JP5999492B2 - Ti3SiC2 atmospheric pressure sintered body and method for producing the same - Google Patents

Ti3SiC2 atmospheric pressure sintered body and method for producing the same Download PDF

Info

Publication number
JP5999492B2
JP5999492B2 JP2012199420A JP2012199420A JP5999492B2 JP 5999492 B2 JP5999492 B2 JP 5999492B2 JP 2012199420 A JP2012199420 A JP 2012199420A JP 2012199420 A JP2012199420 A JP 2012199420A JP 5999492 B2 JP5999492 B2 JP 5999492B2
Authority
JP
Japan
Prior art keywords
sic
average particle
sintered body
powder
particle diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012199420A
Other languages
Japanese (ja)
Other versions
JP2014055074A (en
Inventor
仁俊 佐藤
仁俊 佐藤
目 義雄
義雄 目
ムリナリニ ミシュラ
ムリナリニ ミシュラ
洋人 平野
洋人 平野
鈴木 達
達 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2012199420A priority Critical patent/JP5999492B2/en
Publication of JP2014055074A publication Critical patent/JP2014055074A/en
Application granted granted Critical
Publication of JP5999492B2 publication Critical patent/JP5999492B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、TiSiC常圧焼結体及びその製造方法に関するものである。 The present invention relates to a Ti 3 SiC 2 atmospheric pressure sintered body and a method for producing the same.

金属性セラミックス材料は、メタルに比較して軽量であり、高い導電性、耐損傷性、被削性等の金属の特性と、高い耐酸化性、耐熱性、耐食性等のセラミックスの特性を合わせ持ち、航空宇宙分野やガスタービン・エンジンなどの厳しい環境において用いられる部材の原材料として注目されている.   Metallic ceramic materials are lighter than metals, and have high electrical conductivity, damage resistance, machinability and other characteristics of the metal, and high oxidation resistance, heat resistance, corrosion resistance and other ceramic characteristics. It is attracting attention as a raw material for components used in harsh environments such as aerospace and gas turbine engines.

金属セラミックス材料からなる焼結体の製造方法として、加圧焼結法と常圧焼結法がある。複雑な形状の焼結体を作製する場合には、均一に加圧することが困難であるので、常圧焼結法が一般に用いられる。 As a method for producing a sintered body made of a metal ceramic material, there are a pressure sintering method and a normal pressure sintering method. In the case of producing a sintered body having a complicated shape, it is difficult to uniformly pressurize, so that the atmospheric pressure sintering method is generally used.

有用な金属セラミックス材料として、例えば、TiSiCがある。遷移金属M、アルミニウムやケイ素などのA族元素、炭素(または窒素)Xからなる3元系化合物セラミックス群はMAX相と呼ばれ、TiSiCセラミックスもその一つである。
しかし、常圧焼結法で、表面及び内部の分解がなく、TiSiC単一相からなり、均質で、相対密度が90%以上と緻密なTiSiC焼結体を常圧焼結により得ることは困難であった。
A useful metal ceramic material is, for example, Ti 3 SiC 2 . A ternary compound ceramic group consisting of transition metal M, group A elements such as aluminum and silicon, and carbon (or nitrogen) X is called a MAX phase, and Ti 3 SiC 2 ceramics is one of them.
However, the atmospheric pressure sintering method does not decompose the surface and the interior, is composed of a single phase of Ti 3 SiC 2 , homogenous, and a dense Ti 3 SiC 2 sintered body having a relative density of 90% or more is subjected to atmospheric pressure sintering. It was difficult to obtain by ligation.

特許文献1には、Ti、SiC、Cの混合粉末の圧粉体を、1500℃、不活性ガス雰囲気中で、常圧焼結する手法で、97%の相対密度のTiSiC焼結体を得る製造方法が開示されている。機械的に圧力を加えることなく、通常の粉末冶金手法、すなわち、冷間圧粉成形してから、通常の加熱焼結によって、反応合成かつ緻密化を同時に行うプロセスが用いられている。
しかし、Ti、SiC、Cの混合粉末をそのまま焼結するという、この方法では、Ti、SiC、Cを実用レベルで均一混合するのが困難であり、TiSiC焼結体の均質性に問題が生じる。特に、実用形状に対応可能なコロイドプロセスを利用した鋳込み成形、電気泳動堆積法、テープ成形やゲルキャストなどへの応用が困難である。また、TiSiCの分解温度である1400℃以上で焼結する構成なので、特に、表面部のTiSiCが著しく分解され、表面がTiCで覆われるという問題が生じている。
In Patent Document 1, Ti 3 SiC 2 sintered with a relative density of 97% is obtained by a technique in which a green compact of a mixed powder of Ti, SiC, and C is sintered at 1500 ° C. in an inert gas atmosphere under normal pressure. A manufacturing method for obtaining a body is disclosed. A conventional powder metallurgy technique, that is, a process in which cold compaction is performed and reaction synthesis and densification are simultaneously performed by normal heat sintering without applying mechanical pressure is used.
However, in this method of sintering the mixed powder of Ti, SiC, and C as they are, it is difficult to uniformly mix Ti, SiC, and C at a practical level, and the uniformity of the Ti 3 SiC 2 sintered body is reduced. Problems arise. In particular, it is difficult to apply to casting molding, electrophoretic deposition, tape molding, gel casting, etc. using a colloidal process that can accommodate practical shapes. Further, since the structure is sintered at 1400 ° C. or more is a decomposition temperature of Ti 3 SiC 2, in particular, Ti 3 SiC 2 of the surface portion is greatly degraded, which causes a problem that the surface is covered with TiC.

特許文献2には、Drexel Universityの研究グループによる「緻密なセラミックワークピースの製造方法」が記載されている。ここでは、TiSiC粉末にTiSi(TiSiCに固溶する化合物)粉末を混合して、常圧焼結する方法が開示されている。実施例1では、Ti(−325メッシュ)、SiC(平均粒子径1μm)、黒鉛(平均粒子径1μm)、TiSi(−325メッシュ)の混合粉末から構成された成形体を、真空中、1600℃で無加圧焼結し、さらに1700℃、70MPaでHIP焼結して緻密な焼結体を得ている。
しかし、この方法でも、TiSiの融点1475℃以上の温度で焼結する必要があり、TiSiCの分解温度である1400℃を超えて焼結する構成なので、特に表面部のTiSiCが著しく分解され、表面部がTiCで覆われるという問題が生じている。
Patent Document 2 describes “a method for producing a dense ceramic workpiece” by a research group of Drexel University. Here, Ti 3 SiC 2 powder (compound dissolved in Ti 3 SiC 2) TiSi 2 were mixed powder, a method of pressureless sintering is disclosed. In Example 1, a molded body composed of a mixed powder of Ti (−325 mesh), SiC (average particle diameter 1 μm), graphite (average particle diameter 1 μm), and TiSi 2 (−325 mesh) was subjected to 1600 in vacuum. A dense sintered body is obtained by pressureless sintering at 1 ° C. and further HIP sintering at 1700 ° C. and 70 MPa.
However, even in this method, it is necessary to sinter at the melting point 1475 ° C. or more temperatures TiSi 2, a constitution in which sintering exceed 1400 ° C. which is the decomposition temperature of the Ti 3 SiC 2, Ti 3 SiC particularly surface portion There is a problem that 2 is significantly decomposed and the surface portion is covered with TiC.

特許文献3には、Drexel UniversityとSandvik Actiebolagの研究グループによる「312相材料の製造方法及びその焼結方法」が記載されている。原料粉末の混合物あるいはその成形体を、1000℃〜1800℃に加熱する際、この雰囲気のO分圧を1×10−6atm以下とすること、具体的には、例えば、酸素と結合し、結果として周囲のガスから酸素を除去するTiなどのメタル粉末、あるいはTi、SiC、黒鉛の混合粉末、あるいはブロックを粉末床(酸素ゲッター)として用いる製造方法が開示されている。
実施例では、原料粉末としてTi、SiC、黒鉛粉末を用い、酸素ゲッターを配置させて、1600℃で無加圧加熱することにより、TiSiC材料が分解されて形成されるTiCを2%未満に抑制したTiSiCセラミックスを作製している。
しかし、この方法でも、TiSiCの分解温度である1400℃超で焼結しているので、特に表面部が著しく分解して、TiCで覆われるという問題が生じている。
Patent Document 3 describes “a method for producing a 312 phase material and a sintering method thereof” by a research group of Drexel University and Sandvik Actibolag. When a mixture of raw material powders or a molded body thereof is heated to 1000 ° C. to 1800 ° C., the O 2 partial pressure of this atmosphere is set to 1 × 10 −6 atm or less, specifically, for example, bonded to oxygen. As a result, a manufacturing method using a metal powder such as Ti that removes oxygen from the surrounding gas, a mixed powder of Ti, SiC, or graphite, or a block as a powder bed (oxygen getter) is disclosed.
In the example, Ti, SiC, and graphite powder were used as raw material powders, an oxygen getter was placed, and heating was performed at 1600 ° C. under no pressure, whereby 2% of TiC formed by decomposition of the Ti 3 SiC 2 material was obtained. Ti 3 SiC 2 ceramics suppressed to less than are produced.
However, even in this method, since sintering is performed at a temperature exceeding 1400 ° C., which is the decomposition temperature of Ti 3 SiC 2 , there is a problem that the surface portion is particularly decomposed and covered with TiC.

特許文献4は、特許文献2、3に関連した米国特許であり、1000℃〜1800℃に加熱して、M相を有する材料を形成する方法が記載されている。これに基づき、3−ONE−2社(Sandvik Actiebolagの研究グループ)は、TiSiCセラミックス(粉末と焼結体:商品名Maxthal312)を商品化している。
しかし、このTiSiCセラミックスは、特許文献2、3で指摘した問題を有している。
Patent Document 4 is a US patent related to Patent Documents 2 and 3, and describes a method of heating to 1000 ° C. to 1800 ° C. to form a material having an M 3 X 1 Z 2 phase. Based on this, 3-ONE-2 (Sandvik Actibolag research group) commercializes Ti 3 SiC 2 ceramics (powder and sintered body: trade name Maxthal 312).
However, this Ti 3 SiC 2 ceramic has the problems pointed out in Patent Documents 2 and 3.

なお、非特許文献1、2は、上記特許文献で示した出発原料にTi、SiC,Cを用いずに、Ti、Si、TiCを用いた場合について、Ti、Si、TiCの混合粉末の圧粉体を1300〜1500℃で加圧焼結する構成が開示されている。前記圧粉体を1300〜1500℃で真空焼結した場合、相対密度で90%を超える緻密化が達成できていないことが記載されている。カーボン原料は、疎水性が強く、親水性の水、エタノールを用いて混合することが困難であるという問題があるが、カーボン原料を用いないTi,Si,TiCを用いた場合には常圧焼結で緻密化を達成できていない。
しかし、加圧焼結では、単純形状であるペレット等に限られ、実用形状である複雑な形状の焼結体を作製する場合には、均一に加圧することが困難であるという問題を有している。
In Non-Patent Documents 1 and 2, the pressure of the mixed powder of Ti, Si, and TiC is used when Ti, Si, and TiC are used instead of Ti, SiC, and C as the starting materials shown in the above-mentioned patent documents. A configuration in which the powder is pressure sintered at 1300 to 1500 ° C. is disclosed. It is described that when the green compact is vacuum sintered at 1300-1500 ° C., densification exceeding 90% in relative density has not been achieved. The carbon raw material is strongly hydrophobic and has a problem that it is difficult to mix with hydrophilic water and ethanol. However, when Ti, Si, or TiC that does not use the carbon raw material is used, the normal pressure firing is performed. As a result, densification has not been achieved.
However, pressure sintering is limited to simple shapes such as pellets, and has a problem that it is difficult to press uniformly when producing a sintered body with a complicated shape that is a practical shape. ing.

特開2005−089252号公報Japanese Patent Laying-Open No. 2005-089252 特表2001−504433号公報JP-T-2001-504433 特表2003−517991号公報Special table 2003-517991 gazette 米国特許第6461989号明細書US Pat. No. 6,646,1989

Z.Sun,Y.Zou,S.Tada,amd H.Hashimoto,「Effect of Al addition on pressureless reactive sintering of Ti3SiC2」, Scripta Materialia,55(2006)1011−1014Z. Sun, Y. et al. Zou, S .; Tada, amd H. et al. Hashimoto, “Effect of Al addition on pressure reactive reactive of Ti3SiC2”, Scripting Materia, 55 (2006) 1011-1014. S.Yang, Z.Sun,and H.Hashimoto,「Effect of Al addition on the synthesis of Ti3SiC2 bulk material by pulse discharge sintering process」,J.Euro.Ceram.Soc.,27(2007)4807−4812S. Yang, Z .; Sun, and H.C. Hashimoto, “Effect of Al addition on the synthesis of Ti3SiC2 bulk material by pulse discharge sintering process”, J. Am. Euro. Ceram. Soc. , 27 (2007) 4807-4812

本発明は、TiSiC単一相からなり、かつ、相対密度が90%以上と緻密なTiSiC常圧焼結体及びその製造方法を提供することを課題とする。 An object of the present invention is to provide a dense Ti 3 SiC 2 atmospheric pressure sintered body comprising a Ti 3 SiC 2 single phase and having a relative density of 90% or more and a method for producing the same.

本発明者は、まず、出発原料として、粒子径を制御したTi、Si、Al、TiCを用いて、平均粒子径が3μm以下の易焼結なTiSiC粉末を製造し、それを用いて成形体を作成し、更に、それを常圧焼結することにより、TiSiC単一相からなり、かつ、ほぼ理論密度まで緻密化してなるTiSiC焼結体を得ることができることを見出し、本発明を完成した。また、サブミクロンサイズまで粉砕したTiSiC粉末を、サブミクロンサイズのTi、Si、TiCの混合粉末(TiC:Ti:Si=2:2:1.2)と混合して、成形体を作成すると、複雑な形状の焼結体でも容易に常圧焼結法で作成することができることを見出し、本発明を完成した。
本発明は、以下の構成を有する。
The present inventor first produced a readily sintered Ti 3 SiC 2 powder having an average particle size of 3 μm or less using Ti, Si, Al, and TiC with a controlled particle size as a starting material, and used it. To obtain a Ti 3 SiC 2 sintered body composed of a single phase of Ti 3 SiC 2 and densified to almost the theoretical density by further sintering at atmospheric pressure. The present invention has been completed by finding out what can be done. Further, the Ti 3 SiC 2 powder pulverized to a submicron size is mixed with a submicron size Ti, Si, TiC mixed powder (TiC: Ti: Si = 2: 2: 1.2) to obtain a molded body. As a result, it has been found that even a sintered body having a complicated shape can be easily produced by a normal pressure sintering method, and the present invention has been completed.
The present invention has the following configuration.

(1)平均粒子径30μm以上50μm以下のTi粒子と、平均粒子径2μm以上15μm以下のSi粒子と、平均粒子径1μm以上5μm以下のTiC粒子と、平均粒子径20μm以上40μm以下のAl粒子を、モル比がTiC:Ti:Si:Al=2:2:1.2:0.3となるように混合して、焼成体用混合粉末を調整する工程と、不活性ガス雰囲気中、前記焼成体用混合粉末を焼成して、TiSiC焼成体を作製してから、前記TiSiC焼成体を解砕又は粉砕して、平均粒子径3μm以下のTiSiC焼成体粉末を作製する工程と、前記TiSiC焼成体粉末又はこれを含む粉末を成形体用材料として用いて、TiSiC成形体を作製してから、不活性ガス雰囲気中、前記TiSiC成形体を1200℃以上1400℃以下の温度範囲で常圧焼結して、TiSiC常圧焼結体を製造する工程と、を有することを特徴とするTiSiC常圧焼結体の製造方法。
(2)前記TiSiC焼成体粉末の平均粒子径が、0.5μm以上3.0μm以下の範囲内であることを特徴とする(1)に記載のTiSiC常圧焼結体の製造方法。
(3)前記焼成体用混合粉末を焼成する温度が、1150℃以上1300℃以下の範囲内であることを特徴とする(1)又は(2)に記載のTiSiC常圧焼結体の製造方法。
(4)前記成形体用材料が、平均粒子径が0.5μm以上1.0μm以下のTi粒子と、平均粒子径が0.5μm以上1.0μm以下のSi粒子と、平均粒子径が0.5μm以上1.0μm以下のTiC粒子を、モル比がTiC:Ti:Si=2:2:1.2となるように混合した成形体用混合粉末を、前記TiSiC焼成体粉末に対して30重量部以上70重量部以下の範囲で混合した材料であることを特徴とする(1)〜(3)のいずれかに記載のTiSiC常圧焼結体の製造方法。
(5)常圧焼結法により製造されたTiSiC常圧焼結体であって、TiSiC単一相からなり、相対密度が90%以上であることを特徴とするTiSiC常圧焼結体。
(1) Ti particles having an average particle diameter of 30 μm to 50 μm, Si particles having an average particle diameter of 2 μm to 15 μm, TiC particles having an average particle diameter of 1 μm to 5 μm, and Al particles having an average particle diameter of 20 μm to 40 μm , A step of adjusting the molar ratio of TiC: Ti: Si: Al = 2: 2: 1.2: 0.3 to prepare a mixed powder for a fired body, and the firing in an inert gas atmosphere by firing the-body mixed powder, after producing a Ti 3 SiC 2 sintered body, the Ti 3 SiC 2 sintered body solutions砕又is milled, the following Ti 3 SiC 2 calcined powder average particle size 3μm a step of manufacturing, the Ti 3 using a powder containing SiC 2 sintered powder or as a molded body material, after making the Ti 3 SiC 2 shaped body in an inert gas atmosphere, the Ti 3 SiC 2 1 molded body 00 ° C. or higher 1400 ° C. and atmospheric pressure sintering at a temperature range of manufacture of Ti 3 SiC 2 Sintered body and a step of manufacturing a Ti 3 SiC 2 Sintered bodies, the Method.
(2) The Ti 3 SiC 2 normal pressure sintered body according to (1), wherein an average particle size of the Ti 3 SiC 2 fired body powder is in a range of 0.5 μm to 3.0 μm. Manufacturing method.
(3) The Ti 3 SiC 2 normal pressure sintered body according to (1) or (2), wherein the temperature for firing the mixed powder for a fired body is in the range of 1150 ° C. or higher and 1300 ° C. or lower. Manufacturing method.
(4) The molded body material has Ti particles having an average particle size of 0.5 μm or more and 1.0 μm or less, Si particles having an average particle size of 0.5 μm or more and 1.0 μm or less, and an average particle size of 0.1. A mixed powder for a molded body obtained by mixing TiC particles of 5 μm or more and 1.0 μm or less in a molar ratio of TiC: Ti: Si = 2: 2: 1.2 with respect to the Ti 3 SiC 2 fired body powder. The method for producing a Ti 3 SiC 2 atmospheric pressure sintered body according to any one of (1) to (3), wherein the material is mixed in the range of 30 parts by weight or more and 70 parts by weight or less.
(5) Ti 3 SiC 2 atmospheric pressure sintered body produced by an atmospheric pressure sintering method, comprising Ti 3 SiC 2 single phase, and having a relative density of 90% or more, Ti 3 SiC 2 normal pressure sintered body.

本発明のTiSiC常圧焼結体の製造方法は、平均粒子径30μm以上50μm以下のTi粒子と、平均粒子径2μm以上15μm以下のSi粒子と、平均粒子径1μm以上5μm以下のTiC粒子と、平均粒子径20μm以上40μm以下のAl粒子を、モル比がTiC:Ti:Si:Al=2:2:1.2:0.3となるように混合して、焼成体用混合粉末を調整する工程と、不活性ガス雰囲気中、前記焼成体用混合粉末を焼成して、TiSiC焼成体を作製してから、前記TiSiC焼成体を解砕又は粉砕して、平均粒子径3μm以下のTiSiC焼成体粉末を作製する工程と、前記TiSiC焼成体粉末又はこれを含む粉末を成形体用材料として用いて、TiSiC成形体を作製してから、不活性ガス雰囲気中、前記TiSiC成形体を1200℃以上1400℃以下の温度範囲で常圧焼結して、TiSiC常圧焼結体を製造する工程と、を有する構成なので、TiSiC単一相からなるTiSiC焼成体粉末を作成することができ、焼結体内部、及び表面の分解がなく均質で、相対密度が90%以上と緻密なTiSiC常圧焼結体を容易に製造することができる。 The manufacturing method of the Ti 3 SiC 2 atmospheric pressure sintered body of the present invention includes Ti particles having an average particle diameter of 30 μm to 50 μm, Si particles having an average particle diameter of 2 μm to 15 μm, and TiC having an average particle diameter of 1 μm to 5 μm. Particles and Al particles having an average particle diameter of 20 μm or more and 40 μm or less are mixed so that the molar ratio is TiC: Ti: Si: Al = 2: 2: 1.2: 0.3, and a mixed powder for a fired body and adjusting a inert gas atmosphere, and firing the fired body mixed powder, after producing a Ti 3 SiC 2 sintered body, solutions砕又the Ti 3 SiC 2 sintered body was pulverized using a process of forming a Ti 3 SiC 2 calcined powder of the following average particle diameter of 3 [mu] m, the Ti 3 SiC 2 sintered powder or powder containing it as molded body material, to prepare a Ti 3 SiC 2 moldings Inactive gas Atmosphere, the Ti 3 SiC 2 shaped body at a temperature range of 1200 ° C. or higher 1400 ° C. or less and atmospheric pressure sintering, a step of producing a Ti 3 SiC 2 Sintered bodies, since configuration having, Ti 3 Ti 3 SiC 2 fired body powder composed of a single phase of SiC 2 can be prepared, and the inside of the sintered body and the surface are homogeneous without decomposition, and the relative density is 90% or more and the dense Ti 3 SiC 2 normal pressure A sintered body can be easily manufactured.

本発明のTiSiC常圧焼結体の製造方法は、前記TiSiC焼成体粉末の平均粒子径が、0.5μm以上3.0μm以下の範囲内である構成なので、成形体用材料として平均粒子径の小さいTiSiC焼成体粉末を用いることができ、鋳込み成形、電気泳動堆積法、テープ成形やゲルキャストなどのコロイドプロセスにおいて、原料粉末が沈降することがなく対応可能になり、複雑な実用形状の成形体を容易に形成することができる。
本発明のTiSiC常圧焼結体の製造方法は、前記焼成体用混合粉末を焼成する温度が、1150℃以上1300℃以下の範囲内である構成なので、TiSiC単一相からなるTiSiC焼成体粉末を作成することができ、焼結体内部、及び表面の分解がなく均質で、相対密度が90%以上と緻密なTiSiC常圧焼結体を容易に製造することができる。
Since the average particle diameter of the Ti 3 SiC 2 fired body powder is in the range of 0.5 μm or more and 3.0 μm or less, the manufacturing method of the Ti 3 SiC 2 atmospheric pressure sintered body of the present invention is Ti 3 SiC 2 calcined powder with a small average particle size can be used as a material, and it can be used in colloidal processes such as casting, electrophoretic deposition, tape molding, and gel casting without sedimentation of raw material powder Thus, a compact body having a practical shape can be easily formed.
Since the manufacturing method of the Ti 3 SiC 2 atmospheric pressure sintered body of the present invention has a configuration in which the temperature for firing the mixed powder for a fired body is in the range of 1150 ° C. or more and 1300 ° C. or less, the Ti 3 SiC 2 single phase Ti 3 SiC 2 fired body powder can be made, and it is easy to create a dense Ti 3 SiC 2 atmospheric pressure sintered body with a relative density of 90% or more that is homogeneous without decomposition of the inside and surface of the sintered body. Can be manufactured.

本発明のTiSiC常圧焼結体の製造方法は、前記成形体用材料が、平均粒子径が0.5μm以上1.0μm以下のTi粒子と、平均粒子径が0.5μm以上1.0μm以下のSi粒子と、平均粒子径が0.5μm以上1.0μm以下のTiC粒子を、モル比がTiC:Ti:Si=2:2:1.2となるように混合した成形体用混合粉末を、前記TiSiC焼成体粉末に対して30重量部以上70重量部以下の範囲で混合した材料である構成なので、成形体用材料として平均粒子径の小さいTiSiC焼成体粉末とともに、平均粒子径の小さい成形体用混合粉末を用いることができ、コロイドプロセスを用いた成形法に対応可能となり、複雑な実用形状の成形体を容易に形成することができる。コロイドプロセスは、粉体を溶媒に分散し(これをサスペンション、スラリーという)、固化成形する、粉体成形法である。コロイドプロセスには、多孔質の形にサスペンションを流し込み、多孔質の細孔の毛細管力により、溶媒をとり固化する鋳込み成形(スリップキャスト)が最もシンプルな方法として知られている。固化の時に、加圧したり、減圧したりすることにより大溶媒を速くした加圧鋳込成形(プレッシャーフィルトレーション)、減圧鋳込成形(バキュウムフィルトレーション)、さらに遠心力により溶媒を上部からとる遠心力フィルトレーションがある。また、サスペンションに硬化剤などを投入することにより、そのまま固化するゲルキャストなども均一成形法として用いられる。膜を作る方法として、ドクターブレード法(テープキャスト法)や電場を印加して固化する電気泳動堆積法も用いられる。 In the method for producing a Ti 3 SiC 2 atmospheric pressure sintered body according to the present invention, the molded body material has Ti particles having an average particle diameter of 0.5 μm or more and 1.0 μm or less, and an average particle diameter of 0.5 μm or more and 1 For compacts in which Si particles of 0.0 μm or less and TiC particles having an average particle diameter of 0.5 μm or more and 1.0 μm or less are mixed so that the molar ratio is TiC: Ti: Si = 2: 2: 1.2. the mixed powder, the so Ti 3 is a construction material that is mixed in the range 70 parts by weight or less than 30 parts by weight based on SiC 2 calcined powder, a small average particle size as molded body material Ti 3 SiC 2 sintered body A mixed powder for a molded product having a small average particle diameter can be used together with the powder, so that it can be applied to a molding method using a colloid process, and a molded product having a complicated practical shape can be easily formed. The colloid process is a powder molding method in which powder is dispersed in a solvent (this is called a suspension or a slurry) and solidified. In the colloidal process, casting molding (slip casting) is known as the simplest method, in which a suspension is poured into a porous form, and the solvent is solidified by the capillary force of the porous pores. When solidifying, pressurization (pressure filtration) in which large solvent is accelerated by pressurization or decompression, pressure casting (vacuum filtration), and solvent from the top by centrifugal force There is centrifugal filtration to take. In addition, gel casting or the like that solidifies as it is by putting a curing agent or the like into the suspension is also used as a uniform molding method. As a method for forming a film, a doctor blade method (tape casting method) or an electrophoretic deposition method in which an electric field is applied to solidify the film are used.

本発明のTiSiC常圧焼結体は、常圧焼結法により製造されたTiSiC常圧焼結体であって、TiSiC単一相からなり、相対密度が90%以上である構成なので、高い導電性等の金属の特性と、高い耐熱性・耐酸化性等のセラミックスの特性を、焼結体全体で均一に合わせ持ち、航空宇宙分野やガスタービン・エンジンなどの厳しい環境において用いられる部材の原材料として利用できる。 Ti 3 SiC 2 Pressureless body of the present invention is a Ti 3 SiC 2 Sintered body produced by atmospheric pressure sintering, consists Ti 3 SiC 2 single phase, relative density of 90 Because the composition is more than 50%, the entire sintered body has the same characteristics of metals such as high conductivity and ceramics such as high heat resistance and oxidation resistance, aerospace field, gas turbine engine, etc. It can be used as a raw material for components used in severe environments.

本発明の実施形態であるTiSiC常圧焼結体の一例を示す斜視図である。Is a perspective view showing an example of a Ti 3 SiC 2 Sintered body according to an embodiment of the present invention. 本発明の実施形態であるTiSiC常圧焼結体の製造方法の一例を示すフローチャート図である。Is a flow chart showing an example of a manufacturing method of the Ti 3 SiC 2 Sintered body according to an embodiment of the present invention. 本発明の実施形態であるTiSiC常圧焼結体の別の一例を示す斜視図である。Another example of a Ti 3 SiC 2 Sintered body according to an embodiment of the present invention is a perspective view showing. 実施例1のTiSiC常圧焼結体の破断面の電子顕微鏡写真である。 2 is an electron micrograph of a fracture surface of a Ti 3 SiC 2 atmospheric pressure sintered body of Example 1. FIG.

(本発明の実施形態)
以下、添付図面を参照しながら、本発明の実施形態であるTiSiC常圧焼結体及びその製造方法について説明する。
(Embodiment of the present invention)
Hereinafter, a Ti 3 SiC 2 atmospheric pressure sintered body and a method for manufacturing the same according to an embodiment of the present invention will be described with reference to the accompanying drawings.

<TiSiC常圧焼結体>
図1は、本発明の実施形態であるTiSiC常圧焼結体の一例を示す斜視図である。
図1に示すように、本発明の実施形態であるTiSiC常圧焼結体1は、円板状とされている。しかし、この形状に限られるものではなく、球状、立方体状、その他の実用形状でもよい。
TiSiC常圧焼結体1は、TiSiC単一相からなり、焼結体内部、及び表面の分解がなく均質とされている。これにより、もろい部分がなく、製品寿命を長く維持できる。
<Ti 3 SiC 2 atmospheric pressure sintered body>
FIG. 1 is a perspective view showing an example of a Ti 3 SiC 2 normal pressure sintered body according to an embodiment of the present invention.
As shown in FIG. 1, carried Ti 3 SiC 2 pressureless body 1 in the form of the present invention is a disk-shaped. However, the shape is not limited to this, and may be spherical, cubic, or other practical shapes.
The Ti 3 SiC 2 atmospheric pressure sintered body 1 is composed of a single phase of Ti 3 SiC 2 , and is homogeneous without decomposition of the inside and surface of the sintered body. Thereby, there is no brittle part and it can maintain a product life long.

TiSiC常圧焼結体1は、相対密度が90%以上と緻密とされている。95%以上とすることがより好ましく、98%以上とすることがさらに好ましい。製造条件を適切に制御することにより、相対密度が98%のTiSiC常圧焼結体を作成できる。
なお、理論密度(真密度ともいう。理想のかさ比重である。)は、原料材料のモル比によって算出でき、かさ比重(実測値)の比から、相対密度を算出できる。実施例では、Alは合成時に、酸化物になっていることをEDS(Energy Dispersive X−ray Spectrometry:エネルギー分散X線分光法)により確認した。そのため、真密度(理想のかさ比重)を4.28と定義した。さらに、焼成体粉末を解砕した後、Heガス置換法で真密度を測定し、4.28であることを確認した。
The Ti 3 SiC 2 atmospheric pressure sintered body 1 is dense with a relative density of 90% or more. It is more preferable to set it as 95% or more, and it is still more preferable to set it as 98% or more. By appropriately controlling the production conditions, a Ti 3 SiC 2 atmospheric pressure sintered body having a relative density of 98% can be produced.
The theoretical density (also referred to as true density; ideal bulk specific gravity) can be calculated from the molar ratio of the raw materials, and the relative density can be calculated from the ratio of bulk specific gravity (measured value). In Examples, it was confirmed by EDS (Energy Dispersive X-ray Spectrometry) that Al was an oxide during synthesis. Therefore, the true density (ideal bulk specific gravity) was defined as 4.28. Furthermore, after crushing the fired body powder, the true density was measured by the He gas replacement method, and it was confirmed to be 4.28.

<TiSiC常圧焼結体の製造方法>
図2は、本発明の実施形態であるTiSiC常圧焼結体の製造方法の一例を示すフローチャート図である。
図2に示すように、本発明の実施形態であるTiSiC常圧焼結体の製造方法は、焼成体用混合粉末を調整する工程S1と、TiSiC焼成体粉末を作製する工程S2と、TiSiC常圧焼結体を製造する工程S3と、を有する。
<Method for Manufacturing Ti 3 SiC 2 Atmospheric Pressure Sintered Body>
FIG. 2 is a flowchart showing an example of a method for producing a Ti 3 SiC 2 atmospheric sintered body according to an embodiment of the present invention.
As shown in FIG. 2, the manufacturing method of the Ti 3 SiC 2 Sintered body according to an embodiment of the present invention includes a step S1 of adjusting the fired body mixed powder to prepare a Ti 3 SiC 2 calcined powder Step S2 and Step S3 of manufacturing a Ti 3 SiC 2 atmospheric pressure sintered body.

(焼成体用混合粉末を調整する工程S1)
この工程では、平均粒子径30μm以上50μm以下のTi粒子と、平均粒子径2μm以上15μm以下のSi粒子と、平均粒子径1μm以上5μm以下のTiC粒子と、平均粒子径20μm以上40μm以下のAl粒子を、モル比がTiC:Ti:Si:Al=2:2:1.2:0.3となるように混合して、焼成体用混合粉末を調整する。
(Step S1 of adjusting the mixed powder for fired body)
In this step, Ti particles having an average particle size of 30 μm to 50 μm, Si particles having an average particle size of 2 μm to 15 μm, TiC particles having an average particle size of 1 μm to 5 μm, and Al particles having an average particle size of 20 μm to 40 μm Are mixed so that the molar ratio is TiC: Ti: Si: Al = 2: 2: 1.2: 0.3 to prepare a mixed powder for a fired body.

平均粒子径30μm未満、50μm超のTi粒子を用いた場合、平均粒子径2μm未満、15μm超のSi粒子を用いた場合、平均粒子径1μm未満、5μm超のTiC粒子を用いた場合、及び平均粒子径20μm未満、40μm超のAl粒子を用いた場合にはいずれも、未反応の材料が残留して、TiSiC単一相を得ることができない。 When using Ti particles having an average particle size of less than 30 μm and exceeding 50 μm, using Si particles having an average particle size of less than 2 μm and exceeding 15 μm, using TiC particles having an average particle size of less than 1 μm and exceeding 5 μm, and the average In any case where Al particles having a particle diameter of less than 20 μm and more than 40 μm are used, unreacted material remains and a Ti 3 SiC 2 single phase cannot be obtained.

モル比はTiC:Ti:Si:Al=2:2:1.2:0.3とする。それぞれの値で、±10%以内となる範囲としてもよい。これにより、次工程S2で、TiSiC単一相からなるTiSiC焼成体粉末を作製することができる。
なお、Al粒子は酸素ゲッターであり、製造工程において、自らが酸化し、TiSiCの酸化を防止して、不純物の発生を抑制する。
The molar ratio is TiC: Ti: Si: Al = 2: 2: 1.2: 0.3. Each value may be within a range of ± 10%. Thus, in the next step S2, it is possible to produce a Ti 3 SiC 2 calcined powder consisting of Ti 3 SiC 2 single phase.
The Al particles are oxygen getters and are oxidized by themselves in the manufacturing process to prevent oxidation of Ti 3 SiC 2 and suppress generation of impurities.

(TiSiC焼成体粉末を作製する工程S2)
この工程では、焼成体用混合粉末を調整する工程S1と、不活性ガス雰囲気中、前記焼成体用混合粉末を焼成して、TiSiC焼成体を作製してから、前記TiSiC焼成体を解砕又は粉砕して、平均粒子径3μm以下のTiSiC焼成体粉末を作製する。
(Step S2 for producing a Ti 3 SiC 2 fired body powder)
In this step, the step S1 of adjusting the mixed powder for a fired body, and firing the mixed powder for a fired body in an inert gas atmosphere to produce a Ti 3 SiC 2 fired body, the Ti 3 SiC 2 The fired body is crushed or pulverized to produce a Ti 3 SiC 2 fired body powder having an average particle diameter of 3 μm or less.

不活性ガスとは、例えば、アルゴンガスである。酸素含有ガス雰囲気では、原料粉末であるTiC、Ti、Si、Alが酸化する。 The inert gas is, for example, argon gas. In the oxygen-containing gas atmosphere, TiC, Ti, Si, and Al that are raw material powders are oxidized.

前記焼成体用混合粉末を焼成する温度が、1150℃以上1300℃以下の範囲内であることが好ましい。これにより、TiSiC単一相からなるTiSiC焼成体粉末を作成することができる。1150℃未満では、未反応の材料が残留する。 It is preferable that the temperature for firing the mixed powder for fired bodies is in the range of 1150 ° C. or higher and 1300 ° C. or lower. This makes it possible to create a Ti 3 SiC 2 calcined powder consisting of Ti 3 SiC 2 single phase. Below 1150 ° C., unreacted material remains.

解砕は、例えば、Al乳鉢ですりつぶして、凝集塊を解砕する処理である。また、粉砕は、例えば、ヘキサン溶媒に分散して、400rpmで、10h、遊星ボールミルを用い、粉体の微細化を行う処理である。解砕に比べ、粉砕では、粒子径をより小さくできる。 Crushing is, for example, a process of crushing agglomerates by grinding with an Al 2 O 3 mortar. The pulverization is, for example, a process of dispersing powder in a hexane solvent and refining powder using a planetary ball mill at 400 rpm for 10 hours. Compared with pulverization, pulverization can reduce the particle size.

平均粒子径3μm以下のTiSiC焼成体粉末を作製する。より小さな径とすることにより、複雑な形状でも成形できる鋳込み成形法、電気泳動法、テープ成形やゲルキャストなどのコロイドプロセスに対応可能となる成形体用材料に用いることができる。平均粒子径3μm超では、均一に焼結させることが困難となる。 A Ti 3 SiC 2 fired body powder having an average particle diameter of 3 μm or less is prepared. By using a smaller diameter, it can be used as a molding material that can be applied to colloidal processes such as casting, electrophoresis, tape molding and gel casting, which can be molded even in complicated shapes. When the average particle diameter exceeds 3 μm, it is difficult to uniformly sinter.

TiSiC焼成体粉末の平均粒子径が、0.5μm以上3.0μm以下の範囲内であることが好ましい。これにより、成形体用材料として平均粒子径の小さいTiSiC焼成体粉末を用いることができ、複雑な実用形状の成形体を得る時、コロイドプロセスを用いた成形法を用いることができるため、容易に形成することができる。
一方、平均粒子径0.5μm未満では、粉砕工程での不純物混入が原因で、緻密な焼結体が得られなくなる。また、平均粒子径3.0μm超では、液中で粒子がすばやく沈降し、コロイドプロセスを用いた成形法で対応困難となり、そのため、複雑な形状の成形が困難となる。
The average particle diameter of the Ti 3 SiC 2 fired body powder is preferably in the range of 0.5 μm to 3.0 μm. Thereby, a Ti 3 SiC 2 fired body powder having a small average particle diameter can be used as a material for a molded body, and when a molded body having a complicated practical shape can be obtained, a molding method using a colloid process can be used. Can be easily formed.
On the other hand, if the average particle size is less than 0.5 μm, a dense sintered body cannot be obtained due to contamination of impurities in the pulverization step. On the other hand, if the average particle diameter exceeds 3.0 μm, the particles quickly settle in the liquid, and it becomes difficult to cope with the molding method using a colloid process, and therefore it becomes difficult to mold a complicated shape.

図3は、本発明の実施形態であるTiSiC常圧焼結体の別の一例を示す斜視図であって、複雑な形状の一例を示す図である。
図3に示すように、本発明の実施形態であるTiSiC常圧焼結体2は、筒状とされている。薄肉部3と空洞部4を有し、複雑な実用形状とされている。薄肉部が存在する構成なので、本発明の第1の実施形態で示した円板状部材に比較して、高剛性を要する。しかし、この形状に限られるものではなく、薄肉部と空洞部等を有する、リング状、バルーン状又はこれらの形状が2以上組み合わされた形状でもよい。
FIG. 3 is a perspective view showing another example of the Ti 3 SiC 2 atmospheric pressure sintered body according to the embodiment of the present invention, and showing an example of a complicated shape.
As shown in FIG. 3, the Ti 3 SiC 2 atmospheric pressure sintered body 2 according to the embodiment of the present invention has a cylindrical shape. It has a thin portion 3 and a hollow portion 4, and has a complicated practical shape. Since the thin portion exists, high rigidity is required as compared with the disk-like member shown in the first embodiment of the present invention. However, it is not limited to this shape, and may be a ring shape, a balloon shape, or a shape in which two or more of these shapes are combined, each having a thin portion and a hollow portion.

(TiSiC常圧焼結体を製造する工程S3)
この工程では、前記TiSiC焼成体粉末又はこれを含む粉末を成形体用材料として用いて、TiSiC成形体を作製してから、不活性ガス雰囲気中、前記TiSiC成形体を1200℃以上1400℃以下の温度範囲で常圧焼結して、TiSiC常圧焼結体を製造する。
(Step S3 for producing a Ti 3 SiC 2 atmospheric pressure sintered body)
In this step, the Ti 3 using a powder containing SiC 2 sintered powder or as a molded body material, after making the Ti 3 SiC 2 shaped body in an inert gas atmosphere, the Ti 3 SiC 2 molding The body is subjected to normal pressure sintering in a temperature range of 1200 ° C. or higher and 1400 ° C. or lower to produce a Ti 3 SiC 2 normal pressure sintered body.

成形は、例えば、一軸加圧成形後、3.9トン/cmでCIP成形する処理を挙げることができる。
CIP成形は、ペレットやムク棒などの単純な形状に成形するために用いられ、金型に粉末を入れて一軸加圧(プレス)して成形して得た圧粉体を袋に入れて、水中で、冷間等方圧加圧する。あるいは、ゴム型に成形用粉末を入れて冷間等方圧加圧する手法である。鋳込み成形法も利用できる。鋳込み成形法は、複雑な形状を成形するために用いられ、液中に粉末を分散させてスラリーを形成してから、このスラリーをポーラスな型にすわせて成形する手法である。電気泳動堆積法も利用できる。電気泳動堆積法は、基板上に膜を形成させるために用いられ、液中に粉末を分散させてスラリーを形成してから、電極を挿入し、直流又は交流の電圧や電流を印加することで、スラリー中の帯電粒子を電極上に泳動
させ堆積させる成形プロセスである。
Examples of the molding include a process of CIP molding at 3.9 ton / cm 2 after uniaxial pressure molding.
CIP molding is used to mold into simple shapes such as pellets and rods. Put powder in a mold and press uniaxially (press) to form a green compact into a bag. Apply cold isostatic pressure in water. Alternatively, it is a technique in which molding powder is put into a rubber mold and cold isostatic pressing is performed. A casting method can also be used. The cast molding method is used to mold a complicated shape, and is a technique in which powder is dispersed in a liquid to form a slurry, and then the slurry is molded into a porous mold. Electrophoretic deposition can also be used. The electrophoretic deposition method is used to form a film on a substrate. After forming a slurry by dispersing powder in a liquid, an electrode is inserted and a DC or AC voltage or current is applied. This is a molding process in which charged particles in a slurry migrate and deposit on an electrode.

不活性ガス雰囲気中、1200℃以上1400℃以下の温度範囲で、常圧焼結する。これにより、TiSiC単一相からなるTiSiC焼成体粉末を作成することができ、焼結体内部及び表面の分解がなく均質で、相対密度が90%以上と緻密なTiSiC常圧焼結体を製造することができる。
1200℃未満では、物質移動による焼結が進行せず、緻密な焼結体が得られない。
1400℃がTiSiCの分解温度なので、1400℃超ではTiSiCの分解が生じ、焼結体内部、特に表面部にTiCが析出する場合が生じる。
Normal pressure sintering is performed in an inert gas atmosphere in a temperature range of 1200 ° C. to 1400 ° C. As a result, a Ti 3 SiC 2 fired body powder composed of a single phase of Ti 3 SiC 2 can be produced, and there is no decomposition of the inside and surface of the sintered body and it is homogeneous, and the relative density is 90% or higher and dense Ti 3 A SiC 2 atmospheric pressure sintered body can be produced.
If it is less than 1200 degreeC, the sintering by a mass transfer will not advance and a precise | minute sintered compact will not be obtained.
Since 1400 ° C. is the decomposition temperature of the Ti 3 SiC 2, occurs decomposition of Ti 3 SiC 2 is 1400 ° C. greater than the sintered body interior, if TiC precipitates occurs particularly the surface portion.

前記成形体用材料として、平均粒子径が0.5μm以上1.0μm以下のTi粒子と、平均粒子径が0.5μm以上1.0μm以下のSi粒子と、平均粒子径が0.5μm以上1.0μm以下のTiC粒子を、モル比がTiC:Ti:Si=2:2:1.2(±10%以内)となるように混合した成形体用混合粉末を、前記TiSiC焼成体粉末に対して30重量部以上70重量部以下の範囲で混合した材料を用いてもよい。いずれも粒子径の小さい粉末なので、コロイドプロセスを用いた成形法を用いても、粒子がすばやく沈降することがないので対応可能となり、複雑な形状のTiSiC焼成体粉末を用いた成形体を容易に作成することができる。 As the molding material, Ti particles having an average particle diameter of 0.5 μm or more and 1.0 μm or less, Si particles having an average particle diameter of 0.5 μm or more and 1.0 μm or less, and an average particle diameter of 0.5 μm or more and 1 Ti 3 SiC 2 fired body obtained by mixing a mixed powder for a molded body obtained by mixing TiC particles of 0.0 μm or less in a molar ratio of TiC: Ti: Si = 2: 2: 1.2 (within ± 10%). You may use the material mixed in 30 to 70 weight part with respect to powder. Since both powders have a small particle diameter, even if a molding method using a colloid process is used, the particles do not settle quickly, so it is possible to cope with them, and a compact using a complex-shaped Ti 3 SiC 2 fired body powder Can be easily created.

平均粒子径が1.0μm超のTi粒子、Si粒子と、及びTiC粒子を用いた場合にはいずれも、コロイドプロセスを用いた成形法を利用した時、成形時に粒子が液中ですばやく沈降し、均一な成形体が得られない。平均粒子径が0.5μm未満のTi、Si、TiC粒子を用いた場合には、いずれも粉砕工程で、不純物混入が多く、緻密な焼結体が得られない。 When using Ti particles, Si particles, and TiC particles with an average particle diameter of more than 1.0 μm, when using a colloidal process, the particles settle quickly in the liquid. A uniform molded body cannot be obtained. When Ti, Si, and TiC particles having an average particle diameter of less than 0.5 μm are used, all of them are mixed with impurities in the pulverization step, and a dense sintered body cannot be obtained.

また、前記微細なTiSiC焼成体粉末に対して30重量部未満又は70重量部超の範囲で成形体用混合粉末と混合した材料を、成形体用材料に用いた場合も、十分に緻密化した焼結体が得られない。 In addition, when a material mixed with the mixed powder for a molded body in a range of less than 30 parts by weight or more than 70 parts by weight with respect to the fine Ti 3 SiC 2 fired body powder is used as a material for the molded body, A dense sintered body cannot be obtained.

本発明の実施形態であるTiSiC常圧焼結体及びその製造方法は、上記実施形態に限定されるものではなく、本発明の技術的思想の範囲内で、種々変更して実施することができる。本実施形態の具体例を以下の実施例で示す。しかし、本発明はこれらの実施例に限定されるものではない。 The Ti 3 SiC 2 atmospheric pressure sintered body and the manufacturing method thereof according to the embodiment of the present invention are not limited to the above-described embodiment, and various modifications are made within the scope of the technical idea of the present invention. be able to. Specific examples of this embodiment are shown in the following examples. However, the present invention is not limited to these examples.

(実施例1)
まず、TiC(3μm、高純度化学)、Ti(35μm、高純度化学)、Si(5μm、NO.600、山石金属)、Al(30μm、高純度化学)からなる焼成体用混合粉末(TiC:Ti:Si:Al=2:1:1.2:0.3、モル比)をAr気流中、1200℃で焼成し、Al乳鉢で解砕して、TiSiC焼成体粉末を得た。XRD(X−ray diffraction:X線回折)で、得られた粉末は、TiSiC単一相であることを確認した。
次に、一軸加圧成形後、3.9トン/cmでCIP(Cold Isostatic Pressing、冷間静水圧加圧)成形し、圧粉体を、Ar気流中、1300℃でタングステンヒーター炉を用いて常圧焼結した。得られたTiSiC常圧焼結体は、XRDにより、TiSiC単一相であることを確認した。
次に、TiSiC常圧焼結体の破断面の電子顕微鏡観察を行い、二次電子像を図1に示した。図1に示すように、実施例1のTiSiC常圧焼結体はポアーがほとんどなく緻密化していた。
次に、アルキメデス法により密度測定を行い、かさ比重(実測値)を得た。真密度とかさ比重(実測値)の比から、相対密度を算出した。算出結果によると、実施例1のTiSiC常圧焼結体は理論密度近くまで緻密化していた。なお、Alは合成時に、酸化物になっていることをEDS(Energy Dispersive X−ray Spectrometry:エネルギー分散X線分光法)により確認した。また、合成した焼成体粉末の真密度をHeガス置換法により測定し、4.28を得た。そのため、真密度(理想のかさ比重)を4.28と定義した。以下、他の実施例、比較例でもこの値を相対密度の算出に用いた。
Example 1
First, a mixed powder for a fired body (TiC: TiC: 3 μm, high-purity chemistry), Ti (35 μm, high-purity chemistry), Si (5 μm, NO.600, Yamaishi Metal), Al (30 μm, high-purity chemistry). Ti: Si: Al = 2: 1: 1.2: 0.3, molar ratio) was fired at 1200 ° C. in an Ar stream and crushed in an Al 2 O 3 mortar to obtain a Ti 3 SiC 2 fired powder. Got. It was confirmed by XRD (X-ray diffraction: X-ray diffraction) that the obtained powder was a Ti 3 SiC 2 single phase.
Next, after uniaxial pressing, CIP (Cold Isostatic Pressing) is performed at 3.9 ton / cm 2 , and the green compact is used at 1300 ° C. in an Ar stream using a tungsten heater furnace. And normal pressure sintering. The obtained Ti 3 SiC 2 atmospheric pressure sintered body was confirmed to be a Ti 3 SiC 2 single phase by XRD.
Next, the fracture surface of the Ti 3 SiC 2 atmospheric pressure sintered body was observed with an electron microscope, and a secondary electron image is shown in FIG. As shown in FIG. 1, the Ti 3 SiC 2 atmospheric pressure sintered body of Example 1 was densified with almost no pores.
Next, density measurement was performed by the Archimedes method to obtain a bulk specific gravity (actual measurement value). The relative density was calculated from the ratio between the true density and the bulk specific gravity (measured value). According to the calculation result, the Ti 3 SiC 2 atmospheric pressure sintered body of Example 1 was densified to near the theoretical density. Note that Al was confirmed to be an oxide during synthesis by EDS (Energy Dispersive X-ray Spectrometry). Moreover, the true density of the synthesized sintered body powder was measured by a He gas substitution method, and 4.28 was obtained. Therefore, the true density (ideal bulk specific gravity) was defined as 4.28. Hereinafter, this value was also used for calculating the relative density in other examples and comparative examples.

(実施例2)
焼結温度を1400℃とした以外は、実施例1と同様に、TiSiC常圧焼結体を作製した。得られたTiSiC常圧焼結体は、XRDにより、TiSiC単一相であることを確認した。密度測定を行い、かさ比重(実測値)を得、相対密度を算出した。
(Example 2)
A Ti 3 SiC 2 normal pressure sintered body was produced in the same manner as in Example 1 except that the sintering temperature was 1400 ° C. The obtained Ti 3 SiC 2 atmospheric pressure sintered body was confirmed to be a Ti 3 SiC 2 single phase by XRD. Density measurement was performed to obtain a bulk specific gravity (actual measurement value), and a relative density was calculated.

(実施例3)
まず、実施例1と同様にして、TiC(3μm、高純度化学)、Ti(35μm、高純度化学)、Si(5μm、NO.600、山石金属)、Al(30μm、高純度化学)の混合粉末(TiC:Ti:Si:Al=2:1:1.2:0.3、モル比)をAr気流中、1200℃で焼成した。
次に、これを、ヘキサンを溶媒に用いて400rpm、10時間の条件で遊星ボールミル粉砕を行い、平均粒子径0.5μmのTiSiC焼成体粉末を得た。
一方、TiC(3μm、高純度化学)、Ti(35μm、高純度化学)、Si(5μm、NO.600、山石金属)についても、それぞれ、ヘキサンを溶媒に用いて、遊星ボールミル粉砕を行い平均粒子径が0.5μmの粉末を得た。これらをTiC:Ti:Si=2:1:1.2、モル比の比率で、混合して、成形体用混合粉末を得た。
次に、平均粒子径0.5μmのTiSiC焼成体粉末、30重量部、平均粒子径約0.5μmのTiC、Si、Tiの成形体用混合粉末、70重量部の均一混合粉末を作製した。一軸加圧成形後、3.9トン/cmでCIP成形してから、圧粉体を、Ar気流中、1300℃で常圧焼結した。得られたTiSiC常圧焼結体は、XRDにより、TiSiC単一相であることを確認した。密度測定を行い、かさ比重(実測値)を得、相対密度を算出した。
(Example 3)
First, in the same manner as in Example 1, mixing of TiC (3 μm, high purity chemistry), Ti (35 μm, high purity chemistry), Si (5 μm, NO.600, Yamaishi Metal), Al (30 μm, high purity chemistry) The powder (TiC: Ti: Si: Al = 2: 1: 1.2: 0.3, molar ratio) was fired at 1200 ° C. in an Ar stream.
Next, this was pulverized on a planetary ball mill using hexane as a solvent at 400 rpm for 10 hours to obtain a Ti 3 SiC 2 fired body powder having an average particle size of 0.5 μm.
On the other hand, TiC (3 μm, high-purity chemistry), Ti (35 μm, high-purity chemistry), Si (5 μm, NO.600, Yamaishi Metal) were each pulverized with planetary ball mill using hexane as a solvent to obtain average particles. A powder having a diameter of 0.5 μm was obtained. These were mixed at a molar ratio of TiC: Ti: Si = 2: 1: 1.2 to obtain a mixed powder for a molded body.
Next, a Ti 3 SiC 2 fired body powder having an average particle size of 0.5 μm, 30 parts by weight, a mixed powder for compacts of TiC, Si, and Ti having an average particle diameter of about 0.5 μm, and a uniform mixed powder of 70 parts by weight. Produced. After uniaxial pressure molding, CIP molding was performed at 3.9 ton / cm 2 , and then the green compact was sintered at 1300 ° C. in an Ar stream. The obtained Ti 3 SiC 2 atmospheric pressure sintered body was confirmed to be a Ti 3 SiC 2 single phase by XRD. Density measurement was performed to obtain a bulk specific gravity (actual measurement value), and a relative density was calculated.

(実施例4)
成形体用材料として、平均粒子径0.5μmのTiSiC焼成体粉末、50重量部、平均粒子径約0.5μmのTiC、Si、Tiの成形体用混合粉末、50重量部の均一混合粉末を用いた以外は、実施例3と同様にして、TiSiC常圧焼結体を作製した。一軸加圧成形後、3.9トン/cmでCIP成形してから、圧粉体を、Ar気流中、1300℃で常圧焼結した。得られたTiSiC常圧焼結体は、XRDにより、TiSiC単一相であることを確認した。密度測定を行い、かさ比重(実測値)を得、相対密度を算出した。
Example 4
As a compact material, 50 parts by weight of Ti 3 SiC 2 fired powder with an average particle size of 0.5 μm, mixed powder for compacts of TiC, Si and Ti with an average particle size of about 0.5 μm, 50 parts by weight of uniform powder A Ti 3 SiC 2 atmospheric pressure sintered body was produced in the same manner as in Example 3 except that the mixed powder was used. After uniaxial pressure molding, CIP molding was performed at 3.9 ton / cm 2 , and then the green compact was sintered at 1300 ° C. in an Ar stream. The obtained Ti 3 SiC 2 atmospheric pressure sintered body was confirmed to be a Ti 3 SiC 2 single phase by XRD. Density measurement was performed to obtain a bulk specific gravity (actual measurement value), and a relative density was calculated.

(実施例5)
成形体用材料として、平均粒子径0.5μmのTiSiC焼成体粉末、30重量部、平均粒子径約0.5μmのTiC、Si、Tiの成形体用混合粉末、70重量部の均一混合粉末を用いた以外は、実施例3と同様にして、TiSiC常圧焼結体を作製した。一軸加圧成形後、3.9トン/cmでCIP成形してから、圧粉体を、Ar気流中、1300℃で常圧焼結した。得られたTiSiC常圧焼結体は、XRDにより、TiSiC単一相であることを確認した。密度測定を行い、かさ比重(実測値)を得、相対密度を算出した。
(Example 5)
As a compact material, Ti 3 SiC 2 fired powder with an average particle diameter of 0.5 μm, 30 parts by weight, mixed powder for TiC, Si, Ti compact with an average particle diameter of about 0.5 μm, 70 parts by weight of uniform powder A Ti 3 SiC 2 atmospheric pressure sintered body was produced in the same manner as in Example 3 except that the mixed powder was used. After uniaxial pressure molding, CIP molding was performed at 3.9 ton / cm 2 , and then the green compact was sintered at 1300 ° C. in an Ar stream. The obtained Ti 3 SiC 2 atmospheric pressure sintered body was confirmed to be a Ti 3 SiC 2 single phase by XRD. Density measurement was performed to obtain a bulk specific gravity (actual measurement value), and a relative density was calculated.

(実施例6)
平均粒子径30μmのTi粒子を用いたほかは実施例1と同様にして、TiSiC常圧焼結体を製造した。平均粒子径30μmのTi粒子は、Ti(35μm、高純度化学)を、ヘキサンを溶媒に用いて、遊星ボールミル粉砕して作製した。得られたTiSiC常圧焼結体は、XRDにより、TiSiC単一相であることを確認した。密度測定を行い、かさ比重(実測値)を得、相対密度を算出した。
(Example 6)
A Ti 3 SiC 2 atmospheric pressure sintered body was produced in the same manner as in Example 1 except that Ti particles having an average particle diameter of 30 μm were used. Ti particles having an average particle size of 30 μm were prepared by pulverizing planetary ball mill using Ti (35 μm, high purity chemical) using hexane as a solvent. The obtained Ti 3 SiC 2 atmospheric pressure sintered body was confirmed to be a Ti 3 SiC 2 single phase by XRD. Density measurement was performed to obtain a bulk specific gravity (actual measurement value), and a relative density was calculated.

(実施例7)
平均粒子径50μmのTi粒子を用いたほかは実施例1と同様にして、TiSiC常圧焼結体を製造した。平均粒子径50μmのTi粒子は、Ti(150μm、高純度化学)を、ヘキサンを溶媒に用いて、遊星ボールミル粉砕して作製した。得られたTiSiC常圧焼結体は、XRDにより、TiSiC単一相であることを確認した。密度測定を行い、かさ比重(実測値)を得、相対密度を算出した。
(Example 7)
A Ti 3 SiC 2 atmospheric pressure sintered body was produced in the same manner as in Example 1 except that Ti particles having an average particle diameter of 50 μm were used. Ti particles having an average particle diameter of 50 μm were produced by grinding a planetary ball mill using Ti (150 μm, high-purity chemistry) using hexane as a solvent. The obtained Ti 3 SiC 2 atmospheric pressure sintered body was confirmed to be a Ti 3 SiC 2 single phase by XRD. Density measurement was performed to obtain a bulk specific gravity (actual measurement value), and a relative density was calculated.

(実施例8)
平均粒子径1μmのTiC粒子を用いたほかは実施例1と同様にして、TiSiC常圧焼結体を製造した。平均粒子径1μmのTiC粒子は、TiC(3μm、高純度化学)を、ヘキサンを溶媒に用いて、遊星ボールミル粉砕して作製した。得られたTiSiC常圧焼結体は、XRDにより、TiSiC単一相であることを確認した。密度測定を行い、かさ比重(実測値)を得、相対密度を算出した。
(Example 8)
A Ti 3 SiC 2 atmospheric pressure sintered body was produced in the same manner as in Example 1 except that TiC particles having an average particle diameter of 1 μm were used. TiC particles having an average particle diameter of 1 μm were produced by grinding a planetary ball mill using TiC (3 μm, high-purity chemistry) using hexane as a solvent. The obtained Ti 3 SiC 2 atmospheric pressure sintered body was confirmed to be a Ti 3 SiC 2 single phase by XRD. Density measurement was performed to obtain a bulk specific gravity (actual measurement value), and a relative density was calculated.

(実施例9)
平均粒子径5μmのTiC粒子を用いたほかは実施例1と同様にして、TiSiC常圧焼結体を製造した。平均粒子径5μmのTiC粒子は、TiC(TiC−M、日本新金属)を、ヘキサンを溶媒に用いて、遊星ボールミル粉砕して作製した。得られたTiSiC常圧焼結体は、XRDにより、TiSiC単一相であることを確認した。密度測定を行い、かさ比重(実測値)を得、相対密度を算出した。
Example 9
A Ti 3 SiC 2 atmospheric pressure sintered body was produced in the same manner as in Example 1 except that TiC particles having an average particle diameter of 5 μm were used. TiC particles having an average particle diameter of 5 μm were prepared by pulverizing planetary ball mills of TiC (TiC-M, Nippon Shin Metal) using hexane as a solvent. The obtained Ti 3 SiC 2 atmospheric pressure sintered body was confirmed to be a Ti 3 SiC 2 single phase by XRD. Density measurement was performed to obtain a bulk specific gravity (actual measurement value), and a relative density was calculated.

(実施例10)
平均粒子径2μmのSi粒子を用いたほかは実施例1と同様にして、TiSiC常圧焼結体を製造した。平均粒子径2μmのSi粒子は、Si(5μm、NO.600、山石金属)を、ヘキサンを溶媒に用いて、遊星ボールミル粉砕して作製した。得られたTiSiC常圧焼結体は、XRDにより、TiSiC単一相であることを確認した。密度測定を行い、かさ比重(実測値)を得、相対密度を算出した。
(Example 10)
A Ti 3 SiC 2 normal pressure sintered body was produced in the same manner as in Example 1 except that Si particles having an average particle diameter of 2 μm were used. Si particles having an average particle diameter of 2 μm were prepared by pulverizing planetary ball mill using Si (5 μm, NO.600, Yamaishi Metal) using hexane as a solvent. The obtained Ti 3 SiC 2 atmospheric pressure sintered body was confirmed to be a Ti 3 SiC 2 single phase by XRD. Density measurement was performed to obtain a bulk specific gravity (actual measurement value), and a relative density was calculated.

(実施例11)
平均粒子径15μmのSi粒子を用いたほかは実施例1と同様にして、TiSiC常圧焼結体を製造した。平均粒子径15μmのSi粒子は、Si(20μm、NO.350、山石金属)を、ヘキサンを溶媒に用いて、遊星ボールミル粉砕して作製した。得られたTiSiC常圧焼結体は、XRDにより、TiSiC単一相であることを確認した。密度測定を行い、かさ比重(実測値)を得、相対密度を算出した。
(Example 11)
A Ti 3 SiC 2 atmospheric pressure sintered body was produced in the same manner as in Example 1 except that Si particles having an average particle diameter of 15 μm were used. Si particles having an average particle diameter of 15 μm were prepared by pulverizing planetary ball mills of Si (20 μm, NO. 350, Yamaishi Metal) using hexane as a solvent. The obtained Ti 3 SiC 2 atmospheric pressure sintered body was confirmed to be a Ti 3 SiC 2 single phase by XRD. Density measurement was performed to obtain a bulk specific gravity (actual measurement value), and a relative density was calculated.

(実施例12)
平均粒子径20μmのAl粒子を用いたほかは実施例1と同様にして、TiSiC常圧焼結体を製造した。平均粒子径20μmのAl粒子は、Al(30μm、高純度化学)を、ヘキサンを溶媒に用いて、遊星ボールミル粉砕して作製した。得られたTiSiC常圧焼結体は、XRDにより、TiSiC単一相であることを確認した。密度測定を行い、かさ比重(実測値)を得、相対密度を算出した。
(Example 12)
A Ti 3 SiC 2 normal pressure sintered body was produced in the same manner as in Example 1 except that Al particles having an average particle diameter of 20 μm were used. Al particles having an average particle diameter of 20 μm were produced by grinding a planetary ball mill using Al (30 μm, high-purity chemistry) using hexane as a solvent. The obtained Ti 3 SiC 2 atmospheric pressure sintered body was confirmed to be a Ti 3 SiC 2 single phase by XRD. Density measurement was performed to obtain a bulk specific gravity (actual measurement value), and a relative density was calculated.

(実施例13)
平均粒子径40μmのAl粒子を用いたほかは実施例1と同様にして、TiSiC常圧焼結体を製造した。平均粒子径40μmのAl粒子は、Al(150μm、高純度化学)を、ヘキサンを溶媒に用いて、遊星ボールミル粉砕して作製した。得られたTiSiC常圧焼結体は、XRDにより、TiSiC単一相であることを確認した。密度測定を行い、かさ比重(実測値)を得、相対密度を算出た。
(Example 13)
A Ti 3 SiC 2 normal pressure sintered body was produced in the same manner as in Example 1 except that Al particles having an average particle diameter of 40 μm were used. Al particles having an average particle diameter of 40 μm were produced by grinding a planetary ball mill using Al (150 μm, high-purity chemical) using hexane as a solvent. The obtained Ti 3 SiC 2 atmospheric pressure sintered body was confirmed to be a Ti 3 SiC 2 single phase by XRD. Density measurement was performed to obtain a bulk specific gravity (actual measurement value), and a relative density was calculated.

(実施例14)
平均粒子径1.0μmに粉砕したTiSiC焼成体粉末を用いたほかは実施例1と同様にして、TiSiC常圧焼結体を製造した。平均粒子径1.0μmのTiSiC粒子は、実施例1と同様にして作製した、3μmのTiSiC粉末を、ヘキサンを溶媒に用いて、遊星ボールミル粉砕して作製した。得られたTiSiC常圧焼結体は、XRDにより、TiSiC単一相であることを確認した。密度測定を行い、かさ比重(実測値)を得、相対密度を算出した。
(Example 14)
A Ti 3 SiC 2 pressureless sintered body was produced in the same manner as in Example 1 except that the Ti 3 SiC 2 fired body powder pulverized to an average particle size of 1.0 μm was used. Ti 3 SiC 2 particles having an average particle diameter of 1.0 μm were prepared by pulverizing planetary ball mills using 3 μm of Ti 3 SiC 2 powder prepared in the same manner as in Example 1 using hexane as a solvent. The obtained Ti 3 SiC 2 atmospheric pressure sintered body was confirmed to be a Ti 3 SiC 2 single phase by XRD. Density measurement was performed to obtain a bulk specific gravity (actual measurement value), and a relative density was calculated.

(実施例15)
焼結温度を1200℃とした以外は実施例1と同様にして、TiSiC常圧焼結体を作製した。得られたTiSiC常圧焼結体は、XRDにより、TiSiC単一相であることを確認した。密度測定を行い、かさ比重(実測値)を得、相対密度を算出した。
(Example 15)
A Ti 3 SiC 2 normal pressure sintered body was produced in the same manner as in Example 1 except that the sintering temperature was 1200 ° C. The obtained Ti 3 SiC 2 atmospheric pressure sintered body was confirmed to be a Ti 3 SiC 2 single phase by XRD. Density measurement was performed to obtain a bulk specific gravity (actual measurement value), and a relative density was calculated.

(実施例16)
成形体用材料として、平均粒子径約1.0μmのTiC、Si、Tiの成形体用混合粉末を用いた以外は、実施例3と同様にして、TiSiC常圧焼結体を作製した。XRD測定、密度測定を行った。平均粒子径1μmのTi、TiC、Si粉末は、それぞれTiC(3μm、高純度化学)、Ti(35μm、高純度化学)、Si(5μm、NO.600、山石金属)をヘキサン溶媒を用いて、遊星ボールミル粉砕して得た。
(Example 16)
A Ti 3 SiC 2 atmospheric pressure sintered body is produced in the same manner as in Example 3, except that a mixed powder for TiC, Si, and Ti having an average particle diameter of about 1.0 μm is used as the molded body material. did. XRD measurement and density measurement were performed. Ti, TiC, and Si powders having an average particle diameter of 1 μm are respectively TiC (3 μm, high-purity chemistry), Ti (35 μm, high-purity chemistry), Si (5 μm, NO.600, Yamaishi Metal) using a hexane solvent, Obtained by pulverizing planetary ball mill.

(実施例17)
焼成温度を1150℃としたほかは実施例1と同様にして、TiSiC常圧焼結体を製造した。XRD測定、密度測定を行った。
(Example 17)
A Ti 3 SiC 2 pressureless sintered body was produced in the same manner as in Example 1 except that the firing temperature was 1150 ° C. XRD measurement and density measurement were performed.

(実施例18)
焼成温度を1300℃としたほかは実施例1と同様にして、TiSiC常圧焼結体を製造した。XRD測定、密度測定を行った。
(Example 18)
A Ti 3 SiC 2 normal pressure sintered body was produced in the same manner as in Example 1 except that the firing temperature was 1300 ° C. XRD measurement and density measurement were performed.

(比較例1)
Ti(17μm、東邦チタン)をTiSiC粉末の合成に用いた以外は実施例1と同様にして、TiSiC常圧焼結体を作製した。得られたTiSiC焼成体粉末は、XRDにより、主成分はTiSiC相であるが、他に、未反応のTiCとTiSi相を検出した。また、得られた焼結体は、主成分はTiSiC相であるが、他に、未反応のTiC相を検出した。また、得られた焼結体の密度測定を行い、かさ比重(実測値)を得、相対密度を算出した。
(Comparative Example 1)
A Ti 3 SiC 2 atmospheric pressure sintered body was produced in the same manner as in Example 1 except that Ti (17 μm, Toho Titanium) was used for the synthesis of Ti 3 SiC 2 powder. The obtained Ti 3 SiC 2 fired body powder was mainly composed of a Ti 3 SiC 2 phase by XRD, but unreacted TiC and Ti 5 Si 3 phases were also detected. The obtained sintered body, the main component is a Ti 3 SiC 2 phase, other were detected TiC phase unreacted. Moreover, the density measurement of the obtained sintered compact was performed, bulk specific gravity (measured value) was obtained, and the relative density was computed.

(比較例2)
Ti(90μm、高純度化学研究所)をTiSiC粉末の合成に用いた以外は実施例1と同様にして、TiSiC常圧焼結体を作製した。得られたTiSiC焼成体粉末は、XRDにより、主成分はTiSiC相であるが、他に、未反応のTiCとTiSi相を検出した。また、得られた焼結体の密度測定を行い、かさ比重(実測値)を得、相対密度を算出した。
(Comparative Example 2)
A Ti 3 SiC 2 atmospheric pressure sintered body was produced in the same manner as in Example 1 except that Ti (90 μm, High Purity Chemical Laboratory) was used for the synthesis of the Ti 3 SiC 2 powder. The obtained Ti 3 SiC 2 fired body powder was mainly composed of a Ti 3 SiC 2 phase by XRD, but also unreacted TiC and Ti 3 Si 3 phases were detected. Moreover, the density measurement of the obtained sintered compact was performed, bulk specific gravity (measured value) was obtained, and the relative density was computed.

(比較例3)
Ti(17μm、東邦チタン)、Al(3μm、高純度化学)をTiSiC粉末の合成に用いた以外は実施例1と同様にして、TiSiC常圧焼結体を作製した。得られたTiSiC焼成体粉末は、XRDにより、主成分はTiSiC相であるが、ほかに、未反応のTiCとTiSi相を検出した。また、得られた焼結体の密度測定を行い、かさ比重(実測値)を得、相対密度を算出した。
(Comparative Example 3)
A Ti 3 SiC 2 atmospheric pressure sintered body was produced in the same manner as in Example 1 except that Ti (17 μm, Toho Titanium) and Al (3 μm, high-purity chemistry) were used for the synthesis of Ti 3 SiC 2 powder. The obtained Ti 3 SiC 2 fired body powder was mainly composed of a Ti 3 SiC 2 phase by XRD, but also unreacted TiC and Ti 5 Si 3 phases were detected. Moreover, the density measurement of the obtained sintered compact was performed, bulk specific gravity (measured value) was obtained, and the relative density was computed.

(比較例4)
TiCとして、TiC(3μm、高純度化学)をヘキサン中で400rpm、10時間の条件で遊星ボールミル粉砕した、平均粒子径が0.5μmの粉末を用いた以外は、実施例1と同様にして、TiSiC常圧焼結体を作製した。得られたTiSiC焼成体粉末は、XRDにより、わずかにTiSi相を含むが、ほとんどTiSiC単一相と言えるレベルであることを確認した。また、焼結体の密度測定を行い、かさ比重(実測値)を得、相対密度を算出した。
(Comparative Example 4)
As TiC, TiC (3 μm, high-purity chemistry) was crushed in planetary ball mill under conditions of 400 rpm and 10 hours in hexane, except that a powder having an average particle size of 0.5 μm was used. A Ti 3 SiC 2 atmospheric pressure sintered body was produced. The obtained Ti 3 SiC 2 fired body powder was confirmed to be at a level that could be said to be almost a Ti 3 SiC 2 single phase, although it slightly contained a Ti 5 Si 3 phase by XRD. Moreover, the density of the sintered compact was measured, bulk specific gravity (actual value) was obtained, and the relative density was calculated.

(比較例5)
成形体用材料として、平均粒子径0.5μmのTiSiC焼成体粉末、80重量部、平均粒子径約0.5μmのTiC、Si、Tiの成形体用混合粉末、20重量部の均一混合粉末を用いた以外は、実施例3と同様にして、TiSiC常圧焼結体を作製した。一軸加圧成形後、3.9トン/cmでCIP成形してから、圧粉体を、Ar気流中、1300℃で常圧焼結した。得られたTiSiC常圧焼結体は、XRDにより、TiSiC単一相であることを確認した。密度測定を行い、かさ比重(実測値)を得、相対密度を算出した。
(Comparative Example 5)
As a molding material, Ti 3 SiC 2 fired body powder with an average particle size of 0.5 μm, 80 parts by weight, mixed powder for TiC, Si, and Ti with an average particle size of about 0.5 μm, uniform of 20 parts by weight A Ti 3 SiC 2 atmospheric pressure sintered body was produced in the same manner as in Example 3 except that the mixed powder was used. After uniaxial pressure molding, CIP molding was performed at 3.9 ton / cm 2 , and then the green compact was sintered at 1300 ° C. in an Ar stream. The obtained Ti 3 SiC 2 atmospheric pressure sintered body was confirmed to be a Ti 3 SiC 2 single phase by XRD. Density measurement was performed to obtain a bulk specific gravity (actual measurement value), and a relative density was calculated.

(比較例6)
成形体用材料として、平均粒子径0.5μmのTiSiC焼成体粉末、20重量部、平均粒子径約0.5μmのTiC、Si、Tiの成形体用混合粉末、80重量部の均一混合粉末を用いた以外は、実施例3と同様にして、TiSiC常圧焼結体を作製した。一軸加圧成形後、3.9トン/cmでCIP成形してから、圧粉体を、Ar気流中、1300℃で常圧焼結した。得られたTiSiC常圧焼結体は、XRDにより、TiSiC単一相であることを確認した。密度測定を行い、かさ比重(実測値)を得、相対密度を算出した。
(Comparative Example 6)
As a compact material, 20 parts by weight of a Ti 3 SiC 2 fired body powder having an average particle diameter of 0.5 μm, a mixed powder of TiC, Si, and Ti having an average particle diameter of about 0.5 μm, 80 parts by weight of uniform powder A Ti 3 SiC 2 atmospheric pressure sintered body was produced in the same manner as in Example 3 except that the mixed powder was used. After uniaxial pressure molding, CIP molding was performed at 3.9 ton / cm 2 , and then the green compact was sintered at 1300 ° C. in an Ar stream. The obtained Ti 3 SiC 2 atmospheric pressure sintered body was confirmed to be a Ti 3 SiC 2 single phase by XRD. Density measurement was performed to obtain a bulk specific gravity (actual measurement value), and a relative density was calculated.

(比較例7)
平均粒子径20μmのTi粒子を用いたほかは実施例1と同様にして、TiSiC常圧焼結体を製造した。平均粒子径20μmのTi粒子は、Ti(35μm、高純度化学)をヘキサン中で遊星ボールミル粉砕して作製した。XRD測定、密度測定を行った。
(Comparative Example 7)
A Ti 3 SiC 2 normal pressure sintered body was produced in the same manner as in Example 1 except that Ti particles having an average particle diameter of 20 μm were used. Ti particles having an average particle size of 20 μm were produced by pulverizing Ti (35 μm, high purity chemical) in planetary ball mill in hexane. XRD measurement and density measurement were performed.

(比較例8)
平均粒子径60μmのTi粒子を用いたほかは実施例1と同様にして、TiSiC常圧焼結体を製造した。平均粒子径60μmのTi粒子は、Ti(―150μm、高純度化学)をヘキサン中で遊星ボールミル粉砕して作製した。XRD測定、密度測定を行った。
(Comparative Example 8)
A Ti 3 SiC 2 atmospheric pressure sintered body was produced in the same manner as in Example 1 except that Ti particles having an average particle diameter of 60 μm were used. Ti particles having an average particle diameter of 60 μm were prepared by pulverizing Ti (−150 μm, high purity chemical) in planetary ball mill in hexane. XRD measurement and density measurement were performed.

(比較例9)
平均粒子径6μmのTiC粒子を用いたほかは実施例1と同様にして、TiSiC常圧焼結体を製造した。平均粒子径6μmのTiC粒子は、TiC(TiC−M、日本新金属)をヘキサン中で遊星ボールミル粉砕して作製した。XRD測定、密度測定を行った。
(Comparative Example 9)
A Ti 3 SiC 2 atmospheric pressure sintered body was produced in the same manner as in Example 1 except that TiC particles having an average particle diameter of 6 μm were used. TiC particles having an average particle diameter of 6 μm were produced by pulverizing TiC (TiC-M, Nippon Shin Metal) in hexane with a planetary ball mill. XRD measurement and density measurement were performed.

(比較例10)
平均粒子径1μmのSi粒子を用いたほかは実施例1と同様にして、TiSiC常圧焼結体を製造した。平均粒子径1μmのSi粒子は、Si(5μm、NO.600,山石金属)をヘキサン中で遊星ボールミル粉砕して作製した。XRD測定、密度測定を行った。
(Comparative Example 10)
A Ti 3 SiC 2 atmospheric pressure sintered body was produced in the same manner as in Example 1 except that Si particles having an average particle diameter of 1 μm were used. Si particles having an average particle diameter of 1 μm were prepared by pulverizing Si (5 μm, NO. 600, Yamaishi Metal) in hexane with a planetary ball mill. XRD measurement and density measurement were performed.

(比較例11)
平均粒子径20μmのSi粒子(20μm、NO.350、山石金属)を用いたほかは実施例1と同様にして、TiSiC常圧焼結体を製造した。XRD測定、密度測定を行った。
(Comparative Example 11)
A Ti 3 SiC 2 atmospheric pressure sintered body was produced in the same manner as in Example 1 except that Si particles having an average particle diameter of 20 μm (20 μm, NO. 350, mountain stone metal) were used. XRD measurement and density measurement were performed.

(比較例12)
平均粒子径10μmのAl粒子を用いたほかは実施例1と同様にして、TiSiC常圧焼結体を製造した。平均粒子径10μmのAl粒子は、Al(30μm、高純度化学)をヘキサン中で遊星ボールミル粉砕して作製した。XRD測定、密度測定を行った。
(Comparative Example 12)
A Ti 3 SiC 2 normal pressure sintered body was produced in the same manner as in Example 1 except that Al particles having an average particle diameter of 10 μm were used. Al particles having an average particle diameter of 10 μm were prepared by pulverizing Al (30 μm, high purity chemical) in planetary ball mill in hexane. XRD measurement and density measurement were performed.

(比較例13)
平均粒子径60μmのAl粒子を用いたほかは実施例1と同様にして、TiSiC常圧焼結体を製造した。平均粒子径60μmのAl粒子は、Al(90μm、高純度化学)をヘキサン中で遊星ボールミル粉砕して作製した。XRD測定、密度測定を行った。
(Comparative Example 13)
A Ti 3 SiC 2 atmospheric pressure sintered body was produced in the same manner as in Example 1 except that Al particles having an average particle diameter of 60 μm were used. Al particles having an average particle diameter of 60 μm were prepared by pulverizing Al (90 μm, high purity chemical) in planetary ball mill in hexane. XRD measurement and density measurement were performed.

(比較例14)
常圧焼結温度を1100℃としたほかは実施例1と同様にして、TiSiC常圧焼結体を製造した。XRD測定、密度測定を行った。
(Comparative Example 14)
A Ti 3 SiC 2 normal pressure sintered body was produced in the same manner as in Example 1 except that the normal pressure sintering temperature was 1100 ° C. XRD measurement and density measurement were performed.

(比較例15)
常圧焼結温度を1500℃としたほかは実施例1と同様にして、TiSiC常圧焼結体を製造した。XRD測定、密度測定を行った。
以上の実験条件、実験結果は表1〜4にまとめた。
(Comparative Example 15)
A Ti 3 SiC 2 normal pressure sintered body was produced in the same manner as in Example 1 except that the normal pressure sintering temperature was 1500 ° C. XRD measurement and density measurement were performed.
The above experimental conditions and experimental results are summarized in Tables 1 to 4.





本発明のTiSiC常圧焼結体及びその製造方法は、TiSiC単一相からなり、かつ、相対密度が90%以上であるTiSiC常圧焼結体及びその製造方法に関するものである。厳しい環境において用いられる部材の原材料、例えば、メタルや黒鉛の代わりに、電極材部材や発熱体部材などに用いることができ、航空宇宙産業、ガスタービン・エンジン産業等において利用可能性がある。 Ti 3 SiC 2 Sintered body and its manufacturing method of the present invention, Ti 3 SiC 2 consists of a single phase, and, Ti 3 SiC 2 Sintered bodies and their preparation relative density of 90% or more It is about the method. It can be used for a raw material of a member used in a harsh environment, for example, an electrode material member or a heating element member instead of metal or graphite, and can be used in the aerospace industry, the gas turbine engine industry, and the like.

1、2…TiSiC常圧焼結体、3…薄肉部、4…空洞部。
1, 2 ... Ti 3 SiC 2 atmospheric pressure sintered body, 3 ... thin-walled part, 4 ... hollow part.

Claims (4)

平均粒子径30μm以上50μm以下のTi粒子と、平均粒子径2μm以上15μm以下のSi粒子と、平均粒子径1μm以上5μm以下のTiC粒子と、平均粒子径20μm以上40μm以下のAl粒子を、モル比がTiC:Ti:Si:Al=2:2:1.2:0.3となるように混合して、焼成体用混合粉末を調整する工程と、
不活性ガス雰囲気中、前記焼成体用混合粉末を焼成して、TiSiC焼成体を作製してから、前記TiSiC焼成体を解砕又は粉砕して、平均粒子径3μm以下のTiSiC焼成体粉末を作製する工程と、
前記TiSiC焼成体粉末を成形体用材料として用いて、TiSiC成形体を作製してから、不活性ガス雰囲気中、前記TiSiC成形体を1200℃以上1400℃以下の温度範囲で常圧焼結して、TiSiC常圧焼結体を製造する工程と、を有することを特徴とするTiSiC常圧焼結体の製造方法。
A molar ratio of Ti particles having an average particle diameter of 30 μm or more and 50 μm or less, Si particles having an average particle diameter of 2 μm or more and 15 μm or less, TiC particles having an average particle diameter of 1 μm or more and 5 μm or less, and Al particles having an average particle diameter of 20 μm or more and 40 μm or less. Are mixed so that TiC: Ti: Si: Al = 2: 2: 1.2: 0.3, and a mixed powder for a fired body is prepared,
The mixed powder for a fired body is fired in an inert gas atmosphere to produce a Ti 3 SiC 2 fired body, and then the Ti 3 SiC 2 fired body is crushed or crushed to have an average particle diameter of 3 μm or less. Producing a Ti 3 SiC 2 fired body powder;
Using the Ti 3 SiC 2 sintered body Powder as molded body material, Ti 3 after making a SiC 2 molded body in an inert gas atmosphere, the Ti 3 SiC 2 green bodies 1200 ° C. or higher 1400 ° C. or less And a step of producing a Ti 3 SiC 2 normal pressure sintered body by performing normal pressure sintering in a temperature range of 5 ° C., a method for producing a Ti 3 SiC 2 normal pressure sintered body.
平均粒子径30μm以上50μm以下のTi粒子と、平均粒子径2μm以上15μm以下のSi粒子と、平均粒子径1μm以上5μm以下のTiC粒子と、平均粒子径20μm以上40μm以下のAl粒子を、モル比がTiC:Ti:Si:Al=2:2:1.2:0.3となるように混合して、焼成体用混合粉末を調整する工程と、A molar ratio of Ti particles having an average particle diameter of 30 μm or more and 50 μm or less, Si particles having an average particle diameter of 2 μm or more and 15 μm or less, TiC particles having an average particle diameter of 1 μm or more and 5 μm or less, and Al particles having an average particle diameter of 20 μm or more and 40 μm or less. Are mixed so that TiC: Ti: Si: Al = 2: 2: 1.2: 0.3, and a mixed powder for a fired body is prepared,
不活性ガス雰囲気中、前記焼成体用混合粉末を焼成して、TiIn an inert gas atmosphere, the fired mixed powder for the fired body is fired. 3 SiCSiC 2 焼成体を作製してから、前記TiAfter producing a fired body, the Ti 3 SiCSiC 2 焼成体を解砕又は粉砕して、平均粒子径3μm以下のTiThe fired body is crushed or crushed to obtain an Ti having an average particle size of 3 μm or less. 3 SiCSiC 2 焼成体粉末を作製する工程と、Producing a fired body powder;
前記TiTi 3 SiCSiC 2 焼成体粉末を含む粉末を成形体用材料として用いて、TiUsing a powder containing a fired body powder as a molded body material, Ti 3 SiCSiC 2 成形体を作製してから、不活性ガス雰囲気中、前記TiAfter producing the compact, the Ti gas is added in an inert gas atmosphere. 3 SiCSiC 2 成形体を1200℃以上1400℃以下の温度範囲で常圧焼結して、TiThe compact is sintered at normal pressure in a temperature range of 1200 ° C. to 1400 ° C., and Ti 3 SiCSiC 2 常圧焼結体を製造する工程であって、前記成形体用材料が、平均粒子径が0.5μm以上1.0μm以下のTi粒子と、平均粒子径が0.5μm以上1.0μm以下のSi粒子と、平均粒子径が0.5μm以上1.0μm以下のTiC粒子を、モル比がTiC:Ti:Si=2:2:1.2となるように混合した成形体用混合粉末を、前記TiA step of producing a normal pressure sintered body, wherein the molded body material has Ti particles having an average particle diameter of 0.5 μm to 1.0 μm and an average particle diameter of 0.5 μm to 1.0 μm. A mixed powder for a molded body obtained by mixing Si particles and TiC particles having an average particle diameter of 0.5 μm or more and 1.0 μm or less so that the molar ratio is TiC: Ti: Si = 2: 2: 1.2, Ti 3 SiCSiC 2 焼成体粉末に対して30重量部以上70重量部以下の範囲で混合した材料である、工程と、A process that is a material mixed in a range of 30 parts by weight or more and 70 parts by weight or less with respect to the fired body powder;
を有することを特徴とするTiTi characterized by having 3 SiCSiC 2 常圧焼結体の製造方法。Manufacturing method of atmospheric pressure sintered body.
前記TiSiC焼成体粉末の平均粒子径が、0.5μm以上3.0μm以下の範囲内であることを特徴とする請求項1又は2に記載のTiSiC常圧焼結体の製造方法。 The average particle size of the Ti 3 SiC 2 fired body powder is in the range of 0.5 µm or more and 3.0 µm or less. The Ti 3 SiC 2 atmospheric pressure sintered body according to claim 1 or 2, Production method. 前記焼成体用混合粉末を焼成する温度が、1150℃以上1300℃以下の範囲内であることを特徴とする請求項1〜3のいずれかに記載のTiSiC常圧焼結体の製造方法。
The temperature for firing the mixed powder for a fired body is in the range of 1150 ° C or higher and 1300 ° C or lower, wherein the Ti 3 SiC 2 atmospheric pressure sintered body according to any one of claims 1 to 3 is manufactured. Method.
JP2012199420A 2012-09-11 2012-09-11 Ti3SiC2 atmospheric pressure sintered body and method for producing the same Expired - Fee Related JP5999492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012199420A JP5999492B2 (en) 2012-09-11 2012-09-11 Ti3SiC2 atmospheric pressure sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012199420A JP5999492B2 (en) 2012-09-11 2012-09-11 Ti3SiC2 atmospheric pressure sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2014055074A JP2014055074A (en) 2014-03-27
JP5999492B2 true JP5999492B2 (en) 2016-09-28

Family

ID=50612753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012199420A Expired - Fee Related JP5999492B2 (en) 2012-09-11 2012-09-11 Ti3SiC2 atmospheric pressure sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP5999492B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015205787A1 (en) 2015-03-31 2016-10-06 Siemens Aktiengesellschaft Method for producing a component from MAX phases
EP3426622B1 (en) 2016-03-08 2020-10-21 Refractory Intellectual Property GmbH & Co. KG Refractory ceramic product
CN106966749B (en) * 2016-06-03 2018-05-29 北京航空航天大学 It is a kind of to use Ti3Si(Al)C2The method of modified thermostructural composite
CN107935617A (en) * 2016-10-12 2018-04-20 平顺县西沟龙鼎新材料科技有限公司 A kind of manufacture method of bullet train carbon pottery brake material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5942455A (en) * 1995-11-14 1999-08-24 Drexel University Synthesis of 312 phases and composites thereof
JP3906361B2 (en) * 2002-09-19 2007-04-18 独立行政法人産業技術総合研究所 Method for producing metallic ceramic powder
JP2004262735A (en) * 2003-03-04 2004-09-24 Ngk Spark Plug Co Ltd Ceramic and method of manufacturing ceramic
JP4362582B2 (en) * 2003-09-18 2009-11-11 独立行政法人産業技術総合研究所 Method for producing sintered metal ceramic titanium silicon carbide
JP4836263B2 (en) * 2007-01-04 2011-12-14 独立行政法人産業技術総合研究所 High-strength titanium silicon carbide based composite material and method for producing the same
WO2012102348A1 (en) * 2011-01-26 2012-08-02 日本碍子株式会社 Ti3sic2 material, electrode, spark plug, and processes for production thereof

Also Published As

Publication number Publication date
JP2014055074A (en) 2014-03-27

Similar Documents

Publication Publication Date Title
CN109879669B (en) High-entropy ceramic composite material with high strength and preparation method and application thereof
KR101160140B1 (en) Manufacturing method of zirconium diboride-silicon carbide composite
Ortiz et al. Near-net shape manufacture of B4C–Co and ZrC–Co composites by slip casting and pressureless sintering
Ma et al. Pressureless sintering, mechanical properties and oxidation behavior of ZrB2 ceramics doped with B4C
JP2001080964A (en) POLYCRYSTAL SiC SINTERED COMPACT PRODUCTION OF THE SAME AND PRODUCT OBTAINED BY APPLYING THE SAME
Mishra et al. Effect of Fe and Cr addition on the sintering behavior of ZrB2 produced by self‐propagating high‐temperature synthesis
JP5999492B2 (en) Ti3SiC2 atmospheric pressure sintered body and method for producing the same
Yao et al. Porous Si3N4 ceramics prepared via slip casting of Si and reaction bonded silicon nitride
JP6908248B2 (en) SiC ceramics using coated SiC nanoparticles and their manufacturing method
WO2012153645A1 (en) METHOD FOR PRODUCING HIGH-STRENGTH HIGH-TOUGHNESS ZrO2-Al2O3-BASED SOLID SOLUTION CERAMIC
Hong et al. Synthesis and consolidation of nanostructured W–10–40 wt.% Cu powders
Mondal et al. Ultrafast high‐temperature sintering of ZrB2
US10541064B2 (en) SiC powder, SiC sintered body, SiC slurry and manufacturing method of the same
KR101859818B1 (en) Preparation method of sintered SiC ceramic by using plasma treated Si-SiC nanoparticle
JP2967094B2 (en) Aluminum nitride sintered body and method for producing aluminum nitride powder
JP2010202896A (en) Sputtering target and production method of the same
US7648675B2 (en) Reaction sintered zirconium carbide/tungsten composite bodies and a method for producing the same
JP7414300B2 (en) Zirconium boride/boron carbide composite and its manufacturing method
JP5403851B2 (en) Method for producing sintered zirconium silicate
JP2021172556A (en) Aluminum nitride sintered compact and manufacturing method thereof
CN104163628B (en) A kind of method preparing HfC-SiC complex phase ceramic
CN111732436A (en) Easy-to-sinter titanium and tungsten co-doped zirconium carbide powder and preparation method thereof
JP5673945B2 (en) Method for producing silicon nitride ceramics
JPH09221367A (en) Conductive silicon carbide material composite material and its production
JP2006009088A (en) Method for producing composite material with low thermal expansion, tabular composite, and parts for electronic equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160818

R150 Certificate of patent or registration of utility model

Ref document number: 5999492

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees