JP5980369B2 - Turbo rotating machine and operation method thereof - Google Patents

Turbo rotating machine and operation method thereof Download PDF

Info

Publication number
JP5980369B2
JP5980369B2 JP2015089078A JP2015089078A JP5980369B2 JP 5980369 B2 JP5980369 B2 JP 5980369B2 JP 2015089078 A JP2015089078 A JP 2015089078A JP 2015089078 A JP2015089078 A JP 2015089078A JP 5980369 B2 JP5980369 B2 JP 5980369B2
Authority
JP
Japan
Prior art keywords
steam
cooling
passage
stationary
stationary member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015089078A
Other languages
Japanese (ja)
Other versions
JP2015132269A (en
Inventor
亮吉 本坊
亮吉 本坊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2015089078A priority Critical patent/JP5980369B2/en
Publication of JP2015132269A publication Critical patent/JP2015132269A/en
Application granted granted Critical
Publication of JP5980369B2 publication Critical patent/JP5980369B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

本発明は、例えば、蒸気タービン、圧縮機等のターボ回転機械及びその運転方法に関する。   The present invention relates to a turbo rotating machine such as a steam turbine and a compressor, and an operation method thereof.

蒸気タービン、圧縮機等のターボ回転機械では、運転効率の向上の観点から、定格運転時における回転部材(ロータや動翼)と静止部材(翼環や静翼)との間隙を可能な限り小さくして、この間隙を介した流体の漏洩を抑制することが望ましい。   In turbo rotating machines such as steam turbines and compressors, the gap between the rotating member (rotor or moving blade) and stationary member (blade ring or stationary blade) during rated operation is made as small as possible from the viewpoint of improving operating efficiency. Thus, it is desirable to suppress fluid leakage through this gap.

ところが、ターボ回転機械の起動時に、静止部材および回転部材はロータの半径方向外方に熱伸びすることが知られている。静止部材および回転部材の熱伸び量は、静止部材と回転部材との熱膨張率差や熱容量差に起因して、両者間に差異が生ずることがある。そして、静止部材の熱伸び量が回転部材よりも大きければ、ロータの半径方向における回転部材と静止部材との間隙が広がってしまい、流体の漏洩が生じてしまう。
また、ターボ回転機械のセッティングの際、ターボ回転機械が定格運転状態に達したときに回転部材と静止部材とが同心となるように静止部材に対して回転部材をオフセットすることがある。この場合、ターボ回転機械のセッティング時における回転部材と静止部材との間隙を大きめに確保する必要があり、定格運転時においてもこの間隙が狭まらず、流体の漏洩が生じてしまう傾向がある。
However, it is known that the stationary member and the rotating member are thermally extended outward in the radial direction of the rotor when the turbo rotating machine is started. The amount of thermal expansion between the stationary member and the rotating member may differ between the stationary member and the rotating member due to a difference in thermal expansion coefficient or a difference in heat capacity between the stationary member and the rotating member. If the thermal expansion amount of the stationary member is larger than that of the rotating member, the gap between the rotating member and the stationary member in the radial direction of the rotor is widened, resulting in fluid leakage.
Further, when setting the turbo rotating machine, the rotating member may be offset with respect to the stationary member so that the rotating member and the stationary member are concentric when the turbo rotating machine reaches a rated operation state. In this case, it is necessary to ensure a large gap between the rotating member and the stationary member when setting the turbo rotating machine, and this gap is not narrowed even during rated operation, and fluid leakage tends to occur. .

そこで、定格運転時における回転部材と静止部材との半径方向間隙(ロータの半径方向における間隙)を小さくする技術の開発が期待されている。   Therefore, development of a technique for reducing the radial gap (gap in the radial direction of the rotor) between the rotating member and the stationary member during rated operation is expected.

特許文献1には、静止部材を冷却するための冷却媒体が流れる冷却媒体通路を車室内に形成した圧縮機が記載されている(特許文献1の図7及び8参照)。この圧縮機は、通常運転時に冷却媒体を冷却媒体通路に流し、静止部材を冷却して、動翼と車室との間に形成されるチップクリアランスを制御するようになっている。   Patent Document 1 describes a compressor in which a cooling medium passage through which a cooling medium for cooling a stationary member flows is formed in a vehicle interior (see FIGS. 7 and 8 of Patent Document 1). In this compressor, a cooling medium is caused to flow through the cooling medium passage during normal operation, and the stationary member is cooled to control the tip clearance formed between the moving blade and the passenger compartment.

また特許文献2には、定格運転時における回転部材と静止部材との半径方向間隙を小さくする技術に関するものではないが、車室を冷却するための冷却媒体が流れる流体通路を車室の外表面又は外壁内に形成した蒸気タービンが記載されている。この蒸気タービンは、起動時(暖機時)及び停止時において車室とロータとの間の温度差が小さくなるように冷却媒体の流量を調節し、車室とロータとのロータ方向における伸び差を低減し、蒸気タービンの起動及び停止を迅速に行えるようにしたものである。
なお、車室とロータとのロータ方向における伸び差は、軸受台に設置された伸び差計により計測される(特許文献2の6頁参照)。
Patent Document 2 does not relate to a technique for reducing the radial gap between the rotating member and the stationary member during rated operation, but a fluid passage through which a cooling medium for cooling the passenger compartment flows is provided on the outer surface of the passenger compartment. Or a steam turbine formed in the outer wall is described. This steam turbine adjusts the flow rate of the cooling medium so that the temperature difference between the passenger compartment and the rotor becomes small at the time of start-up (warm-up) and at the time of stop, and the difference in elongation between the passenger compartment and the rotor in the rotor direction. The steam turbine can be started and stopped quickly.
In addition, the elongation difference in the rotor direction between the passenger compartment and the rotor is measured by an elongation difference meter installed on the bearing stand (see page 6 of Patent Document 2).

また特許文献3には、定格運転時における回転部材と静止部材との半径方向間隙を小さくする技術に関するものではないが、冷却蒸気が流れる冷却用通路を上車室の外周肉厚部に形成した蒸気タービンが記載されている。この蒸気タービンは、冷却蒸気によって上車室を冷却し、冷却停止時における上下車室の温度差に起因する猫反り(キャットバック)を防止して、下車室の静止部材と回転部材との接触を防ぐようになっている。   Patent Document 3 does not relate to a technique for reducing the radial gap between the rotating member and the stationary member during rated operation, but a cooling passage through which cooling steam flows is formed in the outer peripheral thick portion of the upper casing. A steam turbine is described. This steam turbine cools the upper compartment with cooling steam, prevents cat warpage (catback) due to the temperature difference between the upper and lower compartments when cooling is stopped, and makes contact between the stationary member and the rotating member in the lower compartment Is to prevent.

さらに特許文献4には、定格運転時における回転部材と静止部材との半径方向間隙を小さくする技術に関するものではないが、第1内部ケーシングと第2内部ケーシングとの間に形成される冷却通路に外部からの冷却空気を流す蒸気タービンが記載されている。この蒸気タービンは、回転部材と静止部材とのロータ方向における伸び差を抑制しながらタービンを強制冷却するようになっている。   Further, Patent Document 4 does not relate to a technique for reducing the radial gap between the rotating member and the stationary member during rated operation, but in a cooling passage formed between the first inner casing and the second inner casing. A steam turbine for flowing cooling air from the outside is described. The steam turbine is configured to forcibly cool the turbine while suppressing a difference in elongation between the rotating member and the stationary member in the rotor direction.

特開2010−90816号公報JP 2010-90816 A 実開昭62−34103号公報Japanese Utility Model Publication No. 62-34103 特開平8−312306号公報JP-A-8-312306 特開平6−193406号公報JP-A-6-193406

しかしながら、特許文献1では、静止部材を冷却するための冷却媒体が流れる冷却通路の具体的構成が開示されていない。   However, Patent Document 1 does not disclose a specific configuration of a cooling passage through which a cooling medium for cooling the stationary member flows.

また特許文献2〜4に記載の蒸気タービンは、いずれも、定格運転時における回転部材と静止部材との半径方向間隙を小さくする技術に関するものではない。   In addition, none of the steam turbines described in Patent Documents 2 to 4 relates to a technique for reducing the radial gap between the rotating member and the stationary member during rated operation.

本発明の少なくとも幾つかの実施形態は、上述の事情に鑑みてなされたものであり、定格運転時における回転部材と静止部材との半径方向間隙を低減可能であるターボ回転機械及びその運転方法を提供することを目的とする。   At least some embodiments of the present invention have been made in view of the above-described circumstances, and provide a turbo rotating machine capable of reducing a radial gap between a rotating member and a stationary member during rated operation and an operating method thereof. The purpose is to provide.

本発明の少なくとも幾つかの実施形態に係るターボ回転機械は、
回転部材が静止部材に対峙しながら回転し、該回転部材と流体とのエネルギーの受け渡しを行うターボ回転機械であって、
前記回転部材および前記静止部材を収納する車室を有し、
前記静止部材は、前記ターボ回転機械の周方向に沿って前記静止部材の内部に設けられる往路と、該往路に連通するように前記周方向に沿って前記静止部材の内部に設けられる復路と、を含む冷却通路を具え、
前記冷却通路の入口から流入した流体は、前記冷却通路の前記往路を流れ、折り返して、前記冷却通路の前記復路を流れた後、前記冷却通路の出口から排出されることを特徴とする。
A turbo rotating machine according to at least some embodiments of the present invention includes:
A turbo rotating machine in which a rotating member rotates while facing a stationary member and transfers energy between the rotating member and a fluid,
A vehicle compartment that houses the rotating member and the stationary member;
The stationary member includes an outward path provided in the stationary member along a circumferential direction of the turbo rotating machine, and a return path provided in the stationary member along the circumferential direction so as to communicate with the forward path; Including cooling passages, including
The fluid flowing in from the inlet of the cooling passage flows through the forward path of the cooling passage, turns back, flows through the return path of the cooling passage, and is then discharged from the outlet of the cooling passage.

このターボ回転機械によれば、静止部材に冷却通路を設けて、該冷却通路に流体(低温流体)を流すようにしたので、定格運転状態では、回転部材に比べて静止部材が低温になる。このため、静止部材の半径方向外方に向かう熱伸びが抑制され、定格運転時における回転部材と静止部材との半径方向間隙を低減し、流体漏れを抑制することができる。
また、流体(低温流体)を用いた静止部材の冷却により回転部材と静止部材との半径方向間隙が定格運転時に狭まるから、ターボ回転機械のセッティング時における回転部材と静止部材との間隙を比較的大きくしても、定格運転時における蒸気漏れはそれほど問題にならない。このため、ターボ回転機械のセッティングの際に静止部材に対して回転部材をオフセットする必要がある場合であっても、ターボ回転機械の性能低下を損なうことなく対応可能である。
According to this turbo rotating machine, since the cooling passage is provided in the stationary member and the fluid (cold fluid) is allowed to flow through the cooling passage, the stationary member is cooler than the rotating member in the rated operation state. For this reason, the thermal expansion toward the radially outward direction of the stationary member is suppressed, the radial gap between the rotating member and the stationary member during rated operation can be reduced, and fluid leakage can be suppressed.
In addition, since the radial gap between the rotating member and the stationary member is narrowed during rated operation due to cooling of the stationary member using a fluid (cold fluid), the gap between the rotating member and the stationary member during setting of the turbo rotating machine is relatively small. Even if it is increased, steam leakage during rated operation is not a problem. For this reason, even when it is necessary to offset the rotating member with respect to the stationary member at the time of setting the turbo rotating machine, it is possible to cope without impairing the performance degradation of the turbo rotating machine.

幾つかの実施形態では、上記ターボ回転機械において、前記車室は、水平面で分割された構成をなし、前記冷却通路の入口と出口は、それぞれ、前記車室の水平分割面近傍に設けられていてもよい。   In some embodiments, in the turbo rotating machine, the casing is configured to be divided in a horizontal plane, and an inlet and an outlet of the cooling passage are respectively provided in the vicinity of a horizontal dividing surface of the casing. May be.

幾つかの実施形態では、前記静止部材は、前記周方向における複数箇所にそれぞれ設けられる複数の前記冷却通路を含む。   In some embodiments, the stationary member includes a plurality of cooling passages respectively provided at a plurality of locations in the circumferential direction.

幾つかの実施形態では、前記静止部材は、前記周方向の4箇所においてそれぞれ等間隔に設けられる複数の前記冷却通路を含む。   In some embodiments, the stationary member includes a plurality of the cooling passages provided at equal intervals at four locations in the circumferential direction.

本発明の少なくとも幾つかの実施形態では、ターボ回転機械は、複数段の動翼を有するロータと、1段以上の静翼が内側に取り付けられる複数の翼環と、前記複数の翼環を内側に装着するとともに、該翼環及び前記静翼とともに前記ロータを収納し、前記動翼と前記静翼とが対峙する車室内領域に環状の流体流路を形成する車室と、前記流体流路内において前記複数の翼環のうち1の翼環を通過する流体よりも低温の流体を前記流体流路から抽気し、前記1の翼環の内部に形成された冷却通路に導く抽気流体導入路と、前記冷却通路を流れた後の前記低温の流体を前記1の翼環から排出する抽気流体排出路と、を備え、前記1の翼環には、前記抽気流体導入路が接続される抽気流体入口と、前記抽気流体排出路が接続される抽気流体出口と、が設けられてもよい。
この場合、上記ターボ回転機械において、前記抽気流体導入路は、一端が前記1の翼環よりも下流側の前記流体流路に接続され、他端が前記冷却通路に接続されており、前記抽気流体排出路が、前記抽気流体導入路の前記一端よりもさらに下流側の前記流体流路又は排気室と前記冷却通路とを連通しており、前記ターボ回転機械が蒸気タービンであってもよい。
In at least some embodiments of the present invention, a turbo rotating machine includes a rotor having a plurality of stages of moving blades, a plurality of blade rings on which one or more stages of stationary blades are attached, and the plurality of blade rings inside. A casing that houses the rotor together with the blade ring and the stationary blade, and that forms an annular fluid flow path in a vehicle interior area where the moving blade and the stationary blade face each other, and the fluid flow path An extraction fluid introduction path for extracting a fluid having a temperature lower than that of the fluid passing through one of the plurality of blade rings from the fluid flow path and guiding the fluid to a cooling passage formed inside the one blade ring. And an extraction fluid discharge path for discharging the low-temperature fluid after flowing through the cooling passage from the first blade ring, and the extraction air to which the extraction fluid introduction path is connected to the one blade ring A fluid inlet and a bleed fluid outlet to which the bleed fluid discharge path is connected; It may be provided.
In this case, in the turbo rotating machine, one end of the extraction fluid introduction path is connected to the fluid flow path downstream of the first blade ring, and the other end is connected to the cooling passage. A fluid discharge path may communicate the fluid passage or exhaust chamber further downstream than the one end of the extraction fluid introduction path and the cooling passage, and the turbo rotating machine may be a steam turbine.

ターボ回転機械としての蒸気タービンでは、上流側から下流側に向かって、蒸気の温度及び圧力が低下する。このため、静止部材よりも下流側に接続された抽気流体導入路の一端のさらに下流側に抽気流体排出路を連通させることで、車室内の圧力差によって、比較的低温の蒸気が抽気流体導入路から冷却通路に流れ込み、冷却通路から抽気流体排出路を介して蒸気通路(回転部材が静止部材に対峙している領域に形成された蒸気の通路)に戻される。なお、ここでいう比較的低温の蒸気は、冷却通路が形成された静止部材を通過する蒸気よりも低温の蒸気を意味する。
よって、冷却媒体としての低温蒸気を静止部材の冷却通路に供給するための動力源は不要である。
In a steam turbine as a turbo rotating machine, the temperature and pressure of steam decrease from the upstream side toward the downstream side. For this reason, by connecting the extraction fluid discharge path further downstream of one end of the extraction fluid introduction path connected to the downstream side of the stationary member, relatively low temperature steam is introduced into the extraction fluid due to the pressure difference in the vehicle interior. It flows into the cooling passage from the passage, and is returned from the cooling passage to the steam passage (the passage of the steam formed in the region where the rotating member faces the stationary member) through the extraction fluid discharge passage. Note that the relatively low temperature steam referred to here means steam at a temperature lower than that of the steam passing through the stationary member in which the cooling passage is formed.
Therefore, a power source for supplying low-temperature steam as a cooling medium to the cooling passage of the stationary member is unnecessary.

上記ターボ回転機械において、前記抽気流体導入路は、一端が前記1の翼環よりも上流側に接続され、他端が前記冷却通路に接続されており、前記抽気流体排出路が、前記車室の外部と前記冷却通路とを連通しており、前記ターボ回転機械が空気圧縮機であってもよい。   In the turbo rotating machine, one end of the extraction fluid introduction path is connected to the upstream side of the one blade ring, the other end is connected to the cooling passage, and the extraction fluid discharge path is connected to the casing. And the cooling passage may be in communication with each other, and the turbo rotating machine may be an air compressor.

ターボ回転機械としての圧縮機では、上流側から下流側に向かって、空気の温度及び圧力が上昇する。このため、抽気流体導入路を静止部材よりも上流側に接続するとともに、抽気流体導入路を車室の外部に連通させることで、車室内外の圧力差によって、比較的低温の空気が抽気流体導入路から冷却通路に流れ込み、冷却通路から抽気流体排出路を介して車室外部に排出される。なお、ここでいう比較的低温の空気は、冷却通路が形成された静止部材を通過する空気よりも低温の空気を意味する。
よって、冷却媒体としての低温空気を静止部材の冷却通路に供給するための動力源は不要である。
In a compressor as a turbo rotating machine, the temperature and pressure of air rise from the upstream side toward the downstream side. For this reason, the extraction fluid introduction path is connected to the upstream side of the stationary member, and the extraction fluid introduction path is communicated with the outside of the vehicle compartment, so that relatively low temperature air is extracted from the extraction fluid due to a pressure difference between the outside and the inside of the vehicle interior. It flows into the cooling passage from the introduction passage, and is discharged from the cooling passage to the outside of the passenger compartment through the extraction fluid discharge passage. The relatively low temperature air here means air that is at a lower temperature than the air that passes through the stationary member in which the cooling passage is formed.
Therefore, a power source for supplying low-temperature air as a cooling medium to the cooling passage of the stationary member is unnecessary.

上記ターボ回転機械において、前記翼環の熱膨張率は、前記回転部材よりも小さいことが好ましい。   In the turbo rotating machine, it is preferable that the thermal expansion coefficient of the blade ring is smaller than that of the rotating member.

これにより、回転部材との比較における静止部材の半径方向外方に向かう熱伸びを相対的に抑制し、定格運転時における回転部材と静止部材との半径方向間隙をより小さくすることができる。   As a result, the thermal expansion of the stationary member in the radial direction outward in comparison with the rotating member can be relatively suppressed, and the radial gap between the rotating member and the stationary member during rated operation can be further reduced.

上記ターボ回転機械において、前記抽気流体導入路には、前記冷却通路に導かれる前記低温の流体の量を調節する抽気流体量調節部が設けられており、前記抽気流体量調節部が、ターボ回転機械の起動時に前記冷却通路に導く前記低温の流体の量を、ターボ回転機械の定格運転時に前記冷却通路に導く前記低温の流体の量よりも少なくすることが好ましい。   In the turbo rotating machine, the extraction fluid introduction path is provided with an extraction fluid amount adjustment unit that adjusts an amount of the low-temperature fluid guided to the cooling passage, and the extraction fluid amount adjustment unit is configured to perform turbo rotation. It is preferable that the amount of the low-temperature fluid led to the cooling passage when the machine is started is smaller than the amount of the low-temperature fluid led to the cooling passage during the rated operation of the turbo rotating machine.

ターボ回転機械の起動時、冷却通路に多量の低温流体を流すと、回転部材と静止部材との温度差(すなわち熱伸び差)が過剰になり、回転部材が静止部材に接触してしまう可能性がある。そこで、抽気流体量調節部を用いて、ターボ回転機械の起動時に冷却通路に流す低温流体の量を、ターボ回転機械の定格運転時に比べて少なくすることで、ターボ回転機械の起動時における回転部材と静止部材との接触を防止できる。   If a large amount of low-temperature fluid is allowed to flow through the cooling passage when starting the turbo rotating machine, the temperature difference between the rotating member and the stationary member (ie, the difference in thermal expansion) may become excessive, and the rotating member may come into contact with the stationary member. There is. Therefore, by using the bleed fluid amount adjusting unit, the amount of low-temperature fluid flowing through the cooling passage when the turbo rotating machine is started is reduced compared with the rated operation of the turbo rotating machine, so that the rotating member at the time of starting the turbo rotating machine is reduced. And the stationary member can be prevented.

この場合、前記抽気流体量調節部は、起動時における前記低温の流体を遮断してもよい。これにより、ターボ回転機械の起動時における回転部材と静止部材との接触を確実に防止できる。   In this case, the extraction fluid amount adjustment unit may block the low-temperature fluid at the time of activation. Thereby, it is possible to reliably prevent contact between the rotating member and the stationary member when the turbo rotating machine is started up.

上記ターボ回転機械において、前記抽気導入管および前記抽気排出管は、前記車室の構造部材によって支持されており、前記抽気導入管および前記抽気排出管の途中には、前記1の翼環と前記車室との伸び差を吸収する伸び差吸収機構が設けられていることが好ましい。   In the turbo rotating machine, the bleed introduction pipe and the bleed discharge pipe are supported by a structural member of the vehicle interior, and the one blade ring and the above are disposed in the middle of the bleed introduction pipe and the bleed discharge pipe. It is preferable that an elongation difference absorbing mechanism that absorbs an elongation difference from the passenger compartment is provided.

車室の変形によって静止部材が影響を受けることがないように、静止部材は車室に対して動きうるように車室に取り付けられている(静止部材の動き代が設けられている)。このため、車室の構造部材に支持されるとともに、静止部材の冷却通路に接続される抽気流体導入路及び抽気流体排出路は、静止部材の車室に対する相対的変位(伸び差)によって大きな応力が発生する。
そこで、抽気流体導入路および抽気流体排出路に伸び差吸収機構を設けることで、静止部材と車室との伸び差に起因する応力の発生を防止することができる。
The stationary member is attached to the passenger compartment so that the stationary member can move relative to the passenger compartment so that the stationary member is not affected by the deformation of the passenger compartment (the motion allowance of the stationary member is provided). For this reason, the extraction fluid introduction path and the extraction fluid discharge path that are supported by the structural member of the casing and connected to the cooling passage of the stationary member have a large stress due to relative displacement (elongation difference) of the stationary member with respect to the casing. Will occur.
Therefore, by providing an extension differential absorption mechanism in the extraction fluid introduction path and the extraction fluid discharge path, it is possible to prevent the occurrence of stress due to the extension difference between the stationary member and the passenger compartment.

本発明に係るターボ回転機械の運転方法は、少なくとも前記ターボ回転機械の定格運転時に、前記流体流路上において前記1の翼環を通過する流体よりも低温の流体を前記車室内から抽気して、前記1の翼環に形成された前記冷却通路に導くことを特徴とする。   In the turbo rotating machine operating method according to the present invention, at least during rated operation of the turbo rotating machine, a fluid having a temperature lower than the fluid passing through the one blade ring on the fluid flow path is extracted from the vehicle interior, It is led to the cooling passage formed in the one blade ring.

このターボ回転機械の運転方法によれば、少なくともターボ回転機械の定格運転時において静止部材に形成された冷却通路に車室内の低温の流体を流すようにしたので、定格運転状態では、回転部材に比べて静止部材が低温になる。このため、静止部材の半径方向外方に向かう熱伸びが抑制され、定格運転時における回転部材と静止部材との半径方向間隙を低減し、流体漏れを抑制することができる。
また、低温の流体を用いた静止部材の冷却により回転部材と静止部材との半径方向間隙が定格運転時に狭まるから、ターボ回転機械のセッティング時における回転部材と静止部材との間隙を比較的大きくしても、定格運転時における蒸気漏れはそれほど問題にならない。このため、ターボ回転機械のセッティングの際に静止部材に対して回転部材をオフセットする必要がある場合であっても、ターボ回転機械の性能低下を損なうことなく対応可能である。
また、冷却媒体を車室外部の供給源から供給するのではなく、車室内の低温の流体を用いて静止部材を冷却するようにしたので、車室外部の冷却媒体供給源と車室内部の静止部材の冷却通路とをつなぐ冷却媒体用の管路は不要である。よって、ターボ回転機械全体としてのサイズをコンパクト化できる。
According to the operation method of the turbo rotating machine, since the low-temperature fluid in the passenger compartment is allowed to flow through the cooling passage formed in the stationary member at least during the rated operation of the turbo rotating machine, Compared to the stationary member, the temperature becomes low. For this reason, the thermal expansion toward the radially outward direction of the stationary member is suppressed, the radial gap between the rotating member and the stationary member during rated operation can be reduced, and fluid leakage can be suppressed.
In addition, since the radial gap between the rotating member and the stationary member is narrowed during rated operation due to cooling of the stationary member using a low-temperature fluid, the gap between the rotating member and the stationary member when setting the turbo rotating machine is made relatively large. However, steam leakage during rated operation is not a problem. For this reason, even when it is necessary to offset the rotating member with respect to the stationary member at the time of setting the turbo rotating machine, it is possible to cope without impairing the performance degradation of the turbo rotating machine.
In addition, the cooling member is not supplied from a supply source outside the vehicle interior, but the stationary member is cooled using a low-temperature fluid inside the vehicle interior, so that the cooling medium supply source outside the vehicle interior and the interior of the vehicle interior A conduit for the cooling medium connecting the cooling passage of the stationary member is not necessary. Therefore, the size of the entire turbo rotating machine can be reduced.

上記ターボ回転機械の運転方法において、ターボ回転機械の起動時に前記冷却通路に導く前記低温の流体の量を、ターボ回転機械の定格運転時に前記冷却通路に導く前記低温の流体の量よりも少なくすることが好ましい。   In the operating method of the turbo rotating machine, the amount of the low temperature fluid led to the cooling passage when the turbo rotating machine is started is made smaller than the amount of the low temperature fluid led to the cooling passage during the rated operation of the turbo rotating machine. It is preferable.

ターボ回転機械の起動時、冷却通路に多量の低温流体を流すと、回転部材と静止部材との温度差(すなわち熱伸び差)が過剰になり、回転部材が静止部材に接触してしまう可能性がある。そこで、ターボ回転機械の起動時に冷却通路に流す低温流体の量を、ターボ回転機械の定格運転時に比べて少なくすることで、ターボ回転機械の起動時における回転部材と静止部材との接触を防止できる。   If a large amount of low-temperature fluid is allowed to flow through the cooling passage when starting the turbo rotating machine, the temperature difference between the rotating member and the stationary member (ie, the difference in thermal expansion) may become excessive, and the rotating member may come into contact with the stationary member. There is. Therefore, contact between the rotating member and the stationary member at the start of the turbo rotating machine can be prevented by reducing the amount of the low-temperature fluid flowing through the cooling passage when starting the turbo rotating machine as compared with the rated operation of the turbo rotating machine. .

本発明によれば、静止部材に冷却通路を設けて、該冷却通路に低温の流体を流すようにしたので、静止部材の半径方向外方に向かう熱伸びが抑制され、定格運転時における回転部材と静止部材との半径方向間隙を低減し、流体漏れを抑制することができる。
また、低温の流体を用いた静止部材の冷却により回転部材と静止部材との半径方向間隙が定格運転時に狭まるから、ターボ回転機械のセッティングの際に静止部材に対して回転部材をオフセットする必要がある場合であっても、ターボ回転機械の性能低下を損なうことなく対応可能である。
According to the present invention, the stationary member is provided with the cooling passage, and the low-temperature fluid is allowed to flow through the cooling passage. And the radial gap between the stationary member and the fluid can be suppressed.
In addition, since the radial gap between the rotating member and the stationary member is narrowed during rated operation due to cooling of the stationary member using a low-temperature fluid, it is necessary to offset the rotating member with respect to the stationary member when setting the turbo rotating machine. Even in some cases, it is possible to cope without impairing the performance degradation of the turbo rotating machine.

第1実施形態に係る蒸気タービンの構成例を示す断面図である。It is sectional drawing which shows the structural example of the steam turbine which concerns on 1st Embodiment. 冷却通路を有する翼環の下半部を示す平面図である。It is a top view which shows the lower half part of the blade ring which has a cooling channel | path. 冷却蒸気導入路に設けられた冷却蒸気調節弁を示す図である。It is a figure which shows the cooling steam control valve provided in the cooling steam introduction path. ターボ回転機械としての圧縮機の構成例を示す図である。It is a figure which shows the structural example of the compressor as a turbo rotating machine.

以下、添付図面に従って本発明の実施形態について説明する。ただし、この実施形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は、特定的な記載がない限り本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, and are merely illustrative examples. Only.

[第1実施形態]
図1は、第1実施形態に係る蒸気タービンの構成例を示す断面図であり、水平分割面近傍の断面を示している。同図に示す蒸気タービン1は複流方式の低圧タービンであり、ロータ2を囲むように外部車室4及び内部車室6が設けられている。
[First Embodiment]
FIG. 1 is a cross-sectional view showing a configuration example of the steam turbine according to the first embodiment, and shows a cross section in the vicinity of a horizontal dividing plane. The steam turbine 1 shown in the figure is a double-flow type low-pressure turbine, and an outer casing 4 and an inner casing 6 are provided so as to surround the rotor 2.

ロータ2のロータディスク8には、外周に動翼10が取り付けられている。ロータ2は、外部車室4の外でロータ軸受12によって回転自在に支持される。また、ロータ2が外部車室4を貫通する箇所には、蒸気の漏洩を防止するグランド14が設けられている。   A rotor blade 10 is attached to the outer periphery of the rotor disk 8 of the rotor 2. The rotor 2 is rotatably supported by a rotor bearing 12 outside the outer casing 4. In addition, a gland 14 is provided at a location where the rotor 2 penetrates the external casing 4 to prevent leakage of steam.

一方、内部車室6には、静翼支持部20(20A〜20E)が装着されており、この静翼支持部材20の内周側に静翼22が取り付けられる。この静翼22は、ロータディスク8に取り付けられた動翼10と対峙している。
なお、静翼支持部材20には、上流段の静翼22を支持する翼環20A及び20Bと、下流段の静翼22を支持する翼環20C〜20Eとがある。
On the other hand, a stationary blade support portion 20 (20 </ b> A to 20 </ b> E) is attached to the inner casing 6, and a stationary blade 22 is attached to the inner peripheral side of the stationary blade support member 20. The stationary blade 22 is opposed to the moving blade 10 attached to the rotor disk 8.
The stationary blade support member 20 includes blade rings 20 </ b> A and 20 </ b> B that support the upstream stationary blade 22, and blade rings 20 </ b> C to 20 </ b> E that support the downstream stationary blade 22.

静翼支持部20(特に、最上流に位置する翼環20A)は、ロータ2及び動翼10よりも熱膨張率が小さいことが好ましい。これにより、回転部材(ロータ2や動翼10)との比較における静翼支持部材20の半径方向外方に向かう熱伸びを相対的に抑制し、定格運転時における回転部材(ロータ2や動翼10)と静止部材(静翼支持部20や静翼22)との半径方向間隙をより小さくすることができる。   The stationary blade support portion 20 (particularly, the blade ring 20 </ b> A located at the uppermost stream) preferably has a smaller coefficient of thermal expansion than the rotor 2 and the moving blade 10. Thereby, the thermal expansion toward the radially outward direction of the stationary blade support member 20 in comparison with the rotating member (the rotor 2 and the moving blade 10) is relatively suppressed, and the rotating member (the rotor 2 and the moving blade at the rated operation) is suppressed. 10) and the radial gap between the stationary member (the stationary blade support 20 and the stationary blade 22) can be further reduced.

また、内部車室6には、周方向に環状に連続する蒸気入口16が設けられている。蒸気タービン1の鉛直方向上側において蒸気入口16は外部車室6を貫通して外部に突出しており、中圧タービン(不図示)からの比較的高温・高圧の蒸気が環状の蒸気入口16に流入するようになっている。
そして、蒸気入口16に流入した蒸気は、動翼10及び静翼22が対峙している領域(蒸気通路)を矢印S1方向に流れた後、内部車室6に取り付けられたフローガイド18によって整流され、排気室19に導かれる。
The inner casing 6 is provided with a steam inlet 16 that is annularly continuous in the circumferential direction. On the upper side in the vertical direction of the steam turbine 1, the steam inlet 16 protrudes outside through the outer casing 6, and relatively high temperature and high pressure steam from an intermediate pressure turbine (not shown) flows into the annular steam inlet 16. It is supposed to be.
The steam flowing into the steam inlet 16 flows in the direction of the arrow S1 in the region (steam passage) where the moving blade 10 and the stationary blade 22 are opposed to each other, and then rectified by the flow guide 18 attached to the internal casing 6. And guided to the exhaust chamber 19.

本実施形態では、上流段の静翼22を支持する翼環20Aに冷却通路24及び26を設け、翼環20Aの周囲の蒸気(翼環20Aに取り付けられた静翼22を通過する蒸気)よりも低温の蒸気(冷却蒸気)を下流側から抜き取って冷却通路24及び26に流すようにしている。
ここで、蒸気タービン1では、上流段における動翼10及び静翼22は下流段に比べて翼高さが低いため、回転部材と静止部材との半径方向間隙を介した蒸気漏れによる影響は上流段側ほど大きい。このため、最上流に位置する翼環20Aに冷却通路24及び26を形成して、翼環20Aを冷却することで、翼環20Aにおける回転部材と静止部材との半径方向間隙を低減して、蒸気漏れに起因する蒸気タービン1の性能低下を効果的に抑制できる。
以下、冷却通路24及び26を用いた翼環20Aの冷却構造について説明する。
In the present embodiment, the cooling passages 24 and 26 are provided in the blade ring 20A that supports the upstream stationary blade 22, and the steam around the blade ring 20A (steam that passes through the stationary blade 22 attached to the blade ring 20A). Also, low-temperature steam (cooling steam) is extracted from the downstream side and flows into the cooling passages 24 and 26.
Here, in the steam turbine 1, the blades 10 and the stationary blades 22 in the upstream stage have lower blade heights than the downstream stage, and therefore the influence of steam leakage through the radial gap between the rotating member and the stationary member is upstream. The larger the step side. For this reason, by forming cooling passages 24 and 26 in the blade ring 20A located at the most upstream and cooling the blade ring 20A, the radial gap between the rotating member and the stationary member in the blade ring 20A is reduced. The performance degradation of the steam turbine 1 due to steam leakage can be effectively suppressed.
Hereinafter, the cooling structure of the blade ring 20A using the cooling passages 24 and 26 will be described.

図2は、冷却通路24及び26を有する翼環20Aの下半部を示す平面図である。同図に示す翼環下半部30には、冷却通路24及び26が形成されている。冷却通路24は冷却蒸気の往路であり、冷却通路26は冷却蒸気の復路である。冷却蒸気入口28から流入した冷却蒸気は、往路である冷却通路24を流れ、ロータ2の中心位置近傍で折り返して、復路である冷却通路26を流れた後、冷却蒸気出口29から排出される(図2の矢印参照)。
なお、冷却蒸気入口28及び冷却蒸気出口29は、蒸気タービン1の車室の水平分割面近傍に設けられており、それぞれ、後述の冷却蒸気導入路30及び冷却蒸気排出路32に接続される。
FIG. 2 is a plan view showing the lower half of the blade ring 20 </ b> A having the cooling passages 24 and 26. Cooling passages 24 and 26 are formed in the lower half 30 of the blade ring shown in FIG. The cooling passage 24 is a forward path for cooling steam, and the cooling passage 26 is a return path for cooling steam. The cooling steam that has flowed in from the cooling steam inlet 28 flows through the cooling passage 24 that is the forward path, turns back in the vicinity of the center position of the rotor 2, flows through the cooling path 26 that is the return path, and then is discharged from the cooling steam outlet 29 ( (See arrow in FIG. 2).
The cooling steam inlet 28 and the cooling steam outlet 29 are provided in the vicinity of the horizontal dividing surface of the casing of the steam turbine 1 and are connected to a cooling steam introduction path 30 and a cooling steam discharge path 32 described later, respectively.

翼環下半部30は、ロータ2の中心軸を対称軸として線対称になっており、冷却通路24及び26からなる流路がロータ2の中心軸の左右に1本ずつ設けられている。また、翼環20Aの上半部は、翼環下半部30と同様の構成を有する。したがって、翼環20Aには、冷却通路24及び26からなる流路がロータ2の全周に亘って合計4本設けられている。
このように、ロータ2の全周に亘って冷却蒸気が流れる流路を翼環20Aに設けることで、翼環20Aを周方向に均等に冷却できる。また、冷却蒸気が流れる流路(冷却通路24及び26をつなげたもの)を周方向に複数本(本実施形態では4本)に分割することで、翼環20Aの冷却を効率的に行うことができる。
The lower half 30 of the blade ring is axisymmetric with respect to the central axis of the rotor 2, and one flow path composed of the cooling passages 24 and 26 is provided on the left and right of the central axis of the rotor 2. The upper half of the blade ring 20 </ b> A has the same configuration as the lower half 30 of the blade ring. Accordingly, the blade ring 20 </ b> A is provided with a total of four flow paths including the cooling passages 24 and 26 over the entire circumference of the rotor 2.
In this way, by providing the blade ring 20A with the flow path through which the cooling steam flows over the entire circumference of the rotor 2, the blade ring 20A can be evenly cooled in the circumferential direction. In addition, the blade ring 20A can be efficiently cooled by dividing the flow path (cooling passages 24 and 26 connected) through which the cooling steam flows into a plurality (four in this embodiment) in the circumferential direction. Can do.

往路である冷却通路24は、図1に示すように、冷却蒸気導入路30によって抽気室31に連通している。抽気室31は、内部車室6に設けられており、隔壁で覆われた環状の内部空間を有する。また抽気室31は、翼環20C及び20Dの間の位置において蒸気通路に連通している。これにより、蒸気通路を矢印S1方向に流れていた蒸気の一部が矢印S2方向に流れ、抽気室31に流入する。なお、蒸気タービン1では、上流側から下流側に向かって蒸気の温度が低下するから、翼環20C及び20Dの間の位置から抽気室31に流れ込む蒸気(冷却蒸気)は、翼環20Aの周囲の蒸気に比べて低温である。   As shown in FIG. 1, the cooling passage 24, which is the forward path, communicates with the extraction chamber 31 through a cooling steam introduction passage 30. The extraction chamber 31 is provided in the inner casing 6 and has an annular inner space covered with a partition wall. Further, the extraction chamber 31 communicates with the steam passage at a position between the blade rings 20C and 20D. Thereby, a part of the steam that has flowed in the direction of the arrow S <b> 1 flows in the direction of the arrow S <b> 2 and flows into the extraction chamber 31. In the steam turbine 1, since the temperature of the steam decreases from the upstream side toward the downstream side, the steam (cooling steam) flowing from the position between the blade rings 20C and 20D into the extraction chamber 31 is around the blade ring 20A. The temperature is lower than that of steam.

一方、復路である冷却通路26は、冷却蒸気排出路32bによって排気室19に連通されている。排気室19における蒸気圧力は、翼環20C及び20Dの間の位置の周囲の蒸気圧力に比べて低い。このため、翼環20C及び20Dの間の位置から抽気された冷却蒸気は、抽気室31、冷却蒸気導入路30、冷却通路(往路)24、冷却通路(復路)26、冷却蒸気排出路32、排気室19の順に自然に流れる。よって、冷却蒸気を翼環20Aの冷却通路24及び26に供給するための動力源は不要である。   On the other hand, the cooling passage 26 which is a return path is communicated with the exhaust chamber 19 by a cooling steam discharge passage 32b. The steam pressure in the exhaust chamber 19 is lower than the steam pressure around the position between the blade rings 20C and 20D. Therefore, the cooling steam extracted from the position between the blade rings 20C and 20D is the extraction chamber 31, the cooling steam introduction path 30, the cooling path (outward path) 24, the cooling path (return path) 26, the cooling steam discharge path 32, It flows naturally in the order of the exhaust chamber 19. Therefore, a power source for supplying cooling steam to the cooling passages 24 and 26 of the blade ring 20A is unnecessary.

また、冷却蒸気導入路30及び冷却蒸気排出路32は、内部車室6の構造部材によって支持されており、冷却蒸気導入路30及び冷却蒸気排出路32の途中には、翼環20Aと内部車室6との伸び差を吸収するための伸び差吸収機構34が設けられている。
翼環20Aは、内部車室6の変形によって影響を受けることがないように、内部車室6に対して動きうるように内部車室6に取り付けられている(翼環20Aの動き代が設けられている)。このため、内部車室6の構造部材に支持されるとともに、翼環20Aの冷却通路24及び26に接続される冷却蒸気導入路30及び冷却蒸気排出路32は、翼環20Aの内部車室6に対する相対的変位(伸び差)によって大きな応力が発生する。
そこで、冷却蒸気導入路30及び冷却蒸気排出路32に伸び差吸収機構34を設けることで、翼環20Aと内部車室6との伸び差に起因する応力の発生を防止することができる。
なお、伸び差吸収機構34は、例えばベローズや弾性体等を用いることができる。
The cooling steam introduction path 30 and the cooling steam discharge path 32 are supported by structural members of the internal casing 6, and the blade ring 20 </ b> A and the internal vehicle are disposed in the middle of the cooling steam introduction path 30 and the cooling steam discharge path 32. An elongation difference absorbing mechanism 34 for absorbing the elongation difference from the chamber 6 is provided.
The blade ring 20A is attached to the inner casing 6 so as to be movable relative to the inner casing 6 so as not to be affected by the deformation of the inner casing 6 (the movement allowance of the wing ring 20A is provided). Is). Therefore, the cooling steam introduction path 30 and the cooling steam discharge path 32 connected to the cooling passages 24 and 26 of the blade ring 20A are supported by the structural members of the inner casing 6 and the inner casing 6 of the blade ring 20A. A large stress is generated by relative displacement (difference in elongation) with respect to.
Therefore, by providing the differential expansion absorbing mechanism 34 in the cooling steam introduction path 30 and the cooling steam discharge path 32, it is possible to prevent the occurrence of stress due to the differential expansion between the blade ring 20A and the internal casing 6.
For example, a bellows or an elastic body can be used for the differential elongation absorbing mechanism 34.

以上説明したように、本実施形態の蒸気タービン1は、回転部材(ロータ2や動翼10)および静止部材(翼環20Aや静翼22)を収納する車室(4,6)と、翼環20Aの周囲の蒸気よりも低温の蒸気を車室(4,6)内から抜き取って、翼環20Aに形成された冷却通路24及び26に導く冷却蒸気導入路30と、冷却通路24及び26を流れた後の前記低温の蒸気を排出する冷却蒸気排出路32とを備える。   As described above, the steam turbine 1 of the present embodiment includes the casing (4, 6) that houses the rotating member (the rotor 2 and the moving blade 10) and the stationary member (the blade ring 20A and the stationary blade 22), the blade A cooling steam introduction path 30 for extracting steam having a temperature lower than that around the ring 20A from the casing (4, 6) and leading to the cooling paths 24 and 26 formed in the blade ring 20A, and the cooling paths 24 and 26. And a cooling steam discharge passage 32 for discharging the low-temperature steam after flowing through.

本実施形態によれば、冷却対象である翼環20Aに冷却通路24及び26を設けて、該冷却通路24及び26に冷却蒸気導入路30を介して内部車室6内の低温の蒸気を流すようにしたので、定格運転状態では、ロータ軸方向の同一位置における回転部材に比べて翼環20Aが低温になる。このため、翼環20Aの半径方向外方に向かう熱伸びが抑制され、定格運転時における回転部材(ロータ2及び動翼10)と静止部材(翼環20A及び静翼22)との半径方向間隙を低減し、流体漏れを抑制することができる。
また、低温の蒸気を用いた翼環20Aの冷却により回転部材と静止部材との半径方向間隙が定格運転時に狭まるから、蒸気タービン1のセッティング時における回転部材と静止部材との間隙を比較的大きくしても、定格運転時における蒸気漏れはそれほど問題にならない。このため、蒸気タービン1のセッティングの際に静止部材に対して回転部材をオフセットする必要がある場合であっても、蒸気タービン1の性能低下を損なうことなく対応可能である。
また、冷却蒸気を車室外部の供給源から供給するのではなく、車室内の低温の蒸気を用いて翼環20Aを冷却するようにしたので、車室外部の冷却媒体供給源と車室内部の静止部材の冷却通路24及び26とをつなぐ冷却蒸気用の管路は不要である。よって、蒸気タービン1全体としてのサイズをコンパクト化できる。
According to the present embodiment, the cooling passages 24 and 26 are provided in the blade ring 20A to be cooled, and the low-temperature steam in the internal compartment 6 is caused to flow through the cooling passage 24 and 26 through the cooling steam introduction passage 30. As a result, in the rated operation state, the blade ring 20A has a lower temperature than the rotating member at the same position in the rotor axial direction. For this reason, the thermal expansion toward the radially outward direction of the blade ring 20A is suppressed, and the radial gap between the rotating member (the rotor 2 and the moving blade 10) and the stationary member (the blade ring 20A and the stationary blade 22) during rated operation. And fluid leakage can be suppressed.
Moreover, since the radial gap between the rotating member and the stationary member is narrowed during rated operation by cooling the blade ring 20A using low-temperature steam, the gap between the rotating member and the stationary member when setting the steam turbine 1 is relatively large. Even so, steam leakage during rated operation is not a problem. For this reason, even when it is necessary to offset the rotating member with respect to the stationary member when setting the steam turbine 1, it is possible to cope without impairing the performance degradation of the steam turbine 1.
In addition, the cooling ring is not supplied from a supply source outside the passenger compartment, but the blade ring 20A is cooled using low-temperature steam inside the passenger compartment. The cooling steam pipes connecting the stationary member cooling passages 24 and 26 are not required. Therefore, the size of the entire steam turbine 1 can be reduced.

なお、図1には外部車室4及び内部車室6からなる二重車室構造の蒸気タービン1を示したが、蒸気タービン1の車室構造はこの例に限定されない。また、上述の蒸気タービン1は低圧タービンであるが、本発明が低圧タービンのみならず、高圧タービンや中圧タービンを含むあらゆる蒸気タービンに適用できることは言うまでもない。   Although FIG. 1 shows the steam turbine 1 having a double casing structure including the outer casing 4 and the inner casing 6, the casing structure of the steam turbine 1 is not limited to this example. Moreover, although the above-mentioned steam turbine 1 is a low pressure turbine, it cannot be overemphasized that this invention is applicable not only to a low pressure turbine but to all the steam turbines including a high pressure turbine and an intermediate pressure turbine.

さらに、図1には冷却蒸気導入路30が翼環20C及び20Dの間の位置と連通する抽気室31に接続され、冷却蒸気排出路32が排気室19に接続される例を示したが、冷却蒸気導入路30を介して翼環20Aの周囲の蒸気よりも低温の冷却蒸気を冷却通路24及び26に導くとともに、冷却蒸気排出路32を介して冷却通路24及び26から冷却蒸気を排出させることができる限り、冷却蒸気導入路30及び冷却蒸気排出路32の接続先はこの例に限定されない。すなわち、冷却蒸気導入路30は、冷却対象である翼環20Aよりも下流側の蒸気通路に接続されていればよく、冷却蒸気排出路32は、冷却蒸気導入路30の蒸気通路への接続箇所よりもさらに下流側に接続されていればよい。
また、冷却蒸気導入路30及び冷却蒸気排出路32は、一部が車室(4,6)の外部に形成されていてもよい。
1 shows an example in which the cooling steam introduction path 30 is connected to the extraction chamber 31 communicating with the position between the blade rings 20C and 20D, and the cooling steam discharge path 32 is connected to the exhaust chamber 19. Cooling steam having a lower temperature than the steam around the blade ring 20A is guided to the cooling passages 24 and 26 via the cooling steam introduction passage 30, and the cooling steam is discharged from the cooling passages 24 and 26 via the cooling steam discharge passage 32. As far as possible, the connection destination of the cooling steam introduction path 30 and the cooling steam discharge path 32 is not limited to this example. That is, the cooling steam introduction path 30 only needs to be connected to the steam path downstream of the blade ring 20A to be cooled, and the cooling steam discharge path 32 is connected to the steam path of the cooling steam introduction path 30. What is necessary is just to be connected further downstream than.
Moreover, a part of the cooling steam introduction path 30 and the cooling steam discharge path 32 may be formed outside the passenger compartment (4, 6).

[第2実施形態]
次に第2実施形態に係る蒸気タービンについて説明する。本実施形態に係る蒸気タービンは、冷却蒸気導入路30に冷却蒸気量調節弁が設けられている点を除けば、第1実施形態の蒸気タービン1と共通する。したがって、蒸気タービン1と共通する構成要素には同一の符号を付し、ここではその説明を省略し、冷却蒸気量調節弁を中心に説明する。
[Second Embodiment]
Next, a steam turbine according to the second embodiment will be described. The steam turbine according to the present embodiment is common to the steam turbine 1 of the first embodiment except that a cooling steam amount adjustment valve is provided in the cooling steam introduction path 30. Therefore, the same code | symbol is attached | subjected to the component which is common in the steam turbine 1, and the description is abbreviate | omitted here and demonstrates centering on a cooling steam quantity adjustment valve.

図3は、冷却蒸気導入路30に設けられた冷却蒸気調節弁を示す図である。同図に示すように、翼環20Aの冷却通路(往路)24に接続された冷却蒸気導入路30には冷却蒸気調節弁36が設けられている。冷却蒸気調節弁36は、制御部38による制御下で、翼環20Aの冷却通路24及び26に導かれる冷却蒸気の量を調節するようになっている。   FIG. 3 is a view showing a cooling steam control valve provided in the cooling steam introduction path 30. As shown in the figure, a cooling steam control valve 36 is provided in the cooling steam introduction path 30 connected to the cooling path (outward path) 24 of the blade ring 20A. The cooling steam adjusting valve 36 is configured to adjust the amount of cooling steam guided to the cooling passages 24 and 26 of the blade ring 20A under the control of the control unit 38.

そして、制御部38は、蒸気タービンの起動時に冷却通路24及び26に導く冷却蒸気の量が、蒸気タービンの定格運転時に冷却通路24及び26に導く冷却蒸気の量よりも少なくなるように冷却蒸気調節弁36を制御する。   Then, the control unit 38 controls the cooling steam so that the amount of the cooling steam led to the cooling passages 24 and 26 at the start of the steam turbine is smaller than the amount of the cooling steam led to the cooling passages 24 and 26 at the rated operation of the steam turbine. The control valve 36 is controlled.

蒸気タービンの起動時、冷却通路24及び26に多量の冷却蒸気を流すと、回転部材と静止部材との温度差(すなわち熱伸び差)が過剰になり、回転部材が静止部材に接触してしまう可能性がある。そこで、冷却流体量調節弁36により、蒸気タービンの起動時における冷却蒸気の量を、蒸気タービンの定格運転時に比べて少なくすることで、蒸気タービンの起動時における回転部材と静止部材との接触を防止できる。   If a large amount of cooling steam flows through the cooling passages 24 and 26 when the steam turbine is started, the temperature difference between the rotating member and the stationary member (ie, the difference in thermal expansion) becomes excessive, and the rotating member comes into contact with the stationary member. there is a possibility. Therefore, the amount of cooling steam at the time of starting the steam turbine is reduced by the cooling fluid amount adjusting valve 36 as compared with the rated operation of the steam turbine, so that the contact between the rotating member and the stationary member at the time of starting the steam turbine is prevented. Can be prevented.

この場合、制御部38は、蒸気タービンの起動時において冷却蒸気調節弁36を全閉状態にして、冷却通路24及び26へと向かう冷却蒸気を遮断してもよい。これにより、蒸気タービンの起動時における回転部材と静止部材との接触を確実に防止できる。   In this case, the control unit 38 may shut the cooling steam toward the cooling passages 24 and 26 by fully closing the cooling steam control valve 36 when the steam turbine is started. Thereby, the contact between the rotating member and the stationary member at the time of starting the steam turbine can be reliably prevented.

以上、本発明の実施形態について詳細に説明したが、本発明はこれに限定されず、本発明の要旨を逸脱しない範囲において、各種の改良や変形を行ってもよいのはいうまでもない。   As mentioned above, although embodiment of this invention was described in detail, it cannot be overemphasized that this invention is not limited to this, In the range which does not deviate from the summary of this invention, various improvement and deformation | transformation may be performed.

上述の実施形態では、本発明に係るターボ回転機械の一例として蒸気タービンについて説明したが、本発明は、回転部材が静止部材に対峙しながら回転し、該回転部材と流体とのエネルギーの受け渡しを行うあらゆる種類のターボ回転機械に適用できる。例えば、回転部材の運動エネルギーを利用して空気を圧縮する圧縮機に本発明を適用してもよい。   In the above-described embodiment, the steam turbine is described as an example of the turbo rotating machine according to the present invention. However, the present invention rotates while the rotating member faces the stationary member, and transfers energy between the rotating member and the fluid. Applicable to any kind of turbo rotating machine that performs. For example, you may apply this invention to the compressor which compresses air using the kinetic energy of a rotating member.

図4は、ターボ回転機械としての圧縮機の構成例を示す図である。同図に示す圧縮機40は、回転部材としてのロータ42及び動翼44と、静止部材としての静翼支持部46(46A〜46C)及び静翼48とが車室50に収納された構成を有する。   FIG. 4 is a diagram illustrating a configuration example of a compressor as a turbo rotating machine. The compressor 40 shown in the figure has a configuration in which a rotor 42 and moving blades 44 as rotating members, and stationary blade support portions 46 (46A to 46C) and stationary blades 48 as stationary members are housed in a vehicle casing 50. Have.

圧縮機40では、車室50に設けられた空気吸込口(不図示)から導入された空気が、動翼44及び静翼48が対峙している領域(圧縮空気通路)を矢印A方向に流れる。圧縮空気通路を流れる空気は、上流側から下流側に向かって、温度及び圧力が上昇する。   In the compressor 40, air introduced from an air suction port (not shown) provided in the passenger compartment 50 flows in a direction indicated by an arrow A through a region (compressed air passage) where the moving blade 44 and the stationary blade 48 are opposed to each other. . The air flowing through the compressed air passage increases in temperature and pressure from the upstream side toward the downstream side.

圧縮機40では、下流段における動翼44及び静翼48は上流段に比べて翼高さが低いため、回転部材と静止部材との半径方向間隙を介した空気漏れによる影響は下流段側ほど大きい。このため、最下流に位置する静翼支持部材46Cに冷却通路(往路)52及び冷却通路(復路)54を形成して、静翼支持部材46Cを冷却することで、静翼支持部材46Cにおける回転部材と静止部材との半径方向間隙を低減して、空気漏れに起因する圧縮機40の性能低下を抑制する。なお、冷却通路52及び54は、蒸気タービン1における冷却通路24及び26と同様の形状であってもよい。   In the compressor 40, since the blades 44 and the stationary blades 48 in the downstream stage have a lower blade height than the upstream stage, the influence of the air leakage through the radial gap between the rotating member and the stationary member is less on the downstream stage side. large. For this reason, a cooling passage (outward passage) 52 and a cooling passage (return passage) 54 are formed in the stationary blade support member 46C located on the most downstream side, and the stator blade support member 46C is cooled, thereby rotating the stator blade support member 46C. The radial gap between the member and the stationary member is reduced to suppress the performance degradation of the compressor 40 due to air leakage. The cooling passages 52 and 54 may have the same shape as the cooling passages 24 and 26 in the steam turbine 1.

冷却通路(往路)52は、冷却空気導入路56によって静翼支持部材46Cよりも上流側の圧縮空気通路に連通している。一方、冷却通路(復路)54は、冷却空気排出路58によって車室50の外部に連通している。
これにより、車室50内外の圧力差によって、比較的低温の空気が冷却空気導入路56から冷却通路52に流れ込み、冷却通路54から冷却流体排出路58を介して車室50の外部に排出される。よって、冷却媒体としての低温空気を静翼支持部材46Cの冷却通路52及び54に供給するための動力源は不要である。
The cooling passage (outward passage) 52 communicates with the compressed air passage on the upstream side of the stationary blade support member 46 </ b> C by the cooling air introduction passage 56. On the other hand, the cooling passage (return path) 54 communicates with the outside of the passenger compartment 50 through a cooling air discharge path 58.
Thereby, due to a pressure difference between the inside and outside of the passenger compartment 50, relatively low temperature air flows from the cooling air introduction passage 56 into the cooling passage 52 and is discharged from the cooling passage 54 to the outside of the passenger compartment 50 through the cooling fluid discharge passage 58. The Therefore, a power source for supplying low-temperature air as a cooling medium to the cooling passages 52 and 54 of the stationary blade support member 46C is unnecessary.

なお、冷却空気導入路56及び冷却空気排出路58は、車室50の構造部材によって支持されており、車室50と静翼支持部材46Cとの伸び差を吸収するための伸び差吸収機構が冷却空気導入路56及び冷却空気排出路58の途中に設けられていてもよい。この場合に用いる伸び差吸収機構は、第1実施形態で説明した伸び差吸収機構34と同様の構成及び機能であってもよい。
また、冷却空気導入路56には、冷却通路52及び54に導く冷却空気の流量を制御部の制御下で調節する冷却空気量調節弁が設けられていてもよい。この場合に用いる制御部及び冷却空気量調節弁は、第2実施形態で説明した制御部38及び冷却蒸気量調節弁36と同様の構成及び機能であってもよい。
The cooling air introduction path 56 and the cooling air discharge path 58 are supported by a structural member of the casing 50, and an extension differential absorption mechanism for absorbing the differential extension between the casing 50 and the stationary blade support member 46C. The cooling air introduction path 56 and the cooling air discharge path 58 may be provided in the middle. The differential elongation absorbing mechanism used in this case may have the same configuration and function as the differential elongation absorbing mechanism 34 described in the first embodiment.
Further, the cooling air introduction path 56 may be provided with a cooling air amount adjusting valve that adjusts the flow rate of the cooling air guided to the cooling paths 52 and 54 under the control of the control unit. The control unit and the cooling air amount adjustment valve used in this case may have the same configuration and function as the control unit 38 and the cooling steam amount adjustment valve 36 described in the second embodiment.

1 蒸気タービン
2 ロータ
4 外部車室
6 内部車室
8 ロータディスク
10 動翼
12 ロータ軸受
14 グランド
16 蒸気入口
18 フローガイド
19 排気室
20 静翼支持部材
22 静翼
24 蒸気通路(往路)
26 蒸気通路(復路)
28 冷却蒸気入口
29 冷却蒸気出口
30 冷却蒸気導入路
31 抽気室
32 冷却蒸気排出路
34 伸び差吸収機構
36 冷却蒸気調節弁
38 制御部
40 圧縮機
42 ロータ
44 動翼
46 静翼支持部材
48 静翼
50 車室
52 冷却通路(往路)
54 冷却通路(復路)
56 冷却空気導入路
58 冷却空気排出路
DESCRIPTION OF SYMBOLS 1 Steam turbine 2 Rotor 4 External casing 6 Internal casing 8 Rotor disc 10 Rotor blade 12 Rotor bearing 14 Ground 16 Steam inlet 18 Flow guide 19 Exhaust chamber 20 Stator blade support member 22 Stator blade 24 Steam passage (outward path)
26 Steam passage (return trip)
DESCRIPTION OF SYMBOLS 28 Cooling steam inlet 29 Cooling steam outlet 30 Cooling steam introduction path 31 Extraction chamber 32 Cooling steam discharge path 34 Stretch differential absorption mechanism 36 Cooling steam control valve 38 Control part 40 Compressor 42 Rotor 44 Moving blade 46 Stator blade support member 48 Stator blade 50 Car compartment 52 Cooling passage (outward)
54 Cooling passage (return)
56 Cooling air introduction path 58 Cooling air discharge path

Claims (6)

回転部材が静止部材に対峙しながら回転し、該回転部材と流体とのエネルギーの受け渡しを行う蒸気タービンであって、
前記回転部材および前記静止部材を収納する車室を有し、
前記静止部材は、前記蒸気タービンの周方向に沿って前記静止部材の内部に設けられる往路と、該往路に連通するように前記周方向に沿って前記静止部材の内部に設けられる復路と、を含む冷却通路を具え、
前記冷却通路の入口から流入した流体は、前記冷却通路の前記往路を流れ、折り返して、前記冷却通路の前記復路を流れた後、前記冷却通路の出口から排出されるとともに、
前記冷却通路の前記往路及び前記復路は、前記往路が前記復路に対して前記蒸気タービンの蒸気通路の上流側に位置するように、前記蒸気タービンの軸方向に並んでいることを特徴とする蒸気タービン
A rotating turbine that rotates while facing a stationary member and transfers energy between the rotating member and a fluid,
A vehicle compartment that houses the rotating member and the stationary member;
The stationary member includes an outward path provided in the stationary member along the circumferential direction of the steam turbine , and a return path provided in the stationary member along the circumferential direction so as to communicate with the outward path. Including cooling passages, including
The fluid flowing from the inlet of the cooling passage, the flow through the forward path of the cooling passage, folded, after flowing through the return path of the cooling passage is discharged from the outlet of the cooling passage Rutotomoni,
The cooling said forward path and the backward path, the steam, wherein the forward path is to be located on the upstream side of the steam passage of the steam turbine relative to the return path the, are arranged in the axial direction of the steam turbine Turbine .
前記車室は、水平面で分割された構成をなし、前記冷却通路の入口と出口は、それぞれ、前記車室の水平分割面近傍に設けられていることを特徴とする請求項1に記載の蒸気タービン2. The steam according to claim 1, wherein the casing is configured to be divided in a horizontal plane, and an inlet and an outlet of the cooling passage are respectively provided in the vicinity of a horizontal dividing surface of the casing. Turbine . 前記静止部材は、前記周方向における複数箇所にそれぞれ設けられる複数の前記冷却通路を含むことを特徴とする請求項1又は2に記載の蒸気タービンThe steam turbine according to claim 1, wherein the stationary member includes a plurality of the cooling passages respectively provided at a plurality of locations in the circumferential direction. 前記静止部材は、前記周方向の4箇所においてそれぞれ等間隔に設けられる複数の前記冷却通路を含むことを特徴とする請求項1乃至3の何れか一項に記載の蒸気タービンThe steam turbine according to any one of claims 1 to 3, wherein the stationary member includes a plurality of the cooling passages provided at equal intervals at four locations in the circumferential direction. 前記回転部材は、動翼を有するロータを含み、The rotating member includes a rotor having moving blades,
前記静止部材は、1段以上の静翼が内側に取り付けられるとともに前記冷却通路が内部に形成された翼環を含み、The stationary member includes a blade ring in which one or more stages of stationary blades are attached to the inside and the cooling passage is formed therein,
前記車室は、前記翼環を内側に装着するとともに、前記翼環及び前記静翼とともに前記ロータを収納し、前記動翼と前記静翼とが対峙する車室内領域には前記蒸気通路が形成されており、The casing is mounted with the blade ring on the inner side, houses the rotor together with the blade ring and the stationary blade, and the steam passage is formed in a vehicle interior region where the moving blade and the stationary blade face each other. Has been
前記蒸気通路内において前記翼環および前記静翼を通過する蒸気よりも低温の蒸気を前記蒸気通路から抽気し、前記翼環の前記冷却通路に導く抽気流体導入路をさらに備えることを特徴とする請求項1乃至4の何れか一項に記載の蒸気タービン。It further comprises an extraction fluid introduction path for extracting steam having a temperature lower than that of the steam passing through the blade ring and the stationary blade in the steam passage and leading the steam to the cooling passage of the blade ring. The steam turbine according to any one of claims 1 to 4.
前記車室内に設けられ、前記蒸気通路から抽気した前記低温の蒸気を受け入れる抽気室をさらに備え、A bleed chamber provided in the vehicle interior and receiving the low temperature steam extracted from the steam passage;
前記抽気流体導入路は、前記抽気室に接続され、前記抽気室を介して前記蒸気通路から前記低温の蒸気を抽気するように構成されたことを特徴とする請求項5に記載の蒸気タービン。The steam turbine according to claim 5, wherein the extraction fluid introduction path is connected to the extraction chamber and configured to extract the low-temperature steam from the steam passage through the extraction chamber.
JP2015089078A 2015-04-24 2015-04-24 Turbo rotating machine and operation method thereof Expired - Fee Related JP5980369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015089078A JP5980369B2 (en) 2015-04-24 2015-04-24 Turbo rotating machine and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015089078A JP5980369B2 (en) 2015-04-24 2015-04-24 Turbo rotating machine and operation method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010273322A Division JP5747403B2 (en) 2010-12-08 2010-12-08 Turbo rotating machine and operation method thereof

Publications (2)

Publication Number Publication Date
JP2015132269A JP2015132269A (en) 2015-07-23
JP5980369B2 true JP5980369B2 (en) 2016-08-31

Family

ID=53899638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015089078A Expired - Fee Related JP5980369B2 (en) 2015-04-24 2015-04-24 Turbo rotating machine and operation method thereof

Country Status (1)

Country Link
JP (1) JP5980369B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10393149B2 (en) 2016-03-11 2019-08-27 General Electric Company Method and apparatus for active clearance control

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6170502U (en) * 1984-10-17 1986-05-14
US5219268A (en) * 1992-03-06 1993-06-15 General Electric Company Gas turbine engine case thermal control flange
DE60028446T2 (en) * 1999-04-23 2006-12-21 General Electric Co. Heating and cooling circuit for the inner casing of a turbine
JP2002309906A (en) * 2001-04-11 2002-10-23 Mitsubishi Heavy Ind Ltd Steam cooling type gas turbine
US20090053042A1 (en) * 2007-08-22 2009-02-26 General Electric Company Method and apparatus for clearance control of turbine blade tip

Also Published As

Publication number Publication date
JP2015132269A (en) 2015-07-23

Similar Documents

Publication Publication Date Title
JP5346382B2 (en) Aeration of high-pressure turbines in turbomachinery.
US9399925B2 (en) Seal structure for rotary machine
EP2410134B1 (en) Sealing device for steam turbines and method for controlling sealing device
JP5411569B2 (en) Seal structure and control method
EP2419609B1 (en) Cooled one piece casing of a turbo machine
US10012101B2 (en) Seal system for a gas turbine
JPWO2014128894A1 (en) Variable displacement exhaust turbocharger
US10823184B2 (en) Engine with face seal
JP2013130086A (en) Centrifugal fluid machine
JP5747403B2 (en) Turbo rotating machine and operation method thereof
CN101737088A (en) Steam turbine
JP2018066362A (en) Steam turbine and temperature control method
KR20160070125A (en) Sealing clearance control in turbomachines
JP2012072708A (en) Gas turbine and method for cooling gas turbine
CN103717838B (en) Comprise the steam turbine of thrust balancing piston
JP5980369B2 (en) Turbo rotating machine and operation method thereof
WO2015094990A1 (en) Adjustable clearance control system for airfoil tip in gas turbine engine
JP4909113B2 (en) Steam turbine casing structure
CN104334833A (en) Sealing arrangement for a nozzle guide vane and gas turbine
JP2013204545A (en) Compressor and gas turbine
JP2019183714A (en) Internal combustion engine
JP5478576B2 (en) gas turbine
US20210262361A1 (en) Turbine
CN113757153B (en) System and method for adjusting air flow into a bore of a rotor to control blade tip clearance
US20230296023A1 (en) Turbine with pressurised cavities

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160726

R151 Written notification of patent or utility model registration

Ref document number: 5980369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees