JP5995037B2 - Cooker - Google Patents

Cooker Download PDF

Info

Publication number
JP5995037B2
JP5995037B2 JP2011121354A JP2011121354A JP5995037B2 JP 5995037 B2 JP5995037 B2 JP 5995037B2 JP 2011121354 A JP2011121354 A JP 2011121354A JP 2011121354 A JP2011121354 A JP 2011121354A JP 5995037 B2 JP5995037 B2 JP 5995037B2
Authority
JP
Japan
Prior art keywords
temperature
receiving element
light receiving
predetermined value
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011121354A
Other languages
Japanese (ja)
Other versions
JP2012248501A (en
Inventor
湊谷 純一
純一 湊谷
駒田 雅道
雅道 駒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2011121354A priority Critical patent/JP5995037B2/en
Publication of JP2012248501A publication Critical patent/JP2012248501A/en
Application granted granted Critical
Publication of JP5995037B2 publication Critical patent/JP5995037B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Radiation Pyrometers (AREA)
  • Induction Heating Cooking Devices (AREA)

Description

本発明は、赤外線センサで温度検知を行う加熱調理器に関するものである。   The present invention relates to a cooking device that detects temperature with an infrared sensor.

従来、この種の誘導加熱調理器は、図4に示すように調理物を加熱する調理容器101と、調理容器1を載置するトッププレート102と、調理容器101を加熱するために誘導磁界を発生させる加熱コイル103と、トッププレート102を介して調理容器101から放射された赤外線を検出する赤外線センサ104と、赤外線センサ104の受光したエネルギーより調理容器101の温度を温度情報に換算する温度検知手段105と、温度検知手段105での温度情報により加熱コイル103の高周波電流を制御して調理容器101の加熱電力量を制御する加熱制御手段106と、赤外線センサ104の検知部に光が届くように発光手段107を備えた構成となっており、調理容器101の底から発せられた赤外線を温度に換算し加熱電力量を制御することで、精度よく温度検知を行うことができるものがあった。   Conventionally, this type of induction heating cooker has a cooking container 101 for heating a cooked product, a top plate 102 for placing the cooking container 1 and an induction magnetic field for heating the cooking container 101 as shown in FIG. A heating coil 103 to be generated, an infrared sensor 104 for detecting infrared rays radiated from the cooking vessel 101 via the top plate 102, and temperature detection for converting the temperature of the cooking vessel 101 into temperature information from the energy received by the infrared sensor 104. The light reaches the detection means of the infrared sensor 104 and the heating control means 106 for controlling the heating power amount of the cooking vessel 101 by controlling the high-frequency current of the heating coil 103 based on the temperature information in the means 105 and the temperature detection means 105. The light emitting means 107 is provided, and the infrared rays emitted from the bottom of the cooking vessel 101 are converted into temperature and heated. By controlling the amount, there is what can be accurately performed temperature detection.

特開2007−213894号公報Japanese Patent Laid-Open No. 2007-213834 特開2009−176553号公報JP 2009-176553 A

しかしながら、前記従来の構成では、赤外線センサの受光素子が周囲温度の変化により、感度波長が長波長側に伸びるため周囲温度の変化により絶対温度がずれるという課題を有していた。   However, the conventional configuration has a problem in that the absolute temperature shifts due to a change in the ambient temperature because the sensitivity wavelength of the light receiving element of the infrared sensor extends to the longer wavelength side due to a change in the ambient temperature.

本発明は、前記従来の課題を解決するもので、受光素子の感度波長の長波長側の感度を低下させる樹脂により受光素子をモールドすることにより、周囲温度の変動に対して、ロバストな(周囲温度の変動に対して強い)赤外線センサとすることができ、精度よく温度検知を行うことができる使い勝手のよい誘導加熱調理器を提供することを目的とする。   The present invention solves the above-described conventional problems, and by molding the light receiving element with a resin that lowers the sensitivity on the long wavelength side of the light receiving element, it is robust against changes in ambient temperature (ambient It is an object of the present invention to provide an easy-to-use induction heating cooker that can be an infrared sensor that is strong against temperature fluctuations and that can accurately detect temperature.

前記従来の課題を解決するために、本発明の誘導加熱調理器は、外郭を構成する本体と、前記本体の上面に配置され調理容器を載置するトッププレートと、前記トッププレートの下方に配置され前記調理容器を加熱する加熱コイルと、前記加熱コイルに高周波電流を供給するインバーター回路と、前記加熱コイルの下方に配置され前記トッププレートを介して調理容器から放射された赤外線を検出する赤外線センサと、前記赤外線センサの受光したエネルギーより前記調理容器の温度を温度情報に換算する温度検知手段と、前記温度検知手段の温度情報により前記インバーター回路を制御して前記調理容器の加熱電力量を制御する制御手段と、を備え、前記赤外線センサを、受光した赤外線を電流に変換し、第1の所定値以上の波長をカットする樹脂によりモールドされた受光素子と、前記受光素子が出力する電流を電圧に変換するIV変換回路と、からなるとともに、InGaAsを組成とした前記受光素子は、樹脂によりモールドされていない分光感度が周囲の温度変化により、前記第1の所定値より高波長側の第3の所定値に伸びるものであって、エポキシ系である前記樹脂の赤外線の透過率が、高波長側において、周囲温度の温度変化による差が前記受光素子の分光感度の変化に対し極端に低いことにより、周囲温度の温度変化による前記第1の所定値の変化が抑制され、前記樹脂にモールドにされた前記受光素子の分光感度は、前記第1の所定値より大きな前記第3の所定値の周囲温度による変動幅はカットされ、且つ、前記受光素子の分光感度は、調理容器から放射される赤外線の検知温度において最も低温度の分光放射発散度が立ち上がる波長が最大となり、最も低温度の最大波長は前記第1の所定値未満に含まれるようにし、前記最大波長から前記第1の所定値の波長までの範囲と、最も低温度の分光放射発散度により囲まれるエリアの受光エネルギーにより最も低温度を検知する構成としたものである。
In order to solve the above-described conventional problems, an induction heating cooker according to the present invention includes a main body that forms an outer shell, a top plate that is disposed on an upper surface of the main body and on which a cooking container is placed, and is disposed below the top plate. A heating coil that heats the cooking vessel, an inverter circuit that supplies a high-frequency current to the heating coil, and an infrared sensor that is disposed below the heating coil and detects infrared rays emitted from the cooking vessel via the top plate And temperature detection means for converting the temperature of the cooking container into temperature information from the energy received by the infrared sensor, and the inverter circuit is controlled by the temperature information of the temperature detection means to control the heating power amount of the cooking container. And a control means that converts the received infrared light into a current and cuts a wavelength that is equal to or greater than a first predetermined value. A light receiving element molded with a resin and an IV conversion circuit that converts a current output from the light receiving element into a voltage. The light receiving element composed of InGaAs has a spectral sensitivity that is not molded with a resin. Due to a change in the ambient temperature, the infrared transmittance of the resin, which is an epoxy-based resin, increases to a third predetermined value on the higher wavelength side than the first predetermined value. Since the difference due to the temperature change is extremely low with respect to the change in the spectral sensitivity of the light receiving element, the change of the first predetermined value due to the temperature change of the ambient temperature is suppressed, and the light receiving element molded in the resin spectral sensitivity, said first variation width caused by the ambient temperature of large the third predetermined value than the predetermined value is cut, and the spectral sensitivity of the light receiving element is radiated from the cooking container That wavelength lowest temperature spectral radiant emittance of rises in temperature detected by the infrared is maximized, the lowest temperature the maximum wavelength of to include less than the first predetermined value, said first predetermined from the maximum wavelength In this configuration, the lowest temperature is detected by the light reception energy in the area surrounded by the range of the value wavelength and the spectral radiation divergence at the lowest temperature .

本構成により、受光素子の感度波長の長波長側の感度を低下させる樹脂により受光素子をモールドすることにより、必要な赤外線センサの検知温度幅が得られ、周囲温度の変動に対して、ロバストな赤外線センサとすることができ、精度のよい温度検知を実現するこ
とができる。
With this configuration, the required temperature detection range of the infrared sensor can be obtained by molding the light receiving element with a resin that lowers the sensitivity on the long wavelength side of the sensitivity wavelength of the light receiving element, and is robust against fluctuations in ambient temperature. An infrared sensor can be used, and accurate temperature detection can be realized.

本発明の誘導加熱調理器は、必要な赤外線センサの検知温度幅が得られ、周囲温度の変動に対して、ロバストな赤外線センサとすることができ、精度よく温度検知を行うことができ使い勝手よい。
The induction heating cooker of the present invention can provide a detection temperature range of a necessary infrared sensor, can be a robust infrared sensor against fluctuations in ambient temperature, can perform temperature detection with high accuracy , and is easy to use. Is good.

本発明の実施の形態における加熱調理器の全体構成図The whole block diagram of the heating cooker in embodiment of this invention 本発明の実施の形態における赤外線センサの構成図Configuration diagram of an infrared sensor according to an embodiment of the present invention 本発明の実施の形態における分光感度、分光放射発散度、透過率のグラフGraph of spectral sensitivity, spectral radiation divergence, and transmittance in an embodiment of the present invention 従来の誘導加熱調理器の全体構成図Overall configuration diagram of a conventional induction heating cooker

第1の発明は、外郭を構成する本体と、前記本体の上面に配置され調理容器を載置する
トッププレートと、前記トッププレートの下方に配置され前記調理容器を加熱する加熱コイルと、前記加熱コイルに高周波電流を供給するインバーター回路と、前記加熱コイルの下方に配置され前記トッププレートを介して調理容器から放射された赤外線を検出する赤外線センサと、前記赤外線センサの受光したエネルギーより前記調理容器の温度を温度情報に換算する温度検知手段と、前記温度検知手段の温度情報により前記インバーター回路を制御して前記調理容器の加熱電力量を制御する制御手段と、を備え、前記赤外線センサを、受光した赤外線を電流に変換し、第1の所定値以上の波長をカットする樹脂によりモールドされた受光素子と、前記受光素子が出力する電流を電圧に変換するIV変換回路と、からなるとともに、InGaAsを組成とした前記受光素子は、樹脂によりモールドされていない分光感度が周囲の温度変化により、前記第1の所定値より高波長側の第3の所定値に伸びるものであって、エポキシ系である前記樹脂の赤外線の透過率が、高波長側において、周囲温度の温度変化による差が前記受光素子の分光感度の変化に対し極端に低いことにより、周囲温度の温度変化による前記第1の所定値の変化が抑制され、前記樹脂にモールドにされた前記受光素子の分光感度は、前記第1の所定値より大きな前記第3の所定値の周囲温度による変動幅はカットされ、且つ、前記受光素子の分光感度は、調理容器から放射される赤外線の検知温度において最も低温度の分光放射発散度が立ち上がる波長が最大となり、最も低温度の最大波長は前記第1の所定値未満に含まれるようにし、前記最大波長から前記第1の所定値の波長までの範囲と、最も低温度の分光放射発散度により囲まれるエリアの受光エネルギーにより最も低温度を検知する構成することにより、受光素子の感度波長の長波長側の感度を低下させる樹脂により受光素子をモールドすることにより、必要な赤外線センサの検知温度幅が得られ、周囲温度の変動に対して、ロバストな赤外線センサとすることができ、精度のよい温度検知を実現することができる。
1st invention consists of the main body which comprises an outer shell, the top plate which is arrange | positioned on the upper surface of the said main body, and mounts a cooking vessel, the heating coil which is arrange | positioned under the top plate and heats the said cooking vessel, and said heating An inverter circuit that supplies a high-frequency current to the coil, an infrared sensor that is disposed below the heating coil and that detects infrared rays radiated from the cooking vessel via the top plate, and the cooking vessel from the energy received by the infrared sensor Temperature detecting means for converting the temperature of the temperature into temperature information, and control means for controlling the inverter circuit based on the temperature information of the temperature detecting means to control the heating power amount of the cooking container, and the infrared sensor, A light receiving element molded with a resin that converts received infrared light into an electric current and cuts a wavelength equal to or greater than a first predetermined value; and An IV conversion circuit for converting a current output from the optical element into a voltage, and the light receiving element having a composition of InGaAs has a spectral sensitivity that is not molded by a resin due to a change in ambient temperature. The infrared transmittance of the epoxy resin is increased to a third predetermined value on the higher wavelength side than the value, and the difference due to the temperature change of the ambient temperature on the higher wavelength side is the spectral sensitivity of the light receiving element. The change of the first predetermined value due to the temperature change of the ambient temperature is suppressed, and the spectral sensitivity of the light receiving element molded in the resin is higher than the first predetermined value. large the third variation width caused by the ambient temperature of a predetermined value is cut, and the spectral sensitivity of the light receiving element, the lowest temperature spectroscopy of the detected temperature of the infrared rays radiated from the cooking container Morphism divergence wavelength becomes maximum rises, the lowest temperature the maximum wavelength of to include less than the first predetermined value, the range from the maximum wavelength up to a wavelength of said first predetermined value, the lowest temperature of with the configuration for detecting the lowest temperature by receiving the energy of the area enclosed by the spectral radiant emittance, by molding the light receiving element by the resin to lower the sensitivity on the long wavelength side of the sensitivity wavelength of the light-receiving element, must Therefore, it is possible to obtain an infrared sensor that is robust against fluctuations in the ambient temperature, and to realize accurate temperature detection.

第2の発明は、特に、第1の発明の前記受光素子をモールドする樹脂は凸部を有する砲弾型の形状とすることにより、受光素子の感度波長の長波長側の感度を低下させ、周囲温度の変動に対してロバストな赤外線センサにするとともに、受光素子の視野角を狭めることで、加熱コイル下方から調理容器の底までの間にある構造物から発せられる赤外線を受光することなく、調理容器の底から発せられる赤外線のみを受光することができるため、精度のよい温度検知を実現することができる。
According to the second invention, in particular, the resin for molding the light receiving element of the first invention has a shell-shaped shape having a convex portion, thereby reducing the sensitivity on the long wavelength side of the sensitivity wavelength of the light receiving element, Infrared sensor that is robust against temperature fluctuations and by narrowing the viewing angle of the light receiving element, it can cook without receiving infrared rays emitted from the structure between the bottom of the heating coil and the bottom of the cooking container. Since only the infrared rays emitted from the bottom of the container can be received, accurate temperature detection can be realized.

第3の発明は、特に、第1または第2の発明の前記受光素子をモールドする樹脂は、第2の所定値以下の波長をカットする樹脂とすることにより、調理容器から発せられる赤外線以外(可視光領域)の波長のエネルギーをカットすることができるため、太陽光の影響や、加熱調理器がラジェントヒーターを備えたものであれば、加熱調理器内部の反射により赤外線センサまで到達した漏れエネルギーをカットすることができ、外乱光(太陽光、照明、ラジェントヒーター)の影響を緩和することができ、精度のよい温度検知を実現することができる。
According to a third aspect of the invention, in particular, the resin for molding the light receiving element of the first or second aspect of the invention is a resin that cuts a wavelength equal to or less than a second predetermined value, thereby other than infrared rays emitted from a cooking container ( (Visible light range) wavelength energy can be cut, so if the effect of sunlight or if the cooking device is equipped with a radiant heater, the leakage that has reached the infrared sensor due to reflection inside the cooking device The energy can be cut, the influence of disturbance light (sunlight, illumination, and a radiant heater) can be alleviated, and accurate temperature detection can be realized.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態における加熱調理器の全体構成図である。
(Embodiment 1)
FIG. 1 is an overall configuration diagram of a heating cooker according to the first embodiment of the present invention.

図1において、本体10の天面を構成するトッププレート2に調理容器1が載置されており、加熱コイル3からの誘導磁界により調理容器1は誘導加熱される。赤外線センサ4は調理容器1からの熱赤外線を検知し、加熱コイル3の下方に設置され、トッププレート2の可視部越しに熱赤外線が入光されている。温度検知手段5は赤外線センサ4の出力を
温度情報に変換する手段であり、制御手段6はマイコンにより構成され、温度検知手段5による温度情報に基づいて、加熱コイル3に高周波電流を供給するインバーター回路7を制御する。
In FIG. 1, a cooking container 1 is placed on a top plate 2 constituting the top surface of a main body 10, and the cooking container 1 is induction-heated by an induction magnetic field from a heating coil 3. The infrared sensor 4 detects thermal infrared rays from the cooking container 1 and is installed below the heating coil 3, and thermal infrared rays are incident through the visible portion of the top plate 2. The temperature detection means 5 is a means for converting the output of the infrared sensor 4 into temperature information, and the control means 6 is constituted by a microcomputer, and an inverter that supplies a high-frequency current to the heating coil 3 based on the temperature information from the temperature detection means 5. The circuit 7 is controlled.

使用者は操作・表示手段8を操作して、加熱調理器の電源ON/OFFを切り替えることや、該当バーナーに設置された調理容器1を加熱するために加熱開始や停止を行うことができる。また、火力(設定火力)を切り替えて加熱することができ、メニューを選択することで揚げ物の温調制御をおこなうこともできる。   The user can operate the operation / display means 8 to switch the heating cooker ON / OFF, or to start or stop heating in order to heat the cooking container 1 installed in the corresponding burner. In addition, the heating power (setting heating power) can be switched and heated, and the temperature control of the deep-fried food can be performed by selecting a menu.

また、使用者の操作に応じて、電源ONの場合は電源LEDを点灯させ、火力の調整値に応じて、現在の設定火力をLEDの点灯数により表示することができる。   Further, in response to the user's operation, when the power is turned on, the power LED is turned on, and the current set thermal power can be displayed by the number of LEDs lit according to the adjustment value of the thermal power.

また、制御手段6は使用者による操作に応じて報知手段9を介し音声、ブザーなどで報知を行うことができる。また、炊飯、湯沸かし等の自動調理を行う場合や、タイマー調理により、設定時間後に加熱を停止する場合など制御手段6は報知手段9を介し、調理終了を報知することができる。   Further, the control means 6 can make a notification by voice, buzzer or the like via the notification means 9 according to the operation by the user. Further, the control means 6 can notify the end of cooking via the notification means 9 such as when performing automatic cooking such as cooking rice or boiling water or when heating is stopped after a set time by timer cooking.

図2は、赤外線センサ4の構成を説明する斜視図である。図2を用いて赤外線センサ4の構成及び動作を説明する。   FIG. 2 is a perspective view illustrating the configuration of the infrared sensor 4. The configuration and operation of the infrared sensor 4 will be described with reference to FIG.

本実施の形態1における受光素子4aは1.6から1.7μm付近にピーク感度波長をもつInGaAsのフォトダイオードであり、受光した赤外線を電流に変換する。受光素子4aは金属リードフレーム4bに実装され、エポキシ系の樹脂4cによりモールドされる。   The light receiving element 4a in the first embodiment is an InGaAs photodiode having a peak sensitivity wavelength in the vicinity of 1.6 to 1.7 μm, and converts the received infrared light into a current. The light receiving element 4a is mounted on a metal lead frame 4b and molded with an epoxy resin 4c.

受光素子4aをモールドする樹脂4cは受光素子4aに赤外線を集光するためにレンズ形状にし、レンズ凸部のアール形状と凸部頂点から受光素子4aまでの距離により、集光する範囲を決定することができる。   The resin 4c for molding the light receiving element 4a is formed into a lens shape for condensing infrared rays on the light receiving element 4a, and the light collecting element is determined by the round shape of the lens convex part and the distance from the convex part vertex to the light receiving element 4a. be able to.

台座4dとカバー4eはモールドされた受光素子4a〜4cをセンサ回路基板4f上にはんだ付けにて実装する際に安定して実装するための台座とカバーである。   The base 4d and the cover 4e are a base and a cover for stably mounting the molded light receiving elements 4a to 4c on the sensor circuit board 4f by soldering.

センサ回路基板4fには、赤外線を受光したフォトダイオードから出力される電流を電圧に変換するIV変換回路が実装されている。センサ回路基板4fはコネクタ4gを介し、供給される電源により動作し、調理容器1から発せられた赤外線をモールドされた樹脂4cにより集光し、受光素子4aは照射された赤外線に相当する電流を出力し、IV変換回路により変換された電圧を温度検知手段5に伝える。   On the sensor circuit board 4f, an IV conversion circuit that converts a current output from a photodiode that receives infrared rays into a voltage is mounted. The sensor circuit board 4f is operated by the power supplied through the connector 4g, and the infrared rays emitted from the cooking container 1 are collected by the molded resin 4c, and the light receiving element 4a generates a current corresponding to the irradiated infrared rays. The voltage is output and transmitted to the temperature detection means 5 by the IV conversion circuit.

温度検知手段5は赤外線センサから出力された電圧をあらかじめ決められた計算式により温度に変換する。   The temperature detection means 5 converts the voltage output from the infrared sensor into a temperature by a predetermined calculation formula.

なお、本実施の形態では電圧を計算式により温度に変換するとしたが、入力した電圧に応じたデジタル値に対応する温度テーブルを記憶しておき、入力したデジタル値に対応する温度に変換してもよい。   In this embodiment, the voltage is converted into temperature by a calculation formula. However, a temperature table corresponding to the digital value corresponding to the input voltage is stored, and converted into the temperature corresponding to the input digital value. Also good.

は受光素子4aの分光感度と、樹脂4cの透過率と、調理容器1の分光放射発散度のグラフである。
FIG. 3 is a graph of the spectral sensitivity of the light receiving element 4a, the transmittance of the resin 4c, and the spectral radiation divergence of the cooking vessel 1.

の横軸は波長λを表し、λa1は受光素子4aの低波長側の分光感度が発生し始める波長であり、λa2は受光素子4aのピーク感度波長であり、λa3は常温時に高波長側の分光感度がなくなる波長である。
The horizontal axis of FIG. 3 represents the wavelength λ, λa1 is the wavelength at which the spectral sensitivity on the low wavelength side of the light receiving element 4a begins to occur, λa2 is the peak sensitivity wavelength of the light receiving element 4a, and λa3 is the high wavelength side at room temperature This is the wavelength at which the spectral sensitivity disappears.

本実施の形態におけるλa2は1.6μm、λa3は1.75μmとする。   In this embodiment, λa2 is 1.6 μm, and λa3 is 1.75 μm.

また、グラフには受光素子4aの常温(約25℃)時の分光感度と、高温(約85℃)時の分光感度を示している。受光素子4aは高温時に分光感度が高波長側にずれるため、高温時の分光感度がなくなる波長はλa4となる。   The graph shows the spectral sensitivity of the light receiving element 4a at normal temperature (about 25 ° C.) and the spectral sensitivity at high temperature (about 85 ° C.). Since the spectral sensitivity of the light receiving element 4a is shifted to the high wavelength side at a high temperature, the wavelength at which the spectral sensitivity at the high temperature is lost is λa4.

本実施の形態におけるλa4は1.85μmとする。   In this embodiment, λa4 is 1.85 μm.

また、グラフには樹脂4cの赤外線透過率を示している。エポキシ系の樹脂4cの赤外線透過率は第2の所定値λb1から第1の所定値λb2の間で高くなり、λb1以下とλb2以上は透過率が低くなる。   The graph shows the infrared transmittance of the resin 4c. The infrared transmittance of the epoxy resin 4c is high between the second predetermined value λb1 and the first predetermined value λb2, and the transmittance is low below λb1 and above λb2.

樹脂4cの高波長側の透過率は温度変化による差が受光素子4aの高波長側の分光感度の変化に対し、極端に低いため単一のラインとする。   The transmittance on the high wavelength side of the resin 4c is a single line because the difference due to temperature change is extremely low with respect to the change in spectral sensitivity on the high wavelength side of the light receiving element 4a.

本実施の形態におけるλb1は0.8μm、λb2は1.7μmとする。   In this embodiment, λb1 is 0.8 μm, and λb2 is 1.7 μm.

また、グラフには調理容器1の底面から放射される150℃と250℃時の分光放射発散度を示している。λc1は250℃時の分光放射発散度が立ち上がる波長であり、λc2は150℃時のものである。   Further, the graph shows the spectral radiant divergence at 150 ° C. and 250 ° C. radiated from the bottom surface of the cooking vessel 1. λc1 is a wavelength at which the spectral radiation divergence rises at 250 ° C., and λc2 is at 150 ° C.

本実施の形態における赤外線センサは調理容器1が150℃の場合、図のグラフに記載されたλcからλb2間の塗られたエリアに相当するエネルギーを受光素子4aが電流に変換し、IV変換回路が電圧に変換し、温度検知手段5が温度に変化することで、温度検知を行うことができる。

If the infrared sensor of the present embodiment of the cooking container 1 is 0.99 ° C., to convert the energy corresponding to painted area between λb2 from [lambda] c 2, which is described in the light receiving element 4a is current in the graph of FIG. 3, IV The conversion circuit converts the voltage into a voltage, and the temperature detection means 5 changes to the temperature, whereby the temperature can be detected.

また、高温時においても樹脂4cの透過率が高温時に大きく変化しないため、受光素子4aが受光するエネルギーはλc1からλb2間の塗られたエリアに相当する。   Further, since the transmittance of the resin 4c does not change greatly even at high temperatures, the energy received by the light receiving element 4a corresponds to the painted area between λc1 and λb2.

本実施の形態における加熱調理器は加熱コイル3により、調理容器1を加熱するが、加熱コイル3やインバーター回路7は一般に損失が発生し、温度上昇を伴うため、赤外線センサの周囲温度は上昇することとなる。   Although the heating cooker in this Embodiment heats the cooking container 1 with the heating coil 3, since the heating coil 3 and the inverter circuit 7 generally generate | occur | produce a loss and accompany a temperature rise, the ambient temperature of an infrared sensor rises. It will be.

前記のように樹脂4cにより受光素子4aをモールドすることで、周囲温度の影響を抑制することができるため、周囲温度変動にロバストな赤外線センサ4を実現することができる。   By molding the light receiving element 4a with the resin 4c as described above, it is possible to suppress the influence of the ambient temperature, and thus it is possible to realize the infrared sensor 4 that is robust to ambient temperature fluctuations.

また、グラフの短い波長側に記載した可視光の分光エネルギーに対し、受光素子4aの感度がある波長帯となるが、樹脂4cの透過率が低いため可視光の影響を抑制することができる。   Moreover, although it becomes a wavelength band with the sensitivity of the light receiving element 4a with respect to the spectral energy of visible light described on the short wavelength side of the graph, since the transmittance of the resin 4c is low, the influence of visible light can be suppressed.

加熱調理器の中にはラジェントヒーターを備えるものもあり、同一本体中に複数のバーナーを備え、ラジェントヒーターと赤外線センサ4を備えた加熱コイル3を備えた調理器の場合、ラジェントヒーターから発せられる光が本体中に反射し、受光素子4aに到達することがある。本実施の形態における受光素子4aは全体を樹脂4cにモールドされるため、上記影響を排除することができる。   Some heating cookers are equipped with a radiant heater. In the case of a cooker having a plurality of burners in the same main body and a heating coil 3 having a radiant heater and an infrared sensor 4, the radiant heater is used. May be reflected in the main body and reach the light receiving element 4a. Since the light receiving element 4a in the present embodiment is entirely molded in the resin 4c, the above influence can be eliminated.

本実施の形態では、安価にフィルター効果とレンズ効果を得るため樹脂4cはエポキシ
系樹脂とし図2に示すように砲弾型のLEDのような形状とし、受光素子4aをモールドするとしたが、同等の効果を得られるものであればこれに限られるものではない。
In this embodiment, in order to obtain a filter effect and a lens effect at low cost, the resin 4c is an epoxy resin and has a shape like a bullet-type LED as shown in FIG. 2, and the light receiving element 4a is molded. However, it is not limited to this as long as the effect can be obtained.

以上のように、本発明にかかる加熱調理器は、周囲温度や可視光に対してロバストな赤外線センサを安価に構成することができ、調理対象物の温度を精度よく検出できるため、その他の温度を検知する調理器に対しても同様に応用することができる。   As described above, the cooking device according to the present invention can inexpensively configure an infrared sensor that is robust to ambient temperature and visible light, and can accurately detect the temperature of the cooking object. The present invention can be similarly applied to a cooker that detects the above.

1 調理容器
2 トッププレート
3 加熱コイル
4 赤外線センサ
4a 受光素子
4c 樹脂
5 温度検知手段
6 制御手段
7 インバーター回路
8 操作・表示手段
9 報知手段
10 本体
DESCRIPTION OF SYMBOLS 1 Cooking container 2 Top plate 3 Heating coil 4 Infrared sensor 4a Light receiving element 4c Resin 5 Temperature detection means 6 Control means 7 Inverter circuit 8 Operation and display means 9 Notification means 10 Main body

Claims (3)

外郭を構成する本体と、前記本体の上面に配置され調理容器を載置するトッププレートと、前記トッププレートの下方に配置され前記調理容器を加熱する加熱コイルと、前記加熱コイルに高周波電流を供給するインバーター回路と、前記加熱コイルの下方に配置され前記トッププレートを介して調理容器から放射された赤外線を検出する赤外線センサと、前記赤外線センサの受光したエネルギーより前記調理容器の温度を温度情報に換算する温度検知手段と、前記温度検知手段の温度情報により前記インバーター回路を制御して前記調理容器の加熱出力を制御する制御手段と、を備え、
前記赤外線センサは、受光した赤外線を電流に変換し、第1の所定値以上の波長をカットする樹脂によりモールドされた受光素子と、前記受光素子が出力する電流を電圧に変換するIV変換回路と、からなるとともに、
InGaAsを組成とした前記受光素子は、樹脂によりモールドされていない分光感度が周囲の温度変化により、前記第1の所定値より高波長側の第3の所定値に伸びるものであって、
エポキシ系である前記樹脂の赤外線の透過率が、高波長側において、周囲温度の温度変化による差が前記受光素子の分光感度の変化に対し極端に低いことにより、周囲温度の温度変化による前記第1の所定値の変化が抑制され、
前記樹脂にモールドにされた前記受光素子の分光感度は、前記第1の所定値より大きな前記第3の所定値の周囲温度による変動幅はカットされ、且つ、前記受光素子の分光感度は、調理容器から放射される赤外線の検知温度において最も低温度の分光放射発散度が立ち上がる波長が最大となり、最も低温度の最大波長は前記第1の所定値未満に含まれるよう
にし
前記最大波長から前記第1の所定値の波長までの範囲と、最も低温度の分光放射発散度により囲まれるエリアの受光エネルギーにより最も低温度を検知する加熱調理器。
A main body constituting the outer shell, a top plate disposed on the upper surface of the main body for placing the cooking container, a heating coil disposed below the top plate for heating the cooking container, and a high-frequency current supplied to the heating coil An inverter circuit, an infrared sensor that is disposed below the heating coil and detects infrared rays emitted from the cooking vessel via the top plate, and the temperature of the cooking vessel is converted into temperature information from energy received by the infrared sensor. A temperature detecting means for conversion, and a control means for controlling the inverter circuit according to the temperature information of the temperature detecting means to control the heating output of the cooking container,
The infrared sensor converts a received infrared ray into a current, a light receiving element molded by a resin that cuts a wavelength equal to or longer than a first predetermined value, and an IV conversion circuit that converts a current output from the light receiving element into a voltage. And consist of
The light-receiving element having a composition of InGaAs has a spectral sensitivity that is not molded by a resin and extends to a third predetermined value on a higher wavelength side than the first predetermined value due to a change in ambient temperature.
The infrared transmittance of the epoxy resin is higher on the high wavelength side because the difference due to the temperature change of the ambient temperature is extremely low with respect to the change of the spectral sensitivity of the light receiving element. The change of the predetermined value of 1 is suppressed,
The spectral sensitivity of the light receiving element molded in the resin is cut from the fluctuation range due to the ambient temperature of the third predetermined value larger than the first predetermined value, and the spectral sensitivity of the light receiving element is cooked. The wavelength at which the spectral divergence of the lowest temperature rises at the detection temperature of infrared rays emitted from the container is maximized, and the maximum wavelength of the lowest temperature is included within the first predetermined value ,
A cooking device that detects the lowest temperature based on a range from the maximum wavelength to the wavelength of the first predetermined value and a light reception energy of an area surrounded by the lowest temperature spectral radiation divergence .
前記受光素子をモールドする樹脂は凸部を有する砲弾型の形状とした請求項1に記載の加熱調理器。 The cooking device according to claim 1, wherein the resin for molding the light receiving element has a shell-like shape having a convex portion. 前記受光素子をモールドする樹脂は、第2の所定値以下の波長をカットする樹脂とした請求項1または2に記載の加熱調理器。 The heating cooker according to claim 1 or 2, wherein the resin for molding the light receiving element is a resin that cuts a wavelength equal to or less than a second predetermined value.
JP2011121354A 2011-05-31 2011-05-31 Cooker Active JP5995037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011121354A JP5995037B2 (en) 2011-05-31 2011-05-31 Cooker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011121354A JP5995037B2 (en) 2011-05-31 2011-05-31 Cooker

Publications (2)

Publication Number Publication Date
JP2012248501A JP2012248501A (en) 2012-12-13
JP5995037B2 true JP5995037B2 (en) 2016-09-21

Family

ID=47468746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011121354A Active JP5995037B2 (en) 2011-05-31 2011-05-31 Cooker

Country Status (1)

Country Link
JP (1) JP5995037B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2535903B1 (en) * 2013-11-15 2016-02-24 Bsh Electrodomésticos España, S.A. Cooking range with temperature sensor
JP5950483B2 (en) * 2015-03-25 2016-07-13 シャープ株式会社 Cooker

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10229206A (en) * 1997-02-14 1998-08-25 Mitsumi Electric Co Ltd Visible light photodetector module
WO2008084829A1 (en) * 2007-01-10 2008-07-17 Panasonic Corporation Induction heating cooking device
JP2010165562A (en) * 2009-01-15 2010-07-29 Panasonic Electric Works Co Ltd Luminaire

Also Published As

Publication number Publication date
JP2012248501A (en) 2012-12-13

Similar Documents

Publication Publication Date Title
JP5253557B2 (en) Induction heating cooker
JP4828634B2 (en) Induction heating cooker
JP5077268B2 (en) Induction heating device
JP5427298B2 (en) Induction heating device
JP5995037B2 (en) Cooker
JP4475322B2 (en) Induction heating cooker
JP2005347000A (en) Induction heating cooking device
JP2008117783A5 (en)
CN101627661B (en) Induction cooking device
JP4123108B2 (en) Induction heating cooker
JP4443947B2 (en) Induction heating cooker
JP4496998B2 (en) Induction heating cooker
JP4497225B2 (en) Induction heating cooker
JP2009176751A (en) Induction heating cooker
JP4816673B2 (en) Induction heating cooker
JP2006040778A (en) Induction heating cooker
JP6303135B2 (en) Induction heating cooker
JP4356394B2 (en) Induction heating cooker
JP2009105079A (en) Induction heating cooker
JP4151639B2 (en) Induction heating cooker
JP2008262933A (en) Induction heating cooker
JP2009176553A (en) Induction heating cooker
JP4123213B2 (en) Induction heating cooker
JP2005351490A (en) Gas cooker
JP4301097B2 (en) Induction heating cooker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140221

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140312

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150220

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150409

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160229

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160425

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160810

R151 Written notification of patent or utility model registration

Ref document number: 5995037

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151