JP6001268B2 - Silicon-containing film forming composition and method for forming impurity diffusion layer - Google Patents

Silicon-containing film forming composition and method for forming impurity diffusion layer Download PDF

Info

Publication number
JP6001268B2
JP6001268B2 JP2012000833A JP2012000833A JP6001268B2 JP 6001268 B2 JP6001268 B2 JP 6001268B2 JP 2012000833 A JP2012000833 A JP 2012000833A JP 2012000833 A JP2012000833 A JP 2012000833A JP 6001268 B2 JP6001268 B2 JP 6001268B2
Authority
JP
Japan
Prior art keywords
silicon
group
impurity diffusion
containing film
forming composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012000833A
Other languages
Japanese (ja)
Other versions
JP2012178549A (en
Inventor
靖博 吉井
靖博 吉井
元樹 高橋
元樹 高橋
平井 隆昭
隆昭 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Ohka Kogyo Co Ltd
Original Assignee
Tokyo Ohka Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Ohka Kogyo Co Ltd filed Critical Tokyo Ohka Kogyo Co Ltd
Priority to JP2012000833A priority Critical patent/JP6001268B2/en
Priority to PCT/JP2012/000167 priority patent/WO2012105163A1/en
Priority to TW101103125A priority patent/TW201245285A/en
Publication of JP2012178549A publication Critical patent/JP2012178549A/en
Application granted granted Critical
Publication of JP6001268B2 publication Critical patent/JP6001268B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • H01L21/2255Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer comprising oxides only, e.g. P2O5, PSG, H3BO3, doped oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/2225Diffusion sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、マスク材に用いられるケイ素含有膜形成組成物、不純物拡散層の形成方法、および太陽電池に関する。   The present invention relates to a silicon-containing film forming composition used for a mask material, a method for forming an impurity diffusion layer, and a solar cell.

従来、太陽電池の製造において、半導体基板中に、例えばN型またはP型の不純物拡散層を形成する場合には、N型またはP型の不純物拡散成分を含む拡散剤を半導体基板表面にパターニングし、パターニングされた拡散剤からN型またはP型の不純物拡散成分を拡散させて、N型またはP型の不純物拡散層を形成していた。具体的には、まず、半導体基板表面に熱酸化膜を形成し、続いてフォトリソグラフィ法により所定のパターンを有するレジストを熱酸化膜上に積層する。そして、当該レジストをマスクとして酸またはアルカリによりレジストでマスクされていない熱酸化膜部分をエッチングし、レジストを剥離して熱酸化膜のマスクを形成する。続いて、N型またはP型の不純物拡散成分を含む拡散剤を塗布してマスクが開口している部分に拡散膜を形成する。その後、拡散膜中の不純物拡散成分を高温で拡散させてN型またはP型の不純物拡散層を形成している。   Conventionally, in the manufacture of solar cells, when an N-type or P-type impurity diffusion layer is formed in a semiconductor substrate, for example, a diffusing agent containing an N-type or P-type impurity diffusion component is patterned on the surface of the semiconductor substrate. The N-type or P-type impurity diffusion component is diffused from the patterned diffusing agent to form an N-type or P-type impurity diffusion layer. Specifically, first, a thermal oxide film is formed on the surface of the semiconductor substrate, and then a resist having a predetermined pattern is laminated on the thermal oxide film by photolithography. Then, using the resist as a mask, the portion of the thermal oxide film that is not masked by the acid or alkali is etched, and the resist is removed to form a mask of the thermal oxide film. Subsequently, a diffusion agent containing an N-type or P-type impurity diffusion component is applied to form a diffusion film in a portion where the mask is open. Thereafter, an impurity diffusion component in the diffusion film is diffused at a high temperature to form an N-type or P-type impurity diffusion layer.

このような太陽電池の製造に関して、特許文献1には、拡散制御用マスクとして用いられるマスキングペーストが開示されている。このようなマスキングペーストを用いることで、複雑なフォトリソグラフィー技術等を用いず、簡易的に不純物拡散領域及び不純物拡散領域の微細なパターニング形成をすることができ、低コストな太陽電池を製造することができる。   Regarding the manufacture of such a solar cell, Patent Document 1 discloses a masking paste used as a diffusion control mask. By using such a masking paste, it is possible to easily form a fine patterning of the impurity diffusion region and the impurity diffusion region without using a complicated photolithography technique, and to manufacture a low-cost solar cell. Can do.

特開2007−49079号公報JP 2007-49079 A

特許文献1に記載されたような従来のマスク材では、基板表面の凹凸がある部分に塗布した場合、膜厚が大きくなった部分では加熱時にクラックが発生してしまい、拡散保護性能が損なわれてしまうことがあった。また、従来のマスク材では、OH基などの極性基を側鎖に有するシロキサンポリマーを用いる場合が多く、そのような樹脂は経時変化が大きく安定性が良くない場合が多かった。その為、側鎖に極性基を持たないシロキサンポリマーの使用が検討されたが、側鎖に極性基を持たないシロキサンポリマーは疎水性が高いため、親水性基板への密着性が乏しく、親水性基板に印刷を行うと、インクの乾燥工程において印刷パターンが収縮してしまうという問題があった。   In the case of the conventional mask material described in Patent Document 1, when it is applied to an uneven portion of the substrate surface, a crack is generated during heating in a portion where the film thickness is large, and the diffusion protection performance is impaired. There was a case. Further, in the conventional mask material, a siloxane polymer having a polar group such as an OH group in the side chain is often used, and such a resin has a large change over time and often has a poor stability. For this reason, the use of a siloxane polymer having no polar group in the side chain was studied. However, a siloxane polymer having no polar group in the side chain is highly hydrophobic, so that it has poor adhesion to a hydrophilic substrate and is hydrophilic. When printing is performed on the substrate, there is a problem that the print pattern contracts in the ink drying process.

本発明はこうした課題に鑑みてなされたものであり、その目的は、半導体基板への不純物拡散成分の拡散保護の際に形成するマスクに好適に採用可能なマスク材組成物、当該マスク材組成物を用いた不純物拡散層の形成方法、および太陽電池を提供することにある。   The present invention has been made in view of these problems, and the object thereof is a mask material composition that can be suitably used for a mask formed during diffusion protection of an impurity diffusion component to a semiconductor substrate, and the mask material composition. An object of the present invention is to provide a method for forming an impurity diffusion layer using solar cell and a solar cell.

本発明のある態様はケイ素含有膜形成組成物である。当該ケイ素含有膜形成組成物は、側鎖に環構造を持つシロキサンポリマー(A)と、極性低分子化合物(B)と、溶剤(C)と、を含有することを特徴とする。   One embodiment of the present invention is a silicon-containing film-forming composition. The silicon-containing film-forming composition contains a siloxane polymer (A) having a ring structure in the side chain, a polar low-molecular compound (B), and a solvent (C).

この態様によれば、極性低分子化合物(B)が親水性基板に対する密着性向上剤として機能するため、親水性基板に上記ケイ素含有膜形成組成物を印刷した場合に乾燥前後で印刷パターンが収縮することが抑制される。   According to this aspect, since the polar low molecular compound (B) functions as an adhesion improver for the hydrophilic substrate, the printed pattern shrinks before and after drying when the silicon-containing film forming composition is printed on the hydrophilic substrate. Is suppressed.

本発明の他の態様は不純物拡散層の形成方法である。当該不純物拡散層の形成方法は、半導体基板に、上述した態様のケイ素含有膜形成組成物を塗布する工程と、前記半導体基板に塗布された前記ケイ素含有膜形成組成物をマスクとして、不純物拡散成分を前記半導体基板に選択的に塗布し、拡散させる拡散工程とを含むことを特徴とする。   Another embodiment of the present invention is a method for forming an impurity diffusion layer. The method for forming the impurity diffusion layer includes a step of applying the silicon-containing film forming composition of the above-described embodiment to a semiconductor substrate, and an impurity diffusion component using the silicon-containing film forming composition applied to the semiconductor substrate as a mask. And a diffusion step of selectively applying and diffusing to the semiconductor substrate.

この態様によれば、乾燥前後で印刷パターンの収縮が抑制されたマスクを半導体基板上に形成することができる。   According to this aspect, the mask in which the shrinkage of the printed pattern is suppressed before and after drying can be formed on the semiconductor substrate.

本発明のさらに他の態様は太陽電池である。当該太陽電池は上述した態様の不純物拡散層の形成方法により不純物拡散層が形成された半導体基板を備えたことを特徴とする。   Yet another embodiment of the present invention is a solar cell. The solar cell includes a semiconductor substrate on which an impurity diffusion layer is formed by the method for forming an impurity diffusion layer according to the above-described aspect.

この態様によれば、より信頼性の高い太陽電池を得ることができる。   According to this aspect, a more reliable solar cell can be obtained.

本発明によれば、親水性基板にケイ素含有膜形成組成物を印刷した場合に乾燥前後で印刷パターンが収縮することを抑制することができる。   ADVANTAGE OF THE INVENTION According to this invention, when a silicon-containing film formation composition is printed on a hydrophilic substrate, it can suppress that a printing pattern shrinks before and after drying.

図1(A)〜図1(F)は、実施形態に係る不純物拡散層の形成方法を含む太陽電池の製造方法を説明するための工程断面図である。FIG. 1A to FIG. 1F are process cross-sectional views for explaining a method for manufacturing a solar cell including a method for forming an impurity diffusion layer according to an embodiment.

以下、本発明を好適な実施の形態をもとに説明する。実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。   Hereinafter, the present invention will be described based on preferred embodiments. The embodiments do not limit the invention but are exemplifications, and all features and combinations described in the embodiments are not necessarily essential to the invention.

実施の形態に係るケイ素含有膜形成組成物は、シロキサンポリマー(A)、極性低分子化合物(B)および溶剤(C)を含有する。以下、ケイ素含有膜形成組成物に含まれる各成分について詳細に説明する。   The silicon-containing film-forming composition according to the embodiment contains a siloxane polymer (A), a polar low molecular compound (B), and a solvent (C). Hereinafter, each component contained in the silicon-containing film forming composition will be described in detail.

《シロキサンポリマー(A)》
シロキサンポリマー(A)は、シロキサン結合(Si−0−Si)を含むポリマーであり、側鎖に環構造を持つが、OH基などの極性基を実質的に持たない、マスク材本体を構成する樹脂である。本実施形態に係るマスク材組成物は、シロキサンポリマー(A)として、下記式(a1)で表される構成単位(以下、適宜この構成単位を構成単位a1と称する)を含むシロキサンポリマー(A1)を含有する。ここで「構成単位」とは、高分子化合物(重合体、共重合体)を構成するモノマー単位(単量体単位)を意味する。

Figure 0006001268
式(a1)中、Raは置換基を有していてもよい芳香族環または脂肪族環である。 << Siloxane polymer (A) >>
The siloxane polymer (A) is a polymer containing a siloxane bond (Si-0-Si), and has a ring structure in the side chain but constitutes a mask material body that does not substantially have a polar group such as an OH group. Resin. The mask material composition according to the present embodiment includes, as the siloxane polymer (A), a siloxane polymer (A1) containing a structural unit represented by the following formula (a1) (hereinafter, this structural unit is appropriately referred to as a structural unit a1). Containing. Here, the “structural unit” means a monomer unit (monomer unit) constituting a polymer compound (polymer, copolymer).
Figure 0006001268
In formula (a1), Ra is an aromatic ring or an aliphatic ring which may have a substituent.

Raは炭素数6〜20の芳香族環または脂肪族環であることが好ましい。「脂肪族」とは、芳香族に対する相対的な概念であって、芳香族性を持たない基、化合物等を意味するものと定義する。「脂肪族環」とは、芳香族性を持たない単環式基または多環式基であることを示す。Raで表される芳香族環としては、フェニル基、ナフチル基、アントラセン基等が挙げられる。また、Raで表される脂肪族環としては、モノシクロアルカンや、ビシクロアルカン、トリシクロアルカン、テトラシクロアルカンなどのポリシクロアルカンから1個以上の水素原子を除いた基などが挙げられる。具体的には、シクロペンタン、シクロヘキサン等のモノシクロアルカンや、アダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカンなどのポリシクロアルカンから1個以上の水素原子を除いた基などが挙げられる。また、Raは、置換基を有していてもよい。Raの置換基としては、極性を持たない置換基であることが好ましい。Raとしては、芳香族環が好ましく、フェニル基およびナフチル基がより好ましい。   Ra is preferably an aromatic ring or aliphatic ring having 6 to 20 carbon atoms. “Aliphatic” is a relative concept with respect to aromatics, and is defined to mean groups, compounds, etc. that do not have aromaticity. “Aliphatic ring” means a monocyclic group or polycyclic group having no aromaticity. Examples of the aromatic ring represented by Ra include a phenyl group, a naphthyl group, and an anthracene group. Examples of the aliphatic ring represented by Ra include groups in which one or more hydrogen atoms have been removed from a polycycloalkane such as monocycloalkane, bicycloalkane, tricycloalkane, and tetracycloalkane. Specific examples include monocycloalkanes such as cyclopentane and cyclohexane, and groups obtained by removing one or more hydrogen atoms from polycycloalkanes such as adamantane, norbornane, isobornane, tricyclodecane, and tetracyclododecane. Ra may have a substituent. The substituent for Ra is preferably a non-polar substituent. Ra is preferably an aromatic ring, more preferably a phenyl group or a naphthyl group.

構成単位a1の具体例としては、例えば、下記式(a1−1)で表される構成単位(以下、適宜この構成単位を構成単位a1−1と称する)、下記式(a1−2)で表される構成単位(以下、適宜この構成単位を構成単位a1−2と称する)、などが挙げられる。

Figure 0006001268
Figure 0006001268
Specific examples of the structural unit a1 include, for example, a structural unit represented by the following formula (a1-1) (hereinafter, this structural unit will be appropriately referred to as the structural unit a1-1), and a structural unit represented by the following formula (a1-2). (Hereinafter, this structural unit is appropriately referred to as structural unit a1-2), and the like.
Figure 0006001268
Figure 0006001268

また、シロキサンポリマー(A)は、下記式(a2)で表される構成単位(以下、適宜この構成単位を構成単位a2と称する)や、下記式(a3)で表される構成単位(以下、適宜この構成単位を構成単位a3と称する)、下記式(a4)で表される構成単位(以下、適宜この構成単位を構成単位a4と称する)を含んでもよい。   In addition, the siloxane polymer (A) includes a structural unit represented by the following formula (a2) (hereinafter, this structural unit is appropriately referred to as a structural unit a2), and a structural unit represented by the following formula (a3) (hereinafter, This structural unit may be appropriately referred to as a structural unit a3) and a structural unit represented by the following formula (a4) (hereinafter, this structural unit may be appropriately referred to as a structural unit a4).

Figure 0006001268
式(a2)中、Rは、炭素数1〜5のアルキレン基であり、Rは、炭素数6〜20のアリール基である。
Figure 0006001268
In formula (a2), R 1 is an alkylene group having 1 to 5 carbon atoms, and R 2 is an aryl group having 6 to 20 carbon atoms.

式(a2)中、Rの炭素数1〜5のアルキレン基としては、メチレン基、エチレン基、n−プロピレン基、n−ブチレン基等の直鎖状のアルキレン基や、イソプロピレン基、t−ブチレン基等の分岐鎖状のアルキレン基が挙げられる。Rとしては、メチレン基およびエチレン基が好ましい。 In formula (a2), as the alkylene group having 1 to 5 carbon atoms of R 1 , a linear alkylene group such as methylene group, ethylene group, n-propylene group, n-butylene group, isopropylene group, t -A branched alkylene group such as a butylene group. R 1 is preferably a methylene group or an ethylene group.

また、式(a2)中、Rの炭素数6〜20のアリール基としては、フェニル基、ナフチル基、アントラセニル基等が挙げられる。また、このアリール基は、置換基を有していてもよい。Rの置換基としては、極性を持たない置換基であることが好ましい。Rとしては、フェニル基およびナフチル基が好ましい。 In the formula (a2), examples of the aryl group having 6 to 20 carbon atoms of R 2 include a phenyl group, a naphthyl group, and an anthracenyl group. Moreover, this aryl group may have a substituent. The substituent for R 2 is preferably a substituent having no polarity. R 2 is preferably a phenyl group or a naphthyl group.

Figure 0006001268
式(a3)中、Rは、炭素数1〜20の直鎖状又は分岐鎖状の脂肪族炭化水素基であり、置換基を有していてもよい。Rの置換基としては、極性を持たない置換基であることが好ましい。また、この脂肪族炭化水素基は、飽和または不飽和のいずれでもよい。飽和炭化水素基としては、例えば、メチル基、エチル基、n−ブチル基、ヘキシル基、オクチルデシル基、ドデシル基、オクタデシル基等の直鎖状のアルキル基、イソプロピル基、t−ブチル基等の分岐鎖状のアルキル基等が挙げられる。不飽和炭化水素基としては、例えば、プロペニル基(アリル基)、ブチニル基、1−メチルプロペニル基、2−メチルプロペニル基等が挙げられる。
Figure 0006001268
In formula (a3), R 3 is a linear or branched aliphatic hydrocarbon group having 1 to 20 carbon atoms, and may have a substituent. The substituent for R 3 is preferably a substituent having no polarity. Further, this aliphatic hydrocarbon group may be either saturated or unsaturated. Examples of the saturated hydrocarbon group include a linear alkyl group such as a methyl group, an ethyl group, an n-butyl group, a hexyl group, an octyldecyl group, a dodecyl group, and an octadecyl group, an isopropyl group, and a t-butyl group. Examples thereof include a branched alkyl group. Examples of the unsaturated hydrocarbon group include a propenyl group (allyl group), a butynyl group, a 1-methylpropenyl group, and a 2-methylpropenyl group.

Figure 0006001268
式(a4)中、RおよびRは、炭素数6〜20のアリール基、または炭素数1〜20の脂肪族炭化水素基である。炭素数6〜20のアリール基、および炭素数1〜20の脂肪族炭化水素基の具体例は、上述したRにおける炭素数6〜20のアリール基及び、Rにおける炭素数1〜20の直鎖状又は分岐鎖状の脂肪族炭化水素基に加え、炭素数1〜20のシクロペンチル基、シクロヘキシル基、ノルボルニル基等の環状のアルキル基等が挙げられる。
Figure 0006001268
In formula (a4), R 4 and R 5 are an aryl group having 6 to 20 carbon atoms or an aliphatic hydrocarbon group having 1 to 20 carbon atoms. Specific examples of the aryl group having 6 to 20 carbon atoms and the aliphatic hydrocarbon group having 1 to 20 carbon atoms include the aryl group having 6 to 20 carbon atoms in R 2 and the one having 1 to 20 carbon atoms in R 3 described above. In addition to a linear or branched aliphatic hydrocarbon group, a cyclic alkyl group such as a C1-C20 cyclopentyl group, cyclohexyl group, norbornyl group, and the like can be given.

シロキサンポリマー(A1)の具体例としては、下記の式(A1−1)、式(A1−2)で表されるポリマーが挙げられる。

Figure 0006001268
式(A1−1)において、sは整数である。
Figure 0006001268
式(A1−2)において、n:mは、1:99〜99:1ある。 Specific examples of the siloxane polymer (A1) include polymers represented by the following formulas (A1-1) and (A1-2).
Figure 0006001268
In formula (A1-1), s is an integer.
Figure 0006001268
In the formula (A1-2), n: m is 1:99 to 99: 1.

シロキサンポリマー(A)は、加水分解により合成される構造上、末端にOH基が含まれてしまう場合があるが、それ以外の極性基を極力含まないことが好ましい。その指標として、概シロキサンポリマーを使用して膜を形成した場合、その膜の水に対する接触角が75度以上、100度以下であることが好ましく、75度以上、95度以下であることがより好ましい。接触角が75度以上であると、経時変化による組成物の分子量の増加を抑制することができ、接触角が100度以下であると、本願発明の効果を発揮してパターンの収縮の抑制が可能になる。シロキサンポリマー(A)は、ハロゲン元素、特にフッ素を構造中に含むと、膜形成時又は拡散時の加熱処理中に、弗酸等が熱分解により発生し、拡散炉を劣化させる可能性がある為、フッ素を含まない非フッ素化ポリマーであることが好ましい。   The siloxane polymer (A) may contain an OH group at the end due to the structure synthesized by hydrolysis, but preferably contains no other polar group as much as possible. As an index, when a film is formed using an approximately siloxane polymer, the contact angle of the film with respect to water is preferably 75 degrees or more and 100 degrees or less, and more preferably 75 degrees or more and 95 degrees or less. preferable. When the contact angle is 75 degrees or more, an increase in the molecular weight of the composition due to a change with time can be suppressed, and when the contact angle is 100 degrees or less, the effect of the present invention is exhibited and the pattern shrinkage is suppressed. It becomes possible. When the siloxane polymer (A) contains a halogen element, particularly fluorine, hydrofluoric acid or the like may be generated by thermal decomposition during film formation or during heat treatment during diffusion, which may deteriorate the diffusion furnace. Therefore, a non-fluorinated polymer containing no fluorine is preferable.

本実施形態に係るマスク材組成物は、構成単位a1を含むシロキサンポリマー(A1)を含有している。構成単位a1は環構造を有する。そのため、半導体基板表面へのマスク形成の際に、マスク材組成物の熱硬化によって嵩高い環構造の基が焼失して、マスク中にポーラスが形成される。そして、このポーラスによって、隣接する構成単位同士あるいは隣接するポリマー同士の結合(シラノール脱水縮合)による体積収縮が適度に抑えられる。そのため、環構造を有する構成単位a1を含むことでマスクに柔軟性を持たせることができる。これにより、半導体基板の表面の凹部でマスクの膜厚が大きくなった場合でも、当該箇所におけるクラックの発生を抑制することができる。すなわち、マスクのクラック耐性を向上させることができる。   The mask material composition according to this embodiment contains a siloxane polymer (A1) containing the structural unit a1. The structural unit a1 has a ring structure. Therefore, when the mask is formed on the surface of the semiconductor substrate, the bulky ring structure group is burned out by the thermosetting of the mask material composition, and a porous is formed in the mask. And, by this porous, volume shrinkage due to the bond between adjacent structural units or adjacent polymers (silanol dehydration condensation) is moderately suppressed. Therefore, the mask can have flexibility by including the structural unit a1 having a ring structure. Thereby, even when the film thickness of the mask becomes large at the concave portion on the surface of the semiconductor substrate, it is possible to suppress the occurrence of cracks at the location. That is, the crack resistance of the mask can be improved.

また、構成単位a1は、ケイ素(Si)の4つの結合手のうちの1つに嵩高い環構造を有し、それに加えて、シロキサンポリマー(A)は実質的にOH基等の極性基を含まない。そのため、例えば従来のスピンオングラス(SOG)と比較した場合、マスクを構成するシロキサンポリマー(A)は反応性が乏しく、したがって分子量の変化が小さい。よって、シロキサンポリマー(A)の分子量が経時変化にともなって増大することを抑制することができる。これにより、マスク材の粘度等の特性が変化することを抑制でき、良好な塗布安定性を維持することができる。   The structural unit a1 has a bulky ring structure in one of the four bonds of silicon (Si), and in addition, the siloxane polymer (A) has a polar group such as an OH group substantially. Not included. Therefore, for example, when compared with conventional spin-on-glass (SOG), the siloxane polymer (A) constituting the mask is poor in reactivity, and therefore the change in molecular weight is small. Therefore, it can suppress that the molecular weight of a siloxane polymer (A) increases with a time-dependent change. Thereby, it can suppress that characteristics, such as a viscosity of a mask material, change, and can maintain favorable application | coating stability.

《極性低分子化合物(B)》
極性低分子化合物(B)は極性を有する低分子化合物であり、親水性基板への密着性の改善に寄与する。極性低分子化合物(B)としては、極性基を有する低分子化合物又はアミン類等が挙げられる。極性基としては、OH基、NH基、NO基、COOH基等が挙げられる。極性基を有する低分子化合物としては、分子量が100以上5000未満、好ましくは500以上4000未満の極性基を有する非重合体が挙げられる。アミン類としては、脂肪族アミン類が挙げられる。脂肪族アミンとは、1つ以上の脂肪族基を有するアミンであり、たとえば、アンモニア(NH)の水素原子の少なくとも1つを炭素数20以下のアルキル基またはヒドロキシアルキル基で置換したアミン(アルキルアミンまたはアルキルアルコールアミン)又は環式アミンが挙げられる。アルキル基、およびヒドロキシアルキル基におけるアルキル基は、直鎖状、分岐鎖状、環状のいずれであってもよい。
<< polar low molecular weight compound (B) >>
The polar low molecular compound (B) is a low molecular compound having polarity, and contributes to improvement in adhesion to a hydrophilic substrate. Examples of the polar low molecular compound (B) include a low molecular compound having a polar group or amines. Examples of the polar group include OH group, NH 2 group, NO 2 group, COOH group and the like. Examples of the low molecular compound having a polar group include non-polymers having a polar group having a molecular weight of 100 or more and less than 5000, preferably 500 or more and less than 4000. Examples of amines include aliphatic amines. An aliphatic amine is an amine having one or more aliphatic groups. For example, an amine (NH 3 ) in which at least one hydrogen atom is substituted with an alkyl group or hydroxyalkyl group having 20 or less carbon atoms ( Alkylamines or alkyl alcohol amines) or cyclic amines. The alkyl group and the alkyl group in the hydroxyalkyl group may be linear, branched or cyclic.

極性低分子化合物(B)としては、2級または3級のアルコールアミンまたはアルキルアミンが好ましい。また、これらのアミンは、溶剤溶解性、加熱時の揮発性を考慮すると、炭素数が4〜30であることが好ましく、炭素数4〜24であることがより好ましい。同様に、アルコールアミンまたはアルキルアミン中の該アルキル基が直鎖状または分岐鎖状であることが好ましく、該アルキル基の炭素数は2〜10であることが好ましく、2〜8であることがより好ましい。また、沸点が200℃〜500℃であることが好ましく、200℃〜400℃がより好ましい。前記アルキルアミンの具体例としては、ジエチルアミン、ジ−n−プロピルアミン、ジ−n−ヘプチルアミン、ジ−n−オクチルアミン、ジシクロヘキシルアミン等のジアルキルアミン;トリメチルアミン、トリエチルアミン、トリ−n−プロピルアミン、トリ−n−ブチルアミン、トリ−n−ヘキシルアミン、トリ−n−ペンチルアミン、トリ−n−ヘプチルアミン、トリ−n−オクチルアミン、トリ−n−ノニルアミン、トリ−n−デカニルアミン、トリ−n−ドデシルアミン等のトリアルキルアミン;;ジエタノールアミン、トリエタノールアミン、ジイソプロパノールアミン、トリイソプロパノールアミン、ジ−n−オクタノールアミン、トリ−n−オクタノールアミン、ステアリルジエタノールアミン、ラウリルジエタノールアミン等のアルキルアルコールアミンが挙げられる。
より具体的には、極性低分子化合物(B)として、トリエタノールアミン、トリオクチルアミン、トリペンチルアミン、ジエタノールアミンなどが好ましく、トリエタノールアミンが最も好ましい。
The polar low molecular compound (B) is preferably a secondary or tertiary alcohol amine or alkyl amine. In addition, these amines preferably have 4 to 30 carbon atoms and more preferably 4 to 24 carbon atoms in consideration of solvent solubility and volatility during heating. Similarly, the alkyl group in the alcohol amine or alkyl amine is preferably linear or branched, and the alkyl group preferably has 2 to 10 carbon atoms, and preferably 2 to 8 carbon atoms. More preferred. Moreover, it is preferable that a boiling point is 200 to 500 degreeC, and 200 to 400 degreeC is more preferable. Specific examples of the alkylamine include dialkylamines such as diethylamine, di-n-propylamine, di-n-heptylamine, di-n-octylamine, dicyclohexylamine; trimethylamine, triethylamine, tri-n-propylamine, Tri-n-butylamine, tri-n-hexylamine, tri-n-pentylamine, tri-n-heptylamine, tri-n-octylamine, tri-n-nonylamine, tri-n-decanylamine, tri-n- Trialkylamines such as dodecylamine; diethanolamine, triethanolamine, diisopropanolamine, triisopropanolamine, di-n-octanolamine, tri-n-octanolamine, stearyldiethanolamine, lauryldiethanolamine Alkyl alcohol amines and the like.
More specifically, as the polar low molecular compound (B), triethanolamine, trioctylamine, tripentylamine, diethanolamine and the like are preferable, and triethanolamine is most preferable.

ケイ素含有膜形成組成物中に含まれる極性低分子化合物(B)のとしての前記アミンの濃度は、10ppm〜2%が好ましく、50ppm〜0.5%がより好ましく、100ppm〜0.5%が最も好ましい。上記の範囲の下限以上だと本願発明の効果を発揮してパターンの収縮を抑制が可能になり、上限以下だと組成物中への溶解性が良好であり、膜形成組成物の径時変化による異物や粘度の増加を抑制できる。   The concentration of the amine as the polar low molecular compound (B) contained in the silicon-containing film-forming composition is preferably 10 ppm to 2%, more preferably 50 ppm to 0.5%, and 100 ppm to 0.5%. Most preferred. If it is at least the lower limit of the above range, the effect of the present invention can be exerted and the shrinkage of the pattern can be suppressed, and if it is not more than the upper limit, the solubility in the composition is good, and the time-dependent change of the film forming composition It is possible to suppress the increase in foreign matter and viscosity due to

極性低分子化合物(B)は、実質的に極性基を側鎖にもたないシロキサンポリマー(A)の基板密着性を改善し、特に加熱処理時、パターンの収縮が大きく改善する。この原因は定かではないが、極性低分子が基板との界面部で作用し、膜形成物の極性を変化させ、基板との密着性を改善しているものと推測される。   The polar low molecular weight compound (B) improves the substrate adhesion of the siloxane polymer (A) having substantially no polar group in the side chain, and greatly improves pattern shrinkage particularly during heat treatment. The cause of this is not clear, but it is presumed that low-polarity molecules act at the interface with the substrate, change the polarity of the film-formed product, and improve the adhesion to the substrate.

《溶剤(C)》
溶剤(C)は、シロキサンポリマー(A)を溶解できるものであればよい。溶剤(C)の具体例としては、メタノール、エタノール、イソプロピルアルコール、ブタノール等のアルコール類、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール等のグリコール類、エチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールジプロピルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジエチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールジプロピルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジエチルエーテル、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールジメチルエーテルなどのグリコール誘導体類、アセトン、メチルエチルケトン、メチルイソブチルケトン、メチルアミルケトン、3−ペンタノン、シクロヘキサノン等のケトン類、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸ヘキシル、酢酸オクチル、酢酸2−エチルヘキシル、酢酸3−メトキシブチル、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート等のエステル類、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、N−メチル‐2−ピロリドン、γ−ブチロラクトン、炭酸エチレン、炭酸プロピレン等の極性溶剤、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ヘキサン、ヘプタン、オクタン、シクロヘキサン等の脂肪族炭化水素類などが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
<< Solvent (C) >>
The solvent (C) may be any one that can dissolve the siloxane polymer (A). Specific examples of the solvent (C) include alcohols such as methanol, ethanol, isopropyl alcohol and butanol, glycols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol and tripropylene glycol, and ethylene glycol monomethyl. Ether, ethylene glycol dimethyl ether, ethylene glycol monoethyl ether, ethylene glycol diethyl ether, ethylene glycol monopropyl ether, ethylene glycol dipropyl ether, diethylene glycol monomethyl ether, diethylene glycol dimethyl ether, diethylene glycol monoethyl ether, diethylene glycol diethyl ether, triethylene glycol mono Chill ether, triethylene glycol dimethyl ether, propylene glycol monomethyl ether, propylene glycol dimethyl ether, propylene glycol monoethyl ether, propylene glycol diethyl ether, propylene glycol monopropyl ether, propylene glycol dipropyl ether, dipropylene glycol monomethyl ether, dipropylene glycol dimethyl ether, Glycol derivatives such as dipropylene glycol monoethyl ether, dipropylene glycol diethyl ether, tripropylene glycol monomethyl ether, tripropylene glycol dimethyl ether, acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl amyl ketone, 3-pentanone, cyclohexane Sanones and other ketones, methyl acetate, ethyl acetate, butyl acetate, hexyl acetate, octyl acetate, 2-ethylhexyl acetate, 3-methoxybutyl acetate, ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, diethylene glycol monomethyl ether acetate, diethylene glycol Esters such as monobutyl ether acetate, polar solvents such as dimethylformamide, dimethylacetamide, dimethyl sulfoxide, N-methyl-2-pyrrolidone, γ-butyrolactone, ethylene carbonate, propylene carbonate, and aromatic hydrocarbons such as benzene, toluene, xylene And aliphatic hydrocarbons such as hexane, heptane, octane and cyclohexane. These may be used alone or in combination of two or more.

また、溶剤(C)は、沸点が100℃以上の有機溶剤(C1)を含有することが好ましい。溶剤(C)が有機溶剤(C1)を含有することで、ケイ素含有膜形成組成物の乾燥を抑制することができる。そのため、マスクパターンの形成にインクジェット印刷法を採用した場合に、ケイ素含有膜形成組成物の乾燥によって起こるインクジェットノズルの目詰まりを防ぐことができる。また、マスクパターンの形成にスクリーン印刷法を採用した場合に、印刷版上でケイ素含有膜形成組成物が乾燥して固着してしまうのを回避することができる。したがって、溶剤(C)に有機溶剤(C1)を含有させることで、半導体基板に高精度のマスクパターンを形成することができる。溶剤(C)に有機溶剤(C1)を含有させる場合、有機溶剤(C1)は、溶剤(C)の全質量に対し約10質量%以上となるように含有させることが好ましい。   Moreover, it is preferable that a solvent (C) contains the organic solvent (C1) whose boiling point is 100 degreeC or more. When the solvent (C) contains the organic solvent (C1), drying of the silicon-containing film-forming composition can be suppressed. Therefore, when the ink jet printing method is adopted for forming the mask pattern, it is possible to prevent clogging of the ink jet nozzles caused by drying of the silicon-containing film forming composition. In addition, when a screen printing method is adopted for forming the mask pattern, it is possible to avoid the silicon-containing film forming composition from being dried and fixed on the printing plate. Therefore, a high-precision mask pattern can be formed on the semiconductor substrate by containing the organic solvent (C1) in the solvent (C). When the organic solvent (C1) is contained in the solvent (C), the organic solvent (C1) is preferably contained so as to be about 10% by mass or more based on the total mass of the solvent (C).

有機溶剤(C1)の具体例としては、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノフェニルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノプロピルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、エチレングリコールモノフェニルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノプロピルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノフェニルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、2−メトキシブチルアセテート、3−メトキシブチルアセテート、4−メトキシブチルアセテート、2−メチル−3−メトキシブチルアセテート、3−メチル−3−メトキシブチルアセテート、3−エチル−3−メトキシブチルアセテート、2−エトキシブチルアセテート、4−エトキシブチルアセテート、4−プロポキシブチルアセテート、2−メトキシペンチルアセテート、3−メトキシペンチルアセテート、4−メトキシペンチルアセテート、2−メチル−3−メトキシペンチルアセテート、3−メチル−3−メトキシペンチルアセテート、3−メチル−4−メトキシペンチルアセテート、4−メチル−4−メトキシペンチルアセテート、メチルイソブチルケトン、エチルイソブチルケトン、シクロヘキサノン、プロピオン酸プロピル、プロピオン酸イソプロピル、メチル−3−メトキシプロピオネート、エチル−3−メトキシプロピオネート、エチル−3−エトキシプロピオネート、エチル−3−プロポキシプロピオネート、プロピル−3−メトキシプロピオネート、イソプロピル−3−メトキシプロピオネート、酢酸ブチル、酢酸イソアミル、アセト酢酸メチル、アセト酢酸エチル、乳酸メチル、乳酸エチル、乳酸ブチル、乳酸エチルヘキシル、ベンジルメチルエーテル、ベンジルエチルエーテル、ジヘキシルエーテル、酢酸ベンジル、安息香酸エチル、シュウ酸ジエチル、マレイン酸ジエチル、γ − ブチロラクトン、ベンゼン、トルエン、キシレン、シクロヘキサノン、ブタノール、イソブタノール、3−メチル−3−メトキシブタノール、ヘキサノール、シクロヘキサノール、エチレングリコール、ジエチレングリコール、ジプロピレングリコール、グリセリン、テルピネオール、ターピネオール、ジプロピレングリコールモノメチルエーテルなどが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。   Specific examples of the organic solvent (C1) include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dipropyl ether, propylene glycol. Monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, propylene glycol dimethyl ether, propylene glycol diethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene Glycol monobutyl ether, diethylene glycol monophenyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monopropyl ether acetate, ethylene glycol monobutyl ether acetate, ethylene glycol monophenyl ether acetate, diethylene glycol Monomethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monopropyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol monophenyl ether acetate, propylene glycol Monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate, 2-methoxybutyl acetate, 3-methoxybutyl acetate, 4-methoxybutyl acetate, 2-methyl-3-methoxybutyl acetate, 3-methyl- 3-methoxybutyl acetate, 3-ethyl-3-methoxybutyl acetate, 2-ethoxybutyl acetate, 4-ethoxybutyl acetate, 4-propoxybutyl acetate, 2-methoxypentyl acetate, 3-methoxypentyl acetate, 4-methoxypentyl Acetate, 2-methyl-3-methoxypentyl acetate, 3-methyl-3-methoxypentyl acetate, 3-methyl-4-methoxypentyl acetate 4-methyl-4-methoxypentyl acetate, methyl isobutyl ketone, ethyl isobutyl ketone, cyclohexanone, propyl propionate, isopropyl propionate, methyl-3-methoxypropionate, ethyl-3-methoxypropionate, ethyl-3 -Ethoxypropionate, ethyl-3-propoxypropionate, propyl-3-methoxypropionate, isopropyl-3-methoxypropionate, butyl acetate, isoamyl acetate, methyl acetoacetate, ethyl acetoacetate, methyl lactate, Ethyl lactate, butyl lactate, ethyl hexyl lactate, benzyl methyl ether, benzyl ethyl ether, dihexyl ether, benzyl acetate, ethyl benzoate, diethyl oxalate, diethyl maleate, γ-butyrolactone, ben Zen, toluene, xylene, cyclohexanone, butanol, isobutanol, 3-methyl-3-methoxybutanol, hexanol, cyclohexanol, ethylene glycol, diethylene glycol, dipropylene glycol, glycerin, terpineol, terpineol, dipropylene glycol monomethyl ether, etc. It is done. These may be used alone or in combination of two or more.

《その他》
ケイ素含有膜形成組成物中に含まれる金属不純物の濃度は、約500ppb以下であることが好ましく、約100ppb以下であることがより好ましい。また、ケイ素含有膜形成組成物は、その他の添加剤として一般的な界面活性剤や増粘剤などを含有してもよい。界面活性剤としては、たとえば、アニオン系、カチオン系、ノニオン系等の化合物が挙げられ、金属不純物の汚染リスクを低減する点からノニオン系界面活性剤が好ましい。
<Others>
The concentration of the metal impurity contained in the silicon-containing film forming composition is preferably about 500 ppb or less, and more preferably about 100 ppb or less. Moreover, the silicon-containing film forming composition may contain a general surfactant, a thickener, and the like as other additives. Examples of the surfactant include anionic, cationic, and nonionic compounds, and a nonionic surfactant is preferable from the viewpoint of reducing the risk of contamination with metal impurities.

《不純物拡散層の形成方法、および太陽電池の製造方法》
図1(A)〜(F)は、実施形態に係る不純物拡散層の形成方法を含む太陽電池の製造方法を説明するための工程断面図である。図1を参照して、実施の形態に係るケイ素含有膜形成組成物をマスク材組成物として用いて不純物拡散層を形成する方法と、これにより不純物拡散層が形成された半導体基板を備えた太陽電池の製造方法の一例について説明する。
<< Method for Forming Impurity Diffusion Layer and Method for Manufacturing Solar Cell >>
1A to 1F are process cross-sectional views for explaining a method for manufacturing a solar cell including a method for forming an impurity diffusion layer according to an embodiment. Referring to FIG. 1, a method for forming an impurity diffusion layer using a silicon-containing film forming composition according to an embodiment as a mask material composition, and a solar including a semiconductor substrate on which the impurity diffusion layer is formed An example of a battery manufacturing method will be described.

まず、図1(A)に示すように、シリコン基板等のN型の半導体基板1上に、マスク材組成物Mを選択的に塗布する。マスク材組成物Mは、インクジェット方式により半導体基板1の表面に選択的に塗布されてパターン状となる。すなわち、周知のインクジェット吐出機のインクジェットノズルから、半導体基板1の所定領域にマスク材組成物Mを吐出してパターニングする。インクジェット吐出機としては、電圧を加えると変形するピエゾ素子(圧電素子)を利用したピエゾ方式の吐出機を用いる。なお、加熱により発生する気泡を利用したサーマル方式の吐出機等を用いてもよい。マスクパターンを形成した後は、焼成してマスク材組成物Mを乾燥させる。   First, as shown in FIG. 1A, a mask material composition M is selectively applied onto an N-type semiconductor substrate 1 such as a silicon substrate. The mask material composition M is selectively applied to the surface of the semiconductor substrate 1 by an ink jet method to form a pattern. That is, patterning is performed by discharging the mask material composition M to a predetermined region of the semiconductor substrate 1 from an inkjet nozzle of a known inkjet discharge machine. As an inkjet discharger, a piezo-type discharger using a piezoelectric element (piezoelectric element) that deforms when a voltage is applied is used. Note that a thermal-type dispenser using bubbles generated by heating may be used. After forming the mask pattern, the mask material composition M is dried by baking.

次に、図1(B)に示すように、半導体基板1上に形成されたマスク材組成物Mのパターンに応じて、半導体基板1上に、P型の不純物拡散成分を含有する拡散剤組成物2と、N型の不純物拡散成分を含有する拡散剤組成物3とを選択的に塗布する。拡散剤組成物2および拡散剤組成物3は、周知の方法で調整されたものである。   Next, as shown in FIG. 1B, a diffusing agent composition containing a P-type impurity diffusion component on the semiconductor substrate 1 in accordance with the pattern of the mask material composition M formed on the semiconductor substrate 1. The product 2 and the diffusing agent composition 3 containing an N-type impurity diffusion component are selectively applied. The diffusing agent composition 2 and the diffusing agent composition 3 are prepared by a known method.

次に、図1(C)に示すように、拡散剤組成物2および拡散剤組成物3がパターニングされた半導体基板1を、たとえば、電気炉等の拡散炉内に載置して焼成し、拡散剤組成物2中のP型の不純物拡散成分、および拡散剤組成物3中のN型の不純物拡散成分を半導体基板1の表面から半導体基板1内に拡散させる。なお、拡散炉に代えて、慣用のレーザーの照射により半導体基板1を加熱してもよい。このようにして、P型の不純物拡散成分が半導体基板1内に拡散して、P型不純物拡散層4が形成され、また、N型の不純物拡散成分が半導体基板1内に拡散して、N型不純物拡散層5が形成される。   Next, as shown in FIG. 1C, the semiconductor substrate 1 on which the diffusing agent composition 2 and the diffusing agent composition 3 are patterned is placed in a diffusion furnace such as an electric furnace and fired, for example. The P-type impurity diffusion component in the diffusing agent composition 2 and the N-type impurity diffusion component in the diffusing agent composition 3 are diffused from the surface of the semiconductor substrate 1 into the semiconductor substrate 1. Instead of the diffusion furnace, the semiconductor substrate 1 may be heated by conventional laser irradiation. In this way, the P-type impurity diffusion component diffuses into the semiconductor substrate 1 to form the P-type impurity diffusion layer 4, and the N-type impurity diffusion component diffuses into the semiconductor substrate 1, and N A type impurity diffusion layer 5 is formed.

次に、図1(D)に示すように、たとえばフッ酸などの剥離剤を用いて、マスク材組成物M、拡散剤組成物2、および拡散剤組成物3を除去する。   Next, as shown in FIG. 1D, the mask material composition M, the diffusing agent composition 2, and the diffusing agent composition 3 are removed using a release agent such as hydrofluoric acid.

次に、図1(E)に示すように、熱酸化等により、半導体基板1のP型不純物拡散層4およびN型不純物拡散層5が形成された側の表面に、パッシベーション層6を形成する。また、半導体基板1のパッシベーション層6が形成された側と反対側の面に、周知の方法により微細な凹凸構造を有するテクスチャ構造を形成し、その上に太陽光の反射防止効果を有するシリコン窒化膜7を形成する。   Next, as shown in FIG. 1E, a passivation layer 6 is formed on the surface of the semiconductor substrate 1 on the side where the P-type impurity diffusion layer 4 and the N-type impurity diffusion layer 5 are formed by thermal oxidation or the like. . Further, a silicon nitride having an effect of preventing reflection of sunlight is formed on a surface of the semiconductor substrate 1 opposite to the side where the passivation layer 6 is formed by forming a texture structure having a fine uneven structure by a known method. A film 7 is formed.

次に、図1(F)に示すように、周知のフォトリソグラフィ法およびエッチング法により、パッシベーション層6を選択的に除去して、P型不純物拡散層4およびN型不純物拡散層5の所定領域が露出するようにコンタクトホール6aを形成する。そして、P型不純物拡散層4上に設けられたコンタクトホール6aに、たとえば電解めっき法および無電解めっき法により所望の金属を充填して、P型不純物拡散層4と電気的に接続された電極8を形成する。また、同様にして、N型不純物拡散層5上に設けられたコンタクトホール6aに、N型不純物拡散層5と電気的に接続された電極9を形成する。以上の工程により、本実施形態に係る太陽電池10を製造することができる。   Next, as shown in FIG. 1F, the passivation layer 6 is selectively removed by a well-known photolithography method and etching method, and predetermined regions of the P-type impurity diffusion layer 4 and the N-type impurity diffusion layer 5 are obtained. A contact hole 6a is formed so that is exposed. Then, a contact hole 6a provided on the P-type impurity diffusion layer 4 is filled with a desired metal by, for example, an electrolytic plating method and an electroless plating method, and is electrically connected to the P-type impurity diffusion layer 4 8 is formed. Similarly, an electrode 9 electrically connected to the N-type impurity diffusion layer 5 is formed in the contact hole 6 a provided on the N-type impurity diffusion layer 5. The solar cell 10 according to the present embodiment can be manufactured through the above steps.

以上説明したように、本実施の形態に係るケイ素含有膜形成組成物は、側鎖にOH基などの極性基を持たず、環構造を持つ疎水性が高いシロキサンポリマー(A)を含有する。これにより、ケイ素含有膜形成組成物を半導体基板に印刷した際の経時変化が抑制される。さらに、本実施の形態に係るケイ素含有膜形成組成物は極性低分子化合物(B)を含有することにより、親水性基板への密着性が改善されることで、ケイ素含有膜形成組成物を親水性基板に印刷して得られる印刷パターンの乾燥前後の変動を抑制することができる。したがって、本実施の形態に係るケイ素含有膜形成組成物は、親水性基板への不純物拡散成分の拡散保護の際に形成されるマスクに好適に採用可能である。   As described above, the silicon-containing film-forming composition according to the present embodiment contains a highly hydrophobic siloxane polymer (A) having a ring structure and having no polar group such as an OH group in the side chain. Thereby, a time-dependent change at the time of printing a silicon-containing film formation composition on a semiconductor substrate is suppressed. Furthermore, the silicon-containing film-forming composition according to the present embodiment contains the polar low-molecular compound (B), whereby the adhesion to the hydrophilic substrate is improved, thereby making the silicon-containing film-forming composition hydrophilic. Variation of the printed pattern obtained by printing on the conductive substrate before and after drying can be suppressed. Therefore, the silicon-containing film forming composition according to the present embodiment can be suitably used for a mask formed at the time of diffusion protection of impurity diffusion components on a hydrophilic substrate.

また、本実施の形態に係るケイ素含有膜形成組成物を用いて不純物拡散層を形成した場合には、印刷パターンの変動が抑制されるため、より高精度に不純物拡散層を形成することができる。そして、このような不純物拡散層の形成方法により不純物拡散層が形成された半導体基板を太陽電池に用いた場合には、より信頼性の高い太陽電池を得ることができる。   In addition, when the impurity diffusion layer is formed using the silicon-containing film forming composition according to the present embodiment, since the fluctuation of the printing pattern is suppressed, the impurity diffusion layer can be formed with higher accuracy. . When a semiconductor substrate on which an impurity diffusion layer is formed by such a method for forming an impurity diffusion layer is used for a solar cell, a more reliable solar cell can be obtained.

本発明は、上述の実施の形態に限定されるものではなく、当業者の知識に基づいて各種の設計変更などの変形を加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれるものである。上述の実施の形態と以下の変形例との組合せによって生じる新たな実施の形態は、組み合わされる実施の形態および変形例それぞれの効果をあわせもつ。   The present invention is not limited to the above-described embodiments, and various modifications such as design changes can be added based on the knowledge of those skilled in the art, and the embodiments to which such modifications are added. Are also included in the scope of the present invention. A new embodiment generated by the combination of the above-described embodiment and the following modification has the effects of the combined embodiment and modification.

たとえば、上述の実施の形態では、インクジェット印刷法により半導体基板1にマスク材組成物Mを選択的に塗布したが、スピンコート法、スプレー印刷法、ロールコート印刷法、スクリーン印刷法、凸版印刷法、凹版印刷法などの他の印刷法を採用してもよい。   For example, in the above-described embodiment, the mask material composition M is selectively applied to the semiconductor substrate 1 by the inkjet printing method. However, the spin coating method, the spray printing method, the roll coating printing method, the screen printing method, and the relief printing method are used. Other printing methods such as an intaglio printing method may be employed.

また、上述の実施の形態では、マスク材組成物を太陽電池の製造に用いたが、特にこれに限定されず、半導体素子を搭載した様々な半導体装置の製造に用いることができる。   In the above-described embodiment, the mask material composition is used for manufacturing a solar cell. However, the present invention is not particularly limited thereto, and can be used for manufacturing various semiconductor devices on which semiconductor elements are mounted.

以下、本発明の実施例を説明するが、これら実施例は、本発明を好適に説明するための例示に過ぎず、なんら本発明を限定するものではない。   Examples of the present invention will be described below. However, these examples are merely examples for suitably explaining the present invention, and do not limit the present invention.

(シロキサンポリマーの接触角評価)
下記式(A1−1a)(質量平均分子量3600)、下記式(A1−2a)(質量平均分子量5000)で表されるシロキサンポリマーと、従来マスク材料として用いられてきた、側鎖にOH基を有するシロキサンポリマー(下記式(A’1−1)、質量平均分子量2200)、下記式(A1−3a)(質量平均分子量1500)と式(A1−2a)、式(A1−1a)とを表1に記載の質量比で含むシロキサンポリマーについて水に対する接触角を測定した。各ポリマーのプロピレングリコールモノメチルエーテルアセテート溶液をSiウエハー上にスピンコートし、ホットプレート上で、200℃で3分間加熱して樹脂膜を形成した。その後、水50μLを滴下し、協和界面科学株式会社製DROP MASTER−700を用いて、接触角を測定した。表1に各シロキサンポリマーについて測定された接触角を示す。

Figure 0006001268
Figure 0006001268
式(A1−2a)において、n:mは、60:40〜80:20ある。
Figure 0006001268
式(A’1−1)において、uは整数である。
Figure 0006001268
式(A1−3a)において、v:wは、65:10〜55:20である。 (Evaluation of contact angle of siloxane polymer)
A siloxane polymer represented by the following formula (A1-1a) (mass average molecular weight 3600), the following formula (A1-2a) (mass average molecular weight 5000), and an OH group on a side chain that has been used as a conventional mask material. The following siloxane polymer (formula (A′1-1), mass average molecular weight 2200), formula (A1-3a) (mass average molecular weight 1500), formula (A1-2a) and formula (A1-1a) The contact angle with respect to water was measured for the siloxane polymer contained in the mass ratio described in 1. A propylene glycol monomethyl ether acetate solution of each polymer was spin-coated on a Si wafer and heated at 200 ° C. for 3 minutes on a hot plate to form a resin film. Then, 50 μL of water was dropped, and the contact angle was measured using DROP MASTER-700 manufactured by Kyowa Interface Science Co., Ltd. Table 1 shows the contact angles measured for each siloxane polymer.
Figure 0006001268
Figure 0006001268
In the formula (A1-2a), n: m is 60:40 to 80:20.
Figure 0006001268
In the formula (A′1-1), u is an integer.
Figure 0006001268
In the formula (A1-3a), v: w is 65:10 to 55:20.

表1に示すように、式(A1−1a)、式(A1−2a)で表されるシロキサンポリマーは水に対する接触角が75度以上であり、式(A’1−1)で表されるシロキサンポリマーに比べて疎水性が高いことが確認された。   As shown in Table 1, the siloxane polymer represented by the formula (A1-1a) and the formula (A1-2a) has a contact angle with water of 75 degrees or more, and is represented by the formula (A′1-1). It was confirmed that the hydrophobicity was higher than that of the siloxane polymer.

(シロキサンポリマーの経時評価)
シロキサンポリマーの接触角評価で使用した上記の各組成物溶液を室温(約23℃)で保管し、10日経過後の分子量を測定した。10日経過後の分子量の変化量が5%以内の場合を○、5%以上増加していたものを×として評価した。表1にその結果を示す。

Figure 0006001268
(Evaluation of siloxane polymer over time)
Each of the above composition solutions used in the evaluation of the contact angle of the siloxane polymer was stored at room temperature (about 23 ° C.), and the molecular weight after 10 days was measured. When the amount of change in molecular weight after the lapse of 10 days was within 5%, the case where it was increased by 5% or more was evaluated as x. Table 1 shows the results.
Figure 0006001268

(ケイ素含有膜形成組成物)
表2に実施例1乃至13、および比較例1、2のケイ素含有膜形成組成物の各成分および含有量を示す。

Figure 0006001268
表2において、(A1−1a)、(A1−2a)は、表1の記載と同様に、それぞれ上述した式(A1−1a)、式(A1−2a)で表されるシロキサンポリマーである。また、DPGはジプロピレングリコールモノメチルエーテル、DPG−Mはジプロピレングリコールモノメチルエーテル、TPG−Mはトリプロピレングリコールモノメチルエーテル、PGMEはプロピレングリコールモノメチルエーテル、PGMEAプロピレングリコールモノメチルエーテルアセテート、のそれぞれ略である。SF8421EG(ダウケミカル社製)はノニオン系界面活性剤を示す。 (Silicon-containing film-forming composition)
Table 2 shows the components and contents of the silicon-containing film-forming compositions of Examples 1 to 13 and Comparative Examples 1 and 2.
Figure 0006001268
In Table 2, (A1-1a) and (A1-2a) are siloxane polymers represented by the above-described formula (A1-1a) and formula (A1-2a), respectively, as described in Table 1. Further, DPG is abbreviation for dipropylene glycol monomethyl ether, DPG-M is abbreviation for dipropylene glycol monomethyl ether, TPG-M is tripropylene glycol monomethyl ether, PGME is abbreviation for propylene glycol monomethyl ether, PGMEA propylene glycol monomethyl ether acetate, respectively. SF8421EG (manufactured by Dow Chemical Company) represents a nonionic surfactant.

(印刷特性判定方法)
各実施例、各比較例のケイ素含有膜形成組成物について、下記印刷条件にて印刷を行って印刷パターンを形成した後、加熱により乾燥を行った。
<インクジェット印刷条件>
印刷基板:6インチSiウエハー
基板処理:なし(自然酸化膜あり、親水性)
基板温度:70℃
プリベーク:200℃、2分
評価ターゲット:線幅400〜600μm
(Print characteristics judgment method)
About the silicon-containing film formation composition of each Example and each comparative example, after printing on the following printing conditions and forming a printing pattern, it dried by heating.
<Inkjet printing conditions>
Printed substrate: 6-inch Si wafer substrate Treatment: None (with natural oxide film, hydrophilic)
Substrate temperature: 70 ° C
Pre-bake: 200 ° C., 2 minutes Evaluation target: Line width 400-600 μm

印刷パターンを乾燥する前の線幅をα、印刷パターンを乾燥した後の線幅をβとしたとき、線幅の変動割合が10%以下の場合を良好(○)とし、10%を超える場合を不良(×)とした。各試料の印刷特性の判定結果を表2に記載した。   When the line width before drying the printed pattern is α and the line width after drying the printed pattern is β, when the variation rate of the line width is 10% or less, it is good (◯) and exceeds 10% Was determined to be defective (x). The determination results of the printing characteristics of each sample are shown in Table 2.

表2に示すように、極性低分子化合物を含有する実施例1乃至13では、印刷パターンの乾燥前後の変動割合が10%以下に抑えられており、極性低分子化合物による親水性基板に対する密着性向上作用により印刷パターンの収縮が抑制されていることがわかる。これに対して、比較例1、2では、疎水性が高いシロキサンポリマーに起因する親水性基板に対する密着性の低下のため、印刷パターンの乾燥前後の変動割合が10%を超えることがわかる。   As shown in Table 2, in Examples 1 to 13 containing a polar low molecular weight compound, the fluctuation ratio of the printed pattern before and after drying was suppressed to 10% or less, and the adhesion to the hydrophilic substrate by the polar low molecular weight compound was reduced. It can be seen that the shrinkage of the print pattern is suppressed by the improving action. On the other hand, in Comparative Examples 1 and 2, it can be seen that the fluctuation ratio of the printed pattern before and after drying exceeds 10% due to a decrease in adhesion to the hydrophilic substrate due to the highly hydrophobic siloxane polymer.

また、表3に示すような、複数のシロキサンポリマーを含む実施例17乃至22、比較例4、5のケイ素含有膜形成組成物について、上記方法と同様に印刷特性を判定した。

Figure 0006001268
表3において、(A1−3a)は、表1の記載と同様に、上述した式(A1−3a)で表されるシロキサンポリマーである。その他の略語は、表2の説明に準じる。 In addition, the printing characteristics of the silicon-containing film forming compositions of Examples 17 to 22 and Comparative Examples 4 and 5 containing a plurality of siloxane polymers as shown in Table 3 were determined in the same manner as in the above method.
Figure 0006001268
In Table 3, (A1-3a) is a siloxane polymer represented by the formula (A1-3a) described above, as described in Table 1. Other abbreviations conform to the explanation in Table 2.

表3に示すように、極性低分子化合物を含有する実施例17乃至22では、印刷パターンの乾燥前後の変動割合が10%以下に抑えられており、極性低分子化合物による親水性基板に対する密着性向上作用により印刷パターンの収縮が抑制されていることがわかる。これに対して、比較例4,5では、疎水性が高いシロキサンポリマーに起因する親水性基板に対する密着性の低下のため、印刷パターンの乾燥前後の変動割合が10%を超えることがわかる。   As shown in Table 3, in Examples 17 to 22 containing a polar low molecular compound, the fluctuation ratio of the printed pattern before and after drying is suppressed to 10% or less, and the adhesion to the hydrophilic substrate by the polar low molecular compound is low. It can be seen that the shrinkage of the print pattern is suppressed by the improving action. On the other hand, in Comparative Examples 4 and 5, it can be seen that the fluctuation ratio of the printed pattern before and after drying exceeds 10% due to a decrease in adhesion to the hydrophilic substrate due to the highly hydrophobic siloxane polymer.

(極性低分子化合物の添加量依存性)
極性低分子化合物の添加量と印刷パターンの乾燥前後の変動との関係を調べるため、実施例1のケイ素含有膜形成組成物をベースに、極性低分子化合物の含有量のみを変えて実施例14乃至16、比較例3のケイ素含有膜形成組成物を作製した。各試料の成分および含有量を表3に示す。各試料について上述した印刷特性判定方法に従って、印刷特性を評価した。各試料の印刷特性の判定結果を表4に記載した。

Figure 0006001268
Figure 0006001268
(Dependence on the amount of polar low-molecular compound added)
In order to investigate the relationship between the addition amount of the polar low molecular compound and the fluctuation of the printed pattern before and after drying, Example 14 was carried out by changing only the content of the polar low molecular compound based on the silicon-containing film forming composition of Example 1. Thru | or 16, the silicon-containing film formation composition of the comparative example 3 was produced. Table 3 shows the components and contents of each sample. The printing characteristics were evaluated according to the printing characteristics determination method described above for each sample. The determination results of the printing characteristics of each sample are shown in Table 4.
Figure 0006001268
Figure 0006001268

表4に示すように、ケイ素含有膜形成組成物における極性低分子化合物の含有量が50ppm以上の場合に、線幅の変動割合が10%以下に抑制され、印刷特性が良好となることがわかった。   As shown in Table 4, when the content of the polar low molecular compound in the silicon-containing film-forming composition is 50 ppm or more, the variation rate of the line width is suppressed to 10% or less, and the printing characteristics are improved. It was.

M マスク材組成物、 1 半導体基板、 2,3 拡散剤組成物、 4 P型不純物拡散層、 5 N型不純物拡散層、 6 パッシベーション層、 6a コンタクトホール、 7 シリコン窒化膜、 8,9 電極、 10 太陽電池   M mask material composition, 1 semiconductor substrate, 2, 3 diffusing agent composition, 4 P-type impurity diffusion layer, 5 N-type impurity diffusion layer, 6 passivation layer, 6a contact hole, 7 silicon nitride film, 8, 9 electrode, 10 Solar cell

Claims (5)

側鎖に環構造を持つシロキサンポリマー(A)と、
極性低分子化合物(B)と、
溶剤(C)と、
を含有し、
前記極性低分子化合物(B)は、塩基性を有するアミン類であり、
前記シロキサンポリマー(A)の水に対する接触角が75度以上であることを特徴とするケイ素含有膜形成組成物。
A siloxane polymer (A) having a ring structure in the side chain;
A polar low-molecular compound (B);
Solvent (C),
Contain,
The polar low molecular compound (B) is a basic amine.
A silicon-containing film-forming composition, wherein the siloxane polymer (A) has a contact angle with water of 75 ° or more .
極性低分子化合物(B)は2級または3級のアルコールアミンまたはアルキルアミンである請求項1に記載のケイ素含有膜形成組成物。 The silicon-containing film-forming composition according to claim 1, wherein the polar low molecular compound (B) is a secondary or tertiary alcohol amine or alkyl amine. 半導体基板への不純物拡散成分の拡散保護に用いられるマスク材組成物である請求項1または2に記載のケイ素含有膜形成組成物。 The silicon-containing film-forming composition according to claim 1 or 2 which is a mask material composition used for the diffusion protective impurity diffusion component into the semiconductor substrate. シロキサンポリマー(A)が下記式(a1)で表される構成単位を持つ請求項1乃至のいずれか1項に記載のケイ素含有膜形成組成物。
Figure 0006001268
式(a1)中、Raは置換基を有していてもよい芳香族環または脂肪族環である。
The silicon-containing film-forming composition according to any one of claims 1 to 3 , wherein the siloxane polymer (A) has a structural unit represented by the following formula (a1).
Figure 0006001268
In formula (a1), Ra is an aromatic ring or an aliphatic ring which may have a substituent.
半導体基板に、請求項1乃至のいずれか1項に記載のケイ素含有膜形成組成物を塗布する工程と、
前記半導体基板に塗布された前記ケイ素含有膜形成組成物をマスクとして、不純物拡散成分を前記半導体基板に選択的に塗布し、拡散させる拡散工程と、
を含むことを特徴とする不純物拡散層の形成方法。
Applying a silicon-containing film-forming composition according to any one of claims 1 to 4 to a semiconductor substrate;
Using the silicon-containing film forming composition applied to the semiconductor substrate as a mask, a diffusion step of selectively applying and diffusing an impurity diffusion component on the semiconductor substrate;
A method for forming an impurity diffusion layer, comprising:
JP2012000833A 2011-01-31 2012-01-05 Silicon-containing film forming composition and method for forming impurity diffusion layer Expired - Fee Related JP6001268B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012000833A JP6001268B2 (en) 2011-01-31 2012-01-05 Silicon-containing film forming composition and method for forming impurity diffusion layer
PCT/JP2012/000167 WO2012105163A1 (en) 2011-01-31 2012-01-13 Composition for forming silicon-containing film, method for forming impurity-diffused layer, and solar cell
TW101103125A TW201245285A (en) 2011-01-31 2012-01-31 Composition for forming silicon-containing film, method for forming impurity-diffused layer, and solar cell

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011019216 2011-01-31
JP2011019216 2011-01-31
JP2012000833A JP6001268B2 (en) 2011-01-31 2012-01-05 Silicon-containing film forming composition and method for forming impurity diffusion layer

Publications (2)

Publication Number Publication Date
JP2012178549A JP2012178549A (en) 2012-09-13
JP6001268B2 true JP6001268B2 (en) 2016-10-05

Family

ID=46602393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012000833A Expired - Fee Related JP6001268B2 (en) 2011-01-31 2012-01-05 Silicon-containing film forming composition and method for forming impurity diffusion layer

Country Status (3)

Country Link
JP (1) JP6001268B2 (en)
TW (1) TW201245285A (en)
WO (1) WO2012105163A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014126117A1 (en) * 2013-02-12 2014-08-21 日立化成株式会社 Composition for forming barrier layer, semiconductor substrate with barrier layer, method for producing substrate for solar cells, and method for manufacturing solar cell element
US9691935B2 (en) 2013-07-04 2017-06-27 Toray Industries, Inc. Impurity-diffusing composition and method for producing semiconductor element
JP2015173184A (en) * 2014-03-11 2015-10-01 東京応化工業株式会社 Alkali etching mask agent composition, and etching method
JP6893438B2 (en) * 2016-04-12 2021-06-23 京セラ株式会社 Insulating paste used to form a protective layer in the manufacture of solar cell elements
WO2019176716A1 (en) * 2018-03-16 2019-09-19 東レ株式会社 Impurity diffusion composition, method for producing semiconductor device using same, and method for manufacturing solar cell
JP2023179136A (en) * 2022-06-07 2023-12-19 東京応化工業株式会社 Diffusion agent composition and method of manufacturing semiconductor substrate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004315300A (en) * 2003-04-17 2004-11-11 Nippon Steel Chem Co Ltd Silica fine particle, silica colloid in which silica fine particles are dispersed and method of manufacturing the same
JP2007049079A (en) * 2005-08-12 2007-02-22 Sharp Corp Masking paste, method for manufacturing same, and method for manufacturing solar cell using same
JP5283824B2 (en) * 2006-01-18 2013-09-04 東京応化工業株式会社 Film-forming composition

Also Published As

Publication number Publication date
JP2012178549A (en) 2012-09-13
WO2012105163A1 (en) 2012-08-09
TW201245285A (en) 2012-11-16

Similar Documents

Publication Publication Date Title
JP6001268B2 (en) Silicon-containing film forming composition and method for forming impurity diffusion layer
US8372938B2 (en) Mask material composition, method of forming impurity diffusion layer, and solar battery
KR101833159B1 (en) Polyoxometalate and heteropolyoxometalate compositions and methods for their use
TWI514081B (en) Photosensitive siloxane resin composition
US9620367B2 (en) Diffusion agent composition, method of forming impurity diffusion layer, and solar cell
KR101901564B1 (en) Composition for forming tungsten oxide film and method for producing tungsten oxide film using same
TWI531865B (en) A multilayer photoresist process pattern forming method and an inorganic film forming composition for a multilayer photoresist process
JP6079263B2 (en) Resist underlayer film forming composition and pattern forming method
TWI538968B (en) Coating composition containing siloxane resin
TWI539611B (en) A diffusion agent composition, a method for forming an impurity diffusion layer, and a solar cell
US20140193975A1 (en) Composition for forming titanium-containing resist underlayer film and patterning process
JP5970933B2 (en) Pattern formation method
KR20120056777A (en) Paintable diffusing agent composition
TWI460232B (en) Silsesquioxane resins
JP2013228702A (en) Composition for forming resist underlayer film and pattern forming method
KR20110037878A (en) Planarization over topography with molecular glass materials
JP6044397B2 (en) Mask paste composition, semiconductor device obtained using the same, and method for manufacturing semiconductor device
JP2013229391A (en) Composition for film formation, diffusion agent composition, method for manufacturing composition for film formation, and method for manufacturing diffusion agent composition
JP5955545B2 (en) Mask material composition and method for forming impurity diffusion layer
JP4917969B2 (en) Antireflection film forming composition and resist pattern forming method using the same
WO2019208762A1 (en) Resist underlayer film-forming composition, underlayer film for lithography, and pattern formation method
JP2009265647A (en) Anti-reflective film forming material and method for forming resist pattern using the same
KR102148772B1 (en) Novel polymer, resist underlayer film composition containing the polymer, and process for forming resist pattern using the composition
CN114316137A (en) High refractive index materials
WO2015015642A1 (en) Mask paste composition, semiconductor element obtained using same, and method for producing semiconductor element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160901

R150 Certificate of patent or registration of utility model

Ref document number: 6001268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees