JP5982905B2 - 高強度溶融亜鉛めっき鋼板の製造方法 - Google Patents

高強度溶融亜鉛めっき鋼板の製造方法 Download PDF

Info

Publication number
JP5982905B2
JP5982905B2 JP2012061313A JP2012061313A JP5982905B2 JP 5982905 B2 JP5982905 B2 JP 5982905B2 JP 2012061313 A JP2012061313 A JP 2012061313A JP 2012061313 A JP2012061313 A JP 2012061313A JP 5982905 B2 JP5982905 B2 JP 5982905B2
Authority
JP
Japan
Prior art keywords
steel sheet
plating
less
hot
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012061313A
Other languages
English (en)
Other versions
JP2013194270A (ja
Inventor
祐介 伏脇
祐介 伏脇
由康 川崎
由康 川崎
長滝 康伸
康伸 長滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2012061313A priority Critical patent/JP5982905B2/ja
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to KR1020147027768A priority patent/KR101692129B1/ko
Priority to EP13764796.2A priority patent/EP2829627B1/en
Priority to CN201380015301.5A priority patent/CN104220628B/zh
Priority to US14/384,298 priority patent/US10837074B2/en
Priority to PCT/JP2013/001458 priority patent/WO2013140729A1/ja
Priority to TW102109555A priority patent/TWI473888B/zh
Publication of JP2013194270A publication Critical patent/JP2013194270A/ja
Application granted granted Critical
Publication of JP5982905B2 publication Critical patent/JP5982905B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F17/00Multi-step processes for surface treatment of metallic material involving at least one process provided for in class C23 and at least one process covered by subclass C21D or C22F or class C25
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D29/00Superstructures, understructures, or sub-units thereof, characterised by the material thereof
    • B62D29/007Superstructures, understructures, or sub-units thereof, characterised by the material thereof predominantly of special steel or specially treated steel, e.g. stainless steel or locally surface hardened steel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)

Description

本発明は、SiおよびMnを含有する高強度鋼板を母材とするめっき外観、耐食性、高加工時の耐めっき剥離性および加工性に優れた高強度溶融亜鉛めっき鋼板の製造方法および高強度溶融亜鉛めっき鋼板に関するものである。
近年、自動車、家電、建材等の分野において、素材鋼板に防錆性を付与した表面処理鋼板、中でも溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板が広範に使用されている。また、自動車の燃費向上および自動車の衝突安全性向上の観点から、車体材料の高強度化によって薄肉化を図り、車体そのものを軽量化しかつ高強度化する要望が高まっている。そのために高強度鋼板の自動車への適用が促進されている。
一般的に、溶融亜鉛めっき鋼板は、スラブを熱間圧延や冷間圧延した薄鋼板を母材として用い、母材鋼板を連続式溶融亜鉛めっきライン(以下、CGLと称す)の焼鈍炉にて再結晶焼鈍および溶融亜鉛めっき処理を行い製造される。合金化溶融亜鉛めっき鋼板の場合は、溶融亜鉛めっき処理の後、さらに合金化処理を行い製造される。
ここで、CGLの焼鈍炉の加熱炉タイプとしては、DFF型(直火型)、NOF型(無酸化型)、オールラジアントチューブ型等があるが、近年では、操業のし易さやピックアップが発生しにくい等により低コストで高品質なめっき鋼板を製造できるなどの理由からオールラジアントチューブ型の加熱炉を備えるCGLの建設が増加している。しかしながら、DFF型(直火型)、NOF型(無酸化型)と異なり、オールラジアントチューブ型の加熱炉は焼鈍直前に酸化工程がないため、Si、Mn等の易酸化性元素を含有する鋼板についてはめっき性確保の点で不利である。
Si、Mnを多量に含む高強度鋼板を母材とした溶融めっき鋼板の製造方法として、特許文献1には、再結晶温度〜900℃で焼鈍しめっきする技術が開示されている。特許文献2には、750〜900℃で焼鈍しめっきする技術が開示されている。特許文献3には、800〜850℃で焼鈍しめっきする技術が開示されている。しかしながら、Si、Mnを多量に含む高強度鋼板の場合、750℃を超える高い温度で焼鈍をした場合、鋼中Si、Mnが選択酸化し、鋼板表面に酸化物を形成するため、めっき密着性を劣化させ、不めっき等の欠陥が発生する懸念がある。
さらに、特許文献4および特許文献5には、還元炉における加熱温度を水蒸気分圧で表される式で規定し露点を上げることで、地鉄表層を内部酸化させる技術が開示されている。しかしながら、露点を制御するエリアが炉内全体を前提としたものであるため、露点の制御が困難であり安定操業が困難である。また、不安定な露点制御のもとでの合金化溶融亜鉛めっき鋼板の製造は、下地鋼板に形成される内部酸化物の分布状態にバラツキが認められ、鋼帯の長手方向や幅方向でめっき濡れ性や合金化ムラなどの欠陥が発生する懸念がある。
また、特許文献6には、酸化性ガスであるHOやOだけでなく、CO濃度も同時に規定することで、めっき直前の地鉄表層を内部酸化させ外部酸化を抑制してめっき外観を改善する技術が開示されている。しかしながら、特許文献6では、内部酸化物の存在により加工時に割れが発生しやすくなり、耐めっき剥離性が劣化する。また、耐食性の劣化も認められる。さらにCOは炉内汚染や鋼板表面への浸炭などが起こり機械特性が変化するなどの問題が懸念される。
さらに、最近では、加工の厳しい箇所への高強度溶融亜鉛めっき鋼板、高強度合金化溶融亜鉛めっき鋼板の適用が進んでおり、高加工時の耐めっき剥離特性が重要視されるようになっている。具体的にはめっき鋼板に90°超えの曲げ加工を行いより鋭角に曲げたときや衝撃が加わり鋼板が加工を受けた場合の、加工部のめっき剥離の抑制が要求される。
このような特性を満たすためには、鋼中に多量にSiを添加し所望の鋼板組織を確保するだけでなく、高加工時の割れなどの起点になる可能性があるめっき層直下の地鉄表層の組織、構造のより高度な制御が求められる。しかしながら従来技術ではそのような制御は困難であり、焼鈍炉にオールラジアントチューブ型の加熱炉を備えるCGLでSi含有高強度鋼板を母材として高加工時の耐めっき剥離特性に優れた溶融亜鉛めっき鋼板を製造することはできなかった。
特開2009−287114号公報 特開2009−24980号公報 特開2010−150660号公報 特開2004−323970号公報 特開2004−315960号公報 特開2006−233333号公報
本発明は、かかる事情に鑑みてなされたものであって、Si、Mnを含有する鋼板を母材とし、めっき外観、耐食性、高加工時の耐めっき剥離性および加工性に優れた高強度溶融亜鉛めっき鋼板の製造方法および高強度溶融亜鉛めっき鋼板を提供することを目的とする。
従来は、めっき性を改善する目的で積極的にFeを酸化させたり内部酸化させていた。しかし、同時に、耐食性や加工性が劣化する。そこで、本発明者らは、従来の考えにとらわれない新たな方法で課題を解決する方法を検討した。その結果、焼鈍工程の雰囲気と温度を適切に制御することで、めっき層直下の鋼板表層部において内部酸化の形成を抑制し、優れためっき外観と、より高い耐食性と高加工時の良好な耐めっき剥離性が得られることを知見した。具体的には、焼鈍炉内での鋼板最高到達温度を600℃以上700℃以下、鋼板温度が600℃以上700℃以下の温度域における鋼板通過時間を30秒以上10分以内、雰囲気中の露点を−45℃以下となるように制御して焼鈍、溶融亜鉛めっき処理を行う。焼鈍炉内での鋼板最高到達温度を600℃以上700℃以下とし、鋼板温度が600℃以上700℃以下の温度域での雰囲気中の露点を−45℃以下とすることで、鋼板と雰囲気の界面の酸素ポテンシャルを低下させ、内部酸化が極力起こらずに、Si、Mnなどの選択的表面拡散、酸化(以後、表面濃化と呼ぶ)を抑制する。
このように焼鈍温度や雰囲気中の露点を制御することにより、内部酸化させず、表面濃化を極力抑制し、不めっきのない、めっき外観、耐食性および高加工時の耐めっき剥離性に優れる高強度溶融亜鉛めっき鋼板が得られることになる。なお、めっき外観に優れるとは、不めっきや合金化ムラが認められない外観を有することを言う。
そして、以上の方法により得られる高強度溶融亜鉛めっき鋼板は、亜鉛めっき層の直下の、下地鋼板表面から100μm以内の鋼板表層部において、Fe、Si、Mn、Al、P、さらには、B、Nb、Ti、Cr、Mo、Cu、Niのうちから選ばれる1種以上(Feのみを除く)の酸化物の形成が抑制され、その形成量は合計で片面あたり0.030g/m未満に抑制される。これにより、めっき外観に優れ、耐食性が著しく向上し、地鉄表層における曲げ加工時の割れ防止を実現させ、高加工時の耐めっき剥離性に優れることになる。
本発明は上記知見に基づくものであり、特徴は以下の通りである。
[1]質量%で、C:0.03〜0.35%、Si:0.01〜0.50%、Mn:3.6〜8.0%、Al:0.001〜1.000%、P≦0.10%、S≦0.010%を含有し、残部がFeおよび不可避的不純物からなる鋼板の表面に、片面あたりのめっき付着量が20〜120g/mの亜鉛めっき層を有する高強度溶融亜鉛めっき鋼板を製造する方法であって、鋼板を連続式溶融亜鉛めっき設備において焼鈍および溶融亜鉛めっき処理を施すに際し、焼鈍炉内での鋼板最高到達温度は600℃以上700℃以下であり、鋼板温度が600℃以上700℃以下の温度域における鋼板通過時間は30秒以上10分以内、雰囲気中の露点は−45℃以下とすることを特徴とする高強度溶融亜鉛めっき鋼板の製造方法。
[2]前記[1]において、前記鋼板は、成分組成として、質量%で、さらに、B:0.001〜0.005%、Nb:0.005〜0.050%、Ti:0.005〜0.050%、Cr:0.001〜1.000%、Mo:0.05〜1.00%、Cu:0.05〜1.00%、Ni:0.05〜1.0%の中から選ばれる1種以上の元素を含有することを特徴とする高強度溶融亜鉛めっき鋼板の製造方法。
[3]前記[1]または[2]において、溶融亜鉛めっき処理後、さらに、450℃以上600℃以下の温度に鋼板を加熱して合金化処理を施し、めっき層のFe含有量を8〜14質量%の範囲にすることを特徴とする高強度溶融亜鉛めっき鋼板の製造方法。
[4]前記[1]〜[3]に記載のいずれかの製造方法により作成され、亜鉛めっき層直下の、下地鋼板表面から100μm以内の鋼板表層部に生成したFe、Si、Mn、Al、P、B、Nb、Ti、Cr、Mo、Cu、Niの酸化物が、片面あたり0.030g/m未満であることを特徴とする高強度溶融亜鉛めっき鋼板。
なお、本発明において、高強度溶融亜鉛めっき鋼板とは、引張強度TSが590MPa以上である。また、本発明の高強度溶融亜鉛めっき鋼板は、溶融亜鉛めっき処理後合金化処理を施さないめっき鋼板(以下、GIと称することもある)、合金化処理を施すめっき鋼板(以下、GAと称することもある)のいずれも含むものである。
本発明によれば、めっき外観、耐食性、高加工時の耐めっき剥離性および加工性に優れた高強度溶融亜鉛めっき鋼板が得られる。
以下、本発明について具体的に説明する。なお、以下の説明において、鋼成分組成の各元素の含有量、めっき層成分組成の各元素の含有量の単位はいずれも「質量%」であり、以下、特に断らない限り単に「%」で示す。
先ず、本発明で最も重要な要件である、めっき層直下の下地鋼板表面の構造を決定する焼鈍条件について説明する。
鋼中に多量のSiおよびMnが添加された高強度溶融亜鉛めっき鋼板において、耐食性及び高加工時の耐めっき剥離性を満足させるためには、腐食や高加工時の割れなどの起点となる可能性があるめっき層直下の地鉄表層の内部酸化を極力少なくすることが求められる。
Feを酸化させたりSiやMnの内部酸化を促進させることによりめっき性を向上させることは可能ではあるが、これは逆に耐食性や加工性の劣化をもたらすことになってしまう。このため、SiやMnの内部酸化を促進させる方法以外で、良好なめっき性を維持しつつ、内部酸化を抑制して耐食性、加工性を向上させる必要がある。検討した結果、本発明では、めっき性を確保するために焼鈍工程において酸素ポテンシャルを低下させ易酸化性元素であるSiやMn等の地鉄表層部における活量を低下させる。そして、これらの元素の外部酸化を抑制し、結果的にめっき性を改善する。そして、地鉄表層部に形成する内部酸化も抑制され、耐食性及び加工性が改善することになる。
このような効果は、連続式溶融亜鉛めっき設備において焼鈍および溶融亜鉛めっき処理を施すに際し、焼鈍炉内での鋼板最高到達温度を600℃以上700℃以下、鋼板温度が600℃以上700℃以下の温度域における鋼板通過時間を30秒以上10分以内、雰囲気中の露点を−45℃以下となるように制御することにより得られる。このように制御することにより、鋼板と雰囲気の界面の酸素ポテンシャルを低下させ、内部酸化させずに、Si、Mnなどの選択的表面拡散、表面濃化を抑制する。そして、不めっきのない、より高い耐食性と高加工時の良好な耐めっき剥離性が得られることになる。
焼鈍炉内での鋼板最高到達温度を600℃以上700℃以下とした理由は以下の通りである。600℃を下回る温度域では、不めっき発生、耐食性の劣化、耐めっき剥離性の劣化等が問題になる程度の表面濃化や内部酸化は起こらないが、600℃未満では良好な材質が得られない。よって、本発明の効果が発現する温度域は、600℃以上とする。一方、700℃を上回る温度域では、表面濃化が顕著となり、不めっき発生、耐食性の劣化、耐めっき剥離性の劣化等が激しくなる。さらに、材質の観点ではTS、El共に700℃を上回る温度域では、強度と延性のバランスの効果が飽和する。以上のことから、鋼板最高到達温度は600℃以上700℃以下とする。
次に、鋼板温度が600℃以上700℃以下の温度域における鋼板通過時間を30秒以上10分以内とした理由は以下の通りである。30秒を下回れば目標とする材質(TS、El)が得られない。一方、10分を上回れば、強度と延性のバランスの効果が飽和する。
鋼板温度が600℃以上700℃以下の温度域における露点を−45℃以下とした理由は以下の通りである。表面濃化の抑制効果が認められるのが露点:−45℃以下である。露点の下限は特に設けないが、−80℃以下は効果が飽和し、コスト的に不利となるため、−80℃以上が望ましい。
次いで、本発明の対象とする高強度溶融亜鉛めっき鋼板の鋼成分組成について説明する。
C:0.03〜0.35%
Cは、鋼組織としてマルテンサイトなどを形成させることで加工性を向上させる。そのためには0.03%以上必要である。一方、0.35%を超えると溶接性が劣化する。したがって、C量は0.03%以上0.35%以下とする。
Si:0.01〜0.50%
Siは鋼を強化して良好な材質を得るのに有効な元素ではあるが、易酸化性元素であるため、めっき性には不利であり、極力添加することは避けるべき元素である。しかしながら、0.01%程度は不可避的に鋼中に含まれ、これ以下に低減するためにはコストが上昇してしまうため、0.01%を下限とする。一方、0.50%を超えると高加工時の耐めっき剥離性の改善が困難となってくる。したがって、Si量は0.01%以上0.50%以下とする。
Mn:3.6〜8.0%
Mnは鋼の高強度化に有効な元素である。機械特性や強度を確保するためは3.6%以上含有させることが必要である。一方、8.0%を超えると溶接性やめっき密着性の確保、強度と延性のバランスの確保が困難になる。したがって、Mn量は3.6%以上8.0%以下とする。
Al:0.001〜1.000%
Alは溶鋼の脱酸を目的に添加されるが、その含有量が0.001%未満の場合、その目的が達成されない。溶鋼の脱酸の効果は0.001%以上で得られる。一方、1.000%を超えるとコストアップになる。したがって、Al量は0.001%以上1.000%以下とする。
P≦0.10%
Pは不可避的に含有される元素のひとつであり、0.005%未満にするためには、コストの増大が懸念されるため、0.005%以上が望ましい。一方、Pが0.10%を超えて含有されると溶接性が劣化する。さらに、表面品質が劣化する。また、非合金化処理時にはめっき密着性が劣化し、合金化処理時には合金化処理温度を上昇しないと所望の合金化度とすることができない。また所望の合金化度とするために合金化処理温度を上昇させると延性が劣化すると同時に合金化めっき皮膜の密着性が劣化するため、所望の合金化度と、良好な延性、合金化めっき皮膜を両立させることができない。したがって、P量は0.10%以下とし、下限としては0.005%以上が望ましい。
S≦0.010%
Sは不可避的に含有される元素のひとつである。下限は規定しないが、多量に含有されると溶接性が劣化するため0.010%以下が好ましい。
なお、強度と延性のバランスを制御するため、B:0.001〜0.005%、Nb:0.005〜0.050%、Ti:0.005〜0.050%、Cr:0.001〜1.000%、Mo:0.05〜1.00%、Cu:0.05〜1.00%、Ni:0.05〜1.00%の中から選ばれる1種以上の元素を必要に応じて添加してもよい。
これらの元素を添加する場合における適正添加量の限定理由は以下の通りである。
B:0.001〜0.005%
Bは0.001%未満では焼き入れ促進効果が得られにくい。一方、0.005%超えではめっき密着性が劣化する。よって、含有する場合、B量は0.001%以上0.005%以下とする。
Nb:0.005〜0.050%
Nbは0.005%未満では強度調整の効果やMoとの複合添加時におけるめっき密着性改善効果が得られにくい。一方、0.050%超えではコストアップを招く。よって、含有する場合、Nb量は0.005%以上0.050%以下とする。
Ti:0.005〜0.050%
Tiは0.005%未満では強度調整の効果が得られにくい。一方、0.050%超えではめっき密着性の劣化を招く。よって、含有する場合、Ti量は0.005%以上0.050%以下とする。
Cr:0.001〜1.000%
Crは0.001%未満では焼き入れ性効果が得られにくい。一方、1.000%超えではCrが表面濃化するため、めっき密着性や溶接性が劣化する。よって、含有する場合、Cr量は0.001%以上1.000%以下とする。
Mo:0.05〜1.00%
Moは0.05%未満では強度調整の効果やNb、またはNiやCuとの複合添加時におけるめっき密着性改善効果が得られにくい。一方、1.00%超えではコストアップを招く。よって、含有する場合、Mo量は0.05%以上1.00%以下とする。
Cu:0.05〜1.00%
Cuは0.05%未満では残留γ相形成促進効果やNiやMoとの複合添加時におけるめっき密着性改善効果が得られにくい。一方、1.00%超えではコストアップを招く。よって、含有する場合、Cu量は0.05%以上1.00%以下とする。
Ni:0.05〜1.00%
Niは0.05%未満では残留γ相形成促進効果やCuとMoとの複合添加時におけるめっき密着性改善効果が得られにくい。一方、1.00%超えではコストアップを招く。よって、含有する場合、Ni量は0.05%以上1.00%以下とする。
上記以外の残部はFeおよび不可避的不純物である。
次に、本発明の高強度溶融亜鉛めっき鋼板の製造方法とその限定理由について説明する。
上記化学成分を有する鋼を熱間圧延した後、冷間圧延し鋼板とし、次いで、連続式溶融亜鉛めっき設備において焼鈍および溶融亜鉛めっき処理を行う。なお、この時、本発明においては、焼鈍炉内での鋼板最高到達温度は600℃以上700℃以下であり、鋼板温度が600℃以上700℃以下の温度域における鋼板通過時間は30秒以上10分以内、雰囲気中の露点は−45℃以下とする。これは本発明において、最も重要な要件である。
熱間圧延
通常、行われる条件にて行うことができる。
酸洗
熱間圧延後は酸洗処理を行うのが好ましい。酸洗工程で表面に生成した黒皮スケールを除去し、しかる後冷間圧延する。なお、酸洗条件は特に限定しない。
冷間圧延
40%以上80%以下の圧下率で行うことが好ましい。圧下率が40%未満では再結晶温度が低温化するため、機械特性が劣化しやすい。一方、圧下率が80%超えでは高強度鋼板であるため、圧延コストがアップするだけでなく、焼鈍時の表面濃化が増加するため、めっき特性が劣化する。
冷間圧延した鋼板に対して、焼鈍した後溶融亜鉛めっき処理を施す。
焼鈍炉では、前段の加熱帯で鋼板を所定温度まで加熱する加熱工程を行い、後段の均熱帯で所定温度に所定時間保持する均熱工程を行う。
そして、上述したように、焼鈍炉内での鋼板最高到達温度は600℃以上700℃以下であり、鋼板温度が600℃以上700℃以下の温度域における鋼板通過時間は30秒以上10分以内、雰囲気中の露点は−45℃以下となるように制御して焼鈍、溶融亜鉛めっき処理を行う。
なお、雰囲気中のHの体積分率が1%未満では還元による活性化効果が得られず耐めっき剥離性が劣化する。上限は特に規定しないが、75%超えではコストアップし、かつ効果が飽和する。よって、Hの体積分率は1%以上75%以下が好ましい。また、残部はN及び不可避不純物気体からなる。本発明の効果を損するものでなければHO、CO、CO等の他の気体成分を含有してもよい。
溶融亜鉛めっき処理は、常法で行うことができる。
次いで、必要に応じて合金化処理を行う。
溶融亜鉛めっき処理に引き続き合金化処理を行うときは、溶融亜鉛めっき処理したのち、450℃以上600℃以下に鋼板を加熱して合金化処理を施し、めっき層のFe含有量が8〜14%になるよう行うのが好ましい。8%未満では合金化ムラ発生やフレーキング性が劣化する。一方、14%超えは耐めっき剥離性が劣化する。
以上により、本発明の高強度溶融亜鉛めっき鋼板が得られる。本発明の高強度溶融亜鉛めっき鋼板は、鋼板の表面に、片面あたりのめっき付着量が20〜120g/mの亜鉛めっき層を有する。20g/m未満では耐食性の確保が困難になる。一方、120g/mを超えると耐めっき剥離性が劣化する。
そして、以下のように、めっき層直下の下地鋼板表面の構造に特徴を有することになる。
亜鉛めっき層の直下の、下地鋼板表面から100μm以内の鋼板表層部では、Fe、Si、Mn、Al、P、さらには、B、Nb、Ti、Cr、Mo、Cu、Niのうちから選ばれる1種以上の酸化物の形成が合計で片面あたり0.030g/m未満に抑制される。
鋼中にSi及び多量のMnが添加された溶融亜鉛めっき鋼板において、耐食性および高加工時の耐めっき剥離性を満足させるためには、腐食や高加工時の割れなどの起点になる可能性があるめっき層直下の地鉄表層の内部酸化を極力少なくすることが求められる。そこで、本発明では、まず、めっき性を確保するために焼鈍工程において酸素ポテンシャルを低下させることで易酸化性元素であるSiやMn等の地鉄表層部における活量を低下させる。そして、これらの元素の外部酸化を抑制し、結果的にめっき性を改善する。さらに、地鉄表層部に形成する内部酸化も抑制され、耐食性及び高加工性が改善することになる。このような効果は、下地鋼板表面から100μm以内の鋼板表層部に、Fe、Si、Mn、Al、P、さらには、B、Nb、Ti、Cr、Mo、Cu、Niのうちから選ばれる少なくとも1種以上の酸化物の形成量を合計で0.030g/m未満に抑制することで認められる。酸化物形成量の合計(以下、内部酸化量と称す)が0.030g/m以上では、耐食性及び高加工性が劣化する。また、内部酸化量を0.0001g/m未満に抑制しても、耐食性及び高加工性向上効果は飽和するため、内部酸化量の下限は0.0001g/m以上が好ましい。
さらに、上記に加え、本発明では、耐めっき剥離性を向上させるために、Si、Mn系複合酸化物が成長する地鉄組織は軟質で加工性に富むフェライト相が好ましい。
以下、本発明を、実施例に基いて具体的に説明する。
表1に示す鋼組成からなる熱延鋼板を酸洗し、黒皮スケール除去した後、表2に示す条件にて冷間圧延し、厚さ1.0mmの冷延鋼板を得た。
Figure 0005982905
次いで、上記で得た冷延鋼板を、焼鈍炉にオールラジアントチューブ型の加熱炉を備えるCGLに装入した。CGLでは、表2に示す通り、焼鈍炉内の鋼板温度が600℃〜700℃の温度域における露点および鋼板通過時間、鋼板最高到達温度を表2に示すように制御して通板し、焼鈍したのち、460℃のAl含有Zn浴にて溶融亜鉛めっき処理を施した。
なお、雰囲気中の露点の制御については、N中に設置した水タンクを加熱して加湿したNガスが流れる配管を予め別途設置し、加湿したNガス中にHガスを導入して混合し、これを炉内に導入することで雰囲気中の露点を制御した。
また、GAは0.14%Al含有Zn浴を、GIは0.18%Al含有Zn浴を用いた。付着量はガスワイピングにより調節し、GAは合金化処理した。
以上により得られた溶融亜鉛めっき鋼板(GAおよびGI)に対して、外観性(めっき外観)、耐食性、高加工時の耐めっき剥離性、加工性を調査した。また、めっき層直下の100μmまので地鉄鋼板表層部に存在する酸化物の量(内部酸化量)を測定した。測定方法および評価基準を下記に示す。
<外観性(めっき外観)>
外観性は、不めっきや合金化ムラなどの外観不良が無い場合は外観良好(記号○)、ある場合は外観不良(記号×)と判定した。
<耐食性>
寸法70mm×150mmの合金化溶融亜鉛めっき鋼板について、JIS Z 2371(2000年)に基づく塩水噴霧試験を3日間行い、腐食生成物をクロム酸(濃度200g/L、80℃)を用いて1分間洗浄除去し、片面あたりの試験前後のめっき腐食減量(g/m・日)を重量法にて測定し、下記基準で評価した。
○(良好):20g/m・日未満
×(不良):20g/m・日以上
<耐めっき剥離性>
高加工時の耐めっき剥離性は、GAではめっき鋼板では、90°を超えて鋭角に曲げたときの曲げ加工部のめっき剥離の抑制が要求される。本実施例では120°曲げした場合の曲げ加工部にセロハンテープ(登録商標)を押し付けて剥離物をセロハンテープ(登録商標)に転移させ、セロハンテープ(登録商標)上の剥離物量をZnカウント数として蛍光X線法で求めた。なお、この時のマスク径は30mm、蛍光X線の加速電圧は50kV、加速電流は50mA、測定時間は20秒である。下記の基準に照らして、ランク1、2のものを耐めっき剥離性が良好(記号○)、3以上のものを耐めっき剥離性が不良(記号×)と評価した。
蛍光X線Znカウント数 ランク
0−500未満:1(良)
500以上−1000未満:2
1000以上−2000未満:3
2000以上−3000未満:4
3000以上:5(劣)
GIでは、衝撃試験時の耐めっき剥離性が要求される。ボールインパクト試験を行い、加工部をテープ剥離し、めっき層の剥離有無を目視判定した。ボールインパクト条件は、ボール重量1000g、落下高さ100cmである。
○:めっき層の剥離無し
×:めっき層が剥離
<加工性>
加工性は、試料から圧延方向に対して90°方向にJIS5号引張試験片を採取し、JIS Z 2241の規定に準拠してクロスヘッド速度10mm/min一定で引張試験を行い、引張り強度(TS/MPa)と伸び(El%)を測定し、TS×El≧24000のものを良好、TS×El<24000のものを不良とした。
<めっき層直下100μmまでの領域における内部酸化量>
内部酸化量は、「インパルス炉溶融−赤外線吸収法」により測定する。ただし、素材(すなわち焼鈍を施す前の高張力鋼板)に含まれる酸素量を差し引く必要があるので、本発明では、連続焼鈍後の高張力鋼板の両面の表層部を100μm以上研磨して鋼中酸素濃度を測定し、その測定値を素材に含まれる酸素量OHとし、また、連続焼鈍後の高張力鋼板の板厚方向全体での鋼中酸素濃度を測定して、その測定値を内部酸化後の酸素量OIとした。このようにして得られた高張力鋼板の内部酸化後の酸素量OIと、素材に含まれる酸素量OHとを用いて、OIとOHの差(=OI−OH)を算出し、さらに片面単位面積(すなわち1m)当たりの量に換算した値(g/m)を内部酸化量とした。
以上により得られた結果を製造条件と併せて表2に示す。
Figure 0005982905
表2から明らかなように、本発明法で製造されたGI、GA(本発明例)は、Si、Mn等の易酸化性元素を多量に含有する高強度鋼板であるにもかかわらず、耐食性、加工性、高加工時の耐めっき剥離性およびめっき外観も良好である。
一方、比較例では、めっき外観、耐食性、加工性、高加工時の耐めっき剥離性のいずれか一つ以上が劣る。
本発明の高強度溶融亜鉛めっき鋼板は、めっき外観、耐食性、加工性および高加工時の耐めっき剥離性に優れ、自動車の車体そのものを軽量化かつ高強度化するための表面処理鋼板として利用することができる。また、自動車以外にも、素材鋼板に防錆性を付与した表面処理鋼板として、家電、建材の分野等、広範な分野で適用できる。

Claims (3)

  1. 質量%で、C:0.03〜0.35%、Si:0.01〜0.50%、Mn:3.6〜8.0%、Al:0.001〜1.000%、P≦0.10%、S≦0.010%を含有し、残部がFeおよび不可避的不純物からなる鋼板の表面に、片面あたりのめっき付着量が20〜120g/mの亜鉛めっき層を有する高強度溶融亜鉛めっき鋼板を製造する方法であって、鋼板を連続式溶融亜鉛めっき設備において焼鈍および溶融亜鉛めっき処理を施すに際し、焼鈍炉内での鋼板最高到達温度は600℃以上700℃以下であり、
    鋼板温度が600℃以上700℃以下の温度域における鋼板通過時間は30秒以上10分以内、雰囲気中の露点は−45℃以下とすることを特徴とする、亜鉛めっき層直下の、下地鋼板表面から100μm以内の鋼板表層部に生成したFe、Si、Mn、Al、Pのうちから選ばれる少なくとも1種以上の酸化物の合計が、片面あたり0.030g/m2未満である高強度溶融亜鉛めっき鋼板の製造方法。
  2. 質量%で、C:0.03〜0.35%、Si:0.01〜0.50%、Mn:3.6〜8.0%、Al:0.001〜1.000%、P≦0.10%、S≦0.010%を含有し、さらに、B:0.001〜0.005%、Nb:0.005〜0.050%、Ti:0.005〜0.050%、Cr:0.001〜1.000%、Mo:0.05〜1.00%、Cu:0.05〜1.00%、Ni:0.05〜1.00%の中から選ばれる1種以上の元素を含有し、残部がFeおよび不可避的不純物からなる鋼板の表面に、片面あたりのめっき付着量が20〜120g/mの亜鉛めっき層を有する高強度溶融亜鉛めっき鋼板を製造する方法であって、鋼板を連続式溶融亜鉛めっき設備において焼鈍および溶融亜鉛めっき処理を施すに際し、焼鈍炉内での鋼板最高到達温度は600℃以上700℃以下であり、
    鋼板温度が600℃以上700℃以下の温度域における鋼板通過時間は30秒以上10分以内、雰囲気中の露点は−45℃以下とすることを特徴とする、亜鉛めっき層直下の、下地鋼板表面から100μm以内の鋼板表層部に生成したFe、Si、Mn、Al、P、B、Nb、Ti、Cr、Mo、Cu、Niのうちから選ばれる少なくとも1種以上の酸化物の合計が、片面あたり0.030g/m2未満である高強度溶融亜鉛めっき鋼板の製造方法。
  3. 溶融亜鉛めっき処理後、さらに、450℃以上600℃以下の温度に鋼板を加熱して合金化処理を施し、めっき層のFe含有量を8〜14質量%の範囲にすることを特徴とする請求項1または2に記載の高強度溶融亜鉛めっき鋼板の製造方法。
JP2012061313A 2012-03-19 2012-03-19 高強度溶融亜鉛めっき鋼板の製造方法 Active JP5982905B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2012061313A JP5982905B2 (ja) 2012-03-19 2012-03-19 高強度溶融亜鉛めっき鋼板の製造方法
EP13764796.2A EP2829627B1 (en) 2012-03-19 2013-03-07 Method for manufacturing high strength galvanized steel sheet and high strength galvanized steel sheet
CN201380015301.5A CN104220628B (zh) 2012-03-19 2013-03-07 高强度热镀锌钢板的制造方法以及高强度热镀锌钢板
US14/384,298 US10837074B2 (en) 2012-03-19 2013-03-07 Method for manufacturing high strength galvanized steel sheet and high strength galvanized steel sheet
KR1020147027768A KR101692129B1 (ko) 2012-03-19 2013-03-07 고강도 용융 아연 도금 강판의 제조 방법 및 고강도 용융 아연 도금 강판
PCT/JP2013/001458 WO2013140729A1 (ja) 2012-03-19 2013-03-07 高強度溶融亜鉛めっき鋼板の製造方法および高強度溶融亜鉛めっき鋼板
TW102109555A TWI473888B (zh) 2012-03-19 2013-03-18 高強度熱浸鍍鋅鋼板的製造方法及高強度熱浸鍍鋅鋼板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012061313A JP5982905B2 (ja) 2012-03-19 2012-03-19 高強度溶融亜鉛めっき鋼板の製造方法

Publications (2)

Publication Number Publication Date
JP2013194270A JP2013194270A (ja) 2013-09-30
JP5982905B2 true JP5982905B2 (ja) 2016-08-31

Family

ID=49222213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012061313A Active JP5982905B2 (ja) 2012-03-19 2012-03-19 高強度溶融亜鉛めっき鋼板の製造方法

Country Status (7)

Country Link
US (1) US10837074B2 (ja)
EP (1) EP2829627B1 (ja)
JP (1) JP5982905B2 (ja)
KR (1) KR101692129B1 (ja)
CN (1) CN104220628B (ja)
TW (1) TWI473888B (ja)
WO (1) WO2013140729A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5982905B2 (ja) 2012-03-19 2016-08-31 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板の製造方法
JP5962541B2 (ja) * 2012-07-23 2016-08-03 Jfeスチール株式会社 高強度鋼板の製造方法
WO2014136412A1 (ja) 2013-03-04 2014-09-12 Jfeスチール株式会社 高強度鋼板及びその製造方法並びに高強度溶融亜鉛めっき鋼板及びその製造方法
JP5895873B2 (ja) * 2013-03-04 2016-03-30 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP5794284B2 (ja) * 2013-11-22 2015-10-14 Jfeスチール株式会社 高強度鋼板の製造方法
JP5884196B2 (ja) * 2014-02-18 2016-03-15 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板の製造方法
JP6032221B2 (ja) * 2014-02-18 2016-11-24 Jfeスチール株式会社 高強度鋼板の製造方法
JP6094508B2 (ja) * 2014-02-18 2017-03-15 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板およびその製造方法
CN105483531A (zh) * 2015-12-04 2016-04-13 重庆哈工易成形钢铁科技有限公司 用于冲压成形的钢材及其成形构件与热处理方法
JP6164280B2 (ja) 2015-12-22 2017-07-19 Jfeスチール株式会社 表面外観および曲げ性に優れるMn含有合金化溶融亜鉛めっき鋼板およびその製造方法
KR20190036119A (ko) * 2017-09-27 2019-04-04 현대자동차주식회사 도금층 쏠림이 방지된 통전 가열 열간성형 방법 및 이에 의해 제조된 열간성형용 강판

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5849619B2 (ja) 1979-04-28 1983-11-05 住友金属工業株式会社 化成処理性にすぐれた高張力冷延鋼板の製造方法
JPH0726240B2 (ja) 1989-10-27 1995-03-22 ペルメレック電極株式会社 鋼板の電解酸洗又は電解脱脂方法
JPH05320952A (ja) 1992-05-25 1993-12-07 Nkk Corp 塗装後の耐食性に優れた高強度冷延鋼板
JP2951480B2 (ja) 1992-06-24 1999-09-20 川崎製鉄株式会社 化成処理性ならびに成形性に優れる高張力冷延鋼板及びその製造方法
JP3514837B2 (ja) 1994-09-12 2004-03-31 日新製鋼株式会社 熱延鋼板の溶融めっき方法
JP2001140021A (ja) 1999-11-18 2001-05-22 Kawasaki Steel Corp めっき密着性に優れた高強度溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板の製造方法
JP3857939B2 (ja) * 2001-08-20 2006-12-13 株式会社神戸製鋼所 局部延性に優れた高強度高延性鋼および鋼板並びにその鋼板の製造方法
JP3840392B2 (ja) 2001-10-09 2006-11-01 株式会社神戸製鋼所 りん酸塩処理性に優れた鋼板
JP4718782B2 (ja) 2003-02-06 2011-07-06 新日本製鐵株式会社 合金化溶融亜鉛めっき鋼板、およびその製造方法
JP4464720B2 (ja) 2003-04-10 2010-05-19 新日本製鐵株式会社 高強度溶融亜鉛めっき鋼板およびその製造方法
JP4319559B2 (ja) 2003-04-10 2009-08-26 株式会社神戸製鋼所 化成処理性に優れる高強度冷延鋼板
JP4315844B2 (ja) 2004-03-05 2009-08-19 株式会社神戸製鋼所 塗膜密着性に優れた高強度冷延鋼板
JP4843982B2 (ja) 2004-03-31 2011-12-21 Jfeスチール株式会社 高剛性高強度薄鋼板およびその製造方法
CN100526493C (zh) * 2004-07-27 2009-08-12 新日本制铁株式会社 高杨氏模量钢板、使用了它的热浸镀锌钢板、合金化热浸镀锌钢板、和高杨氏模量钢管以及它们的制造方法
KR100960167B1 (ko) * 2004-07-27 2010-05-26 신닛뽄세이테쯔 카부시키카이샤 고영율 강판, 이를 이용한 용융 아연 도금 강판, 합금화 용융 아연 도금 강판 및 고영율 강관 및 이들의 제조 방법
JP4576921B2 (ja) 2004-08-04 2010-11-10 Jfeスチール株式会社 冷延鋼板の製造方法
JP4634915B2 (ja) * 2004-11-15 2011-02-16 新日本製鐵株式会社 高ヤング率鋼板、それを用いた溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、高ヤング率鋼管、高ヤング率溶融亜鉛めっき鋼管、及び高ヤング率合金化溶融亜鉛めっき鋼管、並びにそれらの製造方法
JP4741376B2 (ja) 2005-01-31 2011-08-03 新日本製鐵株式会社 外観が良好な高強度合金化溶融亜鉛めっき鋼板及びその製造方法と製造設備
CN102534359B (zh) 2005-03-31 2014-12-10 株式会社神户制钢所 涂膜附着性、加工性及耐氢脆化特性优异的高强度冷轧钢板和机动车用钢零件
WO2007067014A1 (en) 2005-12-09 2007-06-14 Posco Tole d'acier laminee a froid de haute resistance possedant une excellente propriete de formabilite et de revetement, tole d'acier plaquee de metal a base de zinc fabriquee a partir de cette tole et procece de fabrication de celle-ci
JP4882447B2 (ja) 2006-03-28 2012-02-22 Jfeスチール株式会社 溶融亜鉛めっき鋼板の製造方法
JP4932363B2 (ja) 2006-07-20 2012-05-16 新日本製鐵株式会社 高強度合金化溶融亜鉛めっき鋼板及びその製造方法
JP5092507B2 (ja) 2007-04-06 2012-12-05 住友金属工業株式会社 高張力合金化溶融亜鉛めっき鋼板とその製造方法
JP2009024980A (ja) 2007-07-23 2009-02-05 Denso Corp 熱交換器用温度センサ
KR101027250B1 (ko) * 2008-05-20 2011-04-06 주식회사 포스코 고연성 및 내지연파괴 특성이 우수한 고강도 냉연강판,용융아연 도금강판 및 그 제조방법
KR100985298B1 (ko) 2008-05-27 2010-10-04 주식회사 포스코 리징 저항성이 우수한 저비중 고강도 열연 강판, 냉연강판, 아연도금 강판 및 이들의 제조방법
JP2010126757A (ja) 2008-11-27 2010-06-10 Jfe Steel Corp 高強度溶融亜鉛めっき鋼板およびその製造方法
JP5663833B2 (ja) * 2008-11-27 2015-02-04 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板の製造方法
KR101079472B1 (ko) 2008-12-23 2011-11-03 주식회사 포스코 도금표면품질이 우수한 고망간강의 용융아연도금강판의 제조방법
JP5370244B2 (ja) 2009-03-31 2013-12-18 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板の製造方法
JP5552864B2 (ja) 2009-03-31 2014-07-16 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板およびその製造方法
JP5552862B2 (ja) * 2009-03-31 2014-07-16 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板およびその製造方法
US9309586B2 (en) 2009-03-31 2016-04-12 Jfe Steel Corporation High-strength galvanized steel sheet and method for manufacturing the same
JP5552863B2 (ja) * 2009-03-31 2014-07-16 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板およびその製造方法
JP5206705B2 (ja) 2009-03-31 2013-06-12 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板およびその製造方法
JP5760361B2 (ja) 2010-09-29 2015-08-12 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP5712542B2 (ja) 2010-09-29 2015-05-07 Jfeスチール株式会社 高強度鋼板およびその製造方法
KR20130049820A (ko) 2010-09-30 2013-05-14 제이에프이 스틸 가부시키가이샤 고강도 강판 및 그 제조 방법
JP5856002B2 (ja) 2011-05-12 2016-02-09 Jfeスチール株式会社 衝突エネルギー吸収能に優れた自動車用衝突エネルギー吸収部材およびその製造方法
JP5834869B2 (ja) 2011-12-14 2015-12-24 Jfeスチール株式会社 化成処理性に優れた高強度鋼板およびその製造方法
JP5811841B2 (ja) 2011-12-28 2015-11-11 新日鐵住金株式会社 Si含有高強度合金化溶融亜鉛めっき鋼板の製造方法
JP5505430B2 (ja) 2012-01-17 2014-05-28 Jfeスチール株式会社 鋼帯の連続焼鈍炉及び連続焼鈍方法
JP5982905B2 (ja) 2012-03-19 2016-08-31 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板の製造方法
JP5888268B2 (ja) 2012-06-15 2016-03-16 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板の製造方法および高強度溶融亜鉛めっき鋼板
JP5888267B2 (ja) 2012-06-15 2016-03-16 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板の製造方法および高強度溶融亜鉛めっき鋼板
JP5962541B2 (ja) 2012-07-23 2016-08-03 Jfeスチール株式会社 高強度鋼板の製造方法
WO2014136412A1 (ja) 2013-03-04 2014-09-12 Jfeスチール株式会社 高強度鋼板及びその製造方法並びに高強度溶融亜鉛めっき鋼板及びその製造方法
JP5794284B2 (ja) * 2013-11-22 2015-10-14 Jfeスチール株式会社 高強度鋼板の製造方法

Also Published As

Publication number Publication date
KR101692129B1 (ko) 2017-01-02
CN104220628B (zh) 2016-11-23
EP2829627A1 (en) 2015-01-28
JP2013194270A (ja) 2013-09-30
TW201343929A (zh) 2013-11-01
US10837074B2 (en) 2020-11-17
EP2829627B1 (en) 2018-06-13
TWI473888B (zh) 2015-02-21
EP2829627A4 (en) 2015-08-05
US20150044503A1 (en) 2015-02-12
CN104220628A (zh) 2014-12-17
WO2013140729A1 (ja) 2013-09-26
KR20140138255A (ko) 2014-12-03

Similar Documents

Publication Publication Date Title
JP5206705B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP5982905B2 (ja) 高強度溶融亜鉛めっき鋼板の製造方法
JP5982906B2 (ja) 高強度溶融亜鉛めっき鋼板の製造方法
JP5888267B2 (ja) 高強度溶融亜鉛めっき鋼板の製造方法および高強度溶融亜鉛めっき鋼板
JP2010126757A (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP5552863B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP5884196B2 (ja) 高強度溶融亜鉛めっき鋼板の製造方法
JP5552859B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP2011219778A (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP5888268B2 (ja) 高強度溶融亜鉛めっき鋼板の製造方法および高強度溶融亜鉛めっき鋼板
JP5672747B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP5552862B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP5593771B2 (ja) 高強度溶融亜鉛めっき鋼板の製造方法
JP5552864B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP6094508B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP5672743B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP6164280B2 (ja) 表面外観および曲げ性に優れるMn含有合金化溶融亜鉛めっき鋼板およびその製造方法
JP5593770B2 (ja) 高強度溶融亜鉛めっき鋼板の製造方法
JP5672744B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP5672746B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP5935720B2 (ja) 高強度溶融亜鉛めっき鋼板の製造方法および高強度溶融亜鉛めっき鋼板
JP5971155B2 (ja) 高強度溶融亜鉛めっき鋼板の製造方法および高強度溶融亜鉛めっき鋼板
JP5552860B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP5552861B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP5962544B2 (ja) 高強度溶融亜鉛めっき鋼板の製造方法および高強度溶融亜鉛めっき鋼板

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160412

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20160428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160718

R150 Certificate of patent or registration of utility model

Ref document number: 5982905

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250