JP5977952B2 - Economizer and refrigerator - Google Patents

Economizer and refrigerator Download PDF

Info

Publication number
JP5977952B2
JP5977952B2 JP2012021466A JP2012021466A JP5977952B2 JP 5977952 B2 JP5977952 B2 JP 5977952B2 JP 2012021466 A JP2012021466 A JP 2012021466A JP 2012021466 A JP2012021466 A JP 2012021466A JP 5977952 B2 JP5977952 B2 JP 5977952B2
Authority
JP
Japan
Prior art keywords
refrigerant
liquid
economizer
gas
refrigerant liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012021466A
Other languages
Japanese (ja)
Other versions
JP2013160417A (en
Inventor
智彦 岩崎
智彦 岩崎
西口 章
章 西口
岡田 健
健 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson Controls Hitachi Air Conditioning Technology Hong Kong Ltd
Original Assignee
Johnson Controls Hitachi Air Conditioning Technology Hong Kong Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson Controls Hitachi Air Conditioning Technology Hong Kong Ltd filed Critical Johnson Controls Hitachi Air Conditioning Technology Hong Kong Ltd
Priority to JP2012021466A priority Critical patent/JP5977952B2/en
Priority to CN201310032452.3A priority patent/CN103245144B/en
Publication of JP2013160417A publication Critical patent/JP2013160417A/en
Application granted granted Critical
Publication of JP5977952B2 publication Critical patent/JP5977952B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separating Particles In Gases By Inertia (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

本発明は、エコノマイザ及びエコノマイザを備える冷凍機に関する。   The present invention relates to an economizer and a refrigerator equipped with the economizer.

背景技術として、圧縮機、凝縮器、蒸発器、二段膨張機構を有した冷凍装置が、用いられている。その中でも、特許文献1に挙げられるように、成績係数(COP)向上を目的に、凝縮器からの冷媒液が膨張弁を通過して二相流となった冷媒をフラッシュ蒸気(冷媒ガス)、冷媒液に分離し、フラッシュ蒸気を中間吸込み口へ、冷媒液を蒸発器に送り出すエコノマイザが用いられている。なお、特許文献1に示されるエコノマイザは、気液分離手法として、重力分離方式を採用している。   As a background art, a compressor, a condenser, an evaporator, and a refrigeration apparatus having a two-stage expansion mechanism are used. Among them, as mentioned in Patent Document 1, for the purpose of improving the coefficient of performance (COP), the refrigerant liquid from the condenser passes through the expansion valve and is converted into a two-phase flow by using flash vapor (refrigerant gas), An economizer that separates into refrigerant liquid and sends flash vapor to an intermediate suction port and sends the refrigerant liquid to an evaporator is used. Note that the economizer disclosed in Patent Document 1 employs a gravity separation method as a gas-liquid separation method.

特開平11−344265号公報JP-A-11-344265

ところで、従来技術である重力分離方式では、一定の流速を持った流体(冷媒)を、狭い配管より広い容積を持った空間に流出させることで流体の流速を下げ、重力の作用により気液分離を行っている。   By the way, in the conventional gravity separation method, a fluid (refrigerant) having a constant flow velocity is flowed out into a space having a larger volume than a narrow pipe to lower the fluid flow velocity, and gas-liquid separation is performed by the action of gravity. It is carried out.

しかしながら、従来技術では一定容積の空間を要し、気液分離の効率化と小型化によるコストダウンは難しいという問題点があった。   However, the conventional technique requires a certain volume of space, and there is a problem that it is difficult to reduce the cost by improving the efficiency and miniaturization of gas-liquid separation.

そこで、本発明は、従来技術(重力分離方式)のエコノマイザと比較し、気液分離に必要とされる空間体積を少なくし、装置全体の小型化を実現することを目的とする。   Therefore, the present invention has an object to reduce the volume of the space required for gas-liquid separation and realize downsizing of the entire apparatus as compared with the prior art (gravity separation type) economizer.

例えば特許請求の範囲に記載の構成を採用する。   For example, the configuration described in the claims is adopted.

本願は上記課題を解決する手段を複数含んでいるが、本発明においては、凝縮器からの液冷媒が膨張弁を通過して気液二相流となって流入する冷媒を蒸発器へ送られる冷媒液と圧縮機の中間圧部へ送られる冷媒ガスとに分離する冷凍機のエコノマイザであって、前記気液二相流冷媒を流入させる流入部と、前記流入部から流入した冷媒を旋回させることにより冷媒液と冷媒ガスに分離する遠心分離部と、分離された冷媒ガスを流出させる冷媒ガス流出部と、分離された冷媒液を流出させる冷媒液流出部とを備えることを特徴とする。   In the present invention, the liquid refrigerant from the condenser passes through the expansion valve, and the refrigerant flowing in as a gas-liquid two-phase flow is sent to the evaporator. An economizer of a refrigerator that separates refrigerant liquid and refrigerant gas sent to an intermediate pressure portion of a compressor, wherein an inflow portion into which the gas-liquid two-phase flow refrigerant flows and a refrigerant flowing from the inflow portion are swirled Thus, a centrifugal separator that separates the refrigerant liquid and the refrigerant gas, a refrigerant gas outflow part that causes the separated refrigerant gas to flow out, and a refrigerant liquid outflow part that causes the separated refrigerant liquid to flow out are provided.

本発明によれば、従来技術の重力分離方式エコノマイザに比べて、気液分離性能を向上させることが可能であるため、小型化が可能である。また、小型化による必要部材の低減により、コストダウンが可能である。   According to the present invention, since the gas-liquid separation performance can be improved as compared with the conventional gravity separation type economizer, the size can be reduced. Further, the cost can be reduced by reducing the number of necessary members by downsizing.

本発明の実施例における遠心圧縮機のシステム構成を示す概略図である。It is the schematic which shows the system configuration | structure of the centrifugal compressor in the Example of this invention. 本発明の実施例における冷凍サイクル線図である。It is a refrigerating cycle diagram in the example of the present invention. 本発明の実施例におけるエコノマイザの例である。It is an example of the economizer in the Example of this invention. 図3におけるA断面図である。It is A sectional drawing in FIG. 図3におけるB断面図である。It is B sectional drawing in FIG.

以下、本発明の実施例について添付図面に基づいて詳細に説明する。本実施例は、蒸気圧縮式の冷凍サイクルを基本原理とした多段式(具体的には、二段式の)ターボ冷凍機に関するものである。図1は本実施例に係るターボ冷凍機の構成を、図2はp−h線図に基づいた冷凍サイクル線図を模式的に示したものである。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The present embodiment relates to a multi-stage (specifically, two-stage) turbo refrigerator based on a vapor compression refrigeration cycle. FIG. 1 schematically shows a configuration of a turbo refrigerator according to the present embodiment, and FIG. 2 schematically shows a refrigeration cycle diagram based on a ph diagram.

このターボ冷凍機は、図1のような二段遠心圧縮機を備えるものであり、以下の原理によって作動する。図2に示すように、状態点S9において湿り蒸気である冷媒は蒸発器5にて被冷却物より熱を奪い状態点S1の飽和蒸気となる。飽和蒸気に状態変化した冷媒は遠心圧縮機1の一段目で断熱圧縮され内部エネルギーが増大し、過熱蒸気の状態点S2へ昇圧される。状態点S2における冷媒は一次膨張弁7で絞り膨張により発生し、エコノマイザ4にて分離されたフラッシュ蒸気(冷媒ガス)を取り入れ、状態点S3に至る。状態点S3の蒸気は圧縮機二段目によって圧力P4まで昇圧され更なる過熱度を持つ状態点S4となる。   This turbo refrigerator includes a two-stage centrifugal compressor as shown in FIG. 1 and operates according to the following principle. As shown in FIG. 2, the refrigerant that is wet steam at the state point S <b> 9 takes heat from the object to be cooled in the evaporator 5 and becomes saturated steam at the state point S <b> 1. The refrigerant whose state has changed to saturated steam is adiabatically compressed in the first stage of the centrifugal compressor 1 to increase the internal energy, and the pressure is raised to the superheated steam state point S2. The refrigerant at the state point S2 is generated by throttle expansion at the primary expansion valve 7, takes in the flash vapor (refrigerant gas) separated by the economizer 4, and reaches the state point S3. The steam at the state point S3 is increased to the pressure P4 by the second stage of the compressor, and becomes a state point S4 having a further degree of superheat.

その後冷媒は凝縮器2を通過する過程で、輸送した熱量を冷却水へ受け渡し、冷却され、乾き飽和蒸気、湿り蒸気、飽和液と状態変化を経たのち、過冷却器3を経て、過冷却液である状態点S5へと達する。過冷却液となった冷媒は一次膨張弁7を通過し、二相流状態のS6でエコノマイザ4に流入する。エコノマイザ4では、一次膨張弁7での絞り膨張にて中間圧力Pecoまで一旦減圧された際に発生したフラッシュ蒸気(状態点S7)と、冷媒液(状態点S8)とに分離される。このうち冷媒液のみが蒸発圧力P1まで二次膨張弁8で絞り膨張され、湿り蒸気に戻り(状態点S9)、再度同様のサイクルを繰り返す。   After that, the refrigerant passes through the condenser 2, passes the amount of heat transported to the cooling water, is cooled, undergoes a state change with dry saturated steam, wet steam, and saturated liquid, then passes through the supercooler 3, and then passes through the supercooled liquid. The state point S5 is reached. The refrigerant that has become the supercooled liquid passes through the primary expansion valve 7 and flows into the economizer 4 in S6 in a two-phase flow state. The economizer 4 is separated into flash vapor (state point S7) and refrigerant liquid (state point S8) generated when the pressure is once reduced to the intermediate pressure Peco by throttle expansion at the primary expansion valve 7. Of these, only the refrigerant liquid is squeezed and expanded by the secondary expansion valve 8 up to the evaporation pressure P1, returned to wet steam (state point S9), and the same cycle is repeated again.

状態点S6、S7、S8でのエンタルピをh6、h7、h8とすると、エコノマイザ4内部での気液二相流冷媒の流量割合はエンタルピの比{(h7−h6)/(h7−h8)}となる。この割合は圧縮比や過冷却度で変化するが、大部分が液である。この一例では、液の割合は85%と冷媒全体の大部分を占めており、一部分(15%)はフラッシュして蒸発している状態となっている。エコノマイザ4では、この大部分の冷媒液をフラッシュ蒸気を混入させずに、蒸発器に送ることが重要な機能であり、更にフラッシュ蒸気を分離し、圧縮機に送る役割を果たしている。   If the enthalpies at state points S6, S7, and S8 are h6, h7, and h8, the flow rate of the gas-liquid two-phase refrigerant in the economizer 4 is the enthalpy ratio {(h7-h6) / (h7-h8)}. It becomes. This ratio varies depending on the compression ratio and the degree of supercooling, but most is liquid. In this example, the ratio of the liquid is 85%, which occupies most of the entire refrigerant, and a part (15%) is flashed and evaporated. In the economizer 4, it is an important function to send most of the refrigerant liquid to the evaporator without mixing the flash vapor, and further, the flash vapor is separated and sent to the compressor.

ここで、遠心分離方式のエコノマイザ4の特異性について説明する。気液分離器で互いに分離される二つの成分は、気液分離器が組み込まれる装置の本質的な機能に照らして優先順位を付けることができる。便宜上この優先順位の高い方を主たる成分とし、優先順位の低い方を従たる成分とするならば、一般的な気液分離器は、気液分離器の上方から流出する気体が主たる成分であり、下方から流出する液体が従たる成分となっている。例えば冷媒ガスと冷凍機油とを分離する油分離器の場合には、主たる成分が気体の冷媒ガスであり、従たる成分が液体の冷凍機油である。また、圧縮機の上流側に配置される気液分離器の場合には、圧縮機に液冷媒が吸入されるのを防止するのが本質的な機能であることから、主たる成分が気体の冷媒ガスであり、従たる成分が液体の冷媒液である。そして、このような一般的な気液分離器では、気液分離器の上方から流出する主たる成分について配慮されるが、気液分離器の下方から流出する従たる成分については特に配慮されないものである。一方で、エコノマイザ4は、主たる成分が気液分離器の下方から流出する冷媒液であり、従たる成分が気液分離器の上方から流出する冷媒ガスであり、上述のような一般的な気液分離器とは、主従の関係が逆転したものである。従って、エコノマイザ4は、分離対象が同一物質の二相流体であり、主たる成分としての冷媒液が質量流量基準で圧倒的に多く、気液分離器の下方から良好に流出するようにとの配慮がなされているところが一般的な気液分離器とは異なる点である。   Here, the specificity of the centrifugal economizer 4 will be described. The two components that are separated from each other by the gas-liquid separator can be prioritized in light of the essential function of the device in which the gas-liquid separator is incorporated. For convenience, if the higher priority is the main component and the lower priority is the subordinate component, a general gas-liquid separator is mainly composed of gas flowing out from above the gas-liquid separator. The liquid flowing out from below is a subordinate component. For example, in the case of an oil separator that separates refrigerant gas and refrigerating machine oil, the main component is gaseous refrigerant gas and the subordinate component is liquid refrigerating machine oil. In the case of a gas-liquid separator arranged upstream of the compressor, the essential function is to prevent the liquid refrigerant from being sucked into the compressor. It is a gas and the subordinate component is a liquid refrigerant liquid. In such a general gas-liquid separator, consideration is given to the main component flowing out from above the gas-liquid separator, but no particular consideration is given to the subordinate component flowing out from below the gas-liquid separator. is there. On the other hand, the economizer 4 is a refrigerant liquid whose main component flows out from below the gas-liquid separator and whose subordinate component is a refrigerant gas flowing out from above the gas-liquid separator. A liquid separator is a reverse of the master-slave relationship. Accordingly, the economizer 4 considers that the separation target is a two-phase fluid of the same substance, the refrigerant liquid as the main component is overwhelmingly large on the basis of mass flow rate, and flows out well from below the gas-liquid separator. This is different from general gas-liquid separators.

図3は、本実施例のエコノマイザ4における構成図の例である。なお、エコノマイザ4はエコノマイザ本体29と、液面検知部104とに大別される。また、エコノマイザ本体29は、液滴除去部101、遠心分離部102、旋回抑制部103に分かれる。   FIG. 3 is an example of a configuration diagram in the economizer 4 of the present embodiment. The economizer 4 is roughly divided into an economizer body 29 and a liquid level detection unit 104. The economizer main body 29 is divided into a droplet removing unit 101, a centrifuge unit 102, and a swivel suppressing unit 103.

エコノマイザ本体29は、外筒15と外筒15の内部に配置される内筒14を有する。外筒15は円筒状の容器であり、二相流冷媒流入部11を溶接等により固定をするための穴が設けられている。外筒15の上下には管板22が溶接等により固定してある。なお、上の管板22にはフラッシュ蒸気が流れる冷媒ガス出口部12用の配管が溶接等により固定してあり、下の管板22には冷媒液が流出する冷媒液出口部13用の配管が溶接等により固定してある。   The economizer body 29 has an outer cylinder 15 and an inner cylinder 14 disposed inside the outer cylinder 15. The outer cylinder 15 is a cylindrical container, and is provided with a hole for fixing the two-phase flow refrigerant inflow portion 11 by welding or the like. Tube sheets 22 are fixed to the upper and lower sides of the outer cylinder 15 by welding or the like. A pipe for the refrigerant gas outlet portion 12 through which flash vapor flows is fixed to the upper tube plate 22 by welding or the like, and a pipe for the refrigerant liquid outlet portion 13 from which the refrigerant liquid flows out to the lower tube plate 22. Is fixed by welding or the like.

液滴除去部101には、デミスタ16が設置してあり、二枚の固定板20にて上下を固定されている。なお、デミスタ16はステンレス製ワイヤーを不均一に絡ませたシートを積層させたものである。その不均一に絡んだワイヤーで冷媒液滴を捕捉することにより、フラッシュ蒸気内部に存在する微細な液滴を除去する能力を有している。   A demister 16 is installed in the droplet removing unit 101 and is fixed up and down by two fixing plates 20. The demister 16 is a laminate of sheets in which stainless steel wires are entangled unevenly. Capturing the refrigerant droplets with the non-uniformly entangled wire has the ability to remove the fine droplets present inside the flash vapor.

液滴除去部101と遠心分離部102とは、固定板21によって区画される。   The droplet removing unit 101 and the centrifuge unit 102 are partitioned by the fixed plate 21.

遠心分離部102では円筒状の内筒14が固定板21にて、中心軸が外筒15の中心軸と一致するように溶接等により固定されている。そして、内筒14の内壁部には十字に組まれた冷媒ガス整流板17が溶接等により固定されている。   In the centrifugal separator 102, the cylindrical inner cylinder 14 is fixed by a fixing plate 21 by welding or the like so that the central axis coincides with the central axis of the outer cylinder 15. A refrigerant gas rectifying plate 17 assembled in a cross shape is fixed to the inner wall portion of the inner cylinder 14 by welding or the like.

遠心分離部102の下方には、冷媒液の旋回を抑制する旋回抑制部103が設けられている。   Below the centrifugal separator 102, a turning suppression unit 103 that suppresses the turning of the refrigerant liquid is provided.

旋回抑制部103には、外筒15の内壁に接するように、冷媒液旋回抑制板19が90°間隔(計4枚)に設置してある。遠心分離部102と旋回抑制部103の間には、仕切り板18が溶接等により固定されており、冷媒液旋回抑制板19が支柱の役目を兼ねている。冷媒液旋回抑制板19は、旋回抑制部103の径方向外方から内方に向かって設けられており、具体的には、壁面から径方向中間位置にかけて設けられている。また、旋回抑制部103は、冷媒液液面高さを可及的に平らに維持するために冷媒液を貯留する部分としても機能し、冷媒液出口部13から流出しないようにする役割を果たしている。   The swirl suppression unit 103 is provided with refrigerant liquid swirl suppression plates 19 at 90 ° intervals (a total of four) so as to contact the inner wall of the outer cylinder 15. A partition plate 18 is fixed by welding or the like between the centrifugal separator 102 and the swivel suppression unit 103, and the refrigerant liquid swirl suppression plate 19 also serves as a support column. The refrigerant liquid turning suppression plate 19 is provided from the radially outer side to the inner side of the turning suppression unit 103, and specifically, is provided from the wall surface to the radial intermediate position. Further, the swivel suppression unit 103 also functions as a part for storing the refrigerant liquid in order to keep the liquid level of the refrigerant liquid as flat as possible, and serves to prevent the refrigerant liquid from flowing out from the refrigerant liquid outlet part 13. Yes.

仕切り板18は、その上方での旋回流がその下方の冷媒液に影響を与えて、冷媒液の旋回を助長したり冷媒液を巻き上げたりすることの無いように空間を仕切るものである。仕切り板18と外筒15の間には隙間18aが設けられており、外筒15の内面に沿って旋回している冷媒液が、旋回抑制部103に流入する。冷媒液旋回抑制板19の上部には、冷媒液流入促進を目的に切り欠き19aが設けられている。   The partition plate 18 divides the space so that the swirling flow above it does not affect the refrigerant liquid below it, thereby promoting the swirling of the refrigerant liquid or winding up the refrigerant liquid. A gap 18 a is provided between the partition plate 18 and the outer cylinder 15, and the refrigerant liquid swirling along the inner surface of the outer cylinder 15 flows into the swiveling suppression unit 103. A cutout 19a is provided in the upper part of the refrigerant liquid turning suppression plate 19 for the purpose of promoting the inflow of the refrigerant liquid.

また、旋回抑制部103の中央には、冷媒液液面調整空間23が設けられている。旋回抑制部103の内部空間を冷媒液旋回抑制板19で周方向に仕切った場合には、仕切られた各空間によって冷媒液液面高さの不均一が生じ得るが、冷媒液液面調整空間23が存在することにより、この不均一を抑制し、冷媒液が遠心分離部102に再流入するのを防止する効果を有する。また、冷媒液旋回抑制板19が旋回抑制部103中央部の冷媒液出口部13用の配管開口部にかからないように構成しているので、冷媒液の流出抵抗になることがない。   In addition, a coolant liquid level adjustment space 23 is provided in the center of the turning suppression unit 103. When the internal space of the swirl suppressing unit 103 is partitioned in the circumferential direction by the refrigerant liquid swirl suppressing plate 19, the coolant liquid level may be uneven due to the partitioned spaces. The presence of 23 has the effect of suppressing this non-uniformity and preventing the refrigerant liquid from flowing again into the centrifugal separator 102. In addition, since the refrigerant liquid swirl suppression plate 19 is configured not to cover the pipe opening for the refrigerant liquid outlet portion 13 at the center of the swirl suppressor 103, there is no outflow resistance of the refrigerant liquid.

液面検知部104は、外筒27と上下の管板26からなり、外筒27には液面検知用センサ28を取付けるための穴27aが空けられている。外筒27の上下には管板26が溶接等で固定してある。   The liquid level detection unit 104 includes an outer cylinder 27 and upper and lower tube plates 26, and the outer cylinder 27 has a hole 27 a for attaching a liquid level detection sensor 28. Tube plates 26 are fixed to the top and bottom of the outer cylinder 27 by welding or the like.

液面検知部104の上部と、エコノマイザ本体29の上部(具体的には、液滴除去部101)は、気相連通配管25で接続されており、液面検知部104の下部と、エコノマイザ本体29の下部(具体的には、旋回抑制部103)は液相連通配管24で接続されている。なお、液相連通配管24を接続するために、エコノマイザ本体29の管板22に取付け穴24aと、液面検知部104の管板26に取付け穴24bが空けられている。同様に、気相連通配管25を接続するために、エコノマイザ本体29の管板22に取付け穴25a、液面検知部104の管板26に取付け穴25bが空けられている。   The upper part of the liquid level detection unit 104 and the upper part of the economizer main body 29 (specifically, the droplet removing unit 101) are connected by the gas phase communication pipe 25, and the lower part of the liquid level detection unit 104 and the economizer main body are connected. The lower part of 29 (specifically, the turning suppression unit 103) is connected by a liquid phase communication pipe 24. In order to connect the liquid phase communication pipe 24, an attachment hole 24 a is formed in the tube plate 22 of the economizer body 29, and an attachment hole 24 b is formed in the tube plate 26 of the liquid level detection unit 104. Similarly, in order to connect the gas phase communication pipe 25, a mounting hole 25 a is formed in the tube plate 22 of the economizer body 29, and a mounting hole 25 b is formed in the tube plate 26 of the liquid level detection unit 104.

次に、二相流冷媒流入部11、冷媒液出口部13における断面積の関係について説明する。冷媒液出口部13の流路断面積は、冷媒液出口部13での質量流量を、二相流冷媒流入部での質量流量で除した値(比率)を、二相流冷媒流入部11の流路断面積に乗じた値以上とする。なお、二相流冷媒流入部11の流路断面積は、流入部の冷媒流れ方向に直交する断面11aの面積であり、冷媒液出口部13の流路断面積は、流出部の冷媒流れ方向に直交する断面の面積である。好ましくは、旋回抑制部103における貯留量が過剰になることを防止するために、冷媒液出口部13の流路断面積が二相流冷媒流入部11の流路断面積以上になるように、余裕を持って配管を選定する。   Next, the relationship between the cross-sectional areas of the two-phase flow refrigerant inlet 11 and the refrigerant liquid outlet 13 will be described. The flow path cross-sectional area of the refrigerant liquid outlet portion 13 is obtained by dividing the value (ratio) obtained by dividing the mass flow rate at the refrigerant liquid outlet portion 13 by the mass flow rate at the two-phase flow refrigerant inflow portion of the two-phase flow refrigerant inflow portion 11. It should be greater than or equal to the value multiplied by the cross-sectional area of the channel. The flow passage cross-sectional area of the two-phase flow refrigerant inflow portion 11 is the area of the cross section 11a orthogonal to the refrigerant flow direction of the inflow portion, and the flow passage cross-sectional area of the refrigerant liquid outlet portion 13 is the refrigerant flow direction of the outflow portion. It is the area of the cross section orthogonal to. Preferably, in order to prevent the amount of storage in the turning suppression unit 103 from becoming excessive, the flow passage cross-sectional area of the refrigerant liquid outlet portion 13 is equal to or larger than the flow passage cross-sectional area of the two-phase flow refrigerant inflow portion 11. Select piping with a margin.

配管の選定の一例を説明すると、冷媒液出口部13から流出する冷媒の質量流量の比率が二相流冷媒流入部11から流入する冷媒の85%として、入口の配管の内径が50mmである場合、出口の配管には内径が46.1mm(=50×√0.85)か、あるいはこれ以上の寸法のものを採用することが好ましい。具体的には、出口の配管には、入口の配管と同径の50mmのものか、あるいはさらに大きい径のものを選定すると良い。   An example of piping selection will be described. When the mass flow rate ratio of the refrigerant flowing out from the refrigerant liquid outlet portion 13 is 85% of the refrigerant flowing in from the two-phase flow refrigerant inflow portion 11, the inner diameter of the inlet piping is 50 mm. The outlet pipe preferably has an inner diameter of 46.1 mm (= 50 × √0.85) or larger. Specifically, the outlet pipe may be selected to have the same diameter as that of the inlet pipe, 50 mm, or a pipe having a larger diameter.

次に、エコノマイザ4の作用について、冷媒の流れに沿って説明する。一次膨張弁7からの二相流冷媒の流れは、二相流冷媒流入部11からエコノマイザ4へ流入する。流入した二相流冷媒は外筒15の内壁に沿って旋回流を形成し、遠心分離作用によって中央側を流れる冷媒ガスと壁面側を流れる冷媒液とに分離される。   Next, the effect | action of the economizer 4 is demonstrated along the flow of a refrigerant | coolant. The flow of the two-phase flow refrigerant from the primary expansion valve 7 flows into the economizer 4 from the two-phase flow refrigerant inflow portion 11. The two-phase refrigerant that has flowed in forms a swirling flow along the inner wall of the outer cylinder 15, and is separated into a refrigerant gas flowing on the center side and a refrigerant liquid flowing on the wall surface side by centrifugal separation.

分離された冷媒ガスは、内筒14、冷媒ガス整流板17、デミスタ16の順番で通過する。冷媒ガスは更に冷媒ガス出口部12を経て、遠心圧縮機1の二段目入口へ流入する。   The separated refrigerant gas passes through the inner cylinder 14, the refrigerant gas rectifying plate 17, and the demister 16 in this order. The refrigerant gas further flows into the second stage inlet of the centrifugal compressor 1 via the refrigerant gas outlet 12.

分離された冷媒液は、外筒15の内壁に沿って旋回流を形成し仕切り板18下部の旋回抑制部103に流入する。流入した冷媒液は、冷媒液旋回抑制板19に衝突し、旋回流が抑制された状態で冷媒液出口部13を経て、蒸発器5に至る。   The separated refrigerant liquid forms a swirling flow along the inner wall of the outer cylinder 15 and flows into the swirl suppressing portion 103 below the partition plate 18. The flowing refrigerant liquid collides with the refrigerant liquid swirl suppression plate 19 and reaches the evaporator 5 through the refrigerant liquid outlet portion 13 in a state where the swirl flow is suppressed.

二相流冷媒流入部11と冷媒液出口部13の流路断面積の比率を、二相流冷媒流入口から流入する二相流冷媒液に対する、分離後における冷媒液の比率に応じた値に設定しているので、出口での管内流速増加による圧力損失増加を防ぎ、流入した二相流冷媒から分離された冷媒液をエコノマイザに過剰に溜めることなく、良好に流すことができるという作用がある。   The ratio of the channel cross-sectional area of the two-phase flow refrigerant inflow portion 11 and the refrigerant liquid outlet portion 13 is set to a value corresponding to the ratio of the refrigerant liquid after separation with respect to the two-phase flow refrigerant liquid flowing in from the two-phase flow refrigerant inflow port. Since it is set, there is an effect of preventing an increase in pressure loss due to an increase in the flow velocity in the pipe at the outlet, and allowing the refrigerant liquid separated from the inflowing two-phase flow refrigerant to flow well without excessive accumulation in the economizer .

また、液滴除去部101、及び旋回抑制部103各々と連通する液面検知部104を設置し、液面検知用センサ28からの信号にて、二次膨張弁8を動作させることにより、エコノマイザ4内部の冷媒液液面を制御可能としている。   Further, by installing a liquid level detecting unit 104 communicating with each of the droplet removing unit 101 and the swivel suppressing unit 103 and operating the secondary expansion valve 8 by a signal from the liquid level detecting sensor 28, an economizer 4 It is possible to control the liquid level of the refrigerant liquid inside.

次に、エコノマイザ4の効果について気液分離の過程に沿って説明する。一次膨張弁7からの二相流冷媒の流れは、二相流冷媒流入部11からエコノマイザ4へ流入する。流入した二相流冷媒は外筒15の内壁に沿って旋回流を形成し、遠心分離作用にて液滴を若干含んだ冷媒ガスの流れと、冷媒液の流れに分離される。   Next, the effect of the economizer 4 will be described along the gas-liquid separation process. The flow of the two-phase flow refrigerant from the primary expansion valve 7 flows into the economizer 4 from the two-phase flow refrigerant inflow portion 11. The two-phase flow refrigerant that has flowed in forms a swirl flow along the inner wall of the outer cylinder 15 and is separated into a refrigerant gas flow and a refrigerant liquid flow containing some droplets by centrifugal separation.

分離された液滴を若干含んだ冷媒ガスは、次に冷媒ガス整流板17を通過し、デミスタ16に流入する。冷媒ガス整流板17は、旋回流によりガスの流れに液滴が同伴するのを防止する効果がある。更にデミスタ16の液滴分離作用により、冷媒ガスに若干含まれた液滴は除去され、冷媒ガスは液滴を含まない状態で冷媒ガス出口部12を経て、遠心圧縮機1の二段目入口へ流入する。分離された冷媒液の流れは、外筒15の内壁に沿って旋回流を形成し、仕切り板18下部に流入する。なお、仕切り板18下部に設置した冷媒液旋回抑制板19の上部に切り欠き形状を配したことにより、仕切り板18下部への冷媒液の流入を促進するとともに、衝撃により飛散した液が仕切り板18上部に流入するのを防止する効果がある。   The refrigerant gas containing some of the separated droplets then passes through the refrigerant gas rectifying plate 17 and flows into the demister 16. The refrigerant gas rectifying plate 17 has an effect of preventing droplets from being accompanied by the swirling flow. Further, due to the droplet separation action of the demister 16, some of the droplets contained in the refrigerant gas are removed, and the refrigerant gas does not contain any droplets, passes through the refrigerant gas outlet 12, and enters the second stage inlet of the centrifugal compressor 1. Flow into. The flow of the separated refrigerant liquid forms a swirling flow along the inner wall of the outer cylinder 15 and flows into the lower part of the partition plate 18. In addition, by arranging a notch shape in the upper part of the refrigerant liquid swirl suppression plate 19 installed at the lower part of the partition plate 18, the inflow of the refrigerant liquid to the lower part of the partition plate 18 is promoted, and the liquid scattered by the impact is separated from the partition plate. 18 has an effect of preventing inflow into the upper portion.

仕切り板18は、冷媒液旋回抑制板19に衝突した冷媒液が仕切り板18の上面に飛散するのを防ぐ効果があり、衝突にて発生した液滴が遠心分離部102の冷媒ガスの旋回流に巻き上げられて液滴除去部101へ浸入し、気液分離性能が低下するのを防止する効果がある。   The partition plate 18 has an effect of preventing the refrigerant liquid colliding with the refrigerant liquid swirl suppression plate 19 from scattering on the upper surface of the partition plate 18, and droplets generated by the collision are swirling flow of the refrigerant gas in the centrifugal separator 102. Is effective to prevent the gas-liquid separation performance from deteriorating.

仕切り板18下部に流入した冷媒液は、冷媒液旋回抑制板19にて旋回流が抑制されるので、冷媒液出口部13から流出する冷媒液への冷媒ガスの巻き込みが防止される。また、旋回流の発生を抑制できるため、冷媒液液面高さが中央部では低くなり、壁面近傍ではせり上がることによる不具合を防止することができる。即ち、冷媒液の旋回流を抑制しなければ、旋回流により中央部の冷媒液液面高さが低下し、押込みヘッド不足により冷媒液の排出が悪化するおそれがあり、場合によっては、冷媒液出口部13が冷媒ガスの空間と連通してしまい、冷媒液出口部13から冷媒ガスが流出するおそれがある。仮に旋回抑制部103を設けない場合には、全体での冷媒液液面高さを高くする必要がある。加えて、旋回抑制部103における壁面近傍の冷媒液液面が、仕切り板18より高くなり、遠心分離部102に冷媒液が流入することで、気液分離性能が低下するおそれがある。この点、本実施例では、旋回抑制部103を設けることにより、旋回流を抑制し、冷媒液液面高さの不均一を抑制することにより、気液分離性能を向上できる効果がある。   The refrigerant liquid that has flowed into the lower part of the partition plate 18 is prevented from swirling by the refrigerant liquid swirl suppression plate 19, so that the refrigerant gas is prevented from being caught in the refrigerant liquid flowing out from the refrigerant liquid outlet portion 13. Moreover, since generation | occurrence | production of a swirl | vortex flow can be suppressed, the malfunction by a refrigerant | coolant liquid level height becoming low in the center part and rising up in the wall surface vicinity can be prevented. That is, if the swirl flow of the refrigerant liquid is not suppressed, the swirl flow may reduce the level of the liquid coolant surface in the center, and the discharge of the refrigerant liquid may be deteriorated due to the lack of the pushing head. The outlet portion 13 communicates with the refrigerant gas space, and the refrigerant gas may flow out of the refrigerant liquid outlet portion 13. If the turning suppression unit 103 is not provided, it is necessary to increase the overall coolant liquid level. In addition, the liquid level in the vicinity of the wall surface of the turning suppression unit 103 is higher than that of the partition plate 18, and the refrigerant liquid flows into the centrifugal separation unit 102, which may reduce the gas-liquid separation performance. In this regard, in the present embodiment, by providing the swirl suppression unit 103, it is possible to suppress the swirl flow and to suppress the nonuniformity of the liquid level of the refrigerant liquid, thereby improving the gas-liquid separation performance.

また、冷媒液旋回抑制板19によって周方向に仕切られた各空間にて冷媒液の高さに不均一が生じた場合には、一部の液面が仕切り板18の上部に達し、気液分離性能を低下させるおそれがある。この点、本実施例では、冷媒液旋回抑制板19は旋回抑制部103の中央部までは延びておらず、旋回抑制部103全体の液面の不均一を良好に防止することができるため、延いては、旋回抑制部103における冷媒液が遠心分離部102へ浸入することを防ぐことができる。   Further, in the case where the height of the coolant liquid is uneven in each space partitioned in the circumferential direction by the coolant liquid swirl suppression plate 19, a part of the liquid level reaches the upper part of the partition plate 18, and the gas liquid There is a risk of reducing the separation performance. In this regard, in the present embodiment, the refrigerant liquid swirl suppression plate 19 does not extend to the central portion of the swirl suppression unit 103, and the liquid level of the entire swirl suppression unit 103 can be well prevented, As a result, it is possible to prevent the refrigerant liquid in the turning suppression unit 103 from entering the centrifugal separation unit 102.

本実施例では液面検知部104をエコノマイザ本体29と別体で設けることにより、旋回抑制部103での冷媒液液面位置を安定して検出可能とした。検知した冷媒液液面の高さを基に、二次膨張弁8の開閉動作にてエコノマイザ4内部での冷媒液液面を仕切り板18より低い位置に保持し、冷媒液液面が仕切り板18の設置位置よりも高くなることで生じる、気液分離性能の急激な低下を防止する効果がある。   In the present embodiment, the liquid level detection unit 104 is provided separately from the economizer main body 29 so that the liquid level position of the refrigerant liquid in the turning suppression unit 103 can be detected stably. Based on the detected refrigerant liquid level, the opening and closing operation of the secondary expansion valve 8 holds the refrigerant liquid level in the economizer 4 at a position lower than the partition plate 18, and the coolant liquid level is the partition plate. There is an effect of preventing a rapid drop in gas-liquid separation performance caused by being higher than the installation position of 18.

冷媒液出口部13での質量流量を二相流冷媒流入部11での質量流量にて除して得られる値(係数)を、二相流冷媒流入部11の流路断面積に乗じた値以上となるように冷媒液出口部13の流路断面積を設定することで、冷媒液出口部13の流動抵抗が極端に大きくなることはないので、流入した二相流冷媒から分離された冷媒液がエコノマイザに過剰に滞留して、冷媒液の液面が上昇することを防止できる。すなわち、遠心分離部102まで、液面が上昇して、気液分離性能を低下することがないので、小型で気液分離性能が高いエコノマイザを提供することができる。   A value (coefficient) obtained by dividing the mass flow rate at the refrigerant liquid outlet 13 by the mass flow rate at the two-phase flow refrigerant inflow portion 11 is multiplied by the flow path cross-sectional area of the two-phase flow refrigerant inflow portion 11. By setting the flow path cross-sectional area of the refrigerant liquid outlet portion 13 to be as described above, the flow resistance of the refrigerant liquid outlet portion 13 does not become extremely large, so that the refrigerant separated from the two-phase refrigerant that has flowed in It is possible to prevent the liquid from excessively staying in the economizer and increasing the liquid level of the refrigerant liquid. That is, since the liquid level does not rise up to the centrifugal separation unit 102 and the gas-liquid separation performance does not deteriorate, a small economizer with high gas-liquid separation performance can be provided.

なお、本発明は上述した実施形態に限定されず、本発明の趣旨を逸脱しない範囲で種々の変更可能である。例えば、内筒14内部の冷媒ガス整流板17、冷媒液旋回抑制板19の設置条件は4枚ではなく、3枚以下であってもよく、5枚以上であってもよい。また、90°ずつ均等に配置するものではなく、異なる角度で不均一に配置されていてもよく、内筒の直径の全長にわたって設置されるものであってもよいし、壁面に接触していなくてもよい。   In addition, this invention is not limited to embodiment mentioned above, A various change is possible in the range which does not deviate from the meaning of this invention. For example, the installation conditions of the refrigerant gas rectifying plate 17 and the refrigerant liquid swirl suppression plate 19 inside the inner cylinder 14 are not four, but may be three or less, or may be five or more. Moreover, it does not arrange 90 degrees equally, may be arranged unevenly at different angles, may be installed over the entire length of the diameter of the inner cylinder, and is not in contact with the wall surface. May be.

また、二相流冷媒流入部11、冷媒液出口部13は既存のJIS配管を用いても良いし、そうではなくても問題ない。例えば、冷媒液出口部13の流路断面積が、冷媒液出口部13での体積流量を二相流冷媒流入部11での質量流量で除した値(比率)を、二相流冷媒流入部11の流路断面積に乗じた値以上であれば、規格外配管等や、縦長楕円形状等の異形配管でもよい。   The two-phase flow refrigerant inflow portion 11 and the refrigerant liquid outlet portion 13 may use existing JIS pipes, or there is no problem if they are not. For example, the flow path cross-sectional area of the refrigerant liquid outlet portion 13 is obtained by dividing the value (ratio) obtained by dividing the volume flow rate at the refrigerant liquid outlet portion 13 by the mass flow rate at the two-phase flow refrigerant inlet portion 11 into the two-phase flow refrigerant inlet portion. As long as the value is equal to or greater than the value obtained by multiplying the flow path cross-sectional area of 11, non-standard pipes or irregular pipes such as vertically long ellipses may be used.

また、液滴除去部に設置されている液滴除去装置は、上記で説明したようなワイヤーシートを積層させた構造でなくてもよい。例えば、隔壁にて液滴除去部に複数の空間を設け、壁面に液滴を付着(捕捉)させる構造でもよい。   Further, the droplet removing device installed in the droplet removing unit may not have a structure in which the wire sheets are laminated as described above. For example, a structure may be employed in which a plurality of spaces are provided in the droplet removing portion by the partition wall, and droplets are attached (captured) to the wall surface.

また、液滴除去部の内部にはデミスタ16や隔壁等の構造物がなく、広い空間により冷媒ガスの流速が下がり、液滴を除去する構造でもよい。あるいは、液滴除去部における気液分離性能が高い場合は、液滴除去部自体がなくてもよい。   Further, there may be no structure such as the demister 16 or the partition wall inside the droplet removing unit, and the flow rate of the refrigerant gas may be reduced by a wide space to remove the droplet. Alternatively, when the gas-liquid separation performance in the droplet removing unit is high, the droplet removing unit itself may not be provided.

また、旋回抑制部として広い空間が確保されており、冷媒液液面が確保されている場合、仕切り板18、冷媒液旋回抑制板19、冷媒液液面調整空間23のいずれか、もしくは全てがなくてもよい。   Further, when a wide space is secured as the swirl suppression unit and the coolant liquid level is secured, any or all of the partition plate 18, the coolant liquid swing suppression plate 19, and the coolant liquid level adjustment space 23 are It does not have to be.

また、エコノマイザの外筒は円筒形状であれば、管板22を用いずに円筒上下の端部を絞りにて成形してもよい。   Further, if the outer cylinder of the economizer is cylindrical, the upper and lower ends of the cylinder may be formed by drawing without using the tube sheet 22.

また、本実施形態では多段圧縮式のターボ冷凍機を例に説明したが、本発明はこれに限らずスクロール式、スクリュー式、ロータリー式等、様々な圧縮方式の冷凍機に対して適用することが可能である。   In the present embodiment, a multi-stage compression turbo chiller has been described as an example. However, the present invention is not limited to this, and may be applied to various compression chillers such as a scroll type, a screw type, and a rotary type. Is possible.

1 遠心圧縮機
2 凝縮器
3 過冷却器
4 エコノマイザ
5 蒸発器
6 電動機
7 一次膨張弁
8 二次膨張弁
11 二相流冷媒流入部
12 冷媒ガス出口部
13 冷媒液出口部
14 内筒
15、27 外筒
16 デミスタ
17 冷媒ガス整流板
18 仕切り板
19 冷媒液旋回抑制板
20、21 固定板
22、26 管板
23 冷媒液液面調整空間
24 液面検知部用冷媒液配管
25 液面検知部用冷媒ガス配管
28 液面検知用センサ
101 液滴除去部
102 遠心分離部
103 旋回抑制部
104 液面検知部
DESCRIPTION OF SYMBOLS 1 Centrifugal compressor 2 Condenser 3 Subcooler 4 Economizer 5 Evaporator 6 Electric motor 7 Primary expansion valve 8 Secondary expansion valve 11 Two-phase flow refrigerant inflow part 12 Refrigerant gas outlet part 13 Refrigerant liquid outlet part 14 Inner cylinders 15 and 27 Outer cylinder 16 Demister 17 Refrigerant gas rectifying plate 18 Partition plate 19 Refrigerant liquid swirl suppression plates 20, 21 Fixed plates 22, 26 Tube plate 23 Refrigerant liquid level adjustment space 24 Liquid level detector refrigerant liquid piping 25 Liquid level detector Refrigerant gas pipe 28 Liquid level detection sensor 101 Droplet removal unit 102 Centrifugal separation unit 103 Swing suppression unit 104 Liquid level detection unit

Claims (8)

凝縮器からの冷媒液が膨張弁を通過して気液二相流となった冷媒を蒸発器へ送られる冷媒液と圧縮機の中間圧部へ送られる冷媒ガスとに分離する冷凍機のエコノマイザであって、前記気液二相流冷媒を流入させる流入部と、前記流入部から流入した冷媒を旋回させることにより冷媒液と冷媒ガスに分離する遠心分離部と、分離された冷媒ガスを流出させる冷媒ガス流出部と、前記遠心分離部で分離された冷媒液の旋回を抑制する旋回抑制部と、分離された冷媒液を流出させる冷媒液流出部とを備え
前記旋回抑制部には、冷媒液の旋回方向と交差するように冷媒液旋回抑制板が配置され、
前記遠心分離部と前記旋回抑制部との間には、仕切り板が配置されていることを特徴とするエコノマイザ。
Refrigerating machine economizer that separates the refrigerant liquid from the condenser into a gas-liquid two-phase flow through the expansion valve into refrigerant liquid sent to the evaporator and refrigerant gas sent to the intermediate pressure part of the compressor An inflow section for introducing the gas-liquid two-phase flow refrigerant, a centrifugal separation section for separating the refrigerant liquid and the refrigerant gas by turning the refrigerant flowing in from the inflow section, and the separated refrigerant gas flowing out. comprising a refrigerant gas outlet portion for, that suppresses turning suppressing portion pivoting of separated refrigerant liquid by the centrifugal separation unit, a refrigerant liquid outlet portion for discharging the separated refrigerant liquid, and
The swirl suppression unit has a refrigerant liquid swirl suppression plate disposed so as to intersect the swirl direction of the refrigerant liquid,
An economizer characterized in that a partition plate is disposed between the centrifugal separation unit and the turning suppression unit .
請求項1に記載のエコノマイザにおいて、前記仕切り板の周囲には、前記遠心分離部から前記旋回抑制部に流入する冷媒液が通過する隙間が設けてあることを特徴とするエコノマイザ。2. The economizer according to claim 1, wherein a gap through which the refrigerant liquid flowing from the centrifugal separator into the swirl suppression unit passes is provided around the partition plate. 請求項2に記載のエコノマイザにおいて前記冷媒液旋回抑制板は、前記遠心分離部から冷媒液が流入する部分に切り欠きを有することを特徴とするエコノマイザ。 3. The economizer according to claim 2 , wherein the refrigerant liquid swirl suppression plate has a notch in a portion where the refrigerant liquid flows from the centrifugal separator. 請求項1に記載のエコノマイザにおいて、前記遠心分離部で分離された冷媒ガスに含まれる液滴を除去する液滴除去部を備えることを特徴とするエコノマイザ。   The economizer according to claim 1, further comprising a droplet removing unit that removes droplets contained in the refrigerant gas separated by the centrifugal separator. 請求項1に記載のエコノマイザにおいて、前記遠心分離部で分離された冷媒ガスの流れを整流する冷媒ガス整流部を設けたことを特徴とするエコノマイザ。   2. The economizer according to claim 1, further comprising a refrigerant gas rectifier that rectifies the flow of the refrigerant gas separated by the centrifugal separator. 請求項1に記載のエコノマイザにおいて、前記遠心分離部を有するエコノマイザ本体と、前記エコノマイザ本体に滞留する冷媒液の滞留量を検知する液面検知部とを備え、
前記液面検知部は、前記エコノマイザ本体の上部および下部で連通することを特徴とするエコノマイザ。
The economizer according to claim 1, further comprising: an economizer body having the centrifugal separation unit; and a liquid level detection unit that detects a retention amount of the refrigerant liquid retained in the economizer body,
The economizer according to claim 1, wherein the liquid level detector communicates with an upper portion and a lower portion of the economizer body.
請求項1に記載のエコノマイザにおいて、冷媒液流出部の断面積は、前記冷媒液流出部から流出する前記冷媒液の質量流量を前記流入部から流入する前記気液二相流冷媒の質量流量で除した値を流入部の冷媒流れ方向に直交する断面積に乗じた値以上の大きさに設定されることを特徴とするエコノマイザ。   2. The economizer according to claim 1, wherein the cross-sectional area of the refrigerant liquid outflow portion is a mass flow rate of the refrigerant liquid flowing out from the refrigerant liquid outflow portion by a mass flow rate of the gas-liquid two-phase flow refrigerant flowing in from the inflow portion. An economizer characterized by being set to a size equal to or greater than a value obtained by multiplying the divided value by a cross-sectional area perpendicular to the refrigerant flow direction of the inflow portion. 請求項1から7までの何れか一項に記載のエコノマイザを備えることを特徴とする冷凍機。 Refrigerator, characterized in that it comprises an economizer according to any one of claims 1 to 7.
JP2012021466A 2012-02-03 2012-02-03 Economizer and refrigerator Active JP5977952B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012021466A JP5977952B2 (en) 2012-02-03 2012-02-03 Economizer and refrigerator
CN201310032452.3A CN103245144B (en) 2012-02-03 2013-01-29 Energy-saving appliance and refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012021466A JP5977952B2 (en) 2012-02-03 2012-02-03 Economizer and refrigerator

Publications (2)

Publication Number Publication Date
JP2013160417A JP2013160417A (en) 2013-08-19
JP5977952B2 true JP5977952B2 (en) 2016-08-24

Family

ID=48924836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012021466A Active JP5977952B2 (en) 2012-02-03 2012-02-03 Economizer and refrigerator

Country Status (2)

Country Link
JP (1) JP5977952B2 (en)
CN (1) CN103245144B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6459235B2 (en) * 2014-06-18 2019-01-30 富士電機株式会社 Gas-liquid separator
JP6486217B2 (en) * 2015-06-23 2019-03-20 日立ジョンソンコントロールズ空調株式会社 Compressor and refrigeration cycle apparatus
WO2017212532A1 (en) * 2016-06-06 2017-12-14 三菱電機株式会社 Refrigeration cycle device
CN113819684B (en) * 2021-09-28 2022-12-02 约克(无锡)空调冷冻设备有限公司 Economizer and refrigerating system comprising same
CN117804102A (en) * 2022-09-23 2024-04-02 约克(无锡)空调冷冻设备有限公司 Flash tank for HVAC system

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3583595B2 (en) * 1997-09-19 2004-11-04 松下電器産業株式会社 Gas-liquid separator for refrigeration cycle equipment
JPH11304269A (en) * 1998-04-23 1999-11-05 Nippon Soken Inc Refrigerating cycle
JPH11344265A (en) * 1998-06-02 1999-12-14 Mitsubishi Heavy Ind Ltd Turbo freezer of multistage compression system
EP1666153B1 (en) * 2003-05-16 2010-07-28 Haimo Technologies Inc. A adjustable gas-liquid centrifugal separator and separating method
JP4255817B2 (en) * 2003-08-27 2009-04-15 株式会社不二工機 Gas-liquid separator
CN1804514A (en) * 2005-01-11 2006-07-19 东元电机股份有限公司 Rotary and centrifugal type flash vaporization groove energy saving device
JP2009008349A (en) * 2007-06-29 2009-01-15 Daikin Ind Ltd Gas-liquid separator
JP2009174738A (en) * 2008-01-22 2009-08-06 Denso Corp Gas-liquid separator
JP5395358B2 (en) * 2008-01-23 2014-01-22 日冷工業株式会社 A gas-liquid separator and a refrigeration apparatus including the gas-liquid separator.
JP5062160B2 (en) * 2008-12-19 2012-10-31 株式会社デンソー Refrigeration cycle and compressor
JP5143040B2 (en) * 2009-02-05 2013-02-13 三菱電機株式会社 Gas-liquid separator and refrigeration cycle apparatus equipped with the gas-liquid separator
JP5498715B2 (en) * 2009-02-12 2014-05-21 日冷工業株式会社 Gas-liquid separator and refrigeration apparatus equipped with the gas-liquid separator
JP5410114B2 (en) * 2009-02-20 2014-02-05 三洋電機株式会社 Refrigeration equipment

Also Published As

Publication number Publication date
CN103245144B (en) 2016-03-30
CN103245144A (en) 2013-08-14
JP2013160417A (en) 2013-08-19

Similar Documents

Publication Publication Date Title
JP6670196B2 (en) Gas-liquid separator for compression refrigerators
JP5977952B2 (en) Economizer and refrigerator
JP4356214B2 (en) Oil separator and outdoor unit
KR101607509B1 (en) Chiller or heat pump with a falling film evaporator and horizontal oil separator
EP1568955B1 (en) Oil separator and cooling-cycle apparatus using the same
JP2008196721A (en) Gas-liquid separator
JP2008032269A (en) Accumulator
CN113713508B (en) Centrifugal separation pipe, gas-liquid separation device and refrigeration system with device
CA2666392C (en) Apparatus and method for separating droplets from vaporized refrigerant
JP5657061B2 (en) Cyclone oil separator, compression refrigeration apparatus and air compression apparatus provided with the same
JP5601764B2 (en) Gas-liquid separator and air compressor and air conditioner equipped with the same
JP5625699B2 (en) Refrigeration circuit
KR101908301B1 (en) Condenser having oil separator and Refrigerating cycle apparatus having the same
JP6403061B2 (en) Oil separator
JP2009008349A (en) Gas-liquid separator
JP6296322B2 (en) Oil separator
JP6538493B2 (en) Cyclone oil separator and refrigeration system
JP6601022B2 (en) Gas-liquid separator
JP2000199658A (en) Gas/liquid separator for cooling device
JP6827554B2 (en) Oil separator and air conditioner equipped with it
JP2005233470A (en) Gas-liquid separator
WO2020174660A1 (en) Gas-liquid separation device and refrigeration cycle device
JP6380515B2 (en) Gas-liquid separator and air conditioner equipped with the same
JP2017020700A (en) Condenser
JP6459235B2 (en) Gas-liquid separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150123

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150820

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150902

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160119

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160725

R150 Certificate of patent or registration of utility model

Ref document number: 5977952

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250