JP5995469B2 - Coin-type non-aqueous electrolyte secondary battery and method for producing coin-type non-aqueous electrolyte secondary battery - Google Patents

Coin-type non-aqueous electrolyte secondary battery and method for producing coin-type non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP5995469B2
JP5995469B2 JP2012057832A JP2012057832A JP5995469B2 JP 5995469 B2 JP5995469 B2 JP 5995469B2 JP 2012057832 A JP2012057832 A JP 2012057832A JP 2012057832 A JP2012057832 A JP 2012057832A JP 5995469 B2 JP5995469 B2 JP 5995469B2
Authority
JP
Japan
Prior art keywords
negative electrode
coin
electrolyte secondary
secondary battery
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012057832A
Other languages
Japanese (ja)
Other versions
JP2013191463A (en
Inventor
菅野 佳実
佳実 菅野
小関 裕之
裕之 小関
憲州 彭
憲州 彭
忠仁 鈴木
忠仁 鈴木
篠田 勇
勇 篠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2012057832A priority Critical patent/JP5995469B2/en
Publication of JP2013191463A publication Critical patent/JP2013191463A/en
Application granted granted Critical
Publication of JP5995469B2 publication Critical patent/JP5995469B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、コイン型非水電解質二次電池及びコイン型非水電解質二次電池の製造方法に関するものである。   The present invention relates to a coin-type non-aqueous electrolyte secondary battery and a method for producing a coin-type non-aqueous electrolyte secondary battery.

コイン型非水電解質二次電池は、従来、時計機能のバックアップ電源や半導体のメモリのバックアップ電源やマイクロコンピュータやICメモリ等の電子装置予備電源やソーラ時計の電池やモーター駆動用の電源などとして使用されており、近年は電気自動車の電源やエネルギー変換・貯蔵システムの補助貯電ユニットなどとしても検討されている。   Coin-type non-aqueous electrolyte secondary batteries are conventionally used as backup power sources for clock functions, backup power sources for semiconductor memories, standby power sources for electronic devices such as microcomputers and IC memories, solar watch batteries, and power sources for driving motors. In recent years, it has been studied as a power storage unit for electric vehicles and an auxiliary power storage unit for energy conversion / storage systems.

また近年は、半導体メモリの不揮発化、時計機能素子の低消費電力化により、容量、電流とも大きなものの必要性が減ってきている。むしろ、薄型やリフローハンダ付け対応可能なものに対する要求が強くなっている。   In recent years, the necessity for large capacity and current has been reduced due to the non-volatile semiconductor memory and the low power consumption of the timepiece functional element. Rather, there is an increasing demand for thin and reflow solderable products.

一酸化ケイ素(SiO)は電池容量の大きさ、優れたサイクル特性から該電池の負極活物質として利用されている。(例えば特許文献1、特許文献2)   Silicon monoxide (SiO) is used as a negative electrode active material for the battery because of its large battery capacity and excellent cycle characteristics. (For example, Patent Document 1 and Patent Document 2)

特許第2997741号公報Japanese Patent No. 2999741 特許第3466045号公報Japanese Patent No. 3466045

しかしながら、電池容量としては優れた特性を有する負極活物質SiOであるが、リチウムに対して不可逆容量も大きい。SiOは、SiOの2倍のモル量のリチウムを不可逆容量とする。そのため、実際に負極として使用するには、予めSiOに対して4倍のモル量のリチウムをSiOにドーピングしておく必要がある。そして、電池としてはSiOの2倍モル量のリチウムイオンを使用している。   However, although it is a negative electrode active material SiO having excellent characteristics as a battery capacity, its irreversible capacity is also large with respect to lithium. SiO has an irreversible capacity of lithium that is twice the molar amount of SiO. Therefore, in order to actually use as a negative electrode, it is necessary to dope a lithium in a molar amount 4 times that of SiO in advance. And as a battery, the lithium ion of 2 times mole amount of SiO is used.

このSiOへのリチウムのドーピングは、多くのリチウム合金負極と同様に、電池組立前に行っておくことも技術的には可能であるが、実際においては電池組立時にSiOを含んだ負極電極表面にリチウム金属を貼り付け、電池組立後に室温保管することでドーピングを行うことが一般的である。   It is technically possible to do this lithium doping prior to battery assembly, as with many lithium alloy negative electrodes, but in practice, the doping of lithium into SiO is actually performed on the negative electrode surface containing SiO during battery assembly. In general, doping is performed by attaching lithium metal and storing the battery at room temperature after assembling the battery.

SiOのリチウムドーピングにおいて、不可逆容量及び可逆容量が大きいことから、SiOを含む負極電極の大きな体積膨張が起こる。また、負極電極の表面に貼り付けたリチウム金属はドーピングにより消失する。この体積膨張とリチウム金属の消失は組立後の電池内で起こるため、ドーピング前後で負極電極の体積に変化が起こらないようバランスの取れた設計が重要となる。リチウム金属が消失する分よりも負極電極の膨張が大きければ、内圧増加により電解液が漏液する。一方、リチウム金属が消失する分よりも負極電極の膨張が小さければ、ドーピング中のリチウム金属を負極電極に押し付ける圧力が弱くなり、ドーピング不足を引き起こす可能性がある。また、導通が悪くなり過放電特性およびサイクル特性などの電池特性の劣化を引きおこす可能性もある。このように、耐漏液性および過放電特性およびサイクル特性などが低下する可能性があった。   In lithium doping of SiO, since the irreversible capacity and reversible capacity are large, a large volume expansion of the negative electrode including SiO occurs. Further, the lithium metal attached to the surface of the negative electrode disappears by doping. Since this volume expansion and loss of lithium metal occur in the assembled battery, it is important to have a balanced design so that the volume of the negative electrode does not change before and after doping. If the expansion of the negative electrode is larger than the amount of disappearance of lithium metal, the electrolyte solution leaks due to an increase in internal pressure. On the other hand, if the expansion of the negative electrode is smaller than the amount of disappearance of lithium metal, the pressure for pressing the lithium metal being doped against the negative electrode becomes weak, which may cause insufficient doping. In addition, the continuity is deteriorated, which may cause deterioration of battery characteristics such as overdischarge characteristics and cycle characteristics. Thus, the leakage resistance, overdischarge characteristics, cycle characteristics, and the like may be reduced.

請求項に記載の発明は、正極と、負極と、支持塩と非水溶媒とからなる電解液と、ガスケットとセパレータを備えたコイン型非水電解質二次電池の製造方法であって、前記負極の電極ペレットは、導電性物質で被覆されたSiOからなる負極活物質と、導電材と、結着剤とを含み、リチウムドーピング後の厚み変化が、2.4〜2.8倍であり、電池組立時に前記負極の電極ペレットの表面にリチウム金属を貼り付け、電池組立後にリチウムドーピングを経て前記負極と前記リチウム金属とを一体化させることを特徴とするコイン型非水電解質二次電池の製造方法である。
請求項に記載のコイン型非水電解質二次電池の製造方法によれば、負極の活物質として、珪素または珪素酸化物を用い、リチウムドーピングによる負極電極ペレット厚みをドーピング前の2.4〜2.8倍にすることにより、ドーピングによる負極電極の体積膨張を制御でき、電池の内圧の変化を抑え、耐漏液性の高いコイン型非水電解質二次電池を提供できる。また、放充電における体積膨張を抑えることにより過放電特性及びサイクル特性を有するコイン型非水電解質二次電池を提供できる。
The invention according to claim 1 is a method of manufacturing a coin-type non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, an electrolyte solution comprising a supporting salt and a non-aqueous solvent, a gasket and a separator, The negative electrode pellet includes a negative electrode active material made of SiO coated with a conductive material, a conductive material, and a binder, and the thickness change after lithium doping is 2.4 to 2.8 times. Ri, paste the lithium metal on the surface of the negative electrode pellet during battery assembly, a coin type nonaqueous electrolyte secondary, wherein Rukoto are integrated with the lithium metal and the negative electrode through the lithium doping after battery assembly It is a manufacturing method of a battery.
According to the method for manufacturing a coin-type non-aqueous electrolyte secondary battery according to claim 1 , silicon or silicon oxide is used as the negative electrode active material, and the negative electrode electrode pellet thickness by lithium doping is set to 2.4˜ By making the ratio 2.8, the volume expansion of the negative electrode due to doping can be controlled, the change in the internal pressure of the battery can be suppressed, and a coin-type non-aqueous electrolyte secondary battery with high leakage resistance can be provided. In addition, a coin-type non-aqueous electrolyte secondary battery having overdischarge characteristics and cycle characteristics can be provided by suppressing volume expansion during discharging and charging.

請求項に記載の発明は、請求項に記載のコイン型非水電解質二次電池の製造方法であって、前記導電性物質は、C、Al、Sn、Ni、Ti、W、Cu、Agから選択される少なくとも1であることを特徴とする。
請求項に記載のコイン型非水電解質二次電池の製造方法によれば、リチウム金属とSiOとのドーピングにおいて、かつ電池の放充電においてスムーズなリチウムイオンの移
動が可能であり、かつ十分にリチウムドーピングによるSiOの体積膨張を抑えることにより、電池の内圧を抑えることで耐漏液性の高いコイン型非水電解質二次電池を提供できる。また、放充電における体積膨張を抑えることにより過放電特性及びサイクル特性を有するコイン型非水電解質二次電池を提供できる。
Invention of Claim 2 is a manufacturing method of the coin type nonaqueous electrolyte secondary battery of Claim 1 , Comprising: The said electroconductive substance is C, Al, Sn, Ni, Ti, W, Cu, characterized in that at least one selected from Ag.
According to the method for manufacturing a coin-type non-aqueous electrolyte secondary battery according to claim 2 , smooth lithium ion movement is possible in doping with lithium metal and SiO and in discharging and charging of the battery. By suppressing the volume expansion of SiO due to lithium doping, a coin-type non-aqueous electrolyte secondary battery with high leakage resistance can be provided by suppressing the internal pressure of the battery. In addition, a coin-type non-aqueous electrolyte secondary battery having overdischarge characteristics and cycle characteristics can be provided by suppressing volume expansion during discharging and charging.

本発明によれば、耐漏液性と過放電特性およびサイクル特性に優れたコイン型非水電解質二次電池を提供することができる。   According to the present invention, it is possible to provide a coin-type non-aqueous electrolyte secondary battery that is excellent in leakage resistance, overdischarge characteristics, and cycle characteristics.

本発明のコイン型非水電解質二次電池の例を示す概略断面図である。It is a schematic sectional drawing which shows the example of the coin type nonaqueous electrolyte secondary battery of this invention. SiOのリチウムドーピングによる体積膨張を示す模式図である。It is a schematic diagram which shows the volume expansion by lithium doping of SiO.

本発明について、本発明形態であるコイン型非水電解質二次電池の概略断面図である図1を用いて詳細に説明する。
図1において、コイン型非水電解質二次電池は、有底円筒状に形成された正極ケース103とハット状に形成された負極ケース106と、正極ケース103と負極ケース106との間に挟入されたガスケット108と、を有している。また、この負極ケース106は負極集電体を兼ねているが、正極ケース103は、ガスケット108を介して負極ケース106にかしめ封口し、正極ケース103と負極ケース106との間に密閉された収容室Sを形成する。
The present invention will be described in detail with reference to FIG. 1 which is a schematic sectional view of a coin-type non-aqueous electrolyte secondary battery according to the present invention.
In FIG. 1, a coin-type non-aqueous electrolyte secondary battery is sandwiched between a positive electrode case 103 formed in a bottomed cylindrical shape, a negative electrode case 106 formed in a hat shape, and the positive electrode case 103 and the negative electrode case 106. Gasket 108. The negative electrode case 106 also serves as a negative electrode current collector. However, the positive electrode case 103 is caulked and sealed to the negative electrode case 106 via a gasket 108, and is sealed between the positive electrode case 103 and the negative electrode case 106. A chamber S is formed.

収容室Sには、正極ケース103の底面側から順に、正極集電体を兼ねる導電性接着剤102、正極101、セパレータ107、リチウム金属109、負極104、負極集電体を兼ねる導電性接着剤105、そして電解液が充填されている。電池組立後にリチウム金属109は負極104へのドーピングによって吸収され、リチウム金属109と負極104は一体化となり負極として作用する。   In the storage chamber S, in order from the bottom surface side of the positive electrode case 103, the conductive adhesive 102 also serving as the positive electrode current collector, the positive electrode 101, the separator 107, the lithium metal 109, the negative electrode 104, and the conductive adhesive also serving as the negative electrode current collector. 105 and the electrolyte solution is filled. After the battery is assembled, the lithium metal 109 is absorbed by doping into the negative electrode 104, and the lithium metal 109 and the negative electrode 104 are integrated to function as a negative electrode.

珪素あるいは珪素酸化物は、容量が大きな活物質であることからコイン型非水二次電池に用いられている。特にSiOは、その取り扱い易さと良好な過放電特性から広く用いられている。SiOは導電剤を有しないため、負極として用いるには導電剤が必要である。導電剤は一般的にグラファイトやアセチレンブラック等が用いられている。また、SiO粉末は結着性を有しないので結着剤が必要である。結着剤にはポリアクリル酸、ポリビニルアルコール、ポリイミド、テフロン(登録商標)等が用いられている。   Since silicon or silicon oxide is an active material having a large capacity, it is used for coin-type non-aqueous secondary batteries. In particular, SiO is widely used because of its easy handling and good overdischarge characteristics. Since SiO does not have a conductive agent, a conductive agent is required for use as a negative electrode. In general, graphite, acetylene black or the like is used as the conductive agent. Further, since the SiO powder does not have a binding property, a binder is necessary. As the binder, polyacrylic acid, polyvinyl alcohol, polyimide, Teflon (registered trademark), or the like is used.

電池組立後のリチウム金属と負極へのドーピング過程を図2の模式図を用いて詳細に説明する。電池組立直後、負極201とリチウム金属202は電解液存在下において接触している。電池組立直後の負極201の厚みをドーピング前の電極厚みtBとする。その後の時間経過とともに、電気化学反応によりリチウムは負極の活物質内に移動し、保有される。この現象をドーピングと呼ぶ。リチウムのドーピングにより活物質は体積膨張を起こし、負極201全体も体積膨張を起こす。体積膨張は負極201の厚み方向だけでなく、径方向にも起こるが、電池内においては図1に示すように、負極104は負極集電体を兼ねる負極接着剤105によって負極缶106に接着されている。この接着のため、径方向の体積膨張は制限されることになり、コイン型非水電解質二次電池においてはドーピングよる体積膨張は負極の厚み方向が、主な膨張方向となる。リチウムイオン二次電池において電池内にリチウム金属を残すことは、リチウムイオン電池の持つ高信頼性を損ねるので、図2に示すリチウム金属202のリチウム量は時間経過によってすべての量が負極201に吸収されるリチウム量以下であることが重要である。ある時間の経過後、図2の室温保管後に示すようにリチウム金属202は消失し、膨潤した負極201のみが残ることになる。ドーピングによりリチウム金属202が消失した後の負極201の厚みをドーピング後の電極厚みtAとする。このリチウムドーピング過程においては、常に減少しつつあるリチウム金属が電気的に負極に接触している必要がある。このためドーピングが終了するまで、リチウム金属に密着を保つのに必要な圧力Pを加えて常にリチウム金属が負極に接触している必要がある。(1)式は、このドーピング前後における負極の厚みを用いて定義している。
電極ペレットの厚み変化=ドーピング後の厚み/ドーピング前の厚み……(1)式
The doping process to the lithium metal and the negative electrode after battery assembly will be described in detail with reference to the schematic diagram of FIG. Immediately after the battery is assembled, the negative electrode 201 and the lithium metal 202 are in contact with each other in the presence of the electrolytic solution. The thickness of the negative electrode 201 immediately after battery assembly is defined as the electrode thickness tB before doping. With the passage of time thereafter, lithium moves into the negative electrode active material and is retained by the electrochemical reaction. This phenomenon is called doping. The active material causes volume expansion due to lithium doping, and the entire negative electrode 201 also undergoes volume expansion. Although the volume expansion occurs not only in the thickness direction of the negative electrode 201 but also in the radial direction, in the battery, as shown in FIG. 1, the negative electrode 104 is bonded to the negative electrode can 106 by a negative electrode adhesive 105 that also serves as a negative electrode current collector. ing. Due to this adhesion, volume expansion in the radial direction is limited, and in the coin-type non-aqueous electrolyte secondary battery, volume expansion due to doping is mainly in the thickness direction of the negative electrode. In the lithium ion secondary battery, leaving the lithium metal in the battery impairs the high reliability of the lithium ion battery. Therefore, the lithium amount of the lithium metal 202 shown in FIG. It is important that it be less than the amount of lithium produced. After a certain period of time, as shown after storage at room temperature in FIG. 2, the lithium metal 202 disappears and only the swollen negative electrode 201 remains. The thickness of the negative electrode 201 after the lithium metal 202 disappears by doping is defined as an electrode thickness tA after doping. In this lithium doping process, it is necessary that the lithium metal that is constantly decreasing is in electrical contact with the negative electrode. Therefore, it is necessary that the lithium metal is always in contact with the negative electrode by applying the pressure P necessary to keep the lithium metal in close contact until the doping is completed. Formula (1) is defined using the thickness of the negative electrode before and after this doping.
Change in thickness of electrode pellet = thickness after doping / thickness before doping ... (1) formula

また、(1)式の測定は、以下のように行った。粉末活物質:導電剤(グラファイト):結着剤(ポリアクリル酸)の重量比45:45:10で混合後粉末を直径2mm、厚み1mm、成形品密度1.6g/cm3とした粉末成形ペレットを作製した。このときの粉末成形ペレットの厚みをドーピング前の厚みとした。また、成形品の底面を接着剤により固定し、活物質が理論容量より計算されたリチウム金属を貼り付けてドーピングを行った。リチウム金属が消失した後の厚みを測定し、ドーピング後の厚みとした。   Moreover, the measurement of the formula (1) was performed as follows. Powder-molded pellets with a powder active material: conducting agent (graphite): binder (polyacrylic acid) in a weight ratio of 45:45:10 and having a powder diameter of 2 mm, thickness of 1 mm, and molded product density of 1.6 g / cm 3 Was made. The thickness of the powder-molded pellet at this time was defined as the thickness before doping. Further, the bottom of the molded product was fixed with an adhesive, and doping was performed by attaching lithium metal whose active material was calculated from the theoretical capacity. The thickness after the disappearance of lithium metal was measured and taken as the thickness after doping.

負極活物質のリチウムドーピングによる体積膨張現象から本発明を記述するとすれば、本来は負極活物質のみの体積膨張を測定することが重要だが、本発明は負極の体積膨張を制限した。これは、本発明の負極活物質だけでは、電池の負極に必要な、導電機能と結着機能を備えていないためである。例えば、合金系の活物質であれば、活物質としての機能の他に、金属としての導電機能、金属結合での結着機能が備わっている。しかし、粉末状の活物質、特に酸化物からなる活物質においては、導電機能および結着機能が存在しない。酸化物は絶縁体であるため導電機能を持たない。また、粉末状であることから個々が分散しているため結着機能を持たない。そのため、本発明において負極活物質のみの体積膨張を測定しても意味がない。   If the present invention is described from the volume expansion phenomenon due to lithium doping of the negative electrode active material, it is originally important to measure only the volume expansion of the negative electrode active material, but the present invention limited the volume expansion of the negative electrode. This is because the negative electrode active material of the present invention alone does not have the conductive function and the binding function necessary for the negative electrode of the battery. For example, in the case of an alloy-based active material, in addition to a function as an active material, a conductive function as a metal and a binding function by metal bonding are provided. However, a conductive active material and a binding function do not exist in a powdery active material, particularly an active material made of an oxide. Since an oxide is an insulator, it does not have a conductive function. Moreover, since it is powdery, it does not have a binding function because it is dispersed. Therefore, it does not make sense to measure the volume expansion of only the negative electrode active material in the present invention.

(1)式の電極ペレットの厚み変化は、活物質、導電剤、結着剤等の材質及び混合比によって厳密には異なる。電池の導電剤には一般的にはリチウムと反応しないカーボンが用いられている。代表的なカーボンとしてグラファイトおよびアセチレンブラックが用いられる。(1)式の電極ペレットの厚み変化を測定したが、導電剤の種類による差は0.3μm以下であり、本発明を否定する程の差はない。   The change in the thickness of the electrode pellet of the formula (1) strictly varies depending on the material and mixing ratio of the active material, the conductive agent, the binder and the like. Generally, carbon that does not react with lithium is used as a conductive agent for a battery. As typical carbon, graphite and acetylene black are used. Although the thickness change of the electrode pellet of the formula (1) was measured, the difference depending on the type of the conductive agent is 0.3 μm or less, and there is no difference that denies the present invention.

また結着剤は一般的に、ポリアクリル酸、ポリビニルアルコール、ポリイミド、テフロン(登録商標)などが用いられるが、本結着剤による(1)式の電極ペレットの厚み変化は0.1μm以下であり、本発明を否定する程の差はない。また電極ペレットの成形密度も(1)式の電極ペレットの厚み変化に差をもたらすが、成形密度を1.4g/cm3と1.8g/cm3としても電極ペレットの厚み変化は0.3μmであり、本発明を否定するほどの差はない。本発明は、活物質の体積膨張を(1)式に電極ペレットの厚み変化で特定するものなので、(1)式の測定には、導電剤、結着の種類と混合量、及び電極ペレットの密度を規制したが、これらは本発明を制限するものではない。   In general, polyacrylic acid, polyvinyl alcohol, polyimide, Teflon (registered trademark), etc. are used as the binder, but the thickness change of the electrode pellet of the formula (1) by this binder is 0.1 μm or less. There is no difference that denies the present invention. The molding density of the electrode pellet also causes a difference in the thickness change of the electrode pellet of the formula (1), but the thickness change of the electrode pellet is 0.3 μm even if the molding density is 1.4 g / cm 3 and 1.8 g / cm 3. There is no difference to deny the present invention. In the present invention, the volume expansion of the active material is specified by the change in the thickness of the electrode pellet in the formula (1). Therefore, in the measurement of the formula (1), the conductive agent, the type and amount of the binder, Although the density was regulated, these do not limit the invention.

本発明では(1)式の電極ペレットの厚み変化が、2.4〜2.8倍の時に耐漏液性、優れた過放電特性とサイクル特性が得られる。このメカニズムの詳細は不明であるが、電極ペレット厚み変化が2.4倍より小さい場合は、放電電流を大きくした場合の容量劣化が大きくなる。これは、ドーピングによる電極ペレットの厚み変化は、SiOを被覆している膜厚が厚くなるのほど小さくなるので、本被覆を通るリチウムイオンの抵抗が大きくなるために放電電流による容量の減少が大きくなることが考えられる。あるいは、本来SiOは膨潤することでリチウムイオンの吸蔵を行なえるが、これを制限しているので、SiO粒内へのリチウムイオンの移動が遅くなるためと考えられる。一方、2.8倍より大きな電極は、電池の充放電によるリチウムイオンの挿入・脱離においても体積変化が大きいため、体積変化によって電極の破壊が進み容量の減少を起こすか、もしくは体積変化によって電極膨張が起こり、電気伝導性が落ちることで、電池の内部抵抗の上昇が起きると考えられる。   In the present invention, when the thickness change of the electrode pellet of the formula (1) is 2.4 to 2.8 times, liquid leakage resistance, excellent overdischarge characteristics and cycle characteristics can be obtained. The details of this mechanism are unknown, but when the change in the electrode pellet thickness is less than 2.4 times, the capacity deterioration is increased when the discharge current is increased. This is because the change in the thickness of the electrode pellet due to doping becomes smaller as the thickness of the SiO coating increases, so the resistance of lithium ions passing through this coating increases, so the capacity decrease due to the discharge current is large. It is possible to become. Alternatively, SiO can swell by itself to occlude lithium ions, but this is limited, and this is thought to be due to the slow movement of lithium ions into the SiO grains. On the other hand, an electrode larger than 2.8 times has a large volume change even when lithium ions are inserted / desorbed due to charging / discharging of the battery. It is considered that the internal resistance of the battery increases due to the expansion of the electrode and the decrease in electrical conductivity.

本発明の活物質SiOは、導電性物質で被膜されたSiOである。導電性物質で被膜されたSiOは、被膜されないSiOよりもリチウムドーピングの体積膨張が小さい。このメカニズムは不明であるが、被膜物質が有る程度の固さの膜となって、SiOの体積膨張を機械的に防いでいるか、もしくはSiO表面の導電性がSiOリチウムドーピングを表面から均質に行わせるためと考えられる。
本発明におけるSiO表面の導電性皮膜の物質としては、C、Al、Sn、Ni、Ti、W、Cu、Agが望ましい。特にCがより望ましい。
The active material SiO of the present invention is SiO coated with a conductive material. SiO coated with a conductive material has a smaller volumetric expansion of lithium doping than uncoated SiO. Although this mechanism is unknown, it becomes a film having a coating material hardness and mechanically prevents the volume expansion of SiO, or the conductivity of the SiO surface uniformly performs SiO lithium doping from the surface. It is thought to make it.
As the substance for the conductive film on the SiO surface in the present invention, C, Al, Sn, Ni, Ti, W, Cu, and Ag are desirable. In particular, C is more desirable.

本発明における被覆方法は特に限定されない。カーボン被膜はCVD(Chemical Vapor Deposition)の他、例えば有機溶媒をSiOに噴霧した後に還元熱処理することで被膜を得ることが可能である。更に、他の元素おいては、CVD、PVD(Physical Vapor Deposition)、メッキ、メカニカルアロイによる被覆も可能である。 The coating method in the present invention is not particularly limited. In addition to CVD (Chemical Vapor Deposition), for example, a carbon film can be obtained by spraying an organic solvent onto SiO and then subjecting it to a reduction heat treatment. Furthermore, Oite the other elements, CVD, PVD (Physical Vapor Deposition ), plating, coating is possible by mechanical alloying.

正極101には、リチウム含有マンガン酸化物、リチウム含有コバルト酸化物、リチウム含有ニッケル酸化物、リチウム含有チタン酸化物、三酸化モリブデン、五酸化ニオブなど、従来から知られている活物質に適当な結着剤と導電剤であるグラファイト等を混合したものを用いることができる。   The positive electrode 101 has a suitable binding to a conventionally known active material such as lithium-containing manganese oxide, lithium-containing cobalt oxide, lithium-containing nickel oxide, lithium-containing titanium oxide, molybdenum trioxide, and niobium pentoxide. A mixture of an adhering agent and graphite or the like as a conductive agent can be used.

電解液は溶質と溶媒の混合溶液からなる。溶質としては、例えばリチウムパーフルオロメチルスルホニルイミドなどの電解液を用いることができる。溶媒としては、リチウムイオンを十分に溶解でき、また十分なイオンの移動速度が得られる比誘電率、双極子モーメント、ドナー数、アクセプタ数を持つものから選ばれる。更に粘度はイオンの移動速度への影響が大きいため、適切なものを選択する必要がある。加えて使用電圧において分解されることがなく安定であることが求められ、かつリフロー温度に化学的に安定であることが求められる。カルボニル基をもつエステル化合物は比誘電率が高く、エーテル結合をもつエーテルは粘度が低い傾向がある。このため、溶媒としては、ラクトン、グライム、鎖状エーテル、スルホン化合物、環状カーボネート、鎖状カーボネートのうち、少なくとも1種からなることが望ましい。   The electrolytic solution is a mixed solution of a solute and a solvent. As the solute, for example, an electrolytic solution such as lithium perfluoromethylsulfonylimide can be used. The solvent is selected from those having a relative dielectric constant, a dipole moment, a donor number, and an acceptor number that can sufficiently dissolve lithium ions and obtain a sufficient ion migration rate. Furthermore, since the viscosity has a large influence on the moving speed of ions, it is necessary to select an appropriate one. In addition, it is required to be stable without being decomposed at the working voltage, and to be chemically stable at the reflow temperature. An ester compound having a carbonyl group has a high relative dielectric constant, and an ether having an ether bond tends to have a low viscosity. For this reason, the solvent is preferably composed of at least one of lactone, glyme, chain ether, sulfone compound, cyclic carbonate, and chain carbonate.

更に好ましくは、ラクトンとしてはγ‐ブチルラクトン、グライム、鎖状エーテルとしてはジメトキシエタン、メトキシエトキシエタン、ジエトキシエタン、エチレングリコールジエチルエーテル、ジメチルカーボネート、テトラエチレングリコールジメチルエーテル、スルホン化合物としてはスルホラン、メチルスルホラン、エチルメチルスルホン、環状カーボネートとしてはプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、鎖状カーボネートしてはプロピオン酸メチル、ジメチルカーボネート、メチルエチルカーボネートから選ばれる2種類以上の混合溶媒が望ましい。
以下、実施例により本発明を更に詳細に説明する。
More preferably, the lactone is γ-butyllactone, glyme, the chain ether is dimethoxyethane, methoxyethoxyethane, diethoxyethane, ethylene glycol diethyl ether, dimethyl carbonate, tetraethylene glycol dimethyl ether, the sulfone compound is sulfolane, methyl. As sulfolane, ethyl methyl sulfone, and cyclic carbonate, propylene carbonate, ethylene carbonate, butylene carbonate, and chain carbonate are preferably two or more mixed solvents selected from methyl propionate, dimethyl carbonate, and methyl ethyl carbonate.
Hereinafter, the present invention will be described in more detail with reference to examples.

(実施例1)
図1で示した構造のコイン型非水電解質二次電池を実施例1として作製した。作製したコイン型非水電解質二次電池の大きさは、外形4.8mm、厚さ1.4mmである。
負極活物質にはカーボンをCVDで被膜したSiOを用いた。導電剤にグラファイト、結着剤にポリアクリル酸樹脂を用い、活物質:導電剤:結着剤を45:45:10の重量比で混合し、負極合剤とした。負極合剤を直径2mm、厚み約1mmとして秤量し、成形品密度1.6g/cm3の粉末成形ペレットを得た。本粉末成形ペレットの厚みをデジマチックインジケータを用いて測定し、ドーピング前の厚みとした。次に炭素を導電性フィラーとする導電性樹脂接着剤を用いて本粉末成形ペレットをステンレス板に接着し、250℃8時間の条件で減圧加熱を行い、接着剤の固化と電極の乾燥を行った。
Example 1
A coin-type non-aqueous electrolyte secondary battery having the structure shown in FIG. The produced coin-type non-aqueous electrolyte secondary battery has an outer shape of 4.8 mm and a thickness of 1.4 mm.
As the negative electrode active material, SiO coated with carbon by CVD was used. Graphite was used for the conductive agent and polyacrylic acid resin was used for the binder, and active material: conductive agent: binder was mixed at a weight ratio of 45:45:10 to obtain a negative electrode mixture. The negative electrode mixture was weighed with a diameter of 2 mm and a thickness of about 1 mm to obtain a powder-molded pellet having a molded product density of 1.6 g / cm 3. The thickness of the powder-molded pellet was measured using a digimatic indicator and defined as the thickness before doping. Next, this powder molded pellet is bonded to a stainless steel plate using a conductive resin adhesive containing carbon as a conductive filler, and heated under reduced pressure at 250 ° C. for 8 hours to solidify the adhesive and dry the electrode. It was.

本粉末成形ペレットにSiOの4倍のモル量の直径2mmのリチウム金属を密着させ、リチウムの上からスライドガラスと成形ペレット下のステンレス板とをクリップで固定した。その後、電解液に浸し7日間室温で保管した。リチウムのすべてが消失したことを目視で確認し、膨張した成形ペレットと厚みをデジチックインジケータで測定した。この値をドーピング後のペレット厚みとした。ドーピング前後における電極ペレットの厚み変化は2.5倍であった。 Lithium metal having a diameter of 2 mm, which is 4 times the molar amount of SiO, was brought into close contact with this powder-molded pellet, and a slide glass and a stainless steel plate below the molded pellet were fixed from above lithium with a clip. Then, it was immersed in electrolyte solution and stored at room temperature for 7 days. Visually check that all the lithium had disappeared, was measured expanded molded pellet and thickness with digital Ma tick indicator. This value was defined as the pellet thickness after doping. The thickness change of the electrode pellet before and after doping was 2.5 times.

次に2.6mgの負極合剤を2ton/cm2で加圧成形し、直径2.4mmのペレットを成形した。本ペレットを負極集電体105を兼ねる炭素を導電性フィラーとする導電性接着を用いて負極ケース106に接着し、一体化(ユニット化)した。その後、250℃8時間の条件で減圧加熱乾燥した。さらにペレット上にリチウムフォイル109を直径2mm、厚さ0.22mmに打ち抜いたものを圧着した。このリチウム−負極ペレットが、電池組立後にリチウムのドーピングを経て電池の負極となる。このように負極ユニットを作製した。   Next, 2.6 mg of the negative electrode mixture was pressure-molded at 2 ton / cm 2 to form a pellet having a diameter of 2.4 mm. The pellets were bonded to the negative electrode case 106 using conductive bonding using carbon serving as the negative electrode current collector 105 as a conductive filler, and integrated (unitized). Thereafter, it was dried by heating under reduced pressure at 250 ° C. for 8 hours. Further, a lithium foil 109 punched out to a diameter of 2 mm and a thickness of 0.22 mm was pressed on the pellet. This lithium-negative electrode pellet becomes the negative electrode of the battery through lithium doping after the battery is assembled. In this way, a negative electrode unit was produced.

次いで、リチウム含有マンガン酸化物、導電剤であるグラファイト、結着剤であるポリアクリル酸を、それぞれ重量比が、リチウム含有マンガン酸化物:グラファイト:ポリアクリル酸樹脂=90:7:3の割合で混合して正極合剤とした。その後、5mgの正極合剤を2ton/cm2で加圧して、直径2.4mmのペレットを成形し、正極101を得た。   Next, the weight ratio of lithium-containing manganese oxide, graphite as a conductive agent, and polyacrylic acid as a binder, respectively, is a ratio of lithium-containing manganese oxide: graphite: polyacrylic resin = 90: 7: 3. A positive electrode mixture was prepared by mixing. Thereafter, 5 mg of the positive electrode mixture was pressurized at 2 ton / cm 2 to form a pellet having a diameter of 2.4 mm, whereby the positive electrode 101 was obtained.

そして、正極101は、炭素を導電性フィラーとする導電性樹脂接着剤からなる正極集電体102を用いて、正極101を正極ケース103に接着させ、正極101と正極ケース103を一体化(ユニット化)した。その後、250℃8時間の条件で減圧加熱乾燥を行った。このようにして正極ユニットを作製した。
セパレータ107にはガラス繊維をΦ3mmに打ち抜きリチウム上に載置した。
The positive electrode 101 is bonded to the positive electrode case 103 using the positive electrode current collector 102 made of a conductive resin adhesive containing carbon as a conductive filler, and the positive electrode 101 and the positive electrode case 103 are integrated (unit). ). Thereafter, drying under reduced pressure was performed under the condition of 250 ° C. for 8 hours. In this way, a positive electrode unit was produced.
In the separator 107, glass fiber was punched out to 3 mm and placed on lithium.

電解液には、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジメトキシエタン(DME)を体積比で1:1:2とした混合溶媒にリチウムビストリフルオロメタンスルホンイミドを1mol/l溶解したものを準備した。 The electrolytic solution, propylene carbonate (PC), ethylene carbonate (EC), 1 dimethoxyethane (DME) in a volume ratio: 1: 2 and the mixed lithium bistrifluoromethanesulfonimide the solvent obtained by dissolving 1 mol / l Prepared.

ガスケット108は、ポリプロピレン製のものを用いた。次に、ブチルゴム系接着剤(ブチルゴム30重量%、トルエン70重量%)とブローンアスファルトをトルエンに溶かしてシール剤を得た。シール剤を正極ケース103の内側縁に塗布して120℃のドライルーム内で加熱乾燥した。また、シール剤の塗布された正極ケース103の内側縁にガスケット108を嵌入し、ガスケット108の環状溝の内側にシール剤を塗布して120℃のドライルーム内で加熱乾燥した。   The gasket 108 was made of polypropylene. Next, a butyl rubber adhesive (butyl rubber 30% by weight, toluene 70% by weight) and blown asphalt were dissolved in toluene to obtain a sealant. The sealing agent was applied to the inner edge of the positive electrode case 103 and dried by heating in a 120 ° C. dry room. Further, the gasket 108 was fitted into the inner edge of the positive electrode case 103 to which the sealing agent was applied, and the sealing agent was applied to the inner side of the annular groove of the gasket 108 and dried by heating in a 120 ° C. dry room.

そして、正極101と負極106の間にセパレータ107を配し、5μlの電解液を収容室Sに注入した後、ガスケット107の環状溝に負極ケース106を挿入し、正極ユニットと負極ユニットを重ねかしめ封口した。これによって、実施例1のコイン型非水電解質二次電池を作製した。
組立1週間後の電池を次の3つの試験により信頼性評価を行った。
A separator 107 is disposed between the positive electrode 101 and the negative electrode 106, 5 μl of electrolyte is injected into the storage chamber S, the negative electrode case 106 is inserted into the annular groove of the gasket 107, and the positive electrode unit and the negative electrode unit are overlapped. Sealed. Thus, a coin-type non-aqueous electrolyte secondary battery of Example 1 was produced.
The battery after one week of assembly was evaluated for reliability by the following three tests.

(1)過放電特性
電池容量を測定した後、電池に抵抗を接続して100日間の放電を行った。その後、再び電池容量の測定を行い、容量の測定を行った。過放電特性の容量維持率は、(過放電後の容量)/(過放電前の容量)×100とした。
(1) Overdischarge characteristics After measuring the battery capacity, a resistor was connected to the battery and discharging was performed for 100 days. Thereafter, the battery capacity was measured again, and the capacity was measured. The capacity retention rate of the overdischarge characteristics was (capacity after overdischarge) / (capacity before overdischarge) × 100.

(2)サイクル特性
電池の容量を測定した後、電池の放電・充電を1サイクルとし、連続で100サイクルの放充電を行った。その後、電池の容量を再測定した。サイクル特性の容量維持率は、(サイクル放充電後の容量)/(サイクル放充電前の容量)×100とした。
(2) Cycle characteristics After measuring the capacity of the battery, the battery was discharged and charged in one cycle, and 100 cycles were continuously discharged. Thereafter, the capacity of the battery was measured again. The capacity retention rate of the cycle characteristics was (capacity after cycle discharge) / (capacity before cycle discharge) × 100.

(3)放電流特性
放電電流5μAの容量測定と、放電電流を大きくし50μAとした場合の容量測定を行った。放電電流による容量維持率は、(50μA放電の容量)/(5μA放電の容量)×100とした。
(3) Discharge current characteristics The capacity was measured when the discharge current was 5 μA and when the discharge current was increased to 50 μA. The capacity retention rate due to the discharge current was (50 μA discharge capacity) / (5 μA discharge capacity) × 100.

(実施例2)
カーボンをCVDで被覆したSiOを負極として用い、実施例1と同様にコイン型非水電解質二次電池を作製し、評価を行った。
(実施例3)
有機物としてベンゼンを噴霧し熱処理により被覆したSiOをそれぞれ負極として用い、実施例1と同様にコイン型非水電解質二次電池を作製し、評価を行った。
(Example 2)
A coin-type non-aqueous electrolyte secondary battery was fabricated and evaluated in the same manner as in Example 1 using SiO coated with carbon by CVD as the negative electrode.
(Example 3)
Coin-type nonaqueous electrolyte secondary batteries were fabricated and evaluated in the same manner as in Example 1 using SiO coated with benzene as an organic substance and coated by heat treatment as the negative electrode.

(参考例1)
被覆なしのSiOを用いて、実施例1と同様にコイン型非水電解質二次電池を作製し、評価を行った。評価結果を表1に示した。
(参考例2)
参考例1とは製造法の異なる被覆なしのSiOを用いて、実施例1と同様にコイン型非水電解質二次電池を作製し、評価を行った。評価結果を表1に示した。
(参考例3)
有機物を噴霧し熱処理により被覆したSiOを用いて、実施例1と同様にコイン型非水電解質二次電池を作製し、評価を行った。評価結果を表1に示した。
(参考例4)
実施例とは異なる条件でカーボン被膜したSiOを用いて、実施例1と同様にコイン型非水電解質二次電池を作製し、評価を行った。評価結果を表1に示した。
(Reference Example 1)
A coin-type non-aqueous electrolyte secondary battery was produced and evaluated in the same manner as in Example 1 using uncoated SiO. The evaluation results are shown in Table 1.
(Reference Example 2)
A coin-type non-aqueous electrolyte secondary battery was fabricated and evaluated in the same manner as in Example 1 using uncoated SiO having a different manufacturing method from that of Reference Example 1. The evaluation results are shown in Table 1.
(Reference Example 3)
A coin-type non-aqueous electrolyte secondary battery was produced and evaluated in the same manner as in Example 1 using SiO sprayed with an organic substance and coated by heat treatment. The evaluation results are shown in Table 1.
(Reference Example 4)
A coin-type non-aqueous electrolyte secondary battery was fabricated and evaluated in the same manner as in Example 1 using SiO coated with carbon under conditions different from those in the example. The evaluation results are shown in Table 1.

Figure 0005995469
Figure 0005995469

実施例1から3は、表1に示した通り、電極ペレットの厚み変化が2.4〜2.8倍である。実施例1から3の本発明では、過放電後の容量維持率が94%以上と、優れた容量維持率を示している。一方で、参考例1から4では70%以下の維持率となっている。以上の結果から、ドーピング前後の電極ペレットの厚み変化が2.8倍より小さいSiOは、ペレット厚み変化が2.8倍より大きいSiOよりも優れた過放電特性を有していることがわかる。更に100サイクル後の容量維持率では、本発明により実施例1から3の電池では80%近い容量維持率を示すのに対して、参考例1から4では70%以下まで減少している。また、放電電流の増加による容量維持率においては、実施例1から3では85%以上の容量維持率を示しているが、参考例4に示すように容量維持率が50%となっている。以上の結果から、本発明によるコイン型非水電解質二次電池は、過放電劣化が少なく、サイクル特性に優れ、放電電流特性にも優れたコイン型非水電解質二次電池を提供できる。   In Examples 1 to 3, as shown in Table 1, the change in the thickness of the electrode pellet is 2.4 to 2.8 times. In the present invention of Examples 1 to 3, the capacity retention rate after overdischarge is 94% or more, indicating an excellent capacity retention rate. On the other hand, in the reference examples 1 to 4, the maintenance rate is 70% or less. From the above results, it can be seen that SiO whose electrode pellet thickness change before and after doping is smaller than 2.8 times has superior overdischarge characteristics than SiO whose pellet thickness change is larger than 2.8 times. Furthermore, in the capacity maintenance rate after 100 cycles, the batteries of Examples 1 to 3 show a capacity maintenance rate of nearly 80% according to the present invention, whereas in Reference Examples 1 to 4, the capacity maintenance rate decreases to 70% or less. In addition, regarding the capacity maintenance ratio due to the increase of the discharge current, the capacity maintenance ratio of 85% or more is shown in Examples 1 to 3, but the capacity maintenance ratio is 50% as shown in Reference Example 4. From the above results, the coin-type non-aqueous electrolyte secondary battery according to the present invention can provide a coin-type non-aqueous electrolyte secondary battery with little over-discharge deterioration, excellent cycle characteristics, and excellent discharge current characteristics.

(実施例4)
AlをPVDで被覆したSiOを負極として用いた。その他の部分は、実施例1と同様にコイン型非水電解質二次電池を作製し、評価を行った。
(実施例5)
SnをPVDで被覆したSiOを負極として用いた。その他の部分は、実施例1と同様にコイン型非水電解質二次電池を作製し、評価を行った。
(実施例6)
NiをPVDで被覆したSiOを負極として用いた。その他の部分は、実施例1と同様にコイン型非水電解質二次電池を作製し、評価を行った。
(実施例7)
TiをPVDで被覆したSiOを負極として用いた。その他の部分は、実施例1と同様にコイン型非水電解質二次電池を作製し、評価を行った。
(実施例8)
WをPVDで被覆したSiOを負極として用いた。その他の部分は、実施例1と同様にコイン型非水電解質二次電池を作製し、評価を行った。
(実施例9)
CuをPVDで被覆したSiOを負極として用いた。その他の部分は、実施例1と同様にコイン型非水電解質二次電池を作製し、評価を行った。
(実施例10)
AgをPVDで被覆したSiOを負極として用いた。その他の部分は、実施例1と同様にコイン型非水電解質二次電池を作製し、評価を行った。
Example 4
SiO with Al coated with PVD was used as the negative electrode. For other parts, a coin-type non-aqueous electrolyte secondary battery was prepared and evaluated in the same manner as in Example 1.
(Example 5)
SiO with Sn coated with PVD was used as the negative electrode. For other parts, a coin-type non-aqueous electrolyte secondary battery was prepared and evaluated in the same manner as in Example 1.
(Example 6)
SiO with Ni coated with PVD was used as the negative electrode. For other parts, a coin-type non-aqueous electrolyte secondary battery was prepared and evaluated in the same manner as in Example 1.
(Example 7)
SiO with Ti coated with PVD was used as the negative electrode. For other parts, a coin-type non-aqueous electrolyte secondary battery was prepared and evaluated in the same manner as in Example 1.
(Example 8)
SiO with W coated with PVD was used as the negative electrode. For other parts, a coin-type non-aqueous electrolyte secondary battery was prepared and evaluated in the same manner as in Example 1.
Example 9
SiO coated with PVD Cu was used as the negative electrode. For other parts, a coin-type non-aqueous electrolyte secondary battery was prepared and evaluated in the same manner as in Example 1.
(Example 10)
SiO with Ag coated with PVD was used as the negative electrode. For other parts, a coin-type non-aqueous electrolyte secondary battery was prepared and evaluated in the same manner as in Example 1.

(参考例5〜参考例11)
実施例4〜実施例10と同様に被覆したSiOのドーピングによる電極ペレット厚みを測定して、実施例1と同様にコイン型非水電解質二次電池を作製した。電池の評価方法は実施例1と同様で有る。評価結果を表2に示す。
(Reference Example 5 to Reference Example 11)
A coin-type nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 by measuring the electrode pellet thickness by doping SiO coated in the same manner as in Examples 4 to 10. The battery evaluation method is the same as in Example 1. The evaluation results are shown in Table 2.

Figure 0005995469
Figure 0005995469

実施例4〜実施例10は、表2に示した通り電極ペレットの厚み変化が2.4〜2.8倍である本発明の導電性材料で被膜したSiOを負極して用いて作製した電池である。過放電後の容量維持率は、実施例4〜実施例10の本発明では、90%以上の優れた容量維持率を示しているが、参考例6〜参考例7及び参考例10〜参考例11では70%以下の維持率となっている。以上の結果から、本発明のドーピング前後の電極ペレットの厚み変化が2.8倍より小さいSiOは、厚み変化が2.8倍より大きい被覆が薄いあるいは被覆なしのSiOよりも優れた過放電特性を有していることがわかる。更に100サイクル後の容量維持率では、本発明により実施例4〜実施例10の電池では75%近い維持率を示すのに対して、参考例6〜参考例7及び参考例10〜参考例11では50%以下まで減少している。また、放電電流の増加による容量維持率においては、本発明によるドーピング後の電極厚みの変換が2.4倍以上の実施例4〜実施例10では80%以上の容量維持率を示しているが、参考例5、参考例8〜参考例9に示すようドーピング後の電極厚みが2.4以下においては、容量維持率が60%以下となっている。以上の結果から、導電性材料の種類及び導電性材料のSiO被覆方法によらず、本発明は有効であることがわかる。   As shown in Table 2, Examples 4 to 10 are batteries manufactured using a negative electrode made of SiO coated with the conductive material of the present invention in which the thickness change of the electrode pellet is 2.4 to 2.8 times. It is. The capacity maintenance ratio after overdischarge shows an excellent capacity maintenance ratio of 90% or more in the present invention of Examples 4 to 10, but Reference Examples 6 to 7 and Reference Examples 10 to 10 are examples. 11 has a maintenance rate of 70% or less. From the above results, SiO having a thickness change of less than 2.8 times before and after doping according to the present invention is superior in overdischarge characteristics to SiO having a thickness change of more than 2.8 times thinner or uncoated SiO. It can be seen that Furthermore, in the capacity maintenance rate after 100 cycles, the batteries of Examples 4 to 10 show a maintenance rate of nearly 75% according to the present invention, whereas Reference Examples 6 to 7 and Reference Examples 10 to 11 are shown. In, it has decreased to 50% or less. In addition, regarding the capacity retention ratio due to the increase of the discharge current, the conversion of the electrode thickness after doping according to the present invention shows a capacity retention ratio of 80% or more in Examples 4 to 10 in which conversion of the electrode thickness is 2.4 times or more. As shown in Reference Example 5 and Reference Examples 8 to 9, when the electrode thickness after doping is 2.4 or less, the capacity retention ratio is 60% or less. From the above results, it can be seen that the present invention is effective regardless of the type of the conductive material and the SiO coating method of the conductive material.

101 正極
102 正極集電体
103 正極ケース
104、201 負極
105 負極集電体
106 負極ケース
107 セパレータ
108 ガスケット
109、202 リチウム金属
S 収容室
P 圧力
tB ドーピング前の電極厚み
tA ドーピング後の電極厚み
101 Positive electrode 102 Positive electrode current collector 103 Positive electrode case 104, 201 Negative electrode 105 Negative electrode current collector 106 Negative electrode case 107 Separator 108 Gasket 109, 202 Lithium metal S receiving chamber P Pressure tB Electrode thickness before doping tA Thickness of electrode after doping

Claims (2)

正極と、負極と、支持塩と非水溶媒とからなる電解液と、ガスケットとセパレータを備えたコイン型非水電解質二次電池の製造方法であって、
前記負極の電極ペレットは、導電性物質で被覆されたSiOからなる負極活物質と、導電材と、結着剤とを含み、リチウムドーピング後の厚み変化が、2.4〜2.8倍であり、
電池組立時に前記負極の電極ペレットの表面にリチウム金属を貼り付け、電池組立後にリチウムドーピングを経て前記負極と前記リチウム金属とを一体化させることを特徴とするコイン型非水電解質二次電池の製造方法。
A method for producing a coin-type non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, an electrolyte comprising a supporting salt and a non-aqueous solvent, a gasket and a separator,
The negative electrode pellet includes a negative electrode active material made of SiO coated with a conductive material, a conductive material, and a binder, and the thickness change after lithium doping is 2.4 to 2.8 times. Oh it is,
Wherein when the battery is assembled paste lithium metal on the surface of the anode electrode pellets, coin type nonaqueous electrolyte secondary battery, characterized Rukoto are integrated with the lithium metal and the negative electrode through the lithium doping after battery assembly Production method.
前記導電性物質は、C、Al、Sn、Ni、Ti、W、Cu、Agから選択される少なくとも1種であることを特徴とする請求項記載のコイン型非水電解質二次電池の製造方法。 The conductive material is manufactured C, Al, Sn, Ni, Ti, W, Cu, coin type nonaqueous electrolyte secondary battery according to claim 1, wherein the at least one selected from Ag Method.
JP2012057832A 2012-03-14 2012-03-14 Coin-type non-aqueous electrolyte secondary battery and method for producing coin-type non-aqueous electrolyte secondary battery Active JP5995469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012057832A JP5995469B2 (en) 2012-03-14 2012-03-14 Coin-type non-aqueous electrolyte secondary battery and method for producing coin-type non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012057832A JP5995469B2 (en) 2012-03-14 2012-03-14 Coin-type non-aqueous electrolyte secondary battery and method for producing coin-type non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2013191463A JP2013191463A (en) 2013-09-26
JP5995469B2 true JP5995469B2 (en) 2016-09-21

Family

ID=49391499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012057832A Active JP5995469B2 (en) 2012-03-14 2012-03-14 Coin-type non-aqueous electrolyte secondary battery and method for producing coin-type non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5995469B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6102727B2 (en) * 2013-12-25 2017-03-29 株式会社豊田自動織機 Composite negative electrode active material body, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP6641755B2 (en) * 2015-07-21 2020-02-05 株式会社豊田自動織機 Manufacturing method of lithium ion secondary battery
JP6641756B2 (en) * 2015-07-21 2020-02-05 株式会社豊田自動織機 Manufacturing method of lithium ion secondary battery
KR20220037250A (en) * 2020-09-17 2022-03-24 삼성전자주식회사 Battery and electronic device including the same
JPWO2023042028A1 (en) * 2021-09-17 2023-03-23

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243449A (en) * 1999-02-18 2000-09-08 Seiko Instruments Inc Nonaqueous electrolyte secondary battery
JP5182477B2 (en) * 2007-09-21 2013-04-17 信越化学工業株式会社 Non-aqueous secondary battery
JP5338676B2 (en) * 2007-11-12 2013-11-13 三洋電機株式会社 Non-aqueous electrolyte secondary battery negative electrode material, non-aqueous electrolyte secondary battery negative electrode and non-aqueous electrolyte secondary battery
JP2010272411A (en) * 2009-05-22 2010-12-02 Shin-Etsu Chemical Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery and method for manufacturing the negative electrode material, lithium ion secondary battery, and electrochemical capacitor
JP5827103B2 (en) * 2011-11-07 2015-12-02 セイコーインスツル株式会社 Small non-aqueous electrolyte secondary battery and manufacturing method thereof

Also Published As

Publication number Publication date
JP2013191463A (en) 2013-09-26

Similar Documents

Publication Publication Date Title
US9583750B2 (en) Secondary battery
CN110400932B (en) Electrochemical cell and preparation method thereof
KR101329905B1 (en) Separator for non-aqueous secondary battery and method for manufacturing the same, and non-aqueous electrolyte secondary battery
JP5985486B2 (en) Electrochemical cell based on lithium technology with internal reference electrode, method for its production, and method for simultaneously monitoring the voltage or impedance of its anode and cathode
JP5355203B2 (en) Lithium primary battery and manufacturing method thereof
TWI289948B (en) Secondary battery for surface mounting
JP5995469B2 (en) Coin-type non-aqueous electrolyte secondary battery and method for producing coin-type non-aqueous electrolyte secondary battery
US20090095942A1 (en) Positive Electrode Material for Lithium Secondary Battery
JP5827103B2 (en) Small non-aqueous electrolyte secondary battery and manufacturing method thereof
US10763548B2 (en) Electrolyte solution for secondary batteries, and secondary battery
JP6372821B2 (en) Nonaqueous electrolyte secondary battery
JP6425225B2 (en) Non-aqueous electrolyte secondary battery
TW201640712A (en) Nonaqueous electrolyte secondary battery
CN109906526A (en) Secondary cell
EP3067967B1 (en) Non-aqueous electrolyte secondary cell, and electric storage circuit using same
US20130122367A1 (en) Lithium primary cell
EP3086337A1 (en) Lithium ion capacitor
CN114188591A (en) Battery cell, battery and electronic equipment
JP2015037018A (en) Sealed type nonaqueous electrolyte secondary battery
JPWO2013146569A1 (en) Lithium secondary battery and manufacturing method thereof
CN107452513B (en) Lithium ion capacitor
JPWO2015141120A1 (en) Lithium primary battery
JP3699589B2 (en) Positive electrode paste composition, positive electrode manufacturing method, positive electrode, and lithium secondary battery using the same
JP2012014877A (en) Graphite fluoride lithium battery
JP5771076B2 (en) Coin type non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160823

R150 Certificate of patent or registration of utility model

Ref document number: 5995469

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250