufactured on manufacturing conditions A2-A3 becomes metal nanocluster carrying | support carbon porous body S2-S3, respectively.

次に、金属ナノクスラスター担持カーボン多孔体S1〜S3を、不活性雰囲気(窒素雰囲気)中で熱処理した。熱処理の温度は、400、450、600、又は800℃とした。また、熱処理の時間は2〜3時間とした。   Next, the metal nano-x raster-supported carbon porous bodies S1 to S3 were heat-treated in an inert atmosphere (nitrogen atmosphere). The temperature of the heat treatment was 400, 450, 600, or 800 ° C. The heat treatment time was set to 2 to 3 hours.

2.金属ナノクスラスター担持カーボン多孔体の評価
(1)金属ナノクラスターの観察
金属ナノクスラスター担持カーボン多孔体S1〜S3をTEM(透過型電子顕微鏡)により観察した。図3に、金属ナノクスラスター担持カーボン多孔体S1であって、熱処理を行っていないものの観察結果を示す。この図3から、0.5〜2nmのサイズのAu粒子(金属ナノクラスター)が、カーボン多孔体中に分散していることが確認できた。すなわち、この場合、金属ナノクラスターであるAu粒子は凝集することなく、カーボン多孔体S1に担持されている。
2. Evaluation of Metal Nanox Raster-Supported Carbon Porous Material (1) Observation of Metal Nanocluster Metal Nanox Raster-supported carbon porous materials S1 to S3 were observed with a TEM (transmission electron microscope). FIG. 3 shows an observation result of the metal nano-x raster-supported carbon porous body S1 that has not been heat-treated. From FIG. 3, it was confirmed that Au particles (metal nanoclusters) having a size of 0.5 to 2 nm were dispersed in the carbon porous body. That is, in this case, Au particles that are metal nanoclusters are supported on the carbon porous body S1 without aggregating.

図4に、金属ナノクスラスター担持カーボン多孔体S1であって、450℃、1時間の熱処理を行ったものの観察結果を示す。この図4でも、0.5〜2nmのサイズのAu粒子(金属ナノクラスター)が、カーボン多孔体中に分散していることが確認できた。すなわち、熱処理を行っても、Au粒子の凝集は見られなかった。すなわち、この場合、金属ナノクラスターであるAu粒子は凝集することなく、カーボン多孔体S1に担持されている。   FIG. 4 shows an observation result of the metal nano-x raster-supported carbon porous body S1, which was heat-treated at 450 ° C. for 1 hour. Also in FIG. 4, it was confirmed that Au particles (metal nanoclusters) having a size of 0.5 to 2 nm were dispersed in the carbon porous body. That is, even when heat treatment was performed, no aggregation of Au particles was observed. That is, in this case, Au particles that are metal nanoclusters are supported on the carbon porous body S1 without aggregating.

図5に、金属ナノクスラスター担持カーボン多孔体S2であって、450℃、1時間の熱処理を行ったものの観察結果を示す。この図5でも、2nm未満のサイズのPt粒子(金属ナノクラスター)が、カーボン多孔体中に分散していることが確認できた。すなわち、熱処理を行っても、Pt粒子の凝集は見られなかった。すなわち、この場合、金属ナノクラスターであるPt粒子は凝集することなく、カーボン多孔体S2に担持されている。   FIG. 5 shows an observation result of the metal nano-x raster-supported carbon porous body S2, which was heat-treated at 450 ° C. for 1 hour. Also in FIG. 5, it was confirmed that Pt particles (metal nanoclusters) having a size of less than 2 nm were dispersed in the carbon porous body. That is, no aggregation of Pt particles was observed even after heat treatment. That is, in this case, Pt particles that are metal nanoclusters are supported on the carbon porous body S2 without agglomeration.

図6に、金属ナノクスラスター担持カーボン多孔体S3であって、450℃、1時間の熱処理を行ったものの観察結果を示す。また、図6の視野において行った元素分析の結果を図7に示す。図6でも、2nm未満のサイズの金属粒子(金属ナノクラスター)が、カーボン多孔体中に分散していることが確認できた。すなわち、熱処理を行っても、AuPt合金粒子の凝集は見られなかった。また、図7に示す結果から、図6において観察された金属粒子は、AuPt合金ナノクラスターであることが確認できた。
(2)平均細孔径、表面積、及び平均細孔容積の測定
金属ナノクスラスター担持カーボン多孔体S1〜S3について、平均細孔径、表面積、及び平均細孔容積を測定した。
FIG. 6 shows the observation results of the metal nano-x raster-supported carbon porous body S3 that was heat-treated at 450 ° C. for 1 hour. Moreover, the result of the elemental analysis performed in the visual field of FIG. 6 is shown in FIG. Also in FIG. 6, it was confirmed that metal particles (metal nanoclusters) having a size of less than 2 nm were dispersed in the carbon porous body. That is, even when heat treatment was performed, no aggregation of AuPt alloy particles was observed. Further, from the results shown in FIG. 7, it was confirmed that the metal particles observed in FIG. 6 were AuPt alloy nanoclusters.
(2) Measurement of average pore diameter, surface area, and average pore volume The average pore diameter, the surface area, and the average pore volume were measured for the metal nanox raster-supported carbon porous bodies S1 to S3.

平均細孔径、表面積、及び平均細孔容積の測定は、BET吸着測定を行い、BET法とBJH法により解析する方法で行った。BET吸着測定に用いた装置は、日本ベル株式会社製のBersorp-mini IIであり、吸着ガスは窒素である。   The average pore diameter, surface area, and average pore volume were measured by BET adsorption measurement and analysis by the BET method and BJH method. The apparatus used for the BET adsorption measurement is Berserp-mini II manufactured by Nippon Bell Co., Ltd., and the adsorption gas is nitrogen.

測定サンプルの熱処理条件及び測定結果を表2に示す。   Table 2 shows the heat treatment conditions and measurement results of the measurement samples.

表2に示す結果から、金属ナノクスラスター担持カーボン多孔体S1〜S3は、大きな表面積及び平均細孔容積を有していることが分かった。また、熱処理を行っても、表面積及び平均細孔容積が低下しないことが分かった。
(3)サイクリックボルタメトリーによる触媒活性評価
金属ナノクスラスター担持カーボン多孔体S3について、サイクリックボルタメトリーによる触媒活性評価を実施した。その条件は以下のとおりである。
From the results shown in Table 2, it was found that the metal nanox raster-supported carbon porous bodies S1 to S3 have a large surface area and average pore volume. It was also found that the surface area and average pore volume did not decrease even after heat treatment.
(3) Catalytic activity evaluation by cyclic voltammetry The catalytic activity evaluation by cyclic voltammetry was performed on the porous metal S3 supporting metal nano-x raster. The conditions are as follows.

作用極 (W):金属ナノクスラスター担持カーボン多孔体S3
参照極 (R):Ag/AgCl (飽和KCl)
対極 (C):Pt
支持電解質: 0.5M硫酸
走査速度:20mV/s
走査範囲:−0.3〜1.4V
評価結果を図8に示す。この図8の評価結果から、Pt上酸化被膜の還元、Au上酸化被膜の還元が確認できた。また、電気化学的活性表面積(Au)を比較したところ、従来のPtAu担持触媒における報告(Yi-Chun Lu et al., JACS, 2010, 132, 12170)で示された値(15m2/g PtAu)よりも向上したことが確認された。このことから、金属ナノクスラスター担持カーボン多孔体S3は触媒活性が高いことが確認できた。また、金属ナノクスラスター担持カーボン多孔体S1、S2についても、略同様の結果が得られた。金属は2nm以下になると、図9に示すように、量子効果によってエネルギー準位の縮退がとけて、バンドギャップが出現するが、このバンドギャップによって、金属の導電性の性質から、半導体、絶縁体の性質に変化する。このような電子構造の大きな変化によって、粒径サイズを2nm以下のナノクラスターにすることによって、新たな触媒性の発現もしくは、触媒性能の向上が期待される。
Working electrode (W): Metal nano-x raster supported carbon porous body S3
Reference electrode (R): Ag / AgCl (saturated KCl)
Counter electrode (C): Pt
Supporting electrolyte: 0.5M sulfuric acid Scanning speed: 20mV / s
Scanning range: -0.3 to 1.4V
The evaluation results are shown in FIG. From the evaluation results in FIG. 8, it was confirmed that the oxide film on Pt was reduced and the oxide film on Au was reduced. In addition, when the electrochemically active surface area (Au) was compared, the value (15 m 2 / g PtAu indicated in the report on the conventional PtAu supported catalyst (Yi-Chun Lu et al., JACS, 2010, 132, 12170) was obtained. ) Was confirmed to be improved. From this, it was confirmed that the metal nanox raster-supported carbon porous body S3 has high catalytic activity. In addition, substantially the same results were obtained for the metal nano-x raster-supported carbon porous bodies S1 and S2. When the metal is 2 nm or less, as shown in FIG. 9, the energy level is degenerated due to the quantum effect, and a band gap appears. This band gap causes the semiconductor, insulator, Changes to the nature of. By making such a large change in the electronic structure a nanocluster having a particle size of 2 nm or less, it is expected that new catalytic properties will be developed or catalytic performance will be improved.

3.金属ナノクスラスター担持カーボン多孔体S1〜S3が奏する効果
金属ナノクスラスター担持カーボン多孔体S1〜S3は、粒径が小さい金属ナノクラスターを担持しており、触媒活性が高い。また、金属ナノクスラスター担持カーボン多孔体S1〜S3においては、カーボン多孔体と金属ナノクラスターとの密着性が高い。
3. Effects exhibited by the metal nano-x raster-supported carbon porous bodies S1 to S3 The metal nano-x raster-supported carbon porous bodies S1 to S3 support metal nano-clusters having a small particle size and have high catalytic activity. Further, in the metal nano-x raster-supported carbon porous bodies S1 to S3, the adhesion between the carbon porous body and the metal nano-cluster is high.

また、金属ナノクスラスター担持カーボン多孔体S1〜S3の製造においては、金属ナノクラスターとカーボン多孔体とを同時に合成できるので、金属ナノクスラスター担持カーボン多孔体S1〜S3の製造が容易である。   Further, in the production of the metal nano-x raster-supported carbon porous bodies S1 to S3, the metal nano-cluster and the carbon porous body can be synthesized at the same time, so that the metal nano-x raster-supported carbon porous bodies S1 to S3 are easily produced.

尚、本発明は前記実施形態になんら限定されるものではなく、本発明を逸脱しない範囲において種々の態様で実施しうることはいうまでもない。
例えば、金属ナノクラスターは、Ag、AuとAgの合金、PtとAgの合金等であってもよい。AuとAgの合金の場合、電極3、5のうちの一方をAuとし、他方をAgとすればよい。また、PtとAgの合金の場合、電極3、5のうちの一方をPtとし、他方をAgとすればよい。金属ナノクラスターはその他の金属触媒粒子であってもよい。例えば、NiやCo等でも良い。
In addition, this invention is not limited to the said embodiment at all, and it cannot be overemphasized that it can implement with a various aspect in the range which does not deviate from this invention.
For example, the metal nanocluster may be Ag, an alloy of Au and Ag, an alloy of Pt and Ag, or the like. In the case of an alloy of Au and Ag, one of the electrodes 3 and 5 may be Au and the other may be Ag. In the case of an alloy of Pt and Ag, one of the electrodes 3 and 5 may be Pt and the other may be Ag. The metal nanocluster may be other metal catalyst particles. For example, Ni or Co may be used.

金属ナノクスラスター担持カーボン多孔体の製造に用いる有機溶媒は、トルエン、ベンゼン、ナフタレン、フェノール、クレゾール、安息香酸、ピリジン、ピロール、及びアニリンから成る群から選ばれる1種、又は2種以上の混合物であってもよい。   The organic solvent used in the production of the metal nanox thruster-supported carbon porous material is one or a mixture of two or more selected from the group consisting of toluene, benzene, naphthalene, phenol, cresol, benzoic acid, pyridine, pyrrole, and aniline. There may be.

また、金属ナノクスラスター担持カーボン多孔体の製造に用いる電圧は、極性が常に一定の(正/負が反転しない)パルス状電圧であってもよい。   In addition, the voltage used for the production of the metal nano-x raster-supported carbon porous body may be a pulsed voltage whose polarity is always constant (positive / negative does not reverse).

1・・・容器、3、5・・・電極、7・・・バイポーラ高圧パルス電源、
9、11・・・テフロンホルダー、S1〜S5・・・金属ナノクスラスター担持カーボン多孔体、
R・・・カーボン多孔体、P・・・金属ナノクラスター
DESCRIPTION OF SYMBOLS 1 ... Container, 3, 5 ... Electrode, 7 ... Bipolar high voltage pulse power supply,
9, 11... Teflon holder, S1 to S5.
R ... porous carbon, P ... metal nanocluster

Claims (6)

有機溶媒を含む液中において、少なくとも一方が金属から成る少なくとも一対の電極間に電圧を間欠的に印加し、前記液中でグロー放電を生じさせることを特徴とする金属ナノクラスター担持カーボン多孔体の製造方法。   In a liquid containing an organic solvent, a voltage is intermittently applied between at least one pair of electrodes, at least one of which is made of a metal, to generate glow discharge in the liquid. Production method. 前記一対の電極が、互いに異なる金属から成ることを特徴とする請求項記載の金属ナノクラスター担持カーボン多孔体の製造方法。 It said pair of electrodes The method of claim 1, wherein the metal nano-cluster-carrying carbon porous body, characterized in that it consists of different metals from each other. 前記金属が、Au、Ag、Pt、又はそれらの合金であることを特徴とする請求項又は記載の金属ナノクラスター担持カーボン多孔体の製造方法。 The method for producing a metal nanocluster-supported carbon porous body according to claim 1 or 2 , wherein the metal is Au, Ag, Pt, or an alloy thereof. 前記電圧がパルス状の電圧であることを特徴とする請求項のいずれか1項記載の金属ナノクラスター担持カーボン多孔体の製造方法。 The method for producing a metal nanocluster-supported carbon porous body according to any one of claims 1 to 3 , wherein the voltage is a pulsed voltage. 前記パルス状の電圧は、パルスごとに極性が反転するものであることを特徴とする請求項記載の金属ナノクラスター担持カーボン多孔体の製造方法。 5. The method for producing a metal nanocluster-supported carbon porous body according to claim 4 , wherein the pulse-like voltage has a polarity that is inverted every pulse. 不活性雰囲気において、200℃以上の温度で熱処理する工程を有することを特徴とする請求項のいずれか1項記載の金属ナノクラスター担持カーボン多孔体の製造方法。 The method for producing a metal nanocluster-supported carbon porous body according to any one of claims 1 to 5 , further comprising a step of heat-treating at a temperature of 200 ° C or higher in an inert atmosphere.
JP2012099104A 2012-04-24 2012-04-24 Method for producing metal nano-x raster-supported carbon porous body Expired - Fee Related JP6008272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012099104A JP6008272B2 (en) 2012-04-24 2012-04-24 Method for producing metal nano-x raster-supported carbon porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012099104A JP6008272B2 (en) 2012-04-24 2012-04-24 Method for producing metal nano-x raster-supported carbon porous body

Publications (2)

Publication Number Publication Date
JP2013226490A JP2013226490A (en) 2013-11-07
JP6008272B2 true JP6008272B2 (en) 2016-10-19

Family

ID=49674757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012099104A Expired - Fee Related JP6008272B2 (en) 2012-04-24 2012-04-24 Method for producing metal nano-x raster-supported carbon porous body

Country Status (1)

Country Link
JP (1) JP6008272B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106179399A (en) * 2016-07-05 2016-12-07 张启辉 Catalyst that nickel cobalt silver and carbon are combined and preparation method thereof
CN111490259B (en) * 2019-01-25 2022-05-31 苏州沃泰丰能电池科技有限公司 Nitrogen-doped and defect-containing porous carbon pore channel loaded cobalt cluster material for zinc-air battery and preparation method thereof
CN115041236B (en) * 2022-07-25 2024-02-13 安徽大学 Supported Au-Ag nanocluster catalyst and application thereof in ketynyl reaction

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10296093A (en) * 1997-04-30 1998-11-10 Fuji Electric Co Ltd Device for manufacturing catalyst and fine particle catalyst manufactured by the device
DE19756880A1 (en) * 1997-12-19 1999-07-01 Degussa Anode catalyst for fuel cells with polymer electrolyte membranes
US6686308B2 (en) * 2001-12-03 2004-02-03 3M Innovative Properties Company Supported nanoparticle catalyst
US7335245B2 (en) * 2004-04-22 2008-02-26 Honda Motor Co., Ltd. Metal and alloy nanoparticles and synthesis methods thereof
JP2007123049A (en) * 2005-10-27 2007-05-17 Daikin Ind Ltd Electrode catalyst carrier, manufacturing method of electrode catalyst carrier, manufacturing device of electrode catalyst carrier, membrane electrode assembly for fuel cell, and fuel cell
US8343253B2 (en) * 2007-02-15 2013-01-01 Kankyou Engineering Co., Ltd. Method for producing conductor fine particles
KR100801470B1 (en) * 2007-02-15 2008-02-12 한국에너지기술연구원 Direct synthesis of carbon nanotubes on graphite paper and manufacturing method of platinum nano catalyst supported on carbon nanotube by chemical vapor deposition and its platinum nano catalyst
WO2010139596A2 (en) * 2009-06-02 2010-12-09 Basf Se Catalyst for electrochemical applications

Also Published As

Publication number Publication date
JP2013226490A (en) 2013-11-07

Similar Documents

Publication Publication Date Title
Santhosh et al. Gold nanoparticles dispersed polyaniline grafted multiwall carbon nanotubes as newer electrocatalysts: preparation and performances for methanol oxidation
Barakat et al. Cobalt/copper-decorated carbon nanofibers as novel non-precious electrocatalyst for methanol electrooxidation
Qin et al. Effect of carbon nanofibers microstructure on electrocatalytic activities of Pd electrocatalysts for ethanol oxidation in alkaline medium
Pei et al. Formation of copper vanadate nanobelts and their electrochemical behaviors for the determination of ascorbic acid
TWI674700B (en) Conductive film, gas diffusion layer for fuel cell, catalyst layer for fuel cell, electrode for fuel cell, membrane electrode assembly for fuel cell, and fuel cell
Yu et al. Facile synthesis of uniform AuPd@ Pd nanocrystals supported on three-dimensional porous N-doped reduced graphene oxide hydrogels as highly active catalyst for methanol oxidation reaction
Lv et al. Biomolecule-assisted synthesis of porous PtPd alloyed nanoflowers supported on reduced graphene oxide with highly electrocatalytic performance for ethanol oxidation and oxygen reduction
Zhang et al. Electrochemical preparation of Pt nanoparticles supported on porous graphene with ionic liquids: Electrocatalyst for both methanol oxidation and H2O2 reduction
Ye et al. Electrodeposition of platinum nanoparticles on multi-walled carbon nanotubes for electrocatalytic oxidation of methanol
Ahmed et al. Graphene supported silver nanocrystals preparation for efficient oxygen reduction in alkaline fuel cells
Wang et al. Synthesis of Pt and Pd nanosheaths on multi-walled carbon nanotubes as potential electrocatalysts of low temperature fuel cells
Zheng et al. Facile synthesis of Pd nanochains with enhanced electrocatalytic performance for formic acid oxidation
Sun et al. S, N dual-doped carbon nanotubes as substrate to enhance the methanol oxidation performance of NiO nanoparticles
Hussainova et al. A few-layered graphene on alumina nanofibers for electrochemical energy conversion
Çögenli et al. Graphene aerogel supported platinum nanoparticles for formic acid electro-oxidation
US20220363931A1 (en) Nano-inks of carbon nanomaterials for printing and coating
Mole et al. Highly conductive nanostructured C-TiO2 electrodes with enhanced electrochemical stability and double layer charge storage capacitance
Lashkenari et al. Polyrhodanine/NiFe2 O4 nanocomposite: A novel electrocatalyst for hydrazine oxidation reaction
Khosravi et al. Flame synthesis of carbon nanofibers on carbon paper: Physicochemical characterization and application as catalyst support for methanol oxidation
Afraz et al. Electrodeposition of Pt nanoparticles on new porous graphitic carbon nanostructures prepared from biomass for fuel cell and methanol sensing applications
Arabzadeh et al. Facile Synthesis of Ultra‐wide Two Dimensional Bi2S3 Nanosheets: Characterizations, Properties and Applications in Hydrogen Peroxide Sensing and Hydrogen Storage
JP6008272B2 (en) Method for producing metal nano-x raster-supported carbon porous body
Zhou et al. Introduction of oxygen vacancies into hematite in local reducing atmosphere for solar water oxidation
Wang et al. Controllably annealed CuO-nanoparticle modified ITO electrodes: Characterisation and electrochemical studies
Beladi-Mousavi et al. Fine-tuning the functionality of reduced graphene oxide via bipolar electrochemistry in freestanding 2D reaction layers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160902

R150 Certificate of patent or registration of utility model

Ref document number: 6008272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees