JP5998319B2 - Anti-metabo fruit and vegetable sorting method - Google Patents

Anti-metabo fruit and vegetable sorting method Download PDF

Info

Publication number
JP5998319B2
JP5998319B2 JP2014205271A JP2014205271A JP5998319B2 JP 5998319 B2 JP5998319 B2 JP 5998319B2 JP 2014205271 A JP2014205271 A JP 2014205271A JP 2014205271 A JP2014205271 A JP 2014205271A JP 5998319 B2 JP5998319 B2 JP 5998319B2
Authority
JP
Japan
Prior art keywords
fruits
vegetables
metabo
derivative
infrared light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014205271A
Other languages
Japanese (ja)
Other versions
JP2016075539A (en
Inventor
玄 服部
玄 服部
雅幸 有井
雅幸 有井
真清 小笠原
真清 小笠原
Original Assignee
デリカフーズ株式会社
デザイナーフーズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デリカフーズ株式会社, デザイナーフーズ株式会社 filed Critical デリカフーズ株式会社
Priority to JP2014205271A priority Critical patent/JP5998319B2/en
Publication of JP2016075539A publication Critical patent/JP2016075539A/en
Application granted granted Critical
Publication of JP5998319B2 publication Critical patent/JP5998319B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、非破壊分析によりメタボリックシンドロームに対して改善効果がある抗メタボ青果物を選別する方法に関する。   The present invention relates to a method for selecting anti-metabolite fruits and vegetables having an improvement effect on metabolic syndrome by nondestructive analysis.

園芸農産物の流通現場において、青果物の中身成分の非破壊測定法として、近赤外線分光法が知られている。近赤外線分光法による主な測定項目は、美味しさのひとつである「糖度」であり、野菜ではトマト、メロンやタマネギ、果樹では温州ミカンや桃、リンゴなどへ応用され現場に既に普及している。また、トマトに含まれる栄養素「リコペン」については、可視・近赤外線分光法を用いる非破壊測定法が既に開発され、携帯型の機器で普及が進みつつある。   Near-infrared spectroscopy is known as a non-destructive method for measuring the contents of fruits and vegetables in the distribution field of horticultural agricultural products. The main measurement item by near-infrared spectroscopy is “sugar content”, which is one of the deliciousness. It is applied to tomatoes, melons and onions for vegetables, and mandarin oranges, peaches, and apples for fruit trees. . As for the nutrient “lycopene” contained in tomatoes, a nondestructive measurement method using visible / near infrared spectroscopy has already been developed and is spreading in portable devices.

近赤外線分光法を利用した青果物の中身成分の非破壊測定法としては、例えば、特許第3266422号公報に、青果物中に含まれる成分量を測定する成分量測定手段と、その測定情報に基づいて、以後の成分量の経時的変化を予測する成分量予測手段と、その成分量予測手段が予測した予測成分量に基づいて、青果物の品質の経時的変化を判定する品質判定手段と、その品質判定手段が判定した判定結果を出力する出力手段が設けられている青果物の品質判定装置により、成分量を測定した時点以後の青果物の品質の経時的変化を高い精度で判定できる青果物の品質判定装置が開示されている(特許文献1)。   As a non-destructive measurement method for the content components of fruits and vegetables using near infrared spectroscopy, for example, in Japanese Patent No. 3266422, based on component amount measuring means for measuring the amount of components contained in fruits and vegetables, and the measurement information A component amount predicting means for predicting a subsequent change in the amount of the component, a quality judging means for determining a change over time in the quality of the fruits and vegetables based on the predicted component amount predicted by the component amount predicting means, and the quality The fruit and vegetable quality judgment device provided with output means for outputting the judgment result judged by the judgment means, can determine with time the change in the quality of the fruit and vegetable after the time when the component amount is measured with high accuracy. Is disclosed (Patent Document 1).

また、特開2012−57948号公報には、波長600nm〜2500nmの範囲またはその一部範囲の波長光を葉菜などの計測対象に照射し、その透過光を受光して近赤外線吸光スペクトルを取得し、検量線を用いて計測対象の目的成分濃度を非破壊計測する近赤外線分光計測法において、所定の径の貫通孔を設けた近赤外線の遮蔽部材または吸収部材を用いて、計測対象を挟み込み、該貫通孔に向け近赤外線光を照射し、照射範囲を該貫通孔から露出する部位に限定することにより線量線の推定精度を向上させることが開示されている(特許文献2)。   JP 2012-57948 A discloses a near-infrared absorption spectrum by irradiating a measurement target such as leaf vegetables with light having a wavelength in the range of 600 nm to 2500 nm or a partial range thereof, and receiving the transmitted light. In the near-infrared spectroscopic measurement method that uses the calibration curve to measure the concentration of the target component of the measurement target, the measurement target is sandwiched using a near-infrared shielding member or absorption member with a through-hole of a predetermined diameter. Further, it is disclosed to improve the estimation accuracy of a dose line by irradiating near-infrared light toward the through hole and limiting the irradiation range to a portion exposed from the through hole (Patent Document 2).

特許第3266422号公報Japanese Patent No. 3266422 特開2012−57948号公報JP 2012-57948 A

我が国においては生活習慣病等の拡大による医療費増加が早急に解決の必要な課題となっている。一方で、野菜類に含まれるビタミン類やポリフェノール類、柑橘に含まれるβ-クリプトキサンチン、トマトに含まれるリコペン等が抗酸化能を有する機能性成分として注目されている。これら機能性成分を多く含有する青果物を食べることで、血中の中性脂肪や肝臓の脂肪蓄積が抑えられることが明らかにされており、このような青果物は抗メタボ(抗メタボリックシンドローム)青果物と称することが可能である。抗メタボ青果物を選別することは、生活習慣病等の改善、ひいては医療費の低減に貢献する。   In Japan, an increase in medical expenses due to the expansion of lifestyle-related diseases has become an issue that needs to be resolved quickly. On the other hand, vitamins and polyphenols contained in vegetables, β-cryptoxanthin contained in citrus, lycopene contained in tomatoes, etc. are attracting attention as functional components having antioxidant ability. Eating fruits and vegetables that contain a large amount of these functional ingredients has been shown to reduce the accumulation of neutral fat and liver fat in the blood. These fruits and vegetables are considered to be anti-metabolite (anti-metabolic syndrome) fruits and vegetables. Can be referred to. Sorting out anti-metabo fruits and vegetables contributes to the improvement of lifestyle-related diseases and the like, and thus to the reduction of medical costs.

青果物に含まれる成分は数百種類に上ると言われており、すべての成分について定性・定量することは現実的ではない。そのため、それらの成分の総合力を測定する方法として抗酸化力測定法(DPPH法、ORAC法、ESRスピントラッピング法、SOAC法など)が開発され、実用化されている。抗酸化力測定では、抗酸化物質によって消去される活性酸素を測定対象としている。活性酸素には、老化に関わるとされるスーパーオキシドラジカル、生活習慣病に関わるとされるヒドロキシルラジカル、皮膚老化に関わるとされる一重項酸素などがある。つまり、抗酸化力の高い青果物を摂取する事は、抗老化(ヘルシーエイジング)、抗生活習慣病(健康)、抗皮膚老化(美容)などの効果を有する。   It is said that there are hundreds of kinds of ingredients contained in fruits and vegetables, and it is not realistic to qualitatively and quantitatively determine all the ingredients. Therefore, antioxidant power measurement methods (DPPH method, ORAC method, ESR spin trapping method, SOAC method, etc.) have been developed and put into practical use as methods for measuring the total strength of these components. In the antioxidant power measurement, the active oxygen that is eliminated by the antioxidant is the measurement target. Active oxygen includes superoxide radicals that are related to aging, hydroxyl radicals that are related to lifestyle-related diseases, and singlet oxygen that is related to skin aging. In other words, ingesting fruits and vegetables with high antioxidant power has effects such as anti-aging (healthy aging), anti-lifestyle-related diseases (health), and anti-skin aging (beauty).

田井中らは、高Brix、高リコペン含量、高抗酸化力のトマトは、そうではないトマトと比較して、血中の中性脂肪や肝臓の脂肪蓄積が抑えられていることを明らかにした(Tainaka et al.,"Transcriptome analysis of anti-fatty liver action by Campari tomato using a zebrafish diet-induced obesity model",Nutrition&Metabolism,2011)。つまり、トマトを非破壊計測にて同時に測定した高Brix、高リコペン含量、高抗酸化力のトマトは、抗メタボ効果のあるトマトといえる。   Tanaka et al. Revealed that tomatoes with high Brix, high lycopene content, and high antioxidant capacity have reduced neutral fat and liver fat accumulation in the blood compared to tomatoes that did not. (Tainaka et al., “Transcriptome analysis of anti-fatty liver action by Campari tomato using a zebrafish diet-induced obesity model”, Nutrition & Metabolism, 2011). In other words, a tomato having a high Brix, a high lycopene content, and a high antioxidant power, which is measured simultaneously with non-destructive measurement, can be said to be a tomato with an anti-metabolic effect.

しかしながら、既存の抗酸化力評価方法は、非破壊計測ではなく、破壊分析により、吸光光度計、蛍光光度計を用いた光学的な測定方法で行われており、また、測定装置が非常に高価であるため、非破壊計測で簡易且つ低コストで青果物の抗酸化力の評価を実施することができる技術の開発が望まれていた。   However, the existing antioxidant power evaluation method is not a non-destructive measurement but an optical measurement method using an absorptiometer and a fluorometer by destructive analysis, and the measuring device is very expensive. Therefore, it has been desired to develop a technology capable of evaluating the antioxidant power of fruits and vegetables by nondestructive measurement easily and at low cost.

そこで、本発明の目的は、流通現場で利用できる市販の機器を使用し、可視・近赤外線分光法による非破壊計測にて青果物の抗酸化力を測定する技術を提供することにある。   Accordingly, an object of the present invention is to provide a technique for measuring the antioxidant power of fruits and vegetables by non-destructive measurement by visible / near infrared spectroscopy using a commercially available device that can be used at a distribution site.

上記課題は、青果物に近赤外線光を照射し、得られたスペクトルを採取する工程と、得られた照射スペクトルに基づき2次微分処理を行うことにより、2次微分値を得る工程と、該2次微分値と、予め破壊分析により測定した抗酸化力との単相関処理を行い、独立性が高く、かつ、抗酸化力と相関が高い波長を選択する工程と、選択した波長の2次微分値を説明変数(x)、破壊分析値を目的変数(y)とし、重回帰分析を行い、検量式を得る工程と、被験対象物である青果物の近赤外線光の照射スペクトルの2次微分値と、該検量式とに基づき、該被験対象物の抗酸化力値を算出する工程と、を有する抗メタボ青果物の選別方法により解決する。   The above-described problems include a step of irradiating fruits and vegetables with near-infrared light and collecting the obtained spectrum, a step of obtaining a secondary differential value by performing a secondary differential process based on the obtained irradiation spectrum, A single correlation process between the second derivative value and the antioxidant power measured in advance by destructive analysis, selecting a wavelength that is highly independent and highly correlated with the antioxidant power, and a second derivative of the selected wavelength The value is the explanatory variable (x), the destruction analysis value is the objective variable (y), the multiple regression analysis is performed to obtain the calibration formula, and the second derivative value of the near infrared light irradiation spectrum of the fruit and vegetables as the test object And a method of calculating an antioxidant power value of the test object based on the calibration formula, and solving the problem by a method for selecting anti-metabo fruit and vegetables.

本発明の抗メタボ青果物の選別方法によれば、流通現場で利用できる市販の機器を使用し、可視・近赤外線分光法による非破壊計測にて青果物の抗酸化力を測定する技術を提供することができる。   According to the anti-metabo fruit and vegetable sorting method of the present invention, it is possible to provide a technique for measuring the antioxidant power of fruits and vegetables by non-destructive measurement using visible / near-infrared spectroscopy, using commercially available equipment available at distribution sites. Can do.

本実施形態の抗メタボ青果物の選別方法のフローチャートである。It is a flowchart of the selection method of the anti-metabo fruit and vegetables of this embodiment. 近赤外線分光計測装置の構成を説明するための図である。It is a figure for demonstrating the structure of a near-infrared spectroscopy measuring device. 検体としてトマトを使用し近赤外線分光計測装置を用いて得られた拡散反射光のスペクトルの一例である。It is an example of the spectrum of the diffuse reflected light obtained by using a tomato as a specimen and using a near-infrared spectrometer. 図3の照射スペクトルに基づき2次微分処理を行った結果を示す図である。It is a figure which shows the result of having performed the secondary differentiation process based on the irradiation spectrum of FIG. トマトを検体としたときの2次微分値と破壊分析値との単相関処理の一例を示す図である。It is a figure which shows an example of the single correlation process of a secondary differential value when using a tomato as a test substance, and a destruction analysis value. 独立性の高い波長と独立性の低い波長を説明するための図である。It is a figure for demonstrating a wavelength with high independence and a wavelength with low independence. トマトを検体としたときの近赤外線分光計測装置を用いた際の抗酸化力の算出値と実測値の関係を示す図である。It is a figure which shows the relationship between the calculated value of antioxidant power at the time of using the near-infrared spectroscopy measuring device when a tomato is used as a test substance, and an actual value.

図1は、本実施形態の抗メタボ青果物の選別方法のフローチャートである。検体(選別対象)となる青果物は、すべての野菜や果物が対象となりうるが、野菜としては、例えば、ブロッコリー、ホウレンソウ、アスパラガス、トウモロコシ、グリンピース、ニンジン、カリフラワー、メキャベツ、タケノコ、ゴボウ、パセリ、ソラマメ、レンコン、ハクサイ、ネギ、ニラ、セロリ、カブ、キャベツ、ダイコン、タマネギ、ニンニク、ワサビ、マツタケ、ピーマン、エダマメ、カボチャ、サヤエンドウ、スイカ、ジャガイモ、トマト、ナス、インゲンマメ、キュウリ、サトイモ、レタス、シメジ、モヤシ、キクナ等を挙げることができ、果物としては、例えば、ブドウ、ウメ、イチゴ、ブルーベリー、モモ、スモモ、オレンジ、ナシ、リンゴ、パイナップル、ミカン、メロン、アボガド、サクランボ、イチジク、ビワ等を挙げることができる。   FIG. 1 is a flowchart of a method for selecting anti-metabolite fruits and vegetables of this embodiment. The fruits and vegetables that are samples (selection targets) can be all vegetables and fruits, but as vegetables, for example, broccoli, spinach, asparagus, corn, green peas, carrots, cauliflower, cabbage, bamboo shoots, burdock, parsley, Broad bean, lotus root, Chinese cabbage, leek, leek, celery, turnip, cabbage, radish, onion, garlic, horseradish, matsutake, green pepper, green beans, pumpkin, sweet pea, watermelon, potato, tomato, eggplant, kidney bean, cucumber, taro, lettuce, Examples of fruits include grapes, plums, strawberries, blueberries, peaches, plums, oranges, pears, apples, pineapples, tangerines, melons, avocados, cherries, figs, loquats, etc. It can be mentioned.

上記青果物の中でも、特に略球形の青果物は本実施形態の検体として好適である。略球形の青果物としては、例えば、グリンピース、メキャベツ、ソラマメ、カブ、キャベツ、タマネギ、ニンニク、エダマメ、カボチャ、サヤエンドウ、スイカ、ジャガイモ、トマト、インゲンマメ、サトイモ、ブドウ、ウメ、ブルーベリー、モモ、スモモ、オレンジ、ナシ、リンゴ、ミカン、メロン、サクランボ、イチジク、ビワ等を挙げることができる。   Among the fruits and vegetables, particularly spherical fruits and vegetables are particularly suitable as the specimen of this embodiment. Examples of substantially spherical fruits and vegetables include green peas, green cabbage, broad beans, turnips, cabbage, onions, garlic, green beans, pumpkins, green peas, watermelons, potatoes, tomatoes, kidney beans, taro, grapes, ume, blueberries, peaches, plums, oranges , Pears, apples, tangerines, melons, cherries, figs, loquat and the like.

検体を近赤外線分光計測装置に設置し、検体に近赤外線光を照射し、近赤外線光の照射スペクトルを採取する(S1)。図2は、近赤外線分光計測装置1の構成例を示すブロック図である。本実施形態に使用される近赤外線分光計測装置1としては、例えば、図2に示すように、光源部10と、光源部10からの測定用光線及び青果物Fからの拡散反射光を導く測定用プローブ20と、測定用プローブ20により導かれた測定用光線を青果物Fに照射するとともに、青果物Fからの拡散反射光を受光して測定用プローブ20へと導く投受光アダプタ30と、測定用プローブ20により導かれた拡散反射光の分光スペクトルを得る分光部40と、その分光部40で得られた分光スペクトルに基づいて青果物に含まれる成分に基づく品質情報を求める成分演算部50とを備え、近赤外線光を照射し、近赤外線光の拡散反射光のスペクトルを採取することができるような近赤外線分光計測装置1を用いることが好ましい。近赤外線分光計測装置は市販のものを利用することができ、例えば、フルーツセレクター(商標、クボタ社製、K-BA100R)等を挙げることができる。   A specimen is installed in a near-infrared spectroscopic measurement apparatus, the specimen is irradiated with near-infrared light, and an irradiation spectrum of the near-infrared light is collected (S1). FIG. 2 is a block diagram illustrating a configuration example of the near-infrared spectroscopic measurement apparatus 1. As the near-infrared spectroscopic measurement apparatus 1 used in the present embodiment, for example, as shown in FIG. 2, for measurement, the light source 10, the measurement light beam from the light source unit 10, and the diffuse reflected light from the fruits and vegetables F are guided. A probe 20, a light projecting / receiving adapter 30 that irradiates the fruits and vegetables F with the measuring light beam guided by the measuring probes 20, receives diffused reflected light from the fruits and vegetables F, and guides it to the measuring probes 20, and a measuring probe A spectroscopic unit 40 that obtains a spectral spectrum of diffusely reflected light guided by 20, and a component calculation unit 50 that obtains quality information based on components contained in fruits and vegetables based on the spectral spectrum obtained by the spectroscopic unit 40, It is preferable to use a near-infrared spectroscopic measurement apparatus 1 that can irradiate near-infrared light and collect a spectrum of diffusely reflected light of the near-infrared light. A commercially available near-infrared spectrometer can be used, and examples thereof include a fruit selector (trademark, manufactured by Kubota Corporation, K-BA100R).

次に、一部の検体について、破壊分析により検体の抗酸化力を測定する(S2)。破壊分析としては、例えば、従来公知の抗酸化力測定法であるDPPH(ジフェニルピクリルヒドラジル)法、ORAC(Oxygen Radical Absorbance Capacity:活性酸素吸収能力)法、ESRスピントラッピング法、SOAC(Singlet Oxygen Absorption Capacity:一重項酸素吸収能)法などを挙げることができ、特に、測定精度の観点からは、DPPH法で測定することが好ましい。破壊分析による抗酸化力の測定は、検量線の作成データとして利用する。   Next, for some samples, the antioxidant power of the samples is measured by destructive analysis (S2). Destructive analysis includes, for example, the DPPH (diphenylpicrylhydrazyl) method, the ORAC (Oxygen Radical Absorbance Capacity) method, the ESR spin trapping method, the SOAC (Singlet Oxygen), which are known methods for measuring antioxidant power. Absorption Capacity (singlet oxygen absorption capacity) method and the like can be mentioned. In particular, from the viewpoint of measurement accuracy, it is preferable to measure by the DPPH method. Antioxidant power measurement by destructive analysis is used as calibration curve creation data.

検体を3グループに分ける(S3)。3グループのうち2グループを検量式作成に用いる(S4)。2グループの検体について、近赤外線分光計測装置を使用して照射スペクトルを採取し、得られた照射スペクトルに基づき2次微分処理を行うことにより、2次微分値を得る(S5)。図3は検体としてトマトを使用し近赤外線分光計測装置を用いて得られた近赤外線光の照射スペクトルの一例である。図4は、図3の照射スペクトルに基づき2次微分処理を行った結果を示す図である。   The sample is divided into three groups (S3). Of the three groups, two groups are used to create a calibration formula (S4). With respect to the two groups of specimens, an irradiation spectrum is collected using a near-infrared spectroscopic measurement apparatus, and a secondary differential value is obtained by performing secondary differential processing based on the obtained irradiation spectrum (S5). FIG. 3 shows an example of an irradiation spectrum of near-infrared light obtained using a tomato as a specimen and using a near-infrared spectrometer. FIG. 4 is a diagram showing a result of performing the second order differentiation process based on the irradiation spectrum of FIG.

得られた2次微分値と、予め破壊分析により測定した抗酸化力との単相関処理を行う(S6)。単相関処理は、市販の表計算ソフト(Microsoft Excel(商標)など)を利用して行うことができる。   A single correlation process is performed between the obtained secondary differential value and the antioxidant power measured in advance by destructive analysis (S6). The single correlation processing can be performed using commercially available spreadsheet software (Microsoft Excel (trademark) or the like).

単相関処理により得られたデータに基づき、相関係数の高い波長(約20波長程度)を近赤外線光の範囲(例えば600〜1010nmの範囲)で選択する(S7)。   Based on the data obtained by the single correlation processing, a wavelength having a high correlation coefficient (about 20 wavelengths) is selected in the near infrared light range (for example, a range of 600 to 1010 nm) (S7).

選択した約20波長間で単相関処理を行う(S8)。   Single correlation processing is performed between the selected about 20 wavelengths (S8).

単相関処理を行った約20波長のうち、独立性が高く、かつ、抗酸化力と相関が高い波長を4〜6波長選択する(S9)。図5はトマトを検体としたときの2次微分値と破壊分析値との単相関処理の一例を示す図である。独立性が高く、かつ、抗酸化力と相関が高い波長とは、図5に示したある波長(矢印及び白抜き矢印)において、ある波長における相関値が高くなったときに、その波長の相関値は異なる挙動を示す事を、独立性が高い波長といい(図6)、さらに抗酸化力と高い相関を示す波長(白抜き矢印)をいう。図5の例でいえば、600〜1010nmの範囲の中から、2次微分値と破壊分析値との相関値の増減に変化があったかどうかの基準で選ばれた20波長(604nm、620nm、640nm、656nm、680nm、712nm、748nm、758nm、768nm、788nm、820nm、832nm、854nm、862nm、886nm、940nm、944nm、958nm、964nm、982nm)、のうち、604nm、640nm、712nm、758nm、886nmの波長(白抜き矢印)を選択する。なお、関連性がある(独立性が低い)波長を含むと、得られる検量式の精度が下がる。

Of the approximately 20 wavelengths subjected to the single correlation processing, 4 to 6 wavelengths having high independence and high correlation with the antioxidant power are selected (S9). FIG. 5 is a diagram illustrating an example of a single correlation process between a second-order differential value and a destructive analysis value when a tomato is used as a specimen. A wavelength having high independence and having a high correlation with antioxidant power means that when a correlation value at a certain wavelength is high at a certain wavelength (arrow and white arrow) shown in FIG. that behave differently from the values, independence called high wavelength (FIG. 6) refers to the wavelength (white arrow) indicating antioxidant power and high correlation further. In the example of FIG. 5, 20 wavelengths (604 nm, 620 nm, 640 nm) selected from the range of 600 to 1010 nm on the basis of whether or not the increase or decrease in the correlation value between the secondary differential value and the fracture analysis value has changed. , 656 nm, 680 nm, 712 nm, 748 nm, 758 nm, 768 nm, 788 nm, 820 nm, 832 nm, 854 nm, 862 nm, 886 nm, 940 nm, 944 nm, 958 nm, 964 nm, 982 nm), 604 nm, 640 nm, 712 nm, 758 nm, 886 nm Select (open arrow). Note that the accuracy of the calibration equation obtained is lowered when wavelengths that are related (less independent) are included.

選択した波長の2次微分値を説明変数(x)、分析値を目的変数(y)とし、重回帰分析を行い、検量式を得る(S10)。検量式は、下記式で表わされる。   A multiple regression analysis is performed using the secondary differential value of the selected wavelength as the explanatory variable (x) and the analysis value as the objective variable (y), thereby obtaining a calibration formula (S10). The calibration formula is represented by the following formula.

検体の残り1グループについて、近赤外線分光計測装置を用い、検量式評価群の近赤外線光の照射スペクトルの2次微分値と、該検量式とに基づき、検体の抗酸化力を算出する(S12)。   For the remaining one group of specimens, the antioxidant power of the specimen is calculated based on the second derivative value of the near infrared light irradiation spectrum of the calibration formula evaluation group and the calibration formula using a near infrared spectroscopic measurement device (S12). ).

算出値と実測値をプロットし、相関を評価する(S12)。図7は、実際にDPPH法で抗酸化力を測定した値(横軸mg Trolox /100g)と、作成した検量式から抗酸化力を計算した値(縦軸mg Trolox /100g)との相関図である。図に示すように、相関係数(R2)が0.3915を示し、抗酸化力を非破壊にて算出できることが判明した。 The calculated value and the actually measured value are plotted, and the correlation is evaluated (S12). Fig. 7 shows the correlation between the values measured by the DPPH method (horizontal axis mg Trolox / 100g) and the values calculated from the calibration equation (vertical mg Trolox / 100g). It is. As shown in the figure, the correlation coefficient (R 2 ) was 0.3915, and it was found that the antioxidant power can be calculated nondestructively.

本実施形態において抗酸化力(抗酸化活性ともいう)とは、青果物中に存在する種々の抗酸化物質(ビタミン類やポリフェノール類、β−クリプトキサンチン、リコペンなど)の総合力を意味する。従って、青果物中の抗酸化物質の量を測定する技術とは異なり、本実施形態の抗メタボ青果物の選別方法は、活性酸素消去能(質)を指標にして青果物を選別することを可能にするものである。抗酸化力(抗酸化活性)の単位は、抗酸化力を標準物質(Trolox)の量に換算して表現するmg Trolox /100gを用いる。   In the present embodiment, the antioxidant power (also referred to as antioxidant activity) means the total power of various antioxidant substances (vitamins, polyphenols, β-cryptoxanthin, lycopene, etc.) present in fruits and vegetables. Therefore, unlike the technique for measuring the amount of antioxidants in fruits and vegetables, the method for selecting anti-metabo fruits and vegetables according to the present embodiment makes it possible to select fruits and vegetables using the active oxygen scavenging ability (quality) as an index. Is. As the unit of antioxidant power (antioxidant activity), mg Trolox / 100 g expressing the antioxidant power in terms of the amount of the standard substance (Trolox) is used.

なお、上述した抗酸化力の測定に加え、Brix及びリコペンの測定をともに行ってもよい。本実施形態は近赤外線光の照射スペクトルに基づいて被験対象物の抗酸化力値を算出するものであるが、Brix及びリコペンについても近赤外線光の照射のスペクトルに基づいた測定が可能であることが知られている。従って、被験対象物についての抗酸化力を測定すると同時に、青果物に近赤外線光を照射し、得られた近赤外線光の照射スペクトルに基づき、Brix及びリコペン含量値を算出する工程を実施することにより、Brixやリコペンを測定することも可能である。Brix及びリコペンの測定方法については、従来の周知の技術であるため、詳細な説明については省略する。例えば、Brix、リコペン及び抗酸化力の値がそれぞれの所定の閾値よりも高いものを選別する事が好ましい。   In addition to the above-described measurement of antioxidant power, Brix and lycopene may be measured together. In this embodiment, the antioxidant power value of the test object is calculated based on the irradiation spectrum of near-infrared light, but Brix and lycopene can also be measured based on the irradiation spectrum of near-infrared light. It has been known. Therefore, by measuring the antioxidant power of the test object, simultaneously irradiating fruits and vegetables with near-infrared light and calculating the Brix and lycopene content values based on the obtained near-infrared light irradiation spectrum. It is also possible to measure Brix and lycopene. Since the measurement method of Brix and lycopene is a conventional well-known technique, detailed description thereof is omitted. For example, it is preferable to select those having Brix, lycopene and antioxidant power values higher than their respective predetermined threshold values.

Claims (5)

青果物に近赤外線光を照射し、得られたスペクトルを採取する工程と、
得られた照射スペクトルに基づき2次微分処理を行うことにより、2次微分値を得る工程と、
該2次微分値と、予め破壊分析により測定した抗酸化力との単相関処理を行う工程と、
独立性が高く、かつ、抗酸化力と相関が高い波長を選択する工程と、
選択した波長の2次微分値を説明変数(x)、分析値を目的変数(y)とし、重回帰分析を行い、下記検量式を得る工程と、
被験対象物である青果物の近赤外線光の照射スペクトルの2次微分値と、該検量式とに基づき、該被験対象物の抗酸化力値を算出する工程と、を有することを特徴とする、抗メタボ青果物の選別方法。
Irradiating fruits and vegetables with near-infrared light and collecting the resulting spectrum;
A step of obtaining a second derivative value by performing a second derivative process based on the obtained irradiation spectrum;
And said second derivative, and cormorants row single correlation between pre antioxidant force measured by disruption analysis step,
Selecting a wavelength that is highly independent and highly correlated with antioxidant power;
Illustrating the second derivative of the selected wavelength variable (x), the analysis value was the objective variable (y), performing a multiple regression analysis, obtaining a following calibration formula,
A step of calculating the antioxidant power value of the test object based on the second derivative of the irradiation spectrum of near-infrared light of the fruits and vegetables that are the test object and the calibration formula, Anti-metabo fruit and vegetable sorting method.
前記近赤外線光が、拡散反射光である、請求項1に記載の抗メタボ青果物の選別方法。   The method for selecting anti-metabolite fruits and vegetables according to claim 1, wherein the near infrared light is diffuse reflected light. 前記破壊分析による測定が、DPPH(ジフェニルピクリルヒドラジル)法によるものである、請求項1又は2に記載の抗メタボ青果物の選別方法。   The method for selecting anti-metabo fruits and vegetables according to claim 1 or 2, wherein the measurement by the destructive analysis is based on a DPPH (diphenylpicrylhydrazyl) method. 前記青果物が、トマトである、請求項1〜3のいずれか1項に記載の抗メタボ青果物の選別方法。 The method for selecting anti-metabo fruits and vegetables according to any one of claims 1 to 3 , wherein the fruits and vegetables are tomatoes. さらに、前記近赤外線光の照射スペクトルに基づき、Brix及びリコペン含量値を算出する工程と、を有する、
請求項1〜のいずれか1項に記載の抗メタボ青果物の選別方法。
Further, based on the irradiation spectrum of the near-infrared light, calculating a Brix and lycopene content value,
The method for selecting anti-metabo fruits and vegetables according to any one of claims 1 to 4 .
JP2014205271A 2014-10-03 2014-10-03 Anti-metabo fruit and vegetable sorting method Active JP5998319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014205271A JP5998319B2 (en) 2014-10-03 2014-10-03 Anti-metabo fruit and vegetable sorting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014205271A JP5998319B2 (en) 2014-10-03 2014-10-03 Anti-metabo fruit and vegetable sorting method

Publications (2)

Publication Number Publication Date
JP2016075539A JP2016075539A (en) 2016-05-12
JP5998319B2 true JP5998319B2 (en) 2016-09-28

Family

ID=55951276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014205271A Active JP5998319B2 (en) 2014-10-03 2014-10-03 Anti-metabo fruit and vegetable sorting method

Country Status (1)

Country Link
JP (1) JP5998319B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7169643B2 (en) * 2017-12-07 2022-11-11 国立研究開発法人農業・食品産業技術総合研究機構 Nitrate ion concentration nondestructive measuring method, nitrate ion concentration nondestructive measuring device, and nitrate ion concentration nondestructive measuring program

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3060059B2 (en) * 1995-10-24 2000-07-04 農林水産省中国農業試験場長 How to grade beef carcass
JP5604763B2 (en) * 2010-09-03 2014-10-15 国立大学法人神戸大学 Transmission near-infrared spectroscopy measurement apparatus and transmission near-infrared spectroscopy measurement method

Also Published As

Publication number Publication date
JP2016075539A (en) 2016-05-12

Similar Documents

Publication Publication Date Title
Arendse et al. Non-destructive prediction of internal and external quality attributes of fruit with thick rind: A review
Huang et al. Prediction of firmness parameters of tomatoes by portable visible and near-infrared spectroscopy
Nicolaï et al. Nondestructive measurement of fruit and vegetable quality
Alfatni et al. The application of internal grading system technologies for agricultural products–Review
Jiménez-Jiménez et al. Table olive cultivar susceptibility to impact bruising
Lakshmi et al. Non-destructive quality monitoring of fresh fruits and vegetables
Zhang et al. Optical properties of blueberry flesh and skin and Monte Carlo multi-layered simulation of light interaction with fruit tissues
Hashim et al. An approach for monitoring the chilling injury appearance in bananas by means of backscattering imaging
Fu et al. Comparison of diffuse reflectance and transmission mode of visible-near infrared spectroscopy for detecting brown heart of pear
Jha et al. Authentication of sweetness of mango juice using Fourier transform infrared-attenuated total reflection spectroscopy
Szuvandzsiev et al. Estimation of antioxidant components of tomato using VIS-NIR reflectance data by handheld portable spectrometer
Bizzani et al. Non-invasive spectroscopic methods to estimate orange firmness, peel thickness, and total pectin content
Salguero-Chaparro et al. Feasibility of using NIR spectroscopy to detect herbicide residues in intact olives
Srivichien et al. Quantitative prediction of nitrate level in intact pineapple using Vis–NIRS
Giovenzana et al. Monitoring of fresh-cut Valerianella locusta Laterr. shelf life by electronic nose and VIS–NIR spectroscopy
Teerachaichayut et al. Non-destructive prediction of hardening pericarp disorder in intact mangosteen by near infrared transmittance spectroscopy
Valero et al. Selection models for the internal quality of fruit, based on time domain laser reflectance spectroscopy
Fang et al. Investigation of absorption and scattering characteristics of kiwifruit tissue using a single integrating sphere system
Sripaurya et al. Gros Michel banana soluble solids content evaluation and maturity classification using a developed portable 6 channel NIR device measurement
de Moraes et al. Online measurement of carambola (Averrhoa carambola L.) physicochemical properties and estimation of maturity stages using a portable NIR spectrometer
Flores et al. Prediction of Orange juice sensorial attributes from intact fruits by TD-NMR
Zhena et al. Quality evaluation of mango using non-destructive approaches: A
Ali et al. Innovative non-destructive technologies for quality monitoring of pineapples: Recent advances and applications
JPH01216265A (en) Nondestructive measurement for quality of fruit and vegetable by near infra red rays
JP2016045091A (en) Nondestructive measurement device and nondestructive measurement method of anthocyanin content in fruit and vegetable

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160621

R150 Certificate of patent or registration of utility model

Ref document number: 5998319

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250