JP5989437B2 - Water treatment system and water treatment method - Google Patents

Water treatment system and water treatment method Download PDF

Info

Publication number
JP5989437B2
JP5989437B2 JP2012164896A JP2012164896A JP5989437B2 JP 5989437 B2 JP5989437 B2 JP 5989437B2 JP 2012164896 A JP2012164896 A JP 2012164896A JP 2012164896 A JP2012164896 A JP 2012164896A JP 5989437 B2 JP5989437 B2 JP 5989437B2
Authority
JP
Japan
Prior art keywords
water
inflow amount
membrane
filtration
liquid separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012164896A
Other languages
Japanese (ja)
Other versions
JP2013046905A (en
Inventor
重浩 鈴木
重浩 鈴木
公一郎 甘道
公一郎 甘道
大和 信大
大和  信大
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metawater Co Ltd
Original Assignee
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawater Co Ltd filed Critical Metawater Co Ltd
Priority to JP2012164896A priority Critical patent/JP5989437B2/en
Publication of JP2013046905A publication Critical patent/JP2013046905A/en
Application granted granted Critical
Publication of JP5989437B2 publication Critical patent/JP5989437B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Filtration Of Liquid (AREA)

Description

本発明は、有機性排水に対する水処理に適用して好適な水処理システムおよび水処理方法に関する。   The present invention relates to a water treatment system and a water treatment method suitable for application to water treatment of organic waste water.

従来、下水、返流水、工業排水、ごみ浸出水、し尿、農業廃水、畜産排水、および養殖排水などの有機性排水の水処理においては、有機性排水を最初沈殿池から反応槽を経由させて、さらに最終沈殿池に供給する下水処理設備が知られている(特許文献1参照)。   Conventionally, in the treatment of organic wastewater such as sewage, return water, industrial wastewater, waste leachate, human waste, agricultural wastewater, livestock wastewater, and aquaculture wastewater, the organic wastewater is first passed through the reaction tank from the settling basin. Furthermore, a sewage treatment facility that supplies the final settling basin is known (see Patent Document 1).

また、この最終沈殿池による活性汚泥の固液分離の代わりに、膜ろ過装置により活性汚泥の膜ろ過処理を行うという、いわゆる膜分離活性汚泥法(MBR法:Membrane Bioreactor process)を採用する方法も知られている(特許文献2参照)。   In addition, instead of solid-liquid separation of activated sludge in this final sedimentation basin, there is also a method that employs a so-called membrane separation activated sludge method (MBR method: MBR method) in which activated sludge is subjected to membrane filtration using a membrane filtration device. It is known (see Patent Document 2).

特開2011−092831号公報JP 2011-092331 A 特開2008−086863号公報JP 2008-086863 A

しかしながら、上述した特許文献2に記載された技術においては、原水が最初沈殿池から膜分離活性汚泥法における生物反応槽に導入されるため、生物反応槽に対する負荷が高くなっていた。そして、この負荷を低減するために、浮遊物質(SS:Suspended Solid)の濃度や生物化学的酸素要求量(BOD:Biochemical Oxygen Demand)の低減が求められていた。   However, in the technique described in Patent Document 2 described above, since the raw water is first introduced from the sedimentation basin into the biological reaction tank in the membrane separation activated sludge method, the load on the biological reaction tank is high. And in order to reduce this load, reduction | decrease of the density | concentration of suspended solids (SS: Suspended Solid) and biochemical oxygen demand (BOD: Biochemical Oxygen Demand) was calculated | required.

本発明は、上記に鑑みてなされたものであって、その目的は、生物処理における負荷を低減することができ、浮遊物質の濃度や生物化学的酸素要求量を低減することができる水処理システムおよび水処理方法を提供することにある。   The present invention has been made in view of the above, and an object of the present invention is to provide a water treatment system capable of reducing the load in biological treatment and reducing the concentration of suspended solids and the amount of biochemical oxygen demand. And providing a water treatment method.

上述した課題を解決し、上記目的を達成するために、本発明に係る水処理システムは、流入する原水に対してろ過処理を行う、浮上ろ材が充填された高効率固液分離ろ過槽と、高効率固液分離ろ過槽を通過したろ過水に対して活性汚泥を用いた生物処理および膜ろ過処理を行う、膜分離活性汚泥手段とを有することを特徴とする。   In order to solve the above-described problems and achieve the above-described object, the water treatment system according to the present invention performs a filtration process on the inflowing raw water, and a high-efficiency solid-liquid separation filtration tank filled with a floating filter medium, It has a membrane separation activated sludge means for performing biological treatment using activated sludge and membrane filtration treatment on the filtered water that has passed through the high-efficiency solid-liquid separation filtration tank.

本発明に係る水処理システムは、上記の発明において、膜分離活性汚泥手段は、生物処理を行う生物反応槽と膜ろ過処理を行う分離膜とを有し、分離膜が生物反応槽の外部に設けられていることを特徴とする。また、この場合において、好適には、分離膜はセラミックからなることを特徴とする。すなわち、膜分離活性汚泥手段は、いわゆる槽外設置型膜分離活性汚泥装置から構成される。   In the water treatment system according to the present invention, in the above invention, the membrane separation activated sludge means has a biological reaction tank that performs biological treatment and a separation membrane that performs membrane filtration, and the separation membrane is outside the biological reaction tank. It is provided. In this case, the separation membrane is preferably made of ceramic. That is, the membrane separation activated sludge means is constituted by a so-called outside tank type membrane separation activated sludge apparatus.

本発明に係る水処理システムは、上記の発明において、高効率固液分離ろ過槽におけるろ過水の流れ方向に沿って下流側、かつ膜分離活性汚泥手段の上流側が、高効率固液分離ろ過槽を通過したろ過水を分岐させて放流可能に構成されていることを特徴とする。   The water treatment system according to the present invention is the high efficiency solid-liquid separation filtration tank in the above invention, wherein the upstream side of the membrane separation activated sludge means is downstream along the flow direction of the filtered water in the high-efficiency solid-liquid separation filtration tank. The filtered water that has passed through is branched and can be discharged.

本発明に係る水処理方法は、原水を浮上ろ材が充填された高効率固液分離ろ過槽に通過させてろ過処理を行うステップと、ろ過処理が行われたろ過水に対して活性汚泥を用いた生物処理を行うステップと、生物処理後の処理水に対して膜ろ過処理を行うステップとを含むことを特徴とする。   The water treatment method according to the present invention includes a step of passing raw water through a high-efficiency solid-liquid separation and filtration tank filled with a floating filter medium and performing a filtration treatment, and using activated sludge for the filtered water subjected to the filtration treatment. And a step of performing a membrane filtration process on the treated water after the biological treatment.

本発明に係る水処理方法は、上記の発明において、ろ過処理が行われたろ過水が所定量を超過した場合に、ろ過水の流れ方向に沿って下流側で、生物処理を行う前に、超過したろ過水を分岐させて放流するステップを含むことを特徴とする。   The water treatment method according to the present invention, in the above invention, when the filtered water subjected to the filtration treatment exceeds a predetermined amount, before performing biological treatment on the downstream side along the flow direction of the filtrate water, The method includes a step of branching and discharging excess filtered water.

本発明による水処理システムおよび水処理方法によれば、生物処理における負荷を低減することができ、浮遊物質の濃度や生物化学的酸素要求量を低減させることができる。   According to the water treatment system and the water treatment method of the present invention, it is possible to reduce the load in biological treatment, and it is possible to reduce the concentration of suspended solids and biochemical oxygen demand.

図1は、本発明の第1の実施形態による処理システムを示すブロック図である。FIG. 1 is a block diagram showing a processing system according to a first embodiment of the present invention. 図2は、本発明の第1の実施形態による高効率固液分離ろ過槽を示す略線図である。FIG. 2 is a schematic diagram showing a high-efficiency solid-liquid separation and filtration tank according to the first embodiment of the present invention. 図3は、本発明の第2の実施形態による処理システムを示すブロック図である。FIG. 3 is a block diagram showing a processing system according to the second embodiment of the present invention.

以下、本発明の実施形態について図面を参照しつつ説明する。なお、以下の実施形態の全図においては、同一または対応する部分には同一の符号を付す。また、本発明は以下に説明する実施形態によって限定されるものではない。   Embodiments of the present invention will be described below with reference to the drawings. In all the drawings of the following embodiments, the same or corresponding parts are denoted by the same reference numerals. Further, the present invention is not limited to the embodiments described below.

まず、本発明の第1の実施形態による水処理システムについて説明する。図1に、この第1の実施形態による合流式下水の水処理システムの全体構成を示す。   First, a water treatment system according to a first embodiment of the present invention will be described. FIG. 1 shows the overall configuration of a combined sewage water treatment system according to the first embodiment.

図1に示すように、この第1の実施形態による水処理システムは、下水などの流入水に含まれる土砂などの非腐敗性無機物質を除去する沈砂池1、高効率固液分離ろ過槽2、脱窒槽3aと硝化槽3bとからなる生物反応槽3、および逆洗可能な分離膜を有する膜ろ過装置4を有している。また、生物反応槽3と膜ろ過装置4との間にポンプ5aが設けられ、膜ろ過装置4の下流側にポンプ5bが設けられている。また、高効率固液分離ろ過槽2と並列に傾斜板沈殿池6などの簡易処理方法を行う手段が設けられており、この傾斜板沈殿池6には沈砂池1を通過して高効率固液分離ろ過槽2に流入しない流入水が導入される。ここで、この第1の実施形態による水処理システムにおいては、合流式下水処理場における設計水量(晴天時日最大流入水量)をQとすると、流入水がnQ(nは正の数)までは沈砂池1を通過した流入水の全量を高効率固液分離ろ過槽2に導入する。一方、流入水がnQを越えて沈砂池1を通過した流入水の超過分は傾斜板沈殿池6に導入される。なお、nの値は処理場の設計に基づいて決定されるが、この第1の実施形態においては、nを3とするのが好ましい。   As shown in FIG. 1, the water treatment system according to the first embodiment includes a sand basin 1 for removing non-septic inorganic substances such as earth and sand contained in inflow water such as sewage, and a high-efficiency solid-liquid separation filtration tank 2. And a biological reaction tank 3 comprising a denitrification tank 3a and a nitrification tank 3b, and a membrane filtration device 4 having a backwashable separation membrane. A pump 5 a is provided between the biological reaction tank 3 and the membrane filtration device 4, and a pump 5 b is provided on the downstream side of the membrane filtration device 4. In addition, a means for performing a simple processing method such as an inclined plate sedimentation basin 6 is provided in parallel with the high-efficiency solid-liquid separation filtration tank 2. Inflow water that does not flow into the liquid separation filtration tank 2 is introduced. Here, in the water treatment system according to the first embodiment, assuming that the design water amount (the maximum inflow water amount on a clear day) at the combined sewage treatment plant is Q, the inflow water is up to nQ (n is a positive number). The total amount of inflow water that has passed through the sand basin 1 is introduced into the high-efficiency solid-liquid separation and filtration tank 2. On the other hand, the excess amount of the inflowing water that has passed through the sedimentation basin 1 exceeding nQ is introduced into the inclined plate settling basin 6. Note that the value of n is determined based on the design of the treatment plant, but in the first embodiment, it is preferable to set n to 3.

この第1の実施形態による水処理システムにおける高効率固液分離ろ過槽2の詳細を図2に示す。図2に示すように、高効率固液分離ろ過槽2は、分配槽11と複数のろ過水槽12とを備えている。複数のろ過水槽12のそれぞれの内部には、それぞれ浮上ろ材13が充填されたろ材充填層14が設けられている。ここで、ろ材充填層14の層厚は800mm以下、好適には600mmとすることが好ましい。これにより、晴天時においてもろ材充填層14を容易に逆洗することができる。また、ろ材充填層14の上面には、浮上ろ材13の流出を防止するためのスクリーン15が設けられている。   The details of the high-efficiency solid-liquid separation and filtration tank 2 in the water treatment system according to the first embodiment are shown in FIG. As shown in FIG. 2, the high-efficiency solid-liquid separation and filtration tank 2 includes a distribution tank 11 and a plurality of filtered water tanks 12. Inside each of the plurality of filtered water tanks 12, filter medium packed layers 14 each filled with a floating filter medium 13 are provided. Here, the layer thickness of the filter medium packed layer 14 is 800 mm or less, preferably 600 mm. Thereby, the filter medium packed bed 14 can be easily backwashed even in fine weather. A screen 15 for preventing the floating filter medium 13 from flowing out is provided on the upper surface of the filter medium packed bed 14.

ここで、この浮上ろ材13のみかけ密度については、0.1未満であると望ましい圧縮強さを得ることができず、0.7を越えると水との比重差が小さくなって流出の可能性があるため、0.1〜0.7とするのが好ましい。また、浮上ろ材13の50%圧縮硬さについては、0.1MPa未満の軟質としてしまうと高速ろ過の際に圧密されてSS捕捉能力が低下するため、0.1MPa以上とするのが好ましい。また、浮上ろ材13の寸法は、4mm未満にすると相互間の間隙が小さくなって閉塞し易くなり、10mmより大きくするとSS捕捉能力が低下してしまうため、4〜10mmとするのが好ましい。   Here, if the apparent density of the floating filter 13 is less than 0.1, a desirable compressive strength cannot be obtained, and if it exceeds 0.7, the difference in specific gravity with water becomes small and the possibility of outflow Therefore, it is preferably 0.1 to 0.7. Further, the 50% compression hardness of the floating filter 13 is preferably set to 0.1 MPa or more because if it is softer than 0.1 MPa, it is consolidated during high-speed filtration and the SS capturing ability is reduced. Further, if the size of the floating filter 13 is less than 4 mm, the gap between them becomes small and it is easy to close, and if it is larger than 10 mm, the SS capturing ability is lowered, so that it is preferably 4 to 10 mm.

なお、50%圧縮硬さとは、ろ材粒子を形成するための高分子シートを、その高さが半分になるまで押し潰すために必要な圧力を意味するものである。50%圧縮硬さやみかけ密度は、JIS K6767に規定されている方法で測定する。また、この浮上ろ材13は、発泡ポリエチレン、発泡ポリスチレン、または発泡ポリプロピレンなどからなるが、この中でも、発泡度を制御された独立気泡型の発泡ポリエチレンは、耐熱性、耐薬品性、および耐候性に優れている。さらに、浮上ろ材13の形状を筒形状や凹凸のある形状とすることにより、充填時に浮上ろ材13の相互間に非直線的な間隙が形成され、SS捕捉効果を高めることができる。ここで凹凸のある形状とは、立方体、直方体、球体、および円柱のような単純形状ではなく、外表面に何らかの凹凸を備えた異形状を意味する。   In addition, 50% compression hardness means the pressure required to crush the polymer sheet for forming the filter medium particles until the height is halved. The 50% compression hardness and apparent density are measured by the method defined in JIS K6767. The floating filter 13 is made of foamed polyethylene, foamed polystyrene, foamed polypropylene, or the like. Among these, closed-cell foamed polyethylene with a controlled degree of foaming has excellent heat resistance, chemical resistance, and weather resistance. Are better. Furthermore, by making the shape of the floating filter 13 into a cylindrical shape or an uneven shape, a non-linear gap is formed between the floating filter 13 at the time of filling, and the SS capturing effect can be enhanced. Here, the uneven shape means not a simple shape such as a cube, a rectangular parallelepiped, a sphere, and a cylinder, but an irregular shape having some unevenness on the outer surface.

高効率固液分離ろ過槽2は、互いにつながっている共通ろ過水層16と、それぞれのろ過水槽12において、それぞれ、下部に設けられた空気管17および高速排水弁18と、側部に設けられた各池流入配管19とを有している。また、高効率固液分離ろ過槽2の高速排水弁18の排水側には、排水を貯留する逆洗排水槽20が設けられている。なお、これらのうちの空気管17、高速排水弁18および逆洗排水槽20は、ろ材充填層14の逆洗を行う際に用いられる。   The high-efficiency solid-liquid separation filtration tank 2 is provided on the side of the common filtrate layer 16 connected to each other and the air pipe 17 and the high-speed drain valve 18 provided in the lower part of each filtrate tank 12. In addition, each pond inflow pipe 19 is provided. Further, a backwash drain 20 for storing drainage is provided on the drain side of the high-speed drain valve 18 of the high-efficiency solid-liquid separation filtration tank 2. Of these, the air pipe 17, the high-speed drain valve 18, and the backwash drain tank 20 are used when the filter medium packed bed 14 is backwashed.

図1に示すように、この第1の実施形態による生物反応槽3および膜ろ過装置4によって、槽外設置型の膜分離活性汚泥手段としての槽外型クロスフローMBR部が構成されている。この槽外型クロスフローMBR部における生物反応槽3は、活性汚泥に含まれる微生物の作用によって処理水に対して生物処理を行うものである。   As shown in FIG. 1, the biological reaction tank 3 and the membrane filtration device 4 according to the first embodiment constitute an outside tank type cross flow MBR section as an outside tank type membrane separation activated sludge means. The biological reaction tank 3 in the outside cross flow MBR section performs biological treatment on the treated water by the action of microorganisms contained in the activated sludge.

すなわち、生物反応槽3の脱窒槽3aは、攪拌機(図示せず)を備えた無酸素槽から構成され、この脱窒槽3aにおいて脱窒菌などの嫌気性微生物の作用により流入水に対する脱窒処理が行われる。また、脱窒槽3aの後段に設けられた硝化槽3bは、その内部に空気を散気させるブロアなどの散気装置(図示せず)を備えた好気槽から構成され、この硝化槽3bにおいて亜硝酸酸化菌などの好気性微生物の作用により流入水に対する硝化処理が行われる。   That is, the denitrification tank 3a of the biological reaction tank 3 is composed of an anoxic tank equipped with a stirrer (not shown), and in this denitrification tank 3a, denitrification treatment for inflow water is performed by the action of anaerobic microorganisms such as denitrifying bacteria. Done. Further, the nitrification tank 3b provided at the rear stage of the denitrification tank 3a is composed of an aerobic tank provided with an air diffuser (not shown) such as a blower for diffusing air therein, and in this nitrification tank 3b Nitrification is performed on the influent by the action of aerobic microorganisms such as nitrite oxidizing bacteria.

槽外型クロスフローMBR部における膜ろ過装置4は、生物反応槽3の後段に設けられ、生物反応槽3とは別体に設けられている。これによって、浸漬型の膜分離活性汚泥装置に比して維持管理が容易で省スペース化することができる。この膜ろ過装置4には、生物処理が行われた生物処理水をろ過する分離膜(図示せず)がケーシングに納められている。   The membrane filtration device 4 in the outside-type cross flow MBR section is provided at the rear stage of the biological reaction tank 3 and is provided separately from the biological reaction tank 3. This makes it easier to maintain and save space than a submerged membrane separation activated sludge apparatus. In the membrane filtration device 4, a separation membrane (not shown) for filtering biologically treated water subjected to biological treatment is housed in a casing.

この第1の実施形態による分離膜は、材質がセラミックであって円柱形状に構成された、いわゆるモノリス型セラミック膜である。また、この分離膜は例えば次亜塩素酸ナトリウムなどの薬液によって薬液洗浄可能に構成されている。   The separation membrane according to the first embodiment is a so-called monolithic ceramic membrane made of a ceramic material and formed in a cylindrical shape. In addition, the separation membrane is configured to be able to be cleaned with a chemical solution such as a sodium hypochlorite solution.

ここで、この第1の実施形態において、分離膜は、具体的には、円柱形状の長手方向に沿った長さが例えば1500mm、長手方向に垂直な面に沿った円断面の径が例えば180mmであり、膜孔径が例えば0.1μmの精密ろ過膜(MF膜)である。また、この分離膜は、ケーシング(図示せず)に収納されて生物反応槽3の外部に設けられた膜ろ過装置4に設置される。なお、分離膜の薬液洗浄は、このケーシング内において実施可能である。   Here, in the first embodiment, specifically, the separation membrane has a length of, for example, 1500 mm along the longitudinal direction of the columnar shape, and a diameter of a circular section along a plane perpendicular to the longitudinal direction, for example, 180 mm. And a microfiltration membrane (MF membrane) having a membrane pore diameter of 0.1 μm, for example. The separation membrane is stored in a casing (not shown) and installed in a membrane filtration device 4 provided outside the biological reaction tank 3. The chemical cleaning of the separation membrane can be performed in this casing.

分離膜は、材質をセラミックとしていることにより、その機械的強度を高くすることができ、洗浄時に用いられる薬品に対する耐薬品性も高くしつつ、長寿命化を図ることができるという利点を有する。さらに、分離膜は、材質をセラミックとすることによって、膜破断の可能性を大幅に低減することができるので、ろ過された処理水の安全性を高くすることができ、塩素による減菌処理も不要になるという、さらなる利点を有する。   Since the separation membrane is made of ceramic, the mechanical strength of the separation membrane can be increased, and the lifetime of the separation membrane can be increased while the chemical resistance against chemicals used during cleaning is increased. Furthermore, because the separation membrane can be made of ceramic, the possibility of membrane breakage can be greatly reduced, so that the safety of filtered treated water can be increased, and the sterilization treatment with chlorine is also possible. It has the additional advantage of being unnecessary.

次に、以上のように構成されたこの第1の実施形態による水処理システムを用いた水処理方法について説明する。   Next, a water treatment method using the water treatment system according to the first embodiment configured as described above will be described.

すなわち、この第1の実施形態においては、図1に示すように、まず、下水などの有機性排水である流入水の全量が沈砂池1に導かれて砂分などが除去される。この沈砂池1を通過した流入水は、晴天時および雨天時のいずれにおいても、水量がnQになるまで、具体的には3Qになるまでは、高効率固液分離ろ過槽2に導入される。   That is, in this first embodiment, as shown in FIG. 1, first, the entire amount of inflow water, which is organic wastewater such as sewage, is guided to the sand basin 1 to remove sand and the like. Inflow water that has passed through the sand basin 1 is introduced into the high-efficiency solid-liquid separation and filtration tank 2 until the amount of water reaches nQ, specifically 3Q, in both fine weather and rainy weather. .

そして、図2に示すように、有機性排水などの流入水は、分配槽11にて各池流入配管19に分配された後、それぞれの各池流入配管19からそれぞれろ過水槽12の下部に導入される。流入水は、浮上ろ材13が充填されたろ材充填層14を上向流で通過する間に、SSが浮上ろ材13に捕捉されてろ過される。このろ過水はスクリーン15の上方の共通ろ過水層16に流入される。なお、ろ材充填層14の逆洗は、それぞれの高速排水弁18を開き、共通ろ過水層16内のろ過水を自然流下させる方法によって行われる。   Then, as shown in FIG. 2, inflow water such as organic wastewater is distributed to each pond inflow pipe 19 in the distribution tank 11 and then introduced into the lower portion of the filtered water tank 12 from each pond inflow pipe 19. Is done. As the inflowing water passes through the filter medium packed bed 14 filled with the floating filter medium 13 in an upward flow, SS is captured by the floating filter medium 13 and filtered. This filtered water flows into the common filtered water layer 16 above the screen 15. In addition, the backwashing of the filter medium packed bed 14 is performed by a method in which each high-speed drain valve 18 is opened and the filtrate in the common filtrate layer 16 is allowed to flow down naturally.

また、合流式下水処理場においては、晴天時の流入水量はQ以下であり、雨天時には流入水量はQを越えてnQ、具体的には例えば3Qに達する。この第1の実施形態においては、高効率固液分離ろ過槽2は1000m/日を越える高速ろ過が可能であり、ろ過速度を晴天時には500m/日未満、雨天時には500〜1200m/日とするのが好ましい。   In the combined sewage treatment plant, the amount of inflow water during clear weather is equal to or less than Q, and the amount of inflow water exceeds Q and reaches nQ, specifically, for example, 3Q during rainy weather. In this first embodiment, the high-efficiency solid-liquid separation filtration tank 2 is capable of high-speed filtration exceeding 1000 m / day, and the filtration speed is less than 500 m / day when it is fine and 500 to 1200 m / day when it is raining. Is preferred.

続いて、高効率固液分離ろ過槽2によってろ過されたろ過水は、共通ろ過水層16を経由して、全量が図1に示す生物反応槽3および膜ろ過装置4に供給される。ここで、晴天時においては生物反応槽3に供給されるろ過水の水量はQ以下であることから、その全量が、生物反応槽3および膜ろ過装置4によって処理が行われる。また、雨天時においても生物反応槽3に供給されるろ過水の水量がnQ以下、具体的には例えば3Qまでは、その全量が生物反応槽3に供給されて、生物反応槽3および膜ろ過装置4によって処理が行われる。なお、流入水の量がnQを越えた分、具体的には例えば3Qを越えた分は、沈砂池1から傾斜板沈殿池6に供給されて簡易処理が行われた後に放流される。   Subsequently, the filtered water filtered by the high-efficiency solid-liquid separation filtration tank 2 is supplied to the biological reaction tank 3 and the membrane filtration device 4 shown in FIG. Here, in fine weather, the amount of filtered water supplied to the biological reaction tank 3 is Q or less, so that the entire amount is processed by the biological reaction tank 3 and the membrane filtration device 4. Further, even when it is raining, the amount of filtered water supplied to the biological reaction tank 3 is nQ or less, specifically, for example, up to 3Q, the entire amount is supplied to the biological reaction tank 3, and the biological reaction tank 3 and membrane filtration are supplied. Processing is performed by the device 4. Note that the amount of inflow water exceeding nQ, specifically, for example, exceeding 3Q, is supplied from the settling basin 1 to the inclined plate settling basin 6 and discharged after simple processing.

そして、図1に示すように、高効率固液分離ろ過槽2から生物反応槽3に導入されたろ過水は、脱窒槽3aにおいて脱窒処理が行われ、硝化槽3bにおいて硝化処理が行われた後、膜ろ過装置4に供給される。膜ろ過装置4においては、分離膜による膜ろ過処理が行われる。この分離膜によってろ過された処理水は、図1に示すポンプ5bによって外部に放流される。他方、膜ろ過装置4において分離膜によってろ過されずに通過した活性汚泥を含む生物処理水からなる流入水は、生物反応槽3の脱窒槽3aおよび硝化槽3bに返送される。すなわち、この第1の実施形態による槽外型クロスフローMBR部においては、いわゆるクロスフロー方式のろ過が行われる。   As shown in FIG. 1, the filtered water introduced from the high-efficiency solid-liquid separation and filtration tank 2 into the biological reaction tank 3 is denitrified in the denitrification tank 3a and nitrified in the nitrification tank 3b. Then, it is supplied to the membrane filtration device 4. In the membrane filtration device 4, a membrane filtration process using a separation membrane is performed. The treated water filtered by the separation membrane is discharged to the outside by the pump 5b shown in FIG. On the other hand, inflow water composed of biologically treated water containing activated sludge that has passed through the membrane filtration device 4 without being filtered by the separation membrane is returned to the denitrification tank 3a and the nitrification tank 3b of the biological reaction tank 3. That is, in the out-of-bath type cross flow MBR section according to the first embodiment, so-called cross flow type filtration is performed.

以上説明したように、この第1の実施形態による合流式下水の水処理システムおよび水処理方法によれば、槽外型クロスフローMBR部の前段に高効率固液分離ろ過槽2を設けていることにより、最初沈殿池を用いた場合に比して、生物反応槽3の負荷を40〜50%低減させることができるので、SS濃度を60mg/Lから30mg/Lに、BODを100mg/Lから60mg/Lにまで低減させることができる。さらに、高効率固液分離ろ過槽2によって生物反応槽3の負荷が低減されていることにより、膜ろ過装置4の分離膜の膜面にからまるし渣を除去するためのスクリーンを設ける必要がなくなるため、システム構成を簡略化することができる。   As described above, according to the combined sewage water treatment system and the water treatment method according to the first embodiment, the high-efficiency solid-liquid separation and filtration tank 2 is provided in the front stage of the outside cross-flow MBR section. As a result, the load on the biological reaction tank 3 can be reduced by 40 to 50% as compared with the case of using the first sedimentation basin, so the SS concentration is changed from 60 mg / L to 30 mg / L, and the BOD is set to 100 mg / L. To 60 mg / L. Further, since the load on the biological reaction tank 3 is reduced by the high-efficiency solid-liquid separation filtration tank 2, it is not necessary to provide a screen for removing tangled residue from the membrane surface of the separation membrane of the membrane filtration device 4. Therefore, the system configuration can be simplified.

また、この第1の実施形態においては、膜ろ過装置4を生物反応槽3の外部に設置した槽外設置型の膜分離活性汚泥装置を用いていることにより、膜ろ過装置4の稼動条件の設定自由度を高くすることができる。すなわち、高効率固液分離ろ過槽2を生物反応槽3の前段に設置したことによる生物反応槽3に対する負荷の低減に合わせて、硝化槽3bの散気に用いる空気量の調整が可能となる。これとともに、生物反応槽3に対する負荷の低減に合わせて、生物反応槽3のMLSS(Mixed Liquor Suspended Solid)濃度を調整して、従来に比してMLSS濃度を低減させて酸素の溶解効率を変化させることでα値を改善させることができ、必要となる空気量を低減させることができるので、消費エネルギーの低減が可能となる。また、この第1の実施形態においては、運転状況に合わせてクロスフロー流の循環量を変更することが容易であり、頻度、圧力、および水量などの逆洗条件を変更することができ、処理水量が変動した場合であっても、その処理水量に対する対応を容易に行うことができる。   Moreover, in this 1st Embodiment, by using the membrane separation activated sludge apparatus of the outside installation type | mold which installed the membrane filtration apparatus 4 in the exterior of the biological reaction tank 3, the operating condition of the membrane filtration apparatus 4 is set. The degree of freedom of setting can be increased. That is, the amount of air used for aeration of the nitrification tank 3b can be adjusted in accordance with the reduction of the load on the biological reaction tank 3 due to the installation of the high-efficiency solid-liquid separation and filtration tank 2 in the preceding stage of the biological reaction tank 3. . Along with this, the MLSS (Mixed Liquor Suspended Solid) concentration in the biological reaction tank 3 is adjusted to reduce the load on the biological reaction tank 3, and the MLSS concentration is reduced as compared with the conventional method to change the oxygen dissolution efficiency. As a result, the α value can be improved and the required amount of air can be reduced, so that the energy consumption can be reduced. In the first embodiment, it is easy to change the circulation amount of the crossflow flow according to the operation situation, and the backwash conditions such as frequency, pressure, and water amount can be changed, Even if the amount of water fluctuates, it is possible to easily cope with the amount of treated water.

次に、本発明の第2の実施形態による水処理システムについて説明する。図3は、この第2の実施形態による合流式下水の水処理システムの全体構成を示す。   Next, a water treatment system according to a second embodiment of the present invention will be described. FIG. 3 shows the overall configuration of a combined sewage water treatment system according to the second embodiment.

図3に示すように、この第2の実施形態による水処理システムは、第1の実施形態と異なり、被処理水の流れ方向に沿った、高効率固液分離ろ過槽2の下流側であって生物反応槽3の上流側において、高効率固液分離ろ過槽2で処理されたろ過水を分岐して放流可能に構成されている。その他の構成については、第1の実施形態と同様なので、その説明を省略する。   As shown in FIG. 3, the water treatment system according to the second embodiment differs from the first embodiment in that it is downstream of the high-efficiency solid-liquid separation and filtration tank 2 along the flow direction of the water to be treated. Thus, on the upstream side of the biological reaction tank 3, the filtered water treated in the high-efficiency solid-liquid separation filtration tank 2 is branched and discharged. Since other configurations are the same as those in the first embodiment, description thereof is omitted.

また、高効率固液分離ろ過槽2を通過して排出されたろ過水は、所定量であるmQ(mはn以下の正の数)までは全量が後段の生物反応槽3に流入する。そして、高効率固液分離ろ過槽2を通過して排出されたろ過水がmQを超過した場合においては、超過した分のろ過水は生物反応槽3に流入することなく放流される。すなわち、第1の実施形態と同様に、原水がnQになるまでは沈砂池1を通過した流入水の全量が高効率固液分離ろ過槽2に流入する。その上で、高効率固液分離ろ過槽2を通過して生物反応槽3への流入水がmQになるまでは、高効率固液分離ろ過槽2からのろ過水の全量が生物反応槽3に流入する。一方、高効率固液分離ろ過槽2からのろ過水がmQを超過した場合には、後段の槽外型クロスフローMBR部の負荷を低減するために、超過分のろ過水は放流される。ここで、mの値は、後段の槽外型クロスフローMBR部の処理限界などに基づいて決定されるが、この第2の実施形態においては、mを1.4以上2以下(1.4〜2.0)とするのが好ましく、さらに、水処理システムにおける設計に応じたnとの比に基づいて決定することも可能である。   Further, the filtered water discharged through the high-efficiency solid-liquid separation filtration tank 2 flows into the biological reaction tank 3 in the subsequent stage up to a predetermined amount of mQ (m is a positive number equal to or less than n). Then, when the filtrate discharged through the high-efficiency solid-liquid separation filtration tank 2 exceeds mQ, the excess filtrate is discharged without flowing into the biological reaction tank 3. That is, as in the first embodiment, until the raw water reaches nQ, the entire amount of inflow water that has passed through the settling basin 1 flows into the high-efficiency solid-liquid separation and filtration tank 2. After that, the total amount of filtered water from the high-efficiency solid-liquid separation filtration tank 2 is passed through the high-efficiency solid-liquid separation filtration tank 2 until the inflow water to the biological reaction tank 3 becomes mQ. Flow into. On the other hand, when the filtrate from the high-efficiency solid-liquid separation / filtration tank 2 exceeds mQ, the excess filtrate is discharged in order to reduce the load on the downstream tank-type cross flow MBR section. Here, the value of m is determined based on the processing limit of the outside-stage cross-flow MBR section in the subsequent stage, but in this second embodiment, m is 1.4 or more and 2 or less (1.4. To 2.0), and can be determined based on the ratio to n according to the design of the water treatment system.

以上説明したこの第2の実施形態による水処理システムによれば、第1の実施形態と同様の構成によって、第1の実施形態と同様の効果を得ることができるとともに、高効率固液分離ろ過槽2の下流側、かつ生物反応槽3の上流側において、高効率固液分離ろ過槽2からの排出水量が所定量(mQ)を超過した場合に、超過分を分岐して放流可能に構成していることにより、槽外型クロスフローMBR部の膜ろ過装置4において定期的に行う逆洗の間である一定ろ過時間での差圧の上昇を、20%程度低減させることが可能になる。そのため、第1の実施形態における水処理システムに比して、槽外型クロスフローMBR部にかかる負担を大幅に低減することが可能になる。   According to the water treatment system according to the second embodiment described above, the same effect as that of the first embodiment can be obtained with the same configuration as that of the first embodiment, and a high-efficiency solid-liquid separation and filtration can be obtained. When the amount of discharged water from the high-efficiency solid-liquid separation and filtration tank 2 exceeds a predetermined amount (mQ) on the downstream side of the tank 2 and the upstream side of the biological reaction tank 3, the excess can be branched and discharged. By doing so, it becomes possible to reduce an increase in the differential pressure by a constant filtration time, which is during backwashing periodically performed in the membrane filtration device 4 of the outside cross-flow MBR section, by about 20%. . Therefore, compared to the water treatment system in the first embodiment, it is possible to significantly reduce the burden on the outside-type cross flow MBR section.

なお、上述の実施形態においては、本発明を、合流式下水の処理に適用した水処理システムおよび水処理方法について説明したが、本発明による水処理システムや水処理方法を、分流式下水に適用することも可能である。   In the above-described embodiment, the water treatment system and the water treatment method in which the present invention is applied to the treatment of combined sewage have been described. However, the water treatment system and the water treatment method according to the present invention are applied to diverted sewage. It is also possible to do.

また、上述の実施形態においては、膜ろ過装置4に設置される分離膜の好ましい例としてMF膜を採用しているが、分離膜を限外ろ過(UF)膜とすることも可能である。また、上述の実施形態において、分離膜の材質の好ましい例としてセラミックを採用しているが、高分子材料であってもよい。また、上述の実施形態においては、分離膜としてモノリス型の膜を採用しているが、平膜、中空糸膜、またはチューブラー膜を採用してもよい。また、上述の実施形態においては、分離膜の加圧方式を内圧式としているが、外圧式であってもよい。   Moreover, in the above-mentioned embodiment, although the MF membrane is employ | adopted as a preferable example of the separation membrane installed in the membrane filtration apparatus 4, it is also possible to make a separation membrane into an ultrafiltration (UF) membrane. Moreover, in the above-mentioned embodiment, although the ceramic is employ | adopted as a preferable example of the material of a separation membrane, a high molecular material may be sufficient. In the above-described embodiment, a monolith type membrane is employed as the separation membrane, but a flat membrane, a hollow fiber membrane, or a tubular membrane may be employed. Moreover, in the above-mentioned embodiment, although the pressurization system of the separation membrane is an internal pressure type, it may be an external pressure type.

また、上述の実施形態においては、生物反応槽3を脱窒槽3aおよび硝化槽3bから構成し、生物処理として脱窒処理および硝化処理(循環式硝化脱窒法)を行っているが、必ずしもこの方法に限定されるものではなく、標準活性汚泥法、AO(嫌気−好気)法、A2O(嫌気−無酸素−好気)法、硝化+内生脱窒法、多段ステップ流入式硝化脱窒法、および多段ステップ流入式A2O法などを採用することも可能である。 In the above-described embodiment, the biological reaction tank 3 includes the denitrification tank 3a and the nitrification tank 3b, and denitrification treatment and nitrification treatment (circulation nitrification denitrification method) are performed as biological treatment. It is not limited to the standard activated sludge method, AO (anaerobic-aerobic) method, A 2 O (anaerobic-anoxic-aerobic) method, nitrification + endogenous denitrification method, multi-step inflow nitrification denitrification method It is also possible to employ a multi-step inflow A 2 O method or the like.

1 沈砂池
2 高効率固液分離ろ過槽
3 生物反応槽
3a 脱窒槽
3b 硝化槽
4 膜ろ過装置
5a,5b ポンプ
6 傾斜板沈殿池
11 分配槽
12 ろ過水槽
13 浮上ろ材
14 ろ材充填層
15 スクリーン
16 共通ろ過水層
17 空気管
18 高速排水弁
19 各池流入配管
20 逆洗排水槽
DESCRIPTION OF SYMBOLS 1 Sedimentation basin 2 High-efficiency solid-liquid separation filtration tank 3 Biological reaction tank 3a Denitrification tank 3b Nitrification tank 4 Membrane filtration apparatus 5a, 5b Pump 6 Inclined plate sedimentation tank 11 Distribution tank 12 Filtration water tank 13 Floating filter medium 14 Filter medium packed bed 15 Screen 16 Common filtered water layer 17 Air pipe 18 High-speed drain valve 19 Inlet piping in each pond 20 Backwash drain

Claims (6)

流入する原水に対してろ過処理を行う、浮上ろ材が充填された高効率固液分離ろ過槽と、
前記高効率固液分離ろ過槽を通過したろ過水に対して活性汚泥を用いた生物処理および膜ろ過処理を行う、膜分離活性汚泥手段と
前記高効率固液分離ろ過槽の上流側の原水の流入量が所定の第1流入量を超過した場合は、前記第1流入量分の原水を前記高効率固液分離ろ過槽に流入させ、超過分の前記原水を前記高効率固液分離ろ過槽と異なる経路に供給して放流し、前記高効率固液分離ろ過槽を通過したろ過水が所定の第2流入量を超過した場合は、前記第2流入量分のろ過水を前記膜分離活性汚泥手段に流入させ、超過分の前記ろ過水を前記膜分離活性汚泥手段と異なる経路に供給して放流する手段と、
を有し、
前記第2流入量は、前記第1流入量より小さいことを特徴とする水処理システム。
A high-efficiency solid-liquid separation and filtration tank filled with a floating filter medium that performs filtration on the incoming raw water;
Membrane separation activated sludge means for performing biological treatment and membrane filtration treatment using activated sludge for filtered water that has passed through the high-efficiency solid-liquid separation filtration tank ;
When the inflow amount of raw water upstream of the high-efficiency solid-liquid separation filtration tank exceeds a predetermined first inflow amount, the raw water for the first inflow amount is caused to flow into the high-efficiency solid-liquid separation filtration tank, the raw water excess was discharged by supplying a different path and the high efficiency solid-liquid separation filter tank, before Symbol if high efficiency filtration water passing through the solid-liquid separation filtration tank exceeds a predetermined second inflow amount , Means for causing the filtered water for the second inflow amount to flow into the membrane separation activated sludge means, and supplying and discharging the excess amount of the filtered water to a different path from the membrane separation activated sludge means ;
Have
The water treatment system, wherein the second inflow amount is smaller than the first inflow amount.
前記第1流入量は、所定の設定流量の3倍であり、前記第2流入量は、前記設定流量の1.4倍以上2倍以下である、請求項1に記載の水処理システム。   The water treatment system according to claim 1, wherein the first inflow amount is three times a predetermined set flow rate, and the second inflow amount is 1.4 to 2 times the set flow rate. 前記膜分離活性汚泥手段が前記生物処理を行う生物反応槽と前記膜ろ過処理を行う分離膜とを有し、前記分離膜が前記生物反応槽の外部に設けられていることを特徴とする請求項1又は請求項2に記載の水処理システム。   The membrane separation activated sludge means has a biological reaction tank for performing the biological treatment and a separation membrane for performing the membrane filtration treatment, and the separation membrane is provided outside the biological reaction tank. The water treatment system of Claim 1 or Claim 2. 前記分離膜はセラミックからなることを特徴とする請求項1〜3のいずれか1項に記載の水処理システム。   The water treatment system according to claim 1, wherein the separation membrane is made of ceramic. 原水を浮上ろ材が充填された高効率固液分離ろ過槽に通過させてろ過処理を行うステップと、
前記ろ過処理が行われたろ過水に対して活性汚泥を用いた生物処理を行うステップと、
前記生物処理後の処理水に対して膜ろ過処理を行うステップとを含み、
前記高効率固液分離ろ過槽の上流側の前記原水の流入量が所定の第1流入量を超過した場合は、前記第1流入量分の原水を前記高効率固液分離ろ過槽に流入させ、超過分の前記原水を前記高効率固液分離ろ過槽と異なる経路に供給して放流し、
前記高効率固液分離ろ過槽を通過したろ過水が所定の第2流入量を超過した場合は、前記第2流入量分のろ過水に対して前記生物処理を行い、超過分の前記ろ過水を、前記生物処理を行う前に分岐させて放流し、
前記第2流入量は、前記第1流入量より小さいことを特徴とする水処理方法。
Passing raw water through a high-efficiency solid-liquid separation and filtration tank filled with floating filter media and performing a filtration treatment;
Performing biological treatment using activated sludge on the filtered water subjected to the filtration treatment;
Performing membrane filtration treatment on the treated water after the biological treatment,
When the inflow amount of the raw water upstream of the high-efficiency solid-liquid separation and filtration tank exceeds a predetermined first inflow amount, the raw water for the first inflow amount is caused to flow into the high-efficiency solid-liquid separation and filtration tank. Supplying the excess raw water to a different path from the high-efficiency solid-liquid separation and filtration tank, and discharging it,
When the filtered water that has passed through the high-efficiency solid-liquid separation and filtration tank exceeds a predetermined second inflow amount, the biological treatment is performed on the filtered water for the second inflow amount, and the excess filtered water Diverge and discharge before the biological treatment,
The water treatment method, wherein the second inflow amount is smaller than the first inflow amount.
前記第1流入量は、所定の設定流量の3倍であり、前記第2流入量は、前記設定流量の1.4倍以上2倍以下である、請求項5に記載の水処理方法。   The water treatment method according to claim 5, wherein the first inflow amount is three times a predetermined set flow rate, and the second inflow amount is 1.4 to 2 times the set flow rate.
JP2012164896A 2011-07-27 2012-07-25 Water treatment system and water treatment method Active JP5989437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012164896A JP5989437B2 (en) 2011-07-27 2012-07-25 Water treatment system and water treatment method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011164719 2011-07-27
JP2011164719 2011-07-27
JP2012164896A JP5989437B2 (en) 2011-07-27 2012-07-25 Water treatment system and water treatment method

Publications (2)

Publication Number Publication Date
JP2013046905A JP2013046905A (en) 2013-03-07
JP5989437B2 true JP5989437B2 (en) 2016-09-07

Family

ID=48010243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012164896A Active JP5989437B2 (en) 2011-07-27 2012-07-25 Water treatment system and water treatment method

Country Status (1)

Country Link
JP (1) JP5989437B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6383725B2 (en) * 2013-07-03 2018-08-29 メタウォーター株式会社 Water treatment equipment
JP6533462B2 (en) * 2015-12-25 2019-06-19 株式会社クボタ Method of operating organic wastewater treatment facility and organic wastewater treatment system
JP2017113723A (en) * 2015-12-25 2017-06-29 株式会社クボタ Operation method of organic wastewater treatment apparatus, and organic wastewater treatment system
CN106830577B (en) * 2017-04-12 2023-07-18 上海秦森园林股份有限公司 LID water treatment system and treatment method thereof
CN109081500A (en) * 2018-07-10 2018-12-25 安徽宏铭服饰有限公司 Wastewater membrane of dying cloth filtration treatment system
JP7073236B2 (en) 2018-09-13 2022-05-23 株式会社クボタ Organic wastewater treatment method and organic wastewater treatment equipment
KR102364566B1 (en) * 2019-12-30 2022-02-21 주식회사 피앤아이휴먼코리아 Sewage disposal systems

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003154211A (en) * 2001-11-21 2003-05-27 Ngk Insulators Ltd Method of treating uncertain water in separated sewer system
JP4833642B2 (en) * 2005-11-21 2011-12-07 メタウォーター株式会社 Membrane separation activated sludge treatment equipment
JP4844825B2 (en) * 2006-06-23 2011-12-28 株式会社日立プラントテクノロジー Sewage treatment plant at satellite treatment plant

Also Published As

Publication number Publication date
JP2013046905A (en) 2013-03-07

Similar Documents

Publication Publication Date Title
JP5989437B2 (en) Water treatment system and water treatment method
AU2009352159B2 (en) Packed bed bioreactor for biofouling control of reverse osmosis and nanofiltration membranes
US20070163959A1 (en) Screening apparatus for water treatment with membranes
WO2012042700A1 (en) Up-flow filtration device characterized by method for stacking filter materials
JP5889328B2 (en) Method and sewage treatment apparatus for treating organic substances and nitrogen contained in sewage
TW201522242A (en) Method and reactor for biological water purification
JP4492268B2 (en) Biological treatment equipment
Krause et al. Enhanced membrane bioreactor process without chemical cleaning
CA3055995A1 (en) Wastewater treatment system and method
EP3883891A1 (en) Waste water treatment system using aerobic granular sludge gravity-driven membrane system
JP5001923B2 (en) Water treatment apparatus and water treatment method
WO2003043941A1 (en) Apparatus and method for treating organic waste water
Till et al. Membrane bioreactors: wastewater treatment applications to achieve high quality effluent
WO2011136043A1 (en) Wastewater treatment device and wastewater treatment method
JP4591678B2 (en) Biological treatment equipment
JP2014000495A (en) Sewage treatment apparatus, and sewage treatment method using the same
Kootenaei et al. Membrane biological reactors (MBR) and their applications for water reuse
KR100547463B1 (en) Nitrogen removal system in aeration tank using sulfur packed MBR reactor
JP4335193B2 (en) Method and apparatus for treating organic wastewater
RU2644904C1 (en) Method of biological purification of wastewater from nitrogen phosphoric and organic compounds
Liu et al. An application of membrane bio-reactor process for the wastewater treatment of Qingdao International Airport
JP4850015B2 (en) Outside-tank membrane separation activated sludge method
JP3721092B2 (en) Solid-liquid separation method and apparatus for activated sludge
JP2006055849A (en) Apparatus and method for treating organic waste water
Hussain et al. Membrane bio reactors (MBR) in waste water treatment: a review of the recent patents

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160810

R150 Certificate of patent or registration of utility model

Ref document number: 5989437

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250