JP5994576B2 - boiler - Google Patents

boiler Download PDF

Info

Publication number
JP5994576B2
JP5994576B2 JP2012240419A JP2012240419A JP5994576B2 JP 5994576 B2 JP5994576 B2 JP 5994576B2 JP 2012240419 A JP2012240419 A JP 2012240419A JP 2012240419 A JP2012240419 A JP 2012240419A JP 5994576 B2 JP5994576 B2 JP 5994576B2
Authority
JP
Japan
Prior art keywords
exhaust passage
air
exhaust
air supply
passage portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012240419A
Other languages
Japanese (ja)
Other versions
JP2014089023A (en
Inventor
立季 小林
立季 小林
智浩 大久保
智浩 大久保
和弘 上永
和弘 上永
宏之 畑中
宏之 畑中
草平 秋永
草平 秋永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2012240419A priority Critical patent/JP5994576B2/en
Priority to PCT/JP2013/053696 priority patent/WO2014069004A1/en
Publication of JP2014089023A publication Critical patent/JP2014089023A/en
Application granted granted Critical
Publication of JP5994576B2 publication Critical patent/JP5994576B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1807Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines
    • F22B1/1815Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines using the exhaust gases of gas-turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L15/00Heating of air supplied for combustion
    • F23L15/04Arrangements of recuperators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Supply (AREA)

Description

本発明は、ボイラに関する。   The present invention relates to a boiler.

従来、缶体において燃料を燃焼させて発生させた燃焼ガスにより水を加熱することで蒸気を生成するボイラが知られている。このようなボイラでは、缶体に供給される水と、蒸気を生成するために用いられた後の燃焼ガスとの間で熱交換を行うエコノマイザを設けることにより、燃焼ガスから熱回収を行うことで熱効率を向上させている。また、ボイラの熱効率を更に向上させるために、エコノマイザに加えて、缶体に供給される燃焼用空気と燃焼ガスとの間で熱交換を行うエアヒータを更に備えたボイラも提案されている(例えば、特許文献1参照)。   Conventionally, a boiler that generates steam by heating water with combustion gas generated by burning fuel in a can body is known. In such a boiler, heat recovery is performed from the combustion gas by providing an economizer that exchanges heat between the water supplied to the can body and the combustion gas after being used to generate steam. The heat efficiency is improved. In order to further improve the thermal efficiency of the boiler, a boiler is further proposed that further includes an air heater that performs heat exchange between the combustion air supplied to the can body and the combustion gas in addition to the economizer (for example, , See Patent Document 1).

特許文献1で提案されたボイラでは、燃焼用空気を缶体に送り込む送風機の上流側にエアヒータを配置して、燃焼用空気と燃焼ガスとの熱交換を行っている。   In the boiler proposed in Patent Document 1, an air heater is disposed on the upstream side of a blower that feeds combustion air into a can body, and heat exchange between the combustion air and the combustion gas is performed.

特開平11−118104号公報JP 11-118104 A

しかしながら、特許文献1で提案されたボイラでは、エアヒータが送風機よりも上流側の給気路に配置されているため、燃焼用空気が熱交換されてから缶体に供給されるまでの距離が長くなってしまい、エアヒータで回収した熱を有効に利用できない。また、燃焼用空気を缶体まで供給する給気路が長くなってしまうので、ボイラをコンパクトに構成できない。   However, in the boiler proposed in Patent Document 1, since the air heater is disposed in the air supply path upstream of the blower, the distance from when the combustion air is heat-exchanged until it is supplied to the can body is long. Therefore, the heat recovered by the air heater cannot be used effectively. Moreover, since the air supply path which supplies combustion air to a can body will become long, a boiler cannot be comprised compactly.

本発明は、上記課題を解決するものであり、燃焼ガスからの熱回収率を向上でき、かつ、コンパクト化できるボイラを提供することを目的とする。   The present invention solves the above-described problems, and an object of the present invention is to provide a boiler that can improve the heat recovery rate from the combustion gas and can be made compact.

本発明は、燃料を燃焼させて液体を加熱することで蒸気を生成する缶体と、前記缶体の側方の下部に配置される送風機と、前記送風機と前記缶体とを接続し該缶体に燃焼用空気を供給する給気路と、前記缶体に液体を供給する給水路と、基端側が缶体に接続され該缶体で発生した燃焼ガスを排出する排気路と、前記給水路を流通する液体と前記排気路を流通する燃焼ガスとの間で熱交換を行う給水加熱器と、を備えるボイラであって、前記給気路を流通する燃焼用空気と前記排気路を流通する燃焼ガスとの間で熱交換を行う空気加熱器を更に備え、前記排気路は、上下方向に延びる第1排気路部を有し、前記給気路は、前記送風機との接続部側から上方に延びると共に前記第1排気路部に並行して配置される上向き給気路部を有し、前記空気加熱器は、前記第1排気路部及び前記上向き給気路部が位置する部分に配置されるボイラに関する。   The present invention relates to a can body that generates steam by burning a fuel by heating a liquid, a blower disposed at a lower portion on the side of the can body, the blower and the can body, and connecting the can An air supply path for supplying combustion air to the body, a water supply path for supplying liquid to the can body, an exhaust path for discharging the combustion gas generated in the can body with a proximal end connected to the can body, and the water supply A boiler having a feed water heater for exchanging heat between a liquid flowing through a passage and a combustion gas flowing through the exhaust passage, and circulates the combustion air flowing through the supply passage and the exhaust passage An air heater for exchanging heat with the combustion gas, the exhaust path has a first exhaust path extending in the vertical direction, and the air supply path from the connection side with the blower An air supply passage portion extending upward and disposed in parallel with the first exhaust passage portion; Reheater relates boiler the first exhaust passage portion and the upward air supply passage portion is disposed in a portion located.

また、前記第1排気路部において、燃焼ガスは下向きに流通することが好ましい。   Further, it is preferable that the combustion gas flows downward in the first exhaust passage.

また、前記排気路は、前記第1排気路部よりも上流側に配置され、上下方向に延びると共に燃焼ガスが上向きに流通する第2排気路部を更に有し、前記給水加熱器は、前記第2排気路部に配置されることが好ましい。   In addition, the exhaust passage is further disposed on the upstream side of the first exhaust passage portion, and further includes a second exhaust passage portion that extends in the vertical direction and through which the combustion gas flows upward, and the feed water heater includes: It is preferable to arrange in the second exhaust path.

また、前記空気加熱器は、前記缶体における前記送風機が配置された側に配置されることが好ましい。   Moreover, it is preferable that the said air heater is arrange | positioned at the side in which the said air blower in the said can body is arrange | positioned.

また、前記缶体は、平面視矩形形状の直方体状に構成され、前記送風機及び前記空気加熱器は、前記缶体の長辺側の一側面の側方に配置されることが好ましい。   Moreover, it is preferable that the said can is comprised in the rectangular parallelepiped shape of planar view, and the said air blower and the said air heater are arrange | positioned at the side of the one side of the long side of the said can.

また、前記第2排気路部は、前記缶体の短辺側の側面に沿って配置されることが好ましい。 Moreover, it is preferable that the said 2nd exhaust path part is arrange | positioned along the side surface by the side of the short side of the said can.

また、前記缶体は、円筒形状に構成され、前記送風機及び前記空気加熱器は、前記缶体の周面の近傍に配置されることが好ましい。   Moreover, it is preferable that the said can is comprised by the cylindrical shape, and the said air blower and the said air heater are arrange | positioned in the vicinity of the surrounding surface of the said can.

本発明のボイラによれば、燃焼ガスからの熱回収率を向上でき、かつ、コンパクト化できる。   According to the boiler of the present invention, the heat recovery rate from the combustion gas can be improved and the size can be reduced.

本発明の第1実施形態に係るボイラを示す斜視図である。It is a perspective view showing the boiler concerning a 1st embodiment of the present invention. 上記実施形態に係るボイラの缶体を示す概略構成図であり、図2(a)は図1の矢視Fから見た鉛直方向断面図であり、図2(b)は図2(a)のA−A線の水平方向断面図である。It is a schematic block diagram which shows the boiler body which concerns on the said embodiment, Fig.2 (a) is a vertical direction sectional view seen from the arrow F of FIG. 1, FIG.2 (b) is FIG.2 (a). It is a horizontal direction sectional view of an AA line. 上記実施形態に係るボイラを示す外観図であり、図3(a)は、ボイラを図1の矢視Gから視た図であり、図3(b)はボイラを正面側から見た給気側の側面図であり、図3(c)は、ボイラを背面側から見た排気側の側面図であり、図3(d)は、ボイラの上面図である。It is an external view which shows the boiler which concerns on the said embodiment, FIG. 3 (a) is the figure which looked at the boiler from the arrow G of FIG. 1, FIG.3 (b) is the air supply which looked at the boiler from the front side 3 (c) is a side view of the exhaust side when the boiler is viewed from the back side, and FIG. 3 (d) is a top view of the boiler. 本発明の第2実施形態に係るボイラを模式的に示した図である。It is the figure which showed typically the boiler which concerns on 2nd Embodiment of this invention. 本発明の変形例に係るボイラを模式的に示した図である。It is the figure which showed typically the boiler which concerns on the modification of this invention.

以下に図面を参照して本発明の実施形態を説明する。
まず、第1実施形態に係るボイラ1の構成について説明する。
図1は、本実施形態に係るボイラ1を示す斜視図である。また、図2は、本実施形態に係るボイラ1の缶体10を示す概略構成図であり、図2(a)は、図1の矢視Fから見た鉛直方向断面図であり、図2(b)は、図2(a)のA−A線の水平方向断面図である。
Embodiments of the present invention will be described below with reference to the drawings.
First, the configuration of the boiler 1 according to the first embodiment will be described.
FIG. 1 is a perspective view showing a boiler 1 according to the present embodiment. Moreover, FIG. 2 is a schematic block diagram which shows the can 10 of the boiler 1 which concerns on this embodiment, FIG. 2 (a) is a vertical direction sectional view seen from the arrow F of FIG. (B) is a horizontal direction sectional view of the AA line of Drawing 2 (a).

本実施形態のボイラ1は、図1に示すように、缶体10と、送風機30と、給気ダクト(本発明に係る給気路)60と、排気筒(本発明に係る排気路)80と、給水路70(図3(c)参照)と、エコノマイザ(本発明に係る給水加熱器)40と、エアヒータ(本発明に係る空気加熱器)50と、支持体20と、を備える。   As shown in FIG. 1, the boiler 1 of the present embodiment includes a can 10, a blower 30, an air supply duct (air supply path according to the present invention) 60, and an exhaust pipe (exhaust path according to the present invention) 80. A water supply path 70 (see FIG. 3C), an economizer (water heater according to the present invention) 40, an air heater (air heater according to the present invention) 50, and the support 20.

缶体10は、図2に示すように、ボイラ筺体10aと、水管群11と、連結壁12と、下部ヘッダ13と、上部ヘッダ14と、バーナ16と、を有する。   As shown in FIG. 2, the can 10 includes a boiler housing 10 a, a water pipe group 11, a connecting wall 12, a lower header 13, an upper header 14, and a burner 16.

ボイラ筺体10aは、平面視矩形形状の直方体状に構成される。このボイラ筺体10aの長手方向の一端側に位置する側面には、給気口15が形成され、ボイラ筺体10aの長手方向の他端側に位置する側面には、排気口17が形成される。
給気口15には、後述の給気ダクト60の先端部が接続される。排気口17には、後述の排気筒80の基端部が接続される。
The boiler housing 10a is formed in a rectangular parallelepiped shape in a plan view. An air supply port 15 is formed on a side surface located on one end side in the longitudinal direction of the boiler housing 10a, and an exhaust port 17 is formed on a side surface located on the other end side in the longitudinal direction of the boiler housing 10a.
A front end portion of an air supply duct 60 described later is connected to the air supply port 15. The exhaust port 17 is connected to a base end portion of an exhaust cylinder 80 described later.

水管群11は、上下方向に延びる多数の水管から構成される。水管群11を構成するそれぞれの水管には、バーナ16の燃焼によって加熱される缶水が保持される。
水管群11は、ボイラ筺体10aの内部を燃焼ガスが流通する方向(ボイラ筺体10aの長手方向)において、両側端に縦列する外側水管11aと、真ん中に縦列する中央水管11bと、外側水管11aと中央水管11bとの間に縦列する中間水管11cとに分類される。
連結壁12は、隣接する外側水管11a同士を連結する。
The water tube group 11 includes a large number of water tubes extending in the vertical direction. Canned water heated by the combustion of the burner 16 is held in each water pipe constituting the water pipe group 11.
The water tube group 11 is composed of an outer water tube 11a cascading at both ends, a central water tube 11b cascading in the middle, an outer water tube 11a It is classified into an intermediate water pipe 11c cascading between the central water pipe 11b.
The connection wall 12 connects adjacent outer water pipes 11a.

下部ヘッダ13は、平面視矩形形状の直方体状の容器によって構成され、水管群11の下方に配置される。下部ヘッダ13には、水管群11を構成する複数の水管の下端部が接続される。   The lower header 13 is configured by a rectangular parallelepiped container having a rectangular shape in plan view, and is disposed below the water tube group 11. The lower header 13 is connected to lower ends of a plurality of water pipes constituting the water pipe group 11.

上部ヘッダ14は、平面視矩形形状の直方体状の容器によって構成され、水管群11の上方に配置される。上部ヘッダ14には、水管群11を構成する複数の水管の上端部が接続される。
上部ヘッダ14の上部には、上部ヘッダ14の内部の蒸気を流出させる蒸気流出管19(図1、図3参照)が接続される。
The upper header 14 is configured by a rectangular parallelepiped container having a rectangular shape in plan view, and is disposed above the water tube group 11. The upper header 14 is connected to upper ends of a plurality of water pipes constituting the water pipe group 11.
Connected to the upper part of the upper header 14 is a steam outlet pipe 19 (see FIGS. 1 and 3) for allowing the steam inside the upper header 14 to flow out.

外側水管11a、連結壁12、下部ヘッダ13、上部ヘッダ14で囲まれた領域は、直方体形状のガス流動空間18を形成する。ガス流動空間18は、上流側が給気口15に通じていると共に、下流側が排気口17に通じている。
バーナ16は、給気口15に配置される。
A region surrounded by the outer water pipe 11a, the connecting wall 12, the lower header 13, and the upper header 14 forms a rectangular parallelepiped gas flow space 18. The gas flow space 18 has an upstream side communicating with the air supply port 15 and a downstream side communicating with the exhaust port 17.
The burner 16 is disposed in the air supply port 15.

図3は、本実施形態に係るボイラ1を示す外観図であり、図3(a)は、ボイラ1を図1の矢視Gから見た図であり、図3(b)は、ボイラ1を正面側から見た給気側の側面図であり、図3(c)は、ボイラ1を背面側から見た排気側の側面図であり、図3(d)は、ボイラ1の上面図である。   FIG. 3 is an external view showing the boiler 1 according to the present embodiment, FIG. 3A is a view of the boiler 1 as viewed from an arrow G of FIG. 1, and FIG. FIG. 3C is a side view of the exhaust side when the boiler 1 is viewed from the back side, and FIG. 3D is a top view of the boiler 1. It is.

送風機30は、缶体10の長辺側の側面の下部に、缶体10に隣接して配置される。送風機30は、エアホイール羽根を有する。
エアホイール羽根は、送風機30の内部に配置される。このエアホイール羽根が回転することで、燃焼用空気が送風機30に引き込まれて、給気ダクト60に送り出される。
The blower 30 is disposed adjacent to the can body 10 at the lower portion of the side surface on the long side of the can body 10. The blower 30 has air wheel blades.
The air wheel blades are disposed inside the blower 30. As the air wheel blades rotate, the combustion air is drawn into the blower 30 and sent out to the air supply duct 60.

送風機30は、上記のようにエアホイール羽根及び駆動源であるモータを有し、重量が大きい。そのため、送風機30を缶体10の側面の下部に配置することにより、ボイラ1の重心を安定させられる。   The blower 30 has the air wheel blades and the motor as the driving source as described above, and has a large weight. Therefore, the gravity center of the boiler 1 can be stabilized by arranging the blower 30 at the lower part of the side surface of the can 10.

給気ダクト60は、送風機30と缶体10とを接続し、缶体10に送風機30から送り出された燃焼用空気を供給する。
給気ダクト60は、図1に示すように、第1上向き給気路部61と、第1水平給気路部62と、第2上向き給気路部63(本発明に係る上向き給気路部)と、第2水平給気路部64と、下向き給気路部65と、を有する。
The air supply duct 60 connects the blower 30 and the can body 10, and supplies the combustion air sent from the blower 30 to the can body 10.
As shown in FIG. 1, the air supply duct 60 includes a first upward air supply passage portion 61, a first horizontal air supply passage portion 62, and a second upward air supply passage portion 63 (the upward air supply passage according to the present invention). Part), a second horizontal air supply passage portion 64, and a downward air supply passage portion 65.

第1上向き給気路部61は、図1及び図3(b)、(c)に示すように、送風機30との接続部分から缶体10の側面に沿って上方に延びる。   The first upward air supply passage portion 61 extends upward along the side surface of the can body 10 from the connection portion with the blower 30 as shown in FIGS. 1, 3 </ b> B, and 3 </ b> C.

第1水平給気路部62は、図1及び図3(b)、(c)に示すように、第1上向き給気路部61の上端部に接続され、缶体10から離間するように水平方向に延びる。   The first horizontal air supply passage 62 is connected to the upper end of the first upward air supply passage 61 and is separated from the can 10 as shown in FIGS. Extends horizontally.

第2上向き給気路部63は、図1及び図3(a)〜(c)に示すように、第1水平給気路部62の先端部から上方に延びる。   As shown in FIGS. 1 and 3A to 3C, the second upward air supply path portion 63 extends upward from the distal end portion of the first horizontal air supply path portion 62.

第2水平給気路部64は、図1及び図3(d)に示すように、第2上向き給気路部63の上端部から缶体10側に水平方向に延び、途中で缶体10の給気側の側面側に屈曲して水平方向に延びる。   As shown in FIGS. 1 and 3D, the second horizontal air supply path portion 64 extends in the horizontal direction from the upper end portion of the second upward air supply path portion 63 toward the can body 10, and in the middle of the can body 10 The side of the air supply side is bent and extends in the horizontal direction.

下向き給気路部65は、図1及び図3(b)に示すように、第2水平給気路部64の先端部から缶体10の給気側の側面に沿って下方に延び、給気口15に接続される。この下向き給気路部65には、給気ダクト60に燃料ガスを供給する燃料供給ライン91の先端部が接続される(図2(a)参照)。   As shown in FIG. 1 and FIG. 3B, the downward air supply passage portion 65 extends downward from the tip of the second horizontal air supply passage portion 64 along the air supply side surface of the can body 10. Connected to the mouth 15. The tip of a fuel supply line 91 that supplies fuel gas to the air supply duct 60 is connected to the downward air supply path 65 (see FIG. 2A).

以上の給気ダクト60によれば、送風機30から送り出された燃焼用空気は、図1に示すように、第1上向き給気路部61及び第2上向き給気路部63を上方に向かって流通した後、第2水平給気路部64を水平方向に流通し、次いで、下向き給気路部65を下方に向かって流通して缶体10に供給される。また、下向き給気路部65において、燃料供給ライン91から燃料ガスが供給され、燃料ガスと燃焼用空気とが混合される。   According to the above air supply duct 60, the combustion air sent out from the blower 30 moves upward through the first upward air supply passage portion 61 and the second upward air supply passage portion 63 as shown in FIG. After the circulation, the second horizontal air supply passage portion 64 is distributed in the horizontal direction, and then the downward air supply passage portion 65 is distributed downward to be supplied to the can body 10. Further, in the downward air supply passage 65, the fuel gas is supplied from the fuel supply line 91, and the fuel gas and the combustion air are mixed.

給水路70は、缶水となる水を流通させる水通路であり、缶体10に缶水を供給する。
給水路70は、図3(c)に示すように、缶体10の排気側の側面に沿って下方に延びる部分を有する。
The water supply path 70 is a water passage through which water serving as can water is circulated, and supplies can water to the can body 10.
As shown in FIG. 3C, the water supply path 70 has a portion that extends downward along the side surface on the exhaust side of the can 10.

排気筒80は、基端側が缶体10(ボイラ筺体10aに形成された排気口17)に接続され、缶体10で発生した燃焼ガスを排出する。
排気筒80は、第1上向き排気路部(本発明に係る第2排気路部)81と、第1水平排気路部82と、下向き排気路部(本発明に係る第1排気路部)83と、第2水平排気路部84と、第2上向き排気路部85と、を有する。
The exhaust cylinder 80 is connected to the can body 10 (exhaust port 17 formed in the boiler housing 10 a) at the base end side, and discharges the combustion gas generated in the can body 10.
The exhaust tube 80 includes a first upward exhaust passage portion (second exhaust passage portion according to the present invention) 81, a first horizontal exhaust passage portion 82, and a downward exhaust passage portion (first exhaust passage portion according to the present invention) 83. And a second horizontal exhaust passage portion 84 and a second upward exhaust passage portion 85.

第1上向き排気路部81は、図1及び図3(c)に示すように、缶体10の排気側の側面に沿って排気口17との接続部である基端から上方に延びる。   As shown in FIGS. 1 and 3C, the first upward exhaust path portion 81 extends upward from the base end that is a connection portion with the exhaust port 17 along the side surface on the exhaust side of the can body 10.

第1水平排気路部82は、図1及び図3(d)に示すように、第1上向き排気路部81の上端部から缶体10における送風機30が配置されている側面に向けてボイラ1を斜めに横切るように水平方向に延びる。第1水平排気路部82は、ボイラ1を斜めに横切ることにより、経路長を短縮している。
下向き排気路部83は、図1及び図3(a)に示すように、第1水平排気路部82の先端部から下方に延びる。
As shown in FIG. 1 and FIG. 3 (d), the first horizontal exhaust passage portion 82 is configured such that the boiler 1 faces from the upper end portion of the first upward exhaust passage portion 81 toward the side surface where the blower 30 in the can body 10 is disposed. It extends in the horizontal direction so as to cross diagonally. The first horizontal exhaust passage portion 82 shortens the path length by crossing the boiler 1 obliquely.
The downward exhaust passage 83 extends downward from the tip of the first horizontal exhaust passage 82 as shown in FIG. 1 and FIG.

第2水平排気路部84は、図1及び図3(a)に示すように、下向き排気路部83の下端部から缶体10の排気側の側面側に缶体10から離間するように水平方向に延びる。
第2上向き排気路部85は、図1及び図3(a)に示すように、第2水平排気路部84の先端部から上方に延びる。
As shown in FIGS. 1 and 3A, the second horizontal exhaust passage portion 84 is horizontal so as to be separated from the can body 10 from the lower end portion of the downward exhaust passage portion 83 to the side surface on the exhaust side of the can body 10. Extend in the direction.
The second upward exhaust passage portion 85 extends upward from the tip end portion of the second horizontal exhaust passage portion 84 as shown in FIGS. 1 and 3A.

以上の排気筒80によれば、缶体10から排出された燃焼ガスは、図1に示すように、第1上向き排気路部81を上方に向かって流通した後、第1水平排気路部82を水平方向に流通し、次いで、下向き排気路部83を下方に向かって流通し、第2水平排気路部84及び第2上向き排気路部85を流通して排出される。   According to the exhaust cylinder 80 described above, the combustion gas discharged from the can 10 flows through the first upward exhaust passage portion 81 upward as shown in FIG. In the horizontal direction, and then flows downward in the downward exhaust passage portion 83, and flows through the second horizontal exhaust passage portion 84 and the second upward exhaust passage portion 85 to be discharged.

エコノマイザ40は、缶体10の短辺側に位置する排気側の側面の近傍に配置される。このエコノマイザ40は、給水路70を流通する水と、排気筒80を流通する燃焼ガスとの間で熱交換を行う。
より具体的には、エコノマイザ40は、図3(c)及び(d)に示すように、缶体10の排気側の側面に沿って下方に延びる給水路70と、缶体10の排気側の側面に沿って上方に延びる第1上向き排気路部81とが対向(並行)して位置する部分に配置される。
エコノマイザ40では、水を上方から下方に流通させる給水路70と、燃焼ガスを下方から上方に流通させる上向き排気路部81とが対向した流体流れを生じさせている。
The economizer 40 is disposed in the vicinity of the side surface on the exhaust side located on the short side of the can 10. The economizer 40 performs heat exchange between water flowing through the water supply passage 70 and combustion gas flowing through the exhaust pipe 80.
More specifically, as shown in FIGS. 3 (c) and 3 (d), the economizer 40 includes a water supply path 70 that extends downward along the side surface on the exhaust side of the can body 10, and the exhaust side of the can body 10. It arrange | positions in the part located facing the 1st upward exhaust path part 81 extended upwards along a side surface (parallel).
In the economizer 40, a fluid flow is generated in which a water supply path 70 that circulates water from above to below and an upward exhaust path portion 81 that circulates combustion gas from below to above face each other.

エアヒータ50は、缶体10の長辺側の側面に送風機30を挟んで配置される。このエアヒータ50は、給気ダクト60を流通する燃焼用空気と、排気筒80を流通する燃焼ガスとの間で熱交換を行う。
より具体的には、エアヒータ50は、図1及び図3(a)に示すように、下方に延びる下向き排気路部83と、上方に延びる第2上向き給気路部63とが対向(並行)して位置する部分に配置される。即ち、エアヒータ50は、エコノマイザ40において熱交換された燃焼ガスから熱回収して燃焼用空気を加熱する。
エアヒータ50では、燃焼用空気を下方から上方に流通させる第2上向き給気路部63と、燃焼ガスを上方から下方に流通させる下向き排気路部83とが対向したガス流れを生じている。
The air heater 50 is disposed with the blower 30 sandwiched between the long side surfaces of the can body 10. The air heater 50 exchanges heat between the combustion air flowing through the air supply duct 60 and the combustion gas flowing through the exhaust pipe 80.
More specifically, in the air heater 50, as shown in FIGS. 1 and 3A, a downward exhaust passage 83 extending downward and a second upward supply passage 63 extending upward are opposed (parallel). It is arranged in the part located. That is, the air heater 50 recovers heat from the combustion gas heat-exchanged in the economizer 40 and heats the combustion air.
In the air heater 50, a gas flow is generated in which a second upward air supply passage portion 63 that circulates combustion air from below to above and a downward exhaust passage portion 83 that circulates combustion gas downward from above are opposed to each other.

支持体20は、ボイラ1を構成する部材を支持する。   The support 20 supports members that constitute the boiler 1.

次に、ボイラ1の動作について説明する。
ボイラ1は、送風機30によって燃焼用空気を引き込むと共に、給気ダクト60に送り出す。
給気ダクト60では、送風機30から送り出された燃焼用空気が、図1に示すように、第1上向き給気路部61及び第2上向き給気路部63を上方に向かって流通し、第2水平給気路部64を水平方向に流通し、次いで、下向き給気路部65を下方に向かって流通する。
そして、下向き給気路部65では、燃料供給ライン91から燃料ガスが供給され、燃料ガスと燃焼用空気とが混合され、混合ガスが給気口15に供給される。
Next, the operation of the boiler 1 will be described.
The boiler 1 draws combustion air by the blower 30 and sends it out to the air supply duct 60.
In the air supply duct 60, the combustion air sent out from the blower 30 circulates upward through the first upward air supply passage portion 61 and the second upward air supply passage portion 63 as shown in FIG. The two horizontal air supply passage portions 64 are circulated in the horizontal direction, and then the downward air supply passage portion 65 is circulated downward.
In the downward air supply passage 65, the fuel gas is supplied from the fuel supply line 91, the fuel gas and the combustion air are mixed, and the mixed gas is supplied to the air supply port 15.

缶体10では、混合ガスがバーナ16によりガス流動空間18に噴射されて燃焼される。この混合ガスの燃焼によって水管群11を構成する水管内の缶水が沸騰して蒸気を生成する。水管内で生成された蒸気は、上部ヘッダ14に貯留された後蒸気流出管19から導出される。   In the can 10, the mixed gas is injected into the gas flow space 18 by the burner 16 and burned. By the combustion of the mixed gas, the can water in the water pipes constituting the water pipe group 11 boils to generate steam. The steam generated in the water pipe is led out from the steam outflow pipe 19 after being stored in the upper header 14.

一方、ガス流動空間18において燃焼された燃焼ガスは、排気口17から排気筒80に排出される。
排気筒80に排出された燃焼ガスは、第1上向き排気路部81を上方に向かって流通してエコノマイザ40の内部を流通する。このとき、第1上向き排気路部81を流通する燃焼ガスと、給水路70を流通する水との間で1回目の熱交換が行われる。
On the other hand, the combustion gas burned in the gas flow space 18 is discharged from the exhaust port 17 to the exhaust pipe 80.
The combustion gas discharged to the exhaust pipe 80 flows through the first upward exhaust passage portion 81 upward and flows through the inside of the economizer 40. At this time, the first heat exchange is performed between the combustion gas flowing through the first upward exhaust passage portion 81 and the water flowing through the water supply passage 70.

次に、エコノマイザ40内を流通して1回目の熱交換を行った燃焼ガスは、第1水平排気路部82を水平方向に流通した後、下向き排気路部83を下方に向かって流通してエアヒータ50の内部を流通する。このとき、下向き排気路部83を流通する燃焼ガスと、給気ダクト60(第2上向き給気路部63)を流通する燃焼用空気との間で2回目の熱交換が行われる。
燃焼ガスが2回目に給気ダクト60を流通する燃焼用空気との間で熱交換されるため、燃焼ガスで燃焼用空気を温められる。ここで、1回目の熱交換で熱量を減少させた燃焼ガスは2回目の熱交換において燃焼用空気を過剰に温めず、燃焼用空気が過剰に温まることに起因する燃焼時のNOxの発生を抑制できる。また、燃焼ガスの廃熱を有効利用でき、熱効率を向上できる。
Next, the combustion gas that has flowed through the economizer 40 and performed the first heat exchange flows in the horizontal direction through the first horizontal exhaust passage portion 82 and then flows downward in the exhaust passage portion 83 downward. It circulates inside the air heater 50. At this time, the second heat exchange is performed between the combustion gas flowing through the downward exhaust passage portion 83 and the combustion air flowing through the air supply duct 60 (second upward air supply passage portion 63).
Since the combustion gas exchanges heat with the combustion air flowing through the air supply duct 60 for the second time, the combustion air can be warmed with the combustion gas. Here, the combustion gas whose amount of heat has been reduced by the first heat exchange does not overheat the combustion air in the second heat exchange, and generates NOx during combustion due to the overheating of the combustion air. Can be suppressed. Further, the waste heat of the combustion gas can be effectively used, and the thermal efficiency can be improved.

そして、エアヒータ50内を流通して2回目の熱交換を行った後の燃焼ガスは、第2水平排気路部84及び第2上向き排気路部85を流通して排出される。   The combustion gas after flowing through the air heater 50 and performing the second heat exchange flows through the second horizontal exhaust passage portion 84 and the second upward exhaust passage portion 85 and is discharged.

以上の本実施形態に係るボイラ1によれば、以下のような効果を奏する。   According to the boiler 1 which concerns on the above this embodiment, there exist the following effects.

(1)送風機30を缶体10の下部の側方(長辺側の側面側の下部)に配置すると共に、給気ダクト60を第2上向き給気路部63を含んで構成し、エアヒータ50を下向き排気路部83及び第2上向き給気路部63が位置する部分に配置した。これにより、缶体10の下部の近傍に配置した送風機30から上方に向かって流れる燃焼用空気と、燃焼ガスとの間で熱交換を行える。よって、給気ダクト60を長く構成することなくエアヒータ50を配置できるので、ボイラ1をコンパクト化できる。
また、エコノマイザ40及びエアヒータ50の両方で燃焼ガスを用いて熱交換させられるため、燃焼ガスからの熱回収を高効率で行える。
(1) The blower 30 is disposed on the lower side of the can 10 (lower side of the long side), and the air supply duct 60 is configured to include the second upward air supply path 63, and the air heater 50 Is disposed in a portion where the downward exhaust passage 83 and the second upward supply passage 63 are located. Thereby, heat exchange can be performed between the combustion air flowing upward from the blower 30 arranged in the vicinity of the lower portion of the can 10 and the combustion gas. Therefore, since the air heater 50 can be arranged without configuring the air supply duct 60 to be long, the boiler 1 can be made compact.
In addition, since both the economizer 40 and the air heater 50 perform heat exchange using the combustion gas, heat recovery from the combustion gas can be performed with high efficiency.

(2)下向き排気路部83において、燃焼ガスを下向きに流通させた。これにより、エアヒータ50によって、第2上向き給気路部63を上方に向かって流通する燃焼用空気と、下向き排気路部83を下方に向かって流通する燃焼ガスとの間で、向流式の熱交換を行わせられる。よって、燃焼ガスからの熱回収を高効率で行える。
また、燃焼ガスの温度が低下して燃焼ガス中に含まれる水分が凝縮した場合であっても、凝縮により生じた水を容易に回収できる。
(2) In the downward exhaust passage 83, the combustion gas was circulated downward. As a result, the air heater 50 causes a countercurrent type flow between the combustion air flowing upward through the second upward air supply passage portion 63 and the combustion gas flowing downward through the downward exhaust passage portion 83. Heat exchange is performed. Therefore, heat recovery from the combustion gas can be performed with high efficiency.
Further, even when the temperature of the combustion gas is lowered and moisture contained in the combustion gas is condensed, the water generated by the condensation can be easily recovered.

(3)排気筒80を、下向き排気路部83よりも上流側に配置され、上下方向に延びると共に燃焼ガスが上向きに流通する第1上向き排気路部81を含んで構成し、エコノマイザ40を、第1上向き排気路部81に配置した。これにより、エコノマイザ40とエアヒータ50とを、排気筒80における上下方向に延びる異なる排気路部に配置できるため、ボイラ1の高さが高くなることを抑制でき、ボイラ1をコンパクト化できる。   (3) The exhaust pipe 80 includes a first upward exhaust passage portion 81 that is disposed upstream of the downward exhaust passage portion 83 and extends in the vertical direction and through which the combustion gas flows upward, and the economizer 40 is Arranged in the first upward exhaust passage 81. Thereby, since the economizer 40 and the air heater 50 can be arrange | positioned in the different exhaust path part extended in the up-down direction in the exhaust pipe 80, it can suppress that the height of the boiler 1 becomes high and can make the boiler 1 compact.

(4)エアヒータ50を、缶体10における送風機30が配置された側に配置した。これにより、送風機30とエアヒータ50とを近接して配置できるため、送風機30からエアヒータ50までの給気路長を短縮でき、ボイラ1をよりコンパクト化できる。   (4) The air heater 50 is disposed on the side of the can 10 where the blower 30 is disposed. Thereby, since the air blower 30 and the air heater 50 can be arrange | positioned closely, the air supply path length from the air blower 30 to the air heater 50 can be shortened, and the boiler 1 can be made more compact.

(5)缶体10を直方体状に構成し、送風機30及びエアヒータ50を缶体10の長辺側の一側面の側方に配置した。これにより、缶体10の長辺側の側面の近傍に下向き排気路部83及び第2上向き給気路部63を配置でき、また、エアヒータ50が缶体10の上方に突出しないので、ボイラ1をよりコンパクト化できる。   (5) The can body 10 was configured in a rectangular parallelepiped shape, and the blower 30 and the air heater 50 were arranged on one side of the long side of the can body 10. As a result, the downward exhaust passage 83 and the second upward supply passage 63 can be disposed in the vicinity of the long side surface of the can body 10 and the air heater 50 does not protrude above the can body 10. Can be made more compact.

(6)第1上向き排気路部81を、缶体10の短辺側の側面である排気側の側面に沿って配置した。これにより、エコノマイザ40を缶体10の上方に大きく突出させることなくボイラ1を構成できるため、ボイラ1をよりコンパクト化できる。   (6) The first upward exhaust path portion 81 is arranged along the side surface on the exhaust side that is the side surface on the short side of the can body 10. Thereby, since the boiler 1 can be comprised, without making the economizer 40 protrude largely upwards of the can body 10, the boiler 1 can be made more compact.

次に、本発明の第2実施形態に係るボイラ1Aついて説明する。尚、第2実施形態では、ボイラ1の構成が第1実施形態と異なるが他の部分は同様であるため、その特徴部分を説明し、同様の構成については説明を省略する。   Next, a boiler 1A according to a second embodiment of the present invention will be described. In the second embodiment, the configuration of the boiler 1 is different from that of the first embodiment, but the other portions are the same. Therefore, the characteristic portions will be described, and the description of the same configurations will be omitted.

図4は、第2実施形態に係るボイラ1Aを示す模式図である。
第2実施形態のボイラ1Aは、主として、缶体10Aの形状において、第1実施形態と異なる。
第2実施形態では、缶体10Aは、図4に示すように、円筒形状に構成されている。そして、送風機30A、エコノマイザ40及びエアヒータ50Aは、いずれも、缶体10Aの周面の近傍に配置される。
FIG. 4 is a schematic diagram showing a boiler 1A according to the second embodiment.
The boiler 1A of the second embodiment is different from the first embodiment mainly in the shape of the can 10A.
In the second embodiment, the can 10A is configured in a cylindrical shape as shown in FIG. The blower 30A, the economizer 40, and the air heater 50A are all disposed in the vicinity of the peripheral surface of the can body 10A.

第2実施形態においても、排気筒80に排出された燃焼ガスは、図4の矢印で示すように、第1上向き排気路部81を上方に向かって流通してエコノマイザ40の内部を流通する。このとき、第1上向き排気路部81を流通する燃焼ガスと、給水路70を流通する水との間で1回目の熱交換が行われる。そして、エコノマイザ40の内部を流通して1回目の熱交換を行った燃焼ガスは、第1水平排気路部82を水平方向に流通した後、下向き排気路部83を下方に向かって流通してエアヒータ50の内部を流通する。このとき、下向き排気路部83を流通する燃焼ガスと、給気ダクト60(第2上向き給気路部63)を流通する燃焼用空気との間で2回目の熱交換が行われる。
そして、エアヒータ50の内部を流通して2回目の熱交換を行った後の燃焼ガスは、第2水平排気路部84及び第2上向き排気路部85を流通して排出される。
Also in the second embodiment, the combustion gas discharged to the exhaust pipe 80 flows through the first upward exhaust passage portion 81 upward as shown by the arrow in FIG. At this time, the first heat exchange is performed between the combustion gas flowing through the first upward exhaust passage portion 81 and the water flowing through the water supply passage 70. The combustion gas that has flowed through the economizer 40 and exchanged heat for the first time flows through the first horizontal exhaust passage portion 82 in the horizontal direction, and then flows downward through the exhaust passage portion 83 downward. It circulates inside the air heater 50. At this time, the second heat exchange is performed between the combustion gas flowing through the downward exhaust passage portion 83 and the combustion air flowing through the air supply duct 60 (second upward air supply passage portion 63).
The combustion gas after flowing through the air heater 50 and performing the second heat exchange flows through the second horizontal exhaust passage portion 84 and the second upward exhaust passage portion 85 and is discharged.

第2実施形態のボイラ1Aによれば、上述した(1)〜(4)の効果を奏する。   According to the boiler 1A of 2nd Embodiment, there exists the effect of (1)-(4) mentioned above.

以上、本発明のボイラの好ましい各実施形態につき説明したが、本発明は、上述の実施形態に制限されるものではなく、適宜変更が可能である。
例えば、第1実施形態及び第2実施形態では、エコノマイザ40を、排気筒80における燃焼ガスが上方に向かって流通するアップフロー部分に配置したが、これに限らない。即ち、エコノマイザを、排気筒における燃焼ガスが下方に向かって流通するダウンフロー部分に配置してもよい。
The preferred embodiments of the boiler of the present invention have been described above, but the present invention is not limited to the above-described embodiments, and can be modified as appropriate.
For example, in the first embodiment and the second embodiment, the economizer 40 is arranged in the upflow portion where the combustion gas in the exhaust pipe 80 circulates upward, but the present invention is not limited to this. That is, the economizer may be disposed in the downflow portion where the combustion gas in the exhaust pipe flows downward.

また、第1実施形態及び第2実施形態では、エアヒータ50を、下向き排気路部83及び第2上向き給気路部63が位置する部分に配置したがこれに限らない。即ち、図5に示すように、給気ダクト60を、第1水平排気路部82に並行して配置される部分を含んで構成し、エアヒータ50を、第1水平排気路部82及び給気ダクト60における第1水平排気路部82に並行して配置される部分が位置する部分に配置してもよい。この場合、エアヒータ50を、排気筒80における水平方向に延びる部分に配置できるので、ボイラ1Bの高さが高くなることを抑制でき、ボイラ1Aをコンパクト化できる。   Moreover, in 1st Embodiment and 2nd Embodiment, although the air heater 50 has been arrange | positioned in the part in which the downward exhaust path part 83 and the 2nd upward air supply path part 63 are located, it is not restricted to this. That is, as shown in FIG. 5, the air supply duct 60 includes a portion arranged in parallel with the first horizontal exhaust path portion 82, and the air heater 50 is configured with the first horizontal exhaust path portion 82 and the air supply. You may arrange | position in the part in which the part arrange | positioned in parallel with the 1st horizontal exhaust path part 82 in the duct 60 is located. In this case, since the air heater 50 can be disposed in a portion extending in the horizontal direction in the exhaust pipe 80, the height of the boiler 1B can be suppressed from increasing, and the boiler 1A can be made compact.

1,1A,1B…ボイラ
10,10A…缶体
30…送風機
40…エコノマイザ(給水加熱器)
50…エアヒータ(空気加熱器)
60…給気ダクト(給気路)
63…第2上向き給気路部
70…給水路
80…排気筒(排気路)
81…第1上向き排気路部(第2排気路部)
83…下向き排気路部(第1排気路部)
1, 1A, 1B ... Boiler 10, 10A ... Can body 30 ... Blower 40 ... Economizer (water heater)
50 ... Air heater (air heater)
60 ... Air supply duct (air supply path)
63 ... Second upward air supply passage 70 ... Water supply passage 80 ... Exhaust pipe (exhaust passage)
81: First upward exhaust passage (second exhaust passage)
83 ... downward exhaust passage (first exhaust passage)

Claims (7)

燃料を燃焼させて液体を加熱することで蒸気を生成する缶体と、
前記缶体の側方の下部に配置される送風機と、
前記送風機と前記缶体とを接続し該缶体に燃焼用空気を供給する給気路と、
前記缶体に液体を供給する給水路と、
基端側が缶体に接続され該缶体で発生した燃焼ガスを排出する排気路と、
前記給水路を流通する液体と前記排気路を流通する燃焼ガスとの間で熱交換を行う給水加熱器と、を備えるボイラであって、
前記給気路を流通する燃焼用空気と前記排気路を流通する燃焼ガスとの間で熱交換を行う空気加熱器を更に備え、
前記排気路は、上下方向に延びる第1排気路部を有し、
前記給気路は、前記送風機との接続部側から上方に延びると共に前記第1排気路部に並行して配置される上向き給気路部を有し、
前記空気加熱器は、前記第1排気路部及び前記上向き給気路部が位置する部分に配置されるボイラ。
A can body that generates steam by burning a fuel and heating a liquid;
A blower disposed at the lower side of the side of the can,
An air supply path for connecting the blower and the can body and supplying combustion air to the can body;
A water supply channel for supplying liquid to the can body;
An exhaust passage for discharging combustion gas generated in the can body, the base end side being connected to the can body;
A water heater that exchanges heat between the liquid flowing through the water supply passage and the combustion gas flowing through the exhaust passage,
An air heater for exchanging heat between the combustion air flowing through the air supply passage and the combustion gas flowing through the exhaust passage;
The exhaust passage has a first exhaust passage portion extending in a vertical direction,
The air supply passage has an upward air supply passage portion that extends upward from a connection portion side with the blower and is arranged in parallel with the first exhaust passage portion,
The said air heater is a boiler arrange | positioned in the part in which the said 1st exhaust path part and the said upward air supply path part are located.
前記第1排気路部において、燃焼ガスは下向きに流通する請求項1に記載のボイラ。   The boiler according to claim 1, wherein the combustion gas flows downward in the first exhaust passage portion. 前記排気路は、前記第1排気路部よりも上流側に配置され、上下方向に延びると共に燃焼ガスが上向きに流通する第2排気路部を更に有し、
前記給水加熱器は、前記第2排気路部に配置される請求項2に記載のボイラ。
The exhaust passage is further disposed on the upstream side of the first exhaust passage portion, and further includes a second exhaust passage portion that extends in the vertical direction and through which the combustion gas flows upward,
The boiler according to claim 2, wherein the feed water heater is disposed in the second exhaust passage portion.
前記空気加熱器は、前記缶体における前記送風機が配置された側に配置される請求項2又は3に記載のボイラ。   The boiler according to claim 2 or 3, wherein the air heater is disposed on a side of the can body on which the blower is disposed. 前記缶体は、平面視矩形形状の直方体状に構成され、
前記送風機及び前記空気加熱器は、前記缶体の長辺側の一側面の側方に配置される請求項4に記載のボイラ。
The can body is configured in a rectangular parallelepiped shape in a plan view,
The boiler according to claim 4, wherein the blower and the air heater are disposed on one side of a long side of the can body.
前記第2排気路部は、前記缶体の短辺側の側面に沿って配置される請求項5に記載のボイラ。 The boiler according to claim 5, wherein the second exhaust path portion is disposed along a side surface on a short side of the can body. 前記缶体は、円筒形状に構成され、
前記送風機及び前記空気加熱器は、前記缶体の周面の近傍に配置される請求項2〜4のいずれかに記載のボイラ。
The can body is configured in a cylindrical shape,
The boiler according to any one of claims 2 to 4, wherein the blower and the air heater are disposed in the vicinity of a peripheral surface of the can body.
JP2012240419A 2012-10-31 2012-10-31 boiler Active JP5994576B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012240419A JP5994576B2 (en) 2012-10-31 2012-10-31 boiler
PCT/JP2013/053696 WO2014069004A1 (en) 2012-10-31 2013-02-15 Boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012240419A JP5994576B2 (en) 2012-10-31 2012-10-31 boiler

Publications (2)

Publication Number Publication Date
JP2014089023A JP2014089023A (en) 2014-05-15
JP5994576B2 true JP5994576B2 (en) 2016-09-21

Family

ID=50626947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012240419A Active JP5994576B2 (en) 2012-10-31 2012-10-31 boiler

Country Status (2)

Country Link
JP (1) JP5994576B2 (en)
WO (1) WO2014069004A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6064708B2 (en) * 2013-03-18 2017-01-25 三浦工業株式会社 boiler

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186905U (en) * 1985-05-14 1986-11-21
JPH0612161B2 (en) * 1987-07-31 1994-02-16 川崎重工業株式会社 Heat recovery device for boiler exhaust gas
JPH11118104A (en) * 1997-10-20 1999-04-30 Mitsubishi Heavy Ind Ltd Boiler
JP2009264663A (en) * 2008-04-25 2009-11-12 Miura Co Ltd Economizer and boiler
US8298304B1 (en) * 2009-02-20 2012-10-30 Castle Light Corporation Coal treatment process for a coal-fired power plant
JP5050071B2 (en) * 2010-03-29 2012-10-17 株式会社日立製作所 Boiler equipment
WO2011155005A1 (en) * 2010-06-11 2011-12-15 三浦工業株式会社 Boiler system

Also Published As

Publication number Publication date
WO2014069004A1 (en) 2014-05-08
JP2014089023A (en) 2014-05-15

Similar Documents

Publication Publication Date Title
ES2689119T3 (en) Heat exchanger
ES2375079T3 (en) DISPOSITION IN BOILER OF RECOVERY.
KR101717097B1 (en) Heat exchanger
CN104755871A (en) Condensation heat exchanger having dummy pipe
JP6056371B2 (en) Boiler system
US9404650B2 (en) Boiler with improved hot gas passages
JP5994576B2 (en) boiler
KR101280453B1 (en) Heat exchanger
EP2724106B1 (en) Heat exchanger tube set
JP2008292059A (en) Heat exchanger and water heater
JP6331958B2 (en) boiler
JP6221706B2 (en) Boiler equipment
JP6171647B2 (en) boiler
JP2009019859A (en) Heat exchanger and water heater
JP2011144979A (en) Heat exchanger and water heater using the same
JP2018096574A (en) Boiler
JP7105468B2 (en) heat exchangers and water heaters
JP2014092357A (en) Boiler system
JP4952378B2 (en) Heat exchanger and water heater
JP2009150608A (en) Boiler
JP6430099B2 (en) Boiler system
JP6661412B2 (en) Heat exchanger and heating device using the heat exchanger
JP6064708B2 (en) boiler
JP6173797B2 (en) Heat exchanger and water heater
KR20130022305A (en) High efficiency heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160808

R150 Certificate of patent or registration of utility model

Ref document number: 5994576

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250