JP6000724B2 - Crystal oscillator - Google Patents

Crystal oscillator Download PDF

Info

Publication number
JP6000724B2
JP6000724B2 JP2012169836A JP2012169836A JP6000724B2 JP 6000724 B2 JP6000724 B2 JP 6000724B2 JP 2012169836 A JP2012169836 A JP 2012169836A JP 2012169836 A JP2012169836 A JP 2012169836A JP 6000724 B2 JP6000724 B2 JP 6000724B2
Authority
JP
Japan
Prior art keywords
crystal
excitation electrode
crystal piece
axis
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012169836A
Other languages
Japanese (ja)
Other versions
JP2014030113A (en
Inventor
岩田 浩一
浩一 岩田
康平 笹岡
康平 笹岡
仁 白澤
仁 白澤
慧 笠原
慧 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Crystal Device Corp
Original Assignee
Kyocera Crystal Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Crystal Device Corp filed Critical Kyocera Crystal Device Corp
Priority to JP2012169836A priority Critical patent/JP6000724B2/en
Publication of JP2014030113A publication Critical patent/JP2014030113A/en
Application granted granted Critical
Publication of JP6000724B2 publication Critical patent/JP6000724B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

本発明は、水晶デバイスに用いられる水晶振動素子に関する。   The present invention relates to a crystal resonator element used in a crystal device.

従来より、水晶デバイスには水晶片に金属膜からなる励振電極を設けて構成された水晶振動素子が用いられている。
この水晶片は、例えば、ATカットの水晶ウェハを従来周知のフォトリソグラフィ技術とエッチング技術を用いることで形成することができる。
このような水晶振動素子は、四角形に形成され主面に凸部が形成された水晶片と、この水晶片の両主面中央に設けられる四角形状の励振電極と、この励振電極と接続され水晶片の一方の端部に設けられる引き回しパターンとから構成されている。
ここで、水晶片の主面には四角形状の凸部が設けられており、この凸部の平面中心が水晶片の平面中心より水晶片の端部側に寄せて設けられていた。
また、励振電極は、水晶片に設けられた凸部を覆うように設けられており、平面中心を凸部の平面中心と一致させた位置に設けられていた。
この励振電極は、凸部からはみ出る部分の大きさが、長辺方向及び短辺方向で同じ大きさになっていた(例えば、特許文献1参照)。
なお、凸部と励振電極とが楕円形状となる水晶振動素子も提案されている(例えば、特許文献2参照)。
2. Description of the Related Art Conventionally, a quartz crystal element in which an excitation electrode made of a metal film is provided on a quartz piece has been used in a quartz device.
This crystal piece can be formed, for example, by using an AT-cut crystal wafer by using a conventionally known photolithography technique and etching technique.
Such a crystal resonator element includes a crystal piece having a quadrangular shape and a convex portion formed on the main surface, a quadrangular excitation electrode provided at the center of both main surfaces of the crystal piece, and a crystal piece connected to the excitation electrode. It is comprised from the routing pattern provided in one edge part of a piece.
Here, a quadrangular convex portion is provided on the main surface of the crystal piece, and the plane center of the convex portion is provided closer to the end portion side of the crystal piece than the plane center of the crystal piece.
Moreover, the excitation electrode was provided so that the convex part provided in the crystal piece might be covered, and it was provided in the position which made the plane center correspond with the plane center of a convex part.
In this excitation electrode, the size of the portion protruding from the convex portion was the same in the long side direction and the short side direction (see, for example, Patent Document 1).
In addition, a crystal resonator element in which the convex portion and the excitation electrode are elliptical has been proposed (see, for example, Patent Document 2).

特許第4506135号公報Japanese Patent No. 4506135 特開2012‐74860号公報JP 2012-74860 A

水晶振動素子は、励振電極で振動エネルギーを最大にして、水晶片の縁付近で振動エネルギーを閉じ込めるのが理想状態となる。
しかしながら、従来の水晶振動素子は、四角形状に形成される凸部の角部分と、四角形状に形成される励振電極の角部分が尖っているため、水晶片の内面側から外周側まで環状に伝わる振動変位分布が歪んでしまい、CI値(クリスタルインピーダンス値)が高くなるという現象を起こしていた。
また、長手方向を縦方向とし、短手方向を横方向としたとき、従来の水晶振動素子は、凸部と励振電極との平面形状における縦方向と横方向の長さ比率が異なっていたため、凸部での振動変位分布と励振電極での振動変位分布とでズレが生じて歪んでしまい、CI値(クリスタルインピーダンス値)が高くなるという現象を起こしていた。
The ideal state of the crystal resonator element is to maximize the vibration energy by the excitation electrode and confine the vibration energy near the edge of the crystal piece.
However, in the conventional quartz resonator element, the corners of the convex portions formed in a quadrangular shape and the corners of the excitation electrodes formed in a quadrangular shape are pointed, so that the ring shape is circular from the inner surface side to the outer peripheral side of the crystal piece. The transmitted vibration displacement distribution is distorted and the CI value (crystal impedance value) increases.
In addition, when the longitudinal direction is the longitudinal direction and the short direction is the lateral direction, the conventional quartz resonator element has different length ratios in the longitudinal direction and the lateral direction in the planar shape of the convex portion and the excitation electrode. A deviation occurs between the vibration displacement distribution at the convex portion and the vibration displacement distribution at the excitation electrode, resulting in distortion, and a CI value (crystal impedance value) increases.

そこで、本発明は、低いCI値を実現するために振動変位分布の歪みを軽減する水晶振動素子を提供することを課題とする。   Therefore, an object of the present invention is to provide a crystal resonator element that reduces distortion of a vibration displacement distribution in order to realize a low CI value.

前記課題を解決するため、本発明は、水晶振動素子であって、平面視矩形で、長辺が結晶軸であるX軸と平行であり、短辺が結晶軸であるZ´軸と平行であり、長辺側の側面に結晶面であるm面が形成されている平板状の水晶片と、平面視楕円形状で、この楕円の短径側の縁が水晶片のm面にかからないように、平面中心を平面視における水晶片の投影面の中心に合わせて、水晶片の両主面に設けられている励振電極と、この水晶片の一方の端部に設けられ、前記励振電極と接続する引き回しパターンとを備え、前記水晶片の主面に楕円形状の凸部が設けられ、前記励振電極が前記凸部全体を覆いつつ、前記励振電極の楕円の中心と前記凸部の楕円の中心とが一致しており、楕円の長径と短径の長さ比率を長径/短径としたとき、楕円形状の前記励振電極の長さ比率と楕円形状の前記凸部の長さ比率とが同じ比率で構成されることを特徴とする。 In order to solve the above-described problems, the present invention provides a crystal resonator element, which is rectangular in plan view, has a long side parallel to the X axis that is the crystal axis, and a short side parallel to the Z ′ axis that is the crystal axis. There is a flat crystal piece in which the m-plane which is a crystal plane is formed on the side surface on the long side, and an elliptical shape in plan view, so that the edge on the minor axis side of this ellipse does not cover the m-plane of the crystal piece The center of the plane is aligned with the center of the projection surface of the crystal piece in plan view, and the excitation electrodes provided on both main surfaces of the crystal piece are provided at one end of the crystal piece and connected to the excitation electrode. An ellipse-shaped convex part is provided on the main surface of the crystal piece, and the excitation electrode covers the entire convex part, while the ellipse center of the excitation electrode and the ellipse center of the convex part are provided. When the ratio of the major axis to minor axis length is the major axis / minor axis, the elliptical shape Serial and length ratio of the convex portion of the length ratio and elliptic excitation electrode, characterized in that it is constituted in the same proportions.

また、本発明は、前記励振電極が、前記楕円形状の短径側を直線に形成した形状で構成されることを特徴とする。   Further, the present invention is characterized in that the excitation electrode has a shape in which the minor axis side of the elliptical shape is formed in a straight line.

このような水晶振動素子では、水晶片の両主面に設けられる楕円形状の励振電極の長さ比率と、前記水晶片の主面に楕円形状の凸部の長さ比率とが同じ比率で構成されるので、凸部での振動変位分布と励振電極での振動変位分布とが近くなって歪みを軽減することができる。   In such a crystal resonator element, the length ratio of the elliptical excitation electrode provided on both main surfaces of the crystal piece and the length ratio of the elliptical convex portion on the main surface of the crystal piece are configured with the same ratio. Therefore, the vibration displacement distribution at the convex portion and the vibration displacement distribution at the excitation electrode are close to each other, and the distortion can be reduced.

(a)は本発明の第一の実施形態に係る水晶振動素子の一例を示す模式図であり、(b)は(a)のA−A断面図である。(A) is a schematic diagram which shows an example of the crystal oscillation element which concerns on 1st embodiment of this invention, (b) is AA sectional drawing of (a). (a)は本発明の第二の実施形態に係る水晶振動素子の一例を示す模式図であり、(b)は(a)のB−B断面図である。(A) is a schematic diagram which shows an example of the crystal oscillation element which concerns on 2nd embodiment of this invention, (b) is BB sectional drawing of (a).

次に、本発明を実施するための最良の形態(以下、「実施形態」という。)について、適宜図面を参照しながら詳細に説明する。なお、各構成要素について、状態をわかりやすくするために、誇張して図示している。また、水晶片の主面という場合、水晶片に現れる平面のうち最も広い面とこの広い面と並行する面を主面とする。   Next, the best mode for carrying out the present invention (hereinafter referred to as “embodiment”) will be described in detail with reference to the drawings as appropriate. Note that each component is exaggerated for easy understanding of the state. Further, when referring to the main surface of the crystal piece, the main surface is defined as the widest surface of the planes appearing on the crystal piece and a surface parallel to the wide surface.

(第一の実施形態)
図1(a)及び(b)に示すように、本発明の第一の実施形態に係る水晶振動素子10は、四角形状の水晶片1とこの水晶片1の両主面に設けられる励振電極2と、この励振電極2と接続し水晶片1の一方の端部へ引き回されている引き回しパターン3とから構成されている。
(First embodiment)
As shown in FIGS. 1 (a) and 1 (b), a crystal resonator element 10 according to the first embodiment of the present invention includes a rectangular crystal piece 1 and excitation electrodes provided on both main surfaces of the crystal piece 1. 2 and a routing pattern 3 connected to the excitation electrode 2 and routed to one end of the crystal piece 1.

水晶片1は、例えばATカットの水晶ウェハから四角形状でかつ平板状に形成されており、長辺側の側面にm面1bが設けられている。
なお、この水晶片1は、長辺がX軸と平行であり、短辺がZ´軸と平行であり、厚みがY´軸方向と平行に形成されている。
また、この水晶片1の主面には、凸部1aが設けられている。この凸部1aの平面中心C2は、平面視における水晶片1の投影面の中心C1と一致させた状態で位置させている。なお、この凸部1aは、後述する励振電極2に覆われた状態となる。
The crystal piece 1 is formed, for example, from an AT-cut crystal wafer in a rectangular shape and a flat plate shape, and an m-plane 1b is provided on the side surface on the long side.
The crystal piece 1 has a long side parallel to the X axis, a short side parallel to the Z ′ axis, and a thickness parallel to the Y ′ axis direction.
Further, a convex portion 1 a is provided on the main surface of the crystal piece 1. The planar center C2 of the convex portion 1a is positioned in a state where it coincides with the center C1 of the projection surface of the crystal piece 1 in plan view. In addition, this convex part 1a will be in the state covered with the excitation electrode 2 mentioned later.

また、凸部1aは、楕円形状に形成されており、楕円の長径を水晶片10の長辺と平行となり、楕円の短径を水晶片10の短辺と平行となるように設けられる。
この水晶片1は、従来周知のフォトリソグラフィ技術とエッチング技術を用いて形成することができる。これにより設けられた水晶片1は、長辺側の側面にm面1bが形成された状態となる。つまり、m面1bは、水晶をエッチングしたときに側面側に生じる結晶面である。
なお、水晶片1は、引き回しパターン3が設けられる端部をX軸の+X方向とし、反対側の端部を−X方向としている。
The convex portion 1 a is formed in an elliptical shape, and is provided so that the major axis of the ellipse is parallel to the long side of the crystal piece 10 and the minor axis of the ellipse is parallel to the short side of the crystal piece 10.
This crystal piece 1 can be formed using a conventionally known photolithography technique and etching technique. Thus, the provided crystal piece 1 is in a state in which the m-plane 1b is formed on the side surface on the long side. In other words, the m-plane 1b is a crystal plane generated on the side surface side when the crystal is etched.
The crystal piece 1 has an end portion where the routing pattern 3 is provided as the + X direction of the X axis and an opposite end portion as the −X direction.

図1(a)に示すように、励振電極2は、楕円形状となっており、楕円の短径側の縁が水晶片1のm面1bにかからないように、平面中心C3を平面視における水晶片1の投影面の中心C1に合わせて設けられている。つまり、水晶片1を平面視で見たときの主面とm面1bとを含んだ平面の中心C1と励振電極2の平面中心C3とが一致した状態となっている。
水晶片1を平面視で見たときの主面とm面1bとを含んだ平面の中心とは、図1(a)及び(b)に示すように、水晶片1の長辺の中心を通る中心線CL1と、水晶片1の平面視における短辺の中心を通る中心線CL2とが交差する点でもある。
また、励振電極2は、水晶片1の両主面に設けられ、それぞれ対向するように設けられている。
なお、励振電極2は、長辺を凸部1aの長辺と平行となり、短辺を凸部1aの短辺と平行となるように設けられる。
As shown in FIG. 1A, the excitation electrode 2 has an elliptical shape, and the center of the plane C3 is a crystal in a plan view so that the edge on the minor axis side of the ellipse does not cover the m-plane 1b of the crystal piece 1. It is provided in accordance with the center C1 of the projection surface of the piece 1. In other words, the center C1 of the plane including the main surface and the m-plane 1b when the quartz crystal piece 1 is viewed in plan view and the plane center C3 of the excitation electrode 2 are in agreement.
The center of the plane including the main surface and the m-plane 1b when the crystal piece 1 is viewed in plan view is the center of the long side of the crystal piece 1 as shown in FIGS. 1 (a) and 1 (b). This is also the point where the passing center line CL1 and the center line CL2 passing through the center of the short side in plan view of the crystal piece 1 intersect.
Further, the excitation electrodes 2 are provided on both main surfaces of the crystal piece 1 so as to face each other.
The excitation electrode 2 is provided so that the long side is parallel to the long side of the convex portion 1a and the short side is parallel to the short side of the convex portion 1a.

引き回しパターン3は、水晶片1の一方の端部に設けられ、励振電極2と接続している。この引き回しパターン3は、水晶片1の主面の縁に沿って設けられている。   The routing pattern 3 is provided at one end of the crystal piece 1 and is connected to the excitation electrode 2. The routing pattern 3 is provided along the edge of the main surface of the crystal piece 1.

例えば、引き回しパターン3は、2つ一対の接続パッド3aと引き回し配線3bとから構成されている。接続パッド3aは、水晶片1の両主面の角部に並んで設けられており、1つの接続パッド3aが一方の主面に設けられた励振電極2と引き回し配線3bを介して接続し、他の接続パッド3aが他方の主面に設けられた励振電極2と引き回し配線3bを介して接続している。
また、引き回し配線3bは、水晶片1の主面の縁に沿って直線で形成されており、励振電極2から接続パッド3aまで設けられている。
For example, the routing pattern 3 includes two pairs of connection pads 3a and routing wirings 3b. The connection pads 3a are provided side by side at the corners of both main surfaces of the crystal piece 1, and one connection pad 3a is connected to the excitation electrode 2 provided on one main surface via the lead wiring 3b. Another connection pad 3a is connected to the excitation electrode 2 provided on the other main surface via the lead wiring 3b.
Further, the routing wiring 3b is formed in a straight line along the edge of the main surface of the crystal piece 1, and is provided from the excitation electrode 2 to the connection pad 3a.

ここで、楕円の長径と短径の長さ比率を長径/短径とする。
このとき、励振電極2は、図1に示すように、楕円形状の凸部1aよりも大きい楕円形状であって、凸部の長さ比率Aと同じ長さ比率の楕円形状となっている。
言い換えると、楕円形状の前記励振電極の長さ比率は、楕円形状の前記凸部の長さ比率と同じ比率で構成されている。
Here, the length ratio between the major axis and the minor axis of the ellipse is defined as major axis / minor axis.
At this time, as shown in FIG. 1, the excitation electrode 2 has an elliptical shape larger than the elliptical convex portion 1 a and has an elliptical shape having the same length ratio as the convex portion length ratio A.
In other words, the length ratio of the elliptical excitation electrode is configured to be the same as the length ratio of the elliptical convex portion.

水晶振動素子は、励振電極で振動エネルギーを最大にして、水晶片1の縁付近で振動エネルギーを閉じ込めるのが理想状態となる。
このように、本発明の第一の実施形態に係る水晶振動素子10によると、楕円形状の前記励振電極の長さ比率と楕円形状の前記凸部の長さ比率と同じ比率で構成されているので、凸部1aでの振動変位分布と励振電極2での振動変位分布とが近くなって歪みを軽減することができる。したがって、振動エネルギーが水晶片1の端部側で閉じ込められやすくなり低いCI値となる水晶振動素子を実現することができる。
The ideal state of the crystal resonator element is to confine the vibration energy near the edge of the crystal piece 1 by maximizing the vibration energy with the excitation electrode.
Thus, according to the crystal resonator element 10 according to the first embodiment of the present invention, the length ratio of the elliptical excitation electrode and the length ratio of the convex part of the elliptical shape are configured. Therefore, the vibration displacement distribution at the convex portion 1a and the vibration displacement distribution at the excitation electrode 2 are close to each other, and distortion can be reduced. Accordingly, it is possible to realize a crystal resonator element in which vibration energy is easily confined on the end side of the crystal piece 1 and has a low CI value.

(第二の実施形態)
図2(a)及び(b)に示すように、本発明の第一の実施形態に係る水晶振動素子11は、励振電極が前記楕円形状の短径側を直線に形成した形状で構成される点で第一の実施形態と異なる。
(Second embodiment)
As shown in FIGS. 2 (a) and 2 (b), the crystal resonator element 11 according to the first embodiment of the present invention is configured such that the excitation electrode is formed by linearly forming the elliptical minor axis side. This is different from the first embodiment.

図2(a)に示すように、励振電極2は、楕円形状の短径側を直線に形成した形状となっており、楕円の短径側の直線に形成された縁が水晶片1のm面1bにかからないように、平面中心C3を平面視における水晶片1の投影面の中心C1と一致させた状態で位置させている。   As shown in FIG. 2A, the excitation electrode 2 has a shape in which an elliptical minor axis is formed in a straight line, and an edge formed in a straight line on the minor axis of the ellipse is m of the crystal piece 1. The plane center C3 is positioned so as to coincide with the center C1 of the projection surface of the crystal piece 1 in plan view so as not to cover the surface 1b.

このように、本発明の第二の実施形態に係る水晶振動素子11を構成しても第一の実施形態と同様の効果を奏する。   As described above, even when the crystal resonator element 11 according to the second embodiment of the present invention is configured, the same effects as those of the first embodiment can be obtained.

以上、本発明の実施形態について説明したが、本発明は前記実施形態には限定されない。例えば、水晶片にm面が設けられていれば、ATカットに限定されず、種々のカットアングルの水晶片を用いることができる。
また、励振電極は、水晶片に形成されるm面にかかるように設けても良い。
As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment. For example, if the crystal piece is provided with an m-plane, it is not limited to the AT cut, and crystal pieces having various cut angles can be used.
The excitation electrode may be provided so as to cover the m-plane formed on the crystal piece.

10,11 水晶振動素子
1 水晶片
1a 凸部
1b m面
2 励振電極
3 引き回しパターン
C1,C2,C3 中心
10, 11 Quartz vibrating element 1 Quartz piece 1a Protruding part 1b m-plane 2 Excitation electrode 3 Lead pattern C1, C2, C3 center

Claims (2)

平面視矩形で、長辺が結晶軸であるX軸と平行であり、短辺が結晶軸であるZ´軸と平行であり、長辺側の側面に結晶面であるm面が形成されている平板状の水晶片と、
平面視楕円形状で、この楕円の短径側の縁が前記水晶片のm面にかからないように、平面中心を平面視における前記水晶片の投影面の中心に合わせて、前記水晶片の両主面に設けられている励振電極と、
この水晶片の一方の端部に設けられ、前記励振電極と接続する引き回しパターンとを備え、
前記水晶片の主面に楕円形状の凸部が設けられ、
前記励振電極が前記凸部全体を覆いつつ、前記励振電極の楕円の中心と前記凸部の楕円の中心とが一致しており、
楕円の長径と短径の長さ比率を長径/短径としたとき、
楕円形状の前記励振電極の長さ比率と楕円形状の前記凸部の長さ比率とが同じ比率で構成されることを特徴とする水晶振動素子。
It is rectangular in plan view, the long side is parallel to the X axis, which is the crystal axis, the short side is parallel to the Z ′ axis, which is the crystal axis, and the m plane, which is the crystal plane, is formed on the side surface on the long side. A flat crystal piece,
It is an elliptical shape in plan view, and the center of the plane is aligned with the center of the projection surface of the crystal piece in plan view so that the edge on the short axis side of the ellipse does not cover the m-plane of the crystal piece. An excitation electrode provided on the surface ;
Provided at one end of this crystal piece, with a routing pattern connected to the excitation electrode,
An elliptical convex portion is provided on the main surface of the crystal piece,
While the excitation electrode covers the entire convex part, the center of the ellipse of the excitation electrode coincides with the center of the ellipse of the convex part,
When the major axis / minor axis length ratio is the major axis / minor axis,
A quartz-crystal vibrating element, wherein a length ratio of the elliptical excitation electrode and a length ratio of the convex part of the elliptical shape are the same.
前記励振電極が、前記楕円形状の短径側を直線に形成した形状で構成されることを特徴とする請求項1に記載の水晶振動素子。   2. The crystal resonator element according to claim 1, wherein the excitation electrode has a shape in which the minor axis side of the elliptical shape is formed in a straight line.
JP2012169836A 2012-07-31 2012-07-31 Crystal oscillator Active JP6000724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012169836A JP6000724B2 (en) 2012-07-31 2012-07-31 Crystal oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012169836A JP6000724B2 (en) 2012-07-31 2012-07-31 Crystal oscillator

Publications (2)

Publication Number Publication Date
JP2014030113A JP2014030113A (en) 2014-02-13
JP6000724B2 true JP6000724B2 (en) 2016-10-05

Family

ID=50202422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012169836A Active JP6000724B2 (en) 2012-07-31 2012-07-31 Crystal oscillator

Country Status (1)

Country Link
JP (1) JP6000724B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017192032A (en) * 2016-04-13 2017-10-19 日本電波工業株式会社 Crystal resonator

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4506135B2 (en) * 2003-09-18 2010-07-21 エプソントヨコム株式会社 Piezoelectric vibrator
JP2007158486A (en) * 2005-12-01 2007-06-21 Epson Toyocom Corp Crystal resonator element, crystal resonator, and crystal oscillator
JP5028061B2 (en) * 2006-10-05 2012-09-19 日本電波工業株式会社 Crystal oscillator
JP5168464B2 (en) * 2007-11-30 2013-03-21 セイコーエプソン株式会社 Vibrating piece, vibrator, and oscillator
JP5632627B2 (en) * 2010-03-15 2014-11-26 エスアイアイ・クリスタルテクノロジー株式会社 Quartz crystal
JP5625432B2 (en) * 2010-03-26 2014-11-19 セイコーエプソン株式会社 Piezoelectric vibration element and piezoelectric vibrator
JP2012074860A (en) * 2010-09-28 2012-04-12 Kyocera Kinseki Corp Crystal vibration element

Also Published As

Publication number Publication date
JP2014030113A (en) 2014-02-13

Similar Documents

Publication Publication Date Title
KR101966126B1 (en) A quartz vibration plate, and a quartz vibration device
JP5972686B2 (en) Crystal oscillator
JP6061651B2 (en) Crystal oscillator
WO2016181881A1 (en) Crystal oscillator and method for producing same
WO2016114237A1 (en) Resonator
JP6000724B2 (en) Crystal oscillator
JP2016127594A (en) Piezoelectric vibration piece and piezoelectric vibrator
JP6108708B2 (en) Crystal oscillator
JP5988125B1 (en) Quartz crystal resonator and crystal oscillation device
JP6108955B2 (en) Crystal oscillator
JP6084068B2 (en) Crystal oscillator
JP5936936B2 (en) Crystal oscillator
JP2012074860A (en) Crystal vibration element
JP6086762B2 (en) Crystal oscillator
JP5918067B2 (en) Crystal oscillator
JP2017085327A (en) Crystal diaphragm, and crystal vibration device
JP6525821B2 (en) Tuning fork type crystal element
JP2015019127A (en) Crystal resonator piece and crystal device
JP2008228195A (en) Contour-shear vibrating chip, contour-shear vibration device and method of manufacturing the contour-shear vibrating chip
JP6166433B2 (en) Crystal oscillator
JP6017350B2 (en) Crystal oscillator
JP6021495B2 (en) Crystal oscillator
JP6584257B2 (en) Tuning-fork type crystal vibrating element
JP2018006902A (en) Crystal filter plate, and crystal filter
JP2014011657A (en) Crystal vibration element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160831

R150 Certificate of patent or registration of utility model

Ref document number: 6000724

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350