JP5974599B2 - 回転電機 - Google Patents

回転電機 Download PDF

Info

Publication number
JP5974599B2
JP5974599B2 JP2012091241A JP2012091241A JP5974599B2 JP 5974599 B2 JP5974599 B2 JP 5974599B2 JP 2012091241 A JP2012091241 A JP 2012091241A JP 2012091241 A JP2012091241 A JP 2012091241A JP 5974599 B2 JP5974599 B2 JP 5974599B2
Authority
JP
Japan
Prior art keywords
magnet
magnets
magnet body
angle
slots
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012091241A
Other languages
English (en)
Other versions
JP2013223257A (ja
Inventor
高橋 裕樹
裕樹 高橋
瀬口 正弘
瀬口  正弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012091241A priority Critical patent/JP5974599B2/ja
Priority to US13/861,836 priority patent/US9236775B2/en
Publication of JP2013223257A publication Critical patent/JP2013223257A/ja
Application granted granted Critical
Publication of JP5974599B2 publication Critical patent/JP5974599B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/06Magnetic cores, or permanent magnets characterised by their skew
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Description

本発明は、固定子と回転子とを有する回転電機に関する。
従来では、車両のブレーキング時または降坂時に発生する誘起電圧のピーク値を抑えることを目的とする永久磁石回転電機に関する技術の一例が開示されている(例えば特許文献1を参照)。この永久磁石回転電機は、U相,V相,W相からなる3相の固定子巻線が収納された複数のスロットを有し、固定子のスロットピッチをτs(度)とし、永久磁石の固定子側の面の周方向幅の回転子の軸に対してなす角度(度)をθとしたとき、θ≒(n+0.5)×τs(nは自然数)とした構成である。
特許第3370901号公報
しかし、特許文献1に記載の永久磁石回転電機(以下では単に「従来技術」と呼ぶ。)について、スロット数を多くすると、高調波の歪みが大きな逆起電力(B−EMF;Back ElectroMotive Force)の波形となり易い。例えば、スロット数をSnとし、極対数をPoとするとき、(Sn/Po)±1次の高調波成分による影響が大きくなる。高調波成分による影響を小さく抑えるには、上昇する逆起電力を打ち消し得るだけの静電容量のコンデンサ等が別個必要となる。この場合、静電容量や体格が大きくなる。
また、基本波(正弦波)の振幅をV1とし、基本波の整数倍の周波数からなる高調波成分をV2,V3,…,Vn(nは整数;高調波成分の最大次数)とすると、全高調波歪み率(THD;Total Harmonic Distortion)は次式で表される。
Figure 0005974599
上記式(1)のTHDは、基本波に対してどれだけ波形が歪んでいるかを示す。すなわち高調波成分が大きくなるにつれて、THDも大きくなる。例えば、図26に示すように基本波に対する11次高調波成分が各点で最大値になるため、THDも大きい。高調波成分が増えると、騒音振動(NV;Noise Vibration)も大きくなるという問題がある。
本発明はこのような点に鑑みてなしたものであり、コンデンサ等の回路素子を別途必要とせずに、高調波成分を低く抑えて騒音振動を従来よりも抑制できる回転電機を提供することを目的とする。
上記課題を解決するためになされた第1発明は、複数相にかかる固定子巻線が収納された複数のスロットを備え、前記固定子巻線に対応するスロットがそれぞれ磁石体に対して対向するように配置された固定子と、前記固定子とギャップを介して回転可能に配置され、鉄心に埋め込まれる前記磁石体を一以上備える回転子とを有する回転電機において、前記磁石体は、複数の磁石が回転軸方向に積み重ねられ、前記磁石体に対する前記スロットの比率を示すスロット倍数をSとし、前記スロット間の角度であるスロットピッチをα(度)とし、前記磁石体に含まれる複数の磁石部にかかる径方向端側の周方向の端点と、前記回転子および前記固定子の軸中心とを各々結ぶ線分の相対角度であるアークレシオをθa(度)とし、前記磁石体に含まれる前記磁石間のずれ角度を示すスキュー角をθs(度)とすると、θs=kα/2(ただしkは係数)、k=S(ただし2.2Sα≦θa≦2.4Sαの範囲)の二式を満たすように前記スキュー角を設定することを特徴とする。なお、上記式中の「k」は係数であり、具体的には整数である。
この構成によれば、スキュー角がθs=kα/2=Sα/2を満たすように設定されるので、高調波成分(特に5次以上の高調波成分)を低く抑えられる。そのため、式(1)に示す全高調波歪み率も低くなり、騒音振動を従来よりも抑制することができる。また、高調波成分が低く抑えられるので、インバータ、モータドライバーなどに使用するIGBTやFETといった素子の耐圧が低い安価なものを設定でき、その分だけコストを低減することができる。さらに、11次高調波成分や13次高調波成分等による影響が少なく、かつ、5次高調波成分や7次高調波成分等を大幅に打ち消せる。よって全高調波歪み率も低くなり、騒音振動を従来よりも抑制することができる。また、不要になる回路素子の分だけコストを低減することができる。
なお「複数相」の相数は任意であるが、主に三相,四相,六相等が適用される。「磁石体」は段スキューとも呼ばれ、複数の磁石が回転軸方向に積み重ねられる。ただし、複数の磁石のうち、一以上の磁石について磁極の境界が回転方向にずらされるスキューが施される。「回転電機」には、固定子と回転子とを有する機器であれば任意である。例えば、発電機,電動機,電動発電機等が該当する。「スロット倍数」は磁石(磁極)に対するスロットの比率を示す。スロット倍数をSとし、磁極数をMnとし、スロット数をSnとし、相数をPhとすると、S=Sn/(MnPh)で表される。
第2発明は、複数相にかかる固定子巻線が収納された複数のスロットを備え、前記固定子巻線に対応するスロットがそれぞれ磁石体に対して対向するように配置された固定子と、前記固定子とギャップを介して回転可能に配置され、鉄心に埋め込まれる前記磁石体を一以上備える回転子とを有する回転電機において、前記磁石体は、複数の磁石が回転軸方向に積み重ねられ、前記磁石体に対する前記スロットの比率を示すスロット倍数をSとし、前記スロット間の角度であるスロットピッチをα(度)とし、前記磁石体に含まれる複数の磁石部にかかる径方向端側の周方向の端点と、前記回転子および前記固定子の軸中心とを各々結ぶ線分の相対角度であるアークレシオをθa(度)とし、前記磁石体に含まれる前記磁石間のずれ角度を示すスキュー角をθs(度)とすると、θs=kα/2(ただしkは係数)、k=1かつS=2(ただし2.2α≦θa≦3.2αの範囲)の二式を満たすように前記スキュー角を設定することを特徴とする。
この構成によれば、スロット倍数が2のとき、スキュー角がθs=kα/2=α/2を満たすように設定されるので、高調波成分(特に5次以上の高調波成分)を低く抑えられる。そのため、式(1)に示す全高調波歪み率も低くなり、騒音振動を従来よりも抑制することができる。また、5次高調波成分や7次高調波成分等による影響が少なく、かつ、11次高調波成分や13次高調波成分等を大幅に打ち消せる。よって全高調波歪み率も低くなり、騒音振動を従来よりも抑制することができる。また、不要になる回路素子の分だけコストを低減することができる。
回転電機の構成例を示す部分的な模式図である。 スロット倍数を説明する第1模式図である。 磁石体の第1構成例を示す模式図である。 アークレシオに対する振幅の変化を示すグラフ図である。 アークレシオに対する波高率の変化を示すグラフ図である。 アークレシオに対する歪み率の変化を示すグラフ図である。 アークレシオに対する歪み率の変化を示すグラフ図である。 アークレシオに対する歪み率の変化を示すグラフ図である。 アークレシオに対する歪み率の変化を示すグラフ図である。 アークレシオに対する歪み寄与率の変化を示すグラフ図である。 アークレシオに対するトルクの変化を示すグラフ図である。 回転子における磁石体の配置例を示す模式図である。 回転子における磁石体の配置例を示す模式図である。 回転子における磁石体の配置例を示す模式図である。 磁石幅に対する逆起電力の変化を示すグラフ図である。 磁石幅に対する波高率の変化を示すグラフ図である。 磁石体の傾斜角に対する逆起電力の変化を示すグラフ図である。 磁石体の傾斜角に対する波高率の変化を示すグラフ図である。 磁石体の第2構成例を示す模式図である。 磁石体の第3構成例を示す模式図である。 磁石体の第4構成例を示す模式図である。 スロット倍数を説明する第2模式図である。 スロット倍数を説明する第3模式図である。 磁石体の第5構成例を示す模式図である。 磁石体の第6構成例を示す模式図である。 従来技術のアークレシオに対する振幅の変化を示すグラフ図である。
以下、本発明を実施するための形態について、図面に基づいて説明する。なお、特に明示しない限り、「接続する」という場合には電気的に接続することを意味する。各図は、本発明を説明するために必要な要素を図示し、実際の全要素を図示しているとは限らない。上下左右等の方向を言う場合には、図面の記載を基準とする。
〔実施の形態1〕
実施の形態1は図1〜図18を参照しながら説明する。全体の一部を図示する図1には、回転子11や固定子12等を有する回転電機10を示す。断面図であるが、分かり易くするためにハッチ線を省略している。回転電機10の相数,極対数(すなわちN極とS極とからなる磁極対の数),スロット数は任意に設定可能である。以下では、回転子11が固定子12よりも内径側に位置するインナーロータ型の回転電機10であり、相数を3(すなわちU相,V相,W相)とし、極対数を12とし、スロット数を72とする例について説明する。
回転子11は、後述する固定子12との間にギャップGを介して回転可能に配置される。この回転子11は、鉄心(ロータコア)に複数(本例では12)の磁石体14が埋め込まれる。一の磁石体14を構成する磁石部の数は任意である。本例では、二つの磁石部14a,14bで構成され、磁石部14a,14bから磁束が径方向に流れる範囲を示す角度を「アークレシオθa(度)」と呼ぶことにする。言い換えれば、回転子11側の面の周方向幅における回転子11の軸中心P(図2を参照)に対してなす角度である。軸中心Pは回転体(すなわち本例では回転子11)の中心軸を意味し、以下同じである。磁石部14a,14bの各構成例については後述する(図3を参照)。
固定子12は、複数(本例では72)のスロット12sや、各スロット12sに収納されて巻き回される固定子巻線13などを有する。各スロット12sは、磁石体14(磁石部14a,14b)の各磁極に対向するように配置される。言い換えれば、回転子11の外周面に対向する方向(すなわち径方向)に沿って長穴状に形成される。スロット12s相互間の間隔について軸中心P(図2を参照)に対してなす角度を「スロットピッチ」と呼ぶことにする。スロット12sの相互間にはティース12tが形成される。当該ティース12tの内周面は、回転子11の外周面とギャップGを介する。固定子12の鉄心と回転子11のティース12tとはギャップGを介して磁束が流れる。スロット12sと磁石体14(磁極)との関係については後述する(図2を参照)。
固定子巻線13の相数や巻き方は任意であり、回転電機10の使用目的や必要とされるトルク等に応じて適切に設定される。本例では、3相かつ短節巻(Short pitch winding)で巻き回す例について説明する。短節巻によって跨いで巻くスロット12sの数は任意である。本例では、3つのスロット12sを跨ぐ巻き方であり、その比率は1:2:1である。図1で固定子巻線13を指す「U」,「V」,「W」は、それぞれU相巻線、V相巻線、W相巻線として巻き回されていることを意味する。
図2において、磁石部14a,14bはそれぞれ角度Y(θ)に傾けて鏡像となるように配置されている。0(度)≦Y(θ)<180(度)の範囲で任意に設定してよい。磁石部14a,14bの周方向(左右方向)の端点と、回転子11および固定子12の軸中心Pとを各々結ぶ線分の相対角度はアークレシオθaを意味する。2つの磁石部14a,14bの総磁束と、1つの磁石体14の磁束とが同一であれば、1つの磁石体14(すなわち磁極)で構成してもよい。1つの磁石体14を3つ以上の磁石部で構成する場合でも同様である。要するに、磁束が同じであれば磁石部の数や傾斜角は任意であり、この詳細については後述する(図15〜図18を参照)。なお、図2では、回転子11や固定子巻線13の図示を省略している。
本形態では、スロット12sの数を72とし、固定子巻線13の相数を3とし、磁石体14の数を12として設定する。この設定で構成される回転電機10のスロット倍数は、2(=72/(3×12))である。言い換えると、1つの磁石体14に対応するスロット12sの数は、相数とスロット倍数とを乗じた6である。すなわち図2に示すように、1つの磁石体14に対して6つのスロット12sが磁束の流れに対応する。
図3は、図1に示すIII−III線の断面図である。図3に示す磁石体14は、鉄心(ロータコア)に埋め込まれる複数(本例では12)の磁石体14のうちの1つである。ただし、破線で示す磁極の境界を分かり易くするため、磁石についてはハッチ線を省略する。図1にも示す磁石部14aと磁石部14bとは同一構成であるので、以下では磁石部14aを代表して説明する。磁石部14aは、複数(本例では4)の磁石M1,M2,M3,M4が回転軸方向(上下方向)に積み重ねられて構成される。磁石M1,M3の境界(磁極の境界)B1は、一点鎖線で示す中心線(「中心」に相当する。以下同じである。)よりも幅W1だけ左側に位置する。磁石M2,M4の境界B2は、上記中心線よりも幅W1だけ右側に位置する。すなわち、境界B1と境界B2は中心線を介して対称の位置にある。境界B1,B2よりも一方側がN極に磁化され、他方側がS極に磁化される。このように、各磁石の境界B1,B2を中心線以外の位置に設定することを「スキューする」と呼ぶ。
図3の例では磁石M1,M2,M3,M4の全てをスキューしているが、磁石M1,M3の組または磁石M2,M4の組のうちでいずれか一方の組をスキューする構成としてもよい。幅W2(境界B1と境界B2との距離)に対応して、軸中心Pとを各々結ぶ線分の相対角度を「スキュー角」と呼ぶことにする。
上述のように構成された回転電機10は、スキュー角をθs(度)とすると、下記の式(2)を満たすように設定される。式(2)中、kは係数(具体的には整数)を示し、α(度)はスロットピッチを示し、θa(度)はアークレシオを示す(図1を参照)。係数のkについて、数値の1を適用すると式(3)のように表され、スロット倍数のSを適用すると式(4)のように表される。
θs=kα/2…(2)
θs=α/2…(3)
θs=Sα/2…(4)
式(2)を満たすようにスキュー角が設定された回転電機10の特性について、図4〜図11を参照しながら説明する。基本波(正弦波の実行値)を実際の合成逆起電力(波形のピーク値)で除算した値を「波高率」と呼ぶことにする。すなわち、「波高率=合成逆起電力(波形のピーク値)/基本波(実行値)」である。波高率が大きくなると波形のピーク値も大きくなるため、絶縁の上限電圧を超える場合も考えられる。そのため、波高率は小さい値であることが好ましい。
図4には、横軸をアークレシオ(θa)とし、縦軸を基本波に対する逆起電力(高調波成分を含む)のピーク値に対する高調波成分の振幅(高調波成分振幅/基本波振幅)とし、高調波成分ごとの変化を示す。実線は5次と7次の高調波成分の変化であり、破線は11次と13次の高調波成分の変化である。図4の変化から明らかなように、アークレシオがθa<3.25αの範囲では11次と13次の高調波成分を打ち消すことが望ましい。一方、θa>3.25αの範囲では5次と7次の高調波成分を打ち消すことが望ましい。
図5には、横軸をアークレシオ(θa)とし、縦軸を波高率(Z)とし、スキュー角ごとの変化を示す。実線はスキュー角を0度(言い換えれば図3の磁石M1,M2,M3,M4をスキューしない)に設定した変化であり、破線はスキュー角をα/2(すなわち上記式(3))に設定した変化であり、一点鎖線はスキュー角をSα/2(すなわち上記式(4))に設定した変化である。図5の変化から明らかなように、アークレシオがθa<3.25αの範囲では、スキュー角をα/2に設定すると波高率が1に近づく。特にθa=2.2α〜3.2αの範囲では、5次と7次の高調波成分による影響が微小になり、逆起電力低減の効果が大きい。一方、θa>3.25αの範囲ではスキュー角をSα/2に設定すると波高率が1に近づく。特にθa=3.3αと4.4〜4.6αの範囲では、11次と13次の高調波成分による影響が少なく、逆起電力低減の効果が大きい。
図6〜図9には、横軸をアークレシオ(θa)とし、縦軸を歪み率とし、高調波成分ごとの変化を個別に示す。すなわち、図6には5次高調波成分の変化を示し、図7には7次高調波成分の変化を示し、図8には11次高調波成分の変化を示し、図9には13次高調波成分の変化を示す。図6〜図9の各変化から明らかなように、アークレシオがθa<3αの範囲では11次と13次の高調波成分による歪み率の寄与率が大きい。θa≧3αの範囲では、13次高調波成分による歪み率の寄与率は小さい。これに対して、5次と7次の高調波成分による歪み率の寄与率が少し大きくなる。5次高調波成分のピーク付近であるθa≧3.8αの範囲では7次高調波成分による歪み率の寄与率が若干大きくなる。
図10には、横軸をアークレシオ(θa)とし、縦軸を歪み率寄与率とし、高調波成分ごとの変化を示す。歪み率寄与率は、高調波成分の歪み率に対する式(1)のTHD(すなわち歪み率/THD)を意味する。図10の変化から明らかなようにアークレシオが、θa=1.9α〜3.2αの範囲では11次と13次の高調波成分を打ち消せば、基本波から歪み成分(すなわち高調波成分)の除去を効率良く行える。一方、θa=3.3α〜3.5αの範囲や、θa=4.5α〜4.7αの範囲については5次と7次の高調波成分を打ち消せば、基本波から歪み成分の除去を効率良く行える。
図11には、横軸をアークレシオ(θa)とし、縦軸をトルクとする変化を示す。実線は回転電機10におけるスキュー角をα/2(すなわち上記式(3))に設定した変化であり、二点鎖線は従来技術の変化である。図11に示す回転電機10の変化から明らかなように、アークレシオが変化しても、従来技術よりもトルクの変動が少ない。よって、回転電機10は従来技術よりも安定したトルクを得ることができる。
図4〜図11(特に図4と図10)で示した特性から明らかなように、回転電機10は高調波成分を低く抑えて騒音振動を抑制するため、次のように設定するのがよい。
(設定例1)アークレシオが2.2α≦θa≦3.2αの範囲で磁石体14を配置する場合には、スキュー角をθs=α/2に設定する。この設定は、k=1とした式(2)、すなわち式(3)を満たす。
(設定例2)アークレシオがθa=1.65αまたは1.75Sα〜2.35Sαの範囲となるように磁石体14を配置する場合には、スキュー角をθs=Sα/2(4.4〜4.6を含む)に設定する。本形態ではスロット倍数が2であるので、θs=2.2Sα〜2.3Sαの範囲でもある。スロット倍数が3である場合には、θs=1.46Sα〜1.53Sαの範囲でもある。この設定は、k=Sとした式(2)、すなわち式(4)を満たす。
上述した実施の形態1によれば、以下に示す各効果を得ることができる。
(a)回転電機10は、磁石体14(磁石M1,M2,M3,M4)に対するスロット12sの比率を示すスロット倍数をSとし、スロット12s間の角度であるスロットピッチをα(度)とし、磁石体14から磁束が径方向に流れる範囲を示す角度であるアークレシオをθa(度)とし、磁石体14に含まれる磁石M1,M2,M3,M4間のずれ角度を示すスキュー角をθs(度)とすると、θs=kα/2を満たすようにスキュー角を設定する構成とした(図1〜図3を参照)。この構成によれば、高調波成分(特に5次以上の高調波成分)を低く抑えられる。よって、式(1)のTHDも小さくなり、騒音振動を従来よりも抑制することができる。また、高調波成分が低く抑えられるので、インバータ、モータドライバーなどに使用するIGBTやFETといった素子の耐圧が低い安価なものを設定でき、その分だけコストを低減することができる。
(b)磁石体14は、アークレシオが2.2Sα≦θa≦2.4Sαの範囲ではk=Sとしてスキュー角のθsを設定する構成とした(図4〜図11を参照)。すなわちスキュー角は、式(4)を満たすように構成した。この構成によれば、11次高調波成分や13次高調波成分等による影響が少なく、かつ、5次高調波成分や7次高調波成分等を大幅に打ち消せる。よって全高調波歪み率も低くなり、騒音振動を従来よりも抑制することができる。また、不要になる回路素子の分だけコストを低減することができる。
(c)磁石体14は、アークレシオが2.2α≦θa≦3.2αの範囲ではk=1としてスキュー角を設定する構成とした(図4〜図11を参照)。すなわちスキュー角は、式(3)を満たすように構成した。この構成によれば、5次高調波成分や7次高調波成分等による影響が少なく、かつ、11次高調波成分や13次高調波成分等を大幅に打ち消せる。よって全高調波歪み率も低くなり、騒音振動を従来よりも抑制することができる。また、不要になる回路素子の分だけコストを低減することができる。
(d)磁石体14は、偶数個の磁石からなり、中心線(中心)以外の位置に磁極の境界B1,B2を有する磁石M1,M2,M3,M4(第1磁石)を有する構成とした(図3を参照)。この構成によれば、各磁石について磁極の境界B1,B2を中心線以外の位置にずらすだけでよいので、構成や製造工程が簡単になる。
〔変形例〕
上述した実施の形態1の変形例について、図12〜図18を参照しながら以下に説明する。上述した形態では、磁石体14の磁石部14a,14bをそれぞれ角度Y(θ)に傾けて鏡像となるように配置するとともに(図2を参照)、境界B1,B2が中心線を介して対称の位置になるように各磁石部にかかる磁石M1,M2,M3,M4を回転軸方向に積み重ねる構成とした(図3を参照)。この構成に代えて(あるいは加えて)、アークレシオがθaであれば磁石体14に含まれる磁石部を任意に構成してもよい。なお、以下に示す「磁石幅」は各磁石部の周方向幅を意味する。
例えば、図12に示すように磁石部14aの磁石幅をL1とし、磁石部14bの磁石幅をL2としてもよい。L1=L2であってもよく、L1≠L2であってもよい。図13に示すように、磁石部14aの磁石幅をL3(ただしL3>L1)とし、磁石部14bの磁石幅をL4(ただしL4>L2)としてもよい。L3=L4であってもよく、L3≠L4であってもよい。図12および図13では角度Y(θ)=0の例を示すが、磁石部14aおよび磁石部14bの一方または双方を角度Y(θ)で傾けてもよい。
また、図12の変形例を図14に示す。図12では磁石部14aと磁石部14bとの間に回転子11の鉄心(ロータコア)が介在するのに対して、図14では磁石部14aと磁石部14bの相互間に空間(磁束が流れ難い部位)が介在する点で相違する。磁石部14a側の空間にかかる周方向幅をL5とし、磁石部14b側の空間にかかる周方向幅をL6とする。L5=L6であってもよく、L5≠L6であってもよい。
図12〜図14に示すように構成した磁石体14を有する回転電機10の特性について、図15〜図18を参照しながら説明する。図15には、横軸を磁石幅とし、縦軸を逆起電力(B−EMF)とする変化を示す。当該図15に示す変化から明らかなように、磁石幅が変化すると、基本波(1次成分)とともに高調波成分のピーク値もほぼ同様に変化する。図16には、横軸を磁石幅とし、縦軸を波高率とする変化を示す。当該図16に示す変化から明らかなように、磁石幅が変化しても波高率はあまり変化しない。
図17には、横軸を磁石部の角度Y(θ)とし、縦軸を逆起電力(B−EMF)とする変化を示す。当該図17に示す変化から明らかなように、磁石部の角度Y(θ)が変化しても、1次成分(すなわち基本波)に対する高調波成分のピークはあまり変化しない。図18には、横軸を磁石部の角度Y(θ)とし、縦軸を波高率とする変化を示す。当該図18に示す変化から明らかなように、磁石部の角度Y(θ)が変化しても波高率はあまり変化しない。
図15〜図18に示す特性によれば、アークレシオが同じθaであれば、磁石体14に含まれる磁石部をどのように構成してもよいことが明らかである。したがって、変形例の構成においても上述した実施の形態1と同様の作用効果が得られる。
〔実施の形態2〕
実施の形態2は図19,図20を参照しながら説明する。当該図19,図20では、磁極の境界を分かり易くするため、磁石についてはハッチ線を省略する。なお、回転電機10の構成等は実施の形態1と同様であり、図示および説明を簡単にするために実施の形態2では実施の形態1と異なる点について説明する。よって実施の形態1で用いた要素と同一の要素には同一の符号を付して説明を省略する。
実施の形態1の磁石体14は、境界B1,B2が中心線を介して対称の位置になる磁石M1,M2,M3,M4を回転軸方向に積み重ねる構成とした(図3を参照)。すなわち第1磁石のみで構成した。これに対して、実施の形態2の磁石体14は、中心に磁極の境界を有する第2磁石のみで構成する。
図19に示す磁石体14は、4つの磁石M5を有する。各磁石M5は、磁極の境界Bcを中心線上に有する。各磁石M5は、複数の部分コア11a,11b,11c,11dに対して個別に埋め込まれる。部分コア11a,11cの組と、部分コア11b,11dの組とは、スキュー角のθs(図示する幅W2に相当する)だけ周方向にずらされる。そして、周方向にずらされた状態のままで回転軸方向に積み重ねられる。こうして回転子11はそれぞれ磁石M5が埋め込まれた部分コア11a,11b,11c,11dで構成される。図19の構成例は、4つの部分コア11a,11b,11c,11dで構成するが、回転軸方向に積み重ねる部分コアの数や厚みは任意である。部分コアの数や厚みは、回転電機10の使用目的や必要とされるトルク等に応じてそれぞれ適切に設定される。部分コアの数は例えば2〜6であり、厚みは例えば10〜30[mm]である。
図20に示す磁石体14は、2つの磁石M5を有する。回転子11の鉄心に形成される貫通穴の周縁には、段差状に形成される段差部11eを有する。この段差部11eは、磁石M5の厚みに相当する落差(高さ)が形成される。2つの磁石M5が互い違いになるように段差部11eを形成することで、結果的に境界Bcがスキュー角のθs(図示する幅W2に相当する)だけ周方向にずらす。図20に示す回転子11を「部分コア」とみることもできる(図19の部分コア11a,11b,11c,11dを参照)。この場合には、2以上の部分コアを回転軸方向に積み重ねて1つの回転子11を構成してもよい。ただし、図19のように周方向にずらす必要はない。
上述した実施の形態2によれば、以下に示す各効果を得ることができる。ただし、磁石体14以外の構成は実施の形態1と同じであるので、(a),(b),(c)の各作用効果を得ることもできる。
(e)磁石体14は、中心線(中心)に磁極の境界を有する複数の磁石M5(第2磁石)を有する構成とした(図19,図20を参照)。磁石M5の数は2以上で任意である。この構成によれば、一般的な磁石を磁石M5として用いることができるので、回転子11を容易に構成することができる。
〔実施の形態3〕
実施の形態3は図21を参照しながら説明する。当該図21では、磁極の境界を分かり易くするため、磁石についてはハッチ線を省略する。なお、回転電機10の構成等は実施の形態1,2と同様であり、図示および説明を簡単にするために実施の形態3では実施の形態1と異なる点について説明する。よって実施の形態1,2で用いた要素と同一の要素には同一の符号を付して説明を省略する。
実施の形態3の磁石体14は、実施の形態1で用いた磁石M1,M3(第1磁石)と、実施の形態2で用いた磁石M5(第2磁石)とを併用する例である。図21に示す磁石体14は、磁石M1,M3と、2つの磁石M5とを有する。これらの磁石は、図示するように磁石M1,M5,M3,M5の順番で回転軸方向に積み重ねるか、図示しないが磁石M3,M5,M1,M5の順番で回転軸方向に積み重ねる。磁石体14全体として見れば、中心線を基準として対称である。また、第1磁石(磁石M1,M3)の個数と第2磁石(磁石M5)の個数とが等しい。
上述した実施の形態3によれば、以下に示す各効果を得ることができる。ただし、磁石体14以外の構成は実施の形態1,2と同じであるので、(a),(b),(c),(e)の各作用効果を得ることもできる。
(f)磁石体14は、第1磁石(磁石M1,M3)の個数と、第2磁石(磁石M5)の個数とを等しく有する構成とした(図21を参照)。この構成によれば、個数を合わせるだけでよいので、磁石体14を簡単に形成できる。
〔他の実施の形態〕
以上では本発明を実施するための形態について実施の形態1〜3に従って説明したが、本発明は当該形態に何ら限定されるものではない。言い換えれば、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施することもできる。例えば、次に示す各形態を実現してもよい。
上述した実施の形態1〜3では、回転電機10のスロット倍数を2として構成した(図2を参照)。すなわち式(4)においてS=2である。この形態に代えて、他の数でスロット倍数を設定してもよい。例えば、図22にはスロット倍数を1とする例を示し、図23にはスロット倍数を4とする例を示す。スロット倍数を1とする回転電機10では、例えば極対数を4とし、スロット数を24とする。スロット倍数を3とする回転電機10では、例えば極対数を4とし、スロット数を72とする。図示しないが、スロット倍数を5以上とする回転電機10を構成してもよい。なお、図22および図23では回転子11の軸中心Pやアークレシオのθa(図2を参照)にかかる図示を省略している。どのような数のスロット倍数で回転電機10を構成するにせよ、スロット倍数が相違するに過ぎないので、上述した実施の形態1〜3と同様の作用効果が得られる。
上述した実施の形態1〜3では、1つの磁石(磁石M1〜M5)は境界B1,B2,Bcを介してN極とS極とを一体に有する構成とした(図3,図19〜図21を参照)。この形態に代えて(あるいは加えて)、1つの磁石(磁極)についてN極とS極とを別体で構成してもよい。図19に示す複数の部分コア11a,11b,11c,11dに埋め込む例を図24に示す。図24では、N極の単極磁石M6とS極の単極磁石M7とがペアを組み、単極磁石M6と単極磁石M7との間には隔壁11f(磁性体である部分コア11aの一部分)が介在する。言い換えれば、単極磁石M6と単極磁石M7とのペアが1つの磁石(磁石M1〜M5)に相当する。また、図20のような段差部11eを有する回転子11に埋め込む例を図25に示す。図25の隔壁11fはほぼZ字状(あるいは断面が階段状)に形成される。さらに、複数の磁石(磁石M1〜M4、複数の磁石M5、複数の単極磁石M6,M7)に相当する磁束(磁力)を確保可能であり、かつ、部分的にスキューを施して磁極の境界をずらすことができれば、磁石体14(磁石や単極磁石)を単体で構成してもよい。いずれの構成にせよ、1つの磁石にかかるN極とS極とが一体化されるか別体にされるかの相違に過ぎず、磁束の大きさや流れ等は変化しない。よって、上述した実施の形態1〜3と同様の作用効果が得られる。
上述した実施の形態1〜3では、回転電機10は回転子11が固定子12よりも内径側に位置するインナーロータ型で構成した(図1を参照)。この形態に代えて、回転電機10を固定子12が回転子11よりも内径側に位置するアウターロータ型で構成してもよい。回転子11と固定子12との位置関係の相違に過ぎず、いずれの構成でも回転子11と固定子12との相互間に磁束が流れる。よって、上述した実施の形態1〜3と同様の作用効果が得られる。
上述した実施の形態1〜3では、回転電機10の相数を3(すなわちU相,V相,W相)として固定子巻線13を巻き回す構成とした(図1を参照)。この形態に代えて、回転電機10の相数を他の数として固定子巻線13を巻き回す構成としてもよい。他の数は、例えば2,4,6,12などが該当する。相数の相違に過ぎないので、上述した実施の形態1〜3と同様の作用効果が得られる。
上述した実施の形態1〜3では、固定子12における3つのスロット12sを跨ぎ、その比率が1:2:1となるように巻き回す短節巻で構成した(図1を参照)。この形態に代えて、跨ぐスロット12sの数や、その比率を他の数量で設定する構成としてもよい。また、一以上のスロット12sごとに集中して巻き回す集中巻(「通常巻き」とも呼ぶ。)で構成してもよい。いずれの構成にせよ、巻き方の相違に過ぎないので、上述した実施の形態1〜3と同様の作用効果が得られる。
上述した実施の形態1〜3では、磁石体14を構成する磁石(磁石M1〜M7)を直方体形状に形成する構成とした(図1,図3,図19〜図21を参照)。この形態に代えて、他の立体形状で形成する構成としてもよい。他の立体形状は、立方体形状や、柱体形状、錐体形状(錐台体形状を含む)などが該当する。立体形状の相違に過ぎないので、上述した実施の形態1〜3と同様の作用効果が得られる。
10 回転電機
11 回転子(ロータ)
12 固定子(ステータ)
12s スロット
13 固定子巻線
14 磁石体
M1,M2,M3,M4,M5,M6,M7 磁石

Claims (5)

  1. 複数相にかかる固定子巻線が収納された複数のスロットを備え、前記固定子巻線に対応するスロットがそれぞれ磁石体に対して対向するように配置された固定子と、
    前記固定子とギャップを介して回転可能に配置され、鉄心に埋め込まれる前記磁石体を一以上備える回転子とを有する回転電機において、
    前記磁石体は、複数の磁石が回転軸方向に積み重ねられ、
    前記磁石体に対する前記スロットの比率を示すスロット倍数をSとし、前記スロット間の角度であるスロットピッチをα(度)とし、前記磁石体に含まれる複数の磁石部にかかる径方向端側の周方向の端点と、前記回転子および前記固定子の軸中心とを各々結ぶ線分の相対角度であるアークレシオをθa(度)とし、前記磁石体に含まれる前記磁石間のずれ角度を示すスキュー角をθs(度)とすると、
    θs=kα/2 (ただしkは係数)
    k=S (ただし2.2Sα≦θa≦2.4Sαの範囲)
    の二式を満たすように前記スキュー角を設定することを特徴とする回転電機。
  2. 複数相にかかる固定子巻線が収納された複数のスロットを備え、前記固定子巻線に対応するスロットがそれぞれ磁石体に対して対向するように配置された固定子と、
    前記固定子とギャップを介して回転可能に配置され、鉄心に埋め込まれる前記磁石体を一以上備える回転子とを有する回転電機において、
    前記磁石体は、複数の磁石が回転軸方向に積み重ねられ、
    前記磁石体に対する前記スロットの比率を示すスロット倍数をSとし、前記スロット間の角度であるスロットピッチをα(度)とし、前記磁石体に含まれる複数の磁石部にかかる径方向端側の周方向の端点と、前記回転子および前記固定子の軸中心とを各々結ぶ線分の相対角度であるアークレシオをθa(度)とし、前記磁石体に含まれる前記磁石間のずれ角度を示すスキュー角をθs(度)とすると、
    θs=kα/2 (ただしkは係数)
    k=1かつS=2 (ただし2.2α≦θa≦3.2αの範囲)
    各式を満たすように前記スキュー角を設定することを特徴とする回転電機。
  3. 前記磁石体の一部は、回転軸方向に積み重ねている偶数個の前記磁石を含み、
    前記偶数個の前記磁石の中心線以外の位置にN極とS極の境界を有する第1磁石を有することを特徴とする請求項1または2に記載の回転電機。
  4. 前記磁石体の一部は、回転軸方向に積み重ねられるとともに周方向にずらされている複数個の前記磁石を含み、
    複数個の前記磁石は、中心線上にN極とS極の境界を有する第2磁石を有することを特徴とする請求項1から3のいずれか一項に記載の回転電機。
  5. 前記磁石体は、前記第1磁石の個数と、前記第2磁石の個数とを等しく有することを特徴とする請求項に記載の回転電機。
JP2012091241A 2012-04-12 2012-04-12 回転電機 Active JP5974599B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012091241A JP5974599B2 (ja) 2012-04-12 2012-04-12 回転電機
US13/861,836 US9236775B2 (en) 2012-04-12 2013-04-12 Rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012091241A JP5974599B2 (ja) 2012-04-12 2012-04-12 回転電機

Publications (2)

Publication Number Publication Date
JP2013223257A JP2013223257A (ja) 2013-10-28
JP5974599B2 true JP5974599B2 (ja) 2016-08-23

Family

ID=49324449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012091241A Active JP5974599B2 (ja) 2012-04-12 2012-04-12 回転電機

Country Status (2)

Country Link
US (1) US9236775B2 (ja)
JP (1) JP5974599B2 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5774081B2 (ja) * 2013-12-09 2015-09-02 三菱電機株式会社 回転電機
SI24435A (sl) * 2014-01-14 2015-01-30 Letrika D.D. Razdeljena reža rotorskega paketa z vogalnim zračnim žepkom
BE1022463B1 (fr) * 2014-09-12 2016-04-07 Techspace Aero S.A. Dynamometre pour banc d'essai de turbomachine d'aeronef
JP6377543B2 (ja) * 2014-11-21 2018-08-22 株式会社神戸製鋼所 磁石埋込型回転電機
JP6409607B2 (ja) * 2015-02-18 2018-10-24 株式会社デンソー 回転電機
US10742086B2 (en) * 2015-05-08 2020-08-11 MAGicALL, Inc Permanent-magnet machines utilizing protruding magnets
FR3049782B1 (fr) * 2016-04-04 2021-01-22 Valeo Equip Electr Moteur Rotor pour machine electrique tournante
EP3457546B1 (en) * 2016-05-10 2021-04-28 Mitsubishi Electric Corporation Permanent magnet motor
GB201619857D0 (en) * 2016-11-24 2017-01-11 Jaguar Land Rover Ltd Electric machine apparatus
US10958120B2 (en) 2017-09-20 2021-03-23 Ford Global Technologies, Llc Electric machine rotor for harmonic flux reduction
CN108566005B (zh) 2018-03-16 2020-10-30 珠海格力节能环保制冷技术研究中心有限公司 转子结构、永磁辅助同步磁阻电机及电动汽车
CN110739785B (zh) * 2018-07-18 2021-07-23 爱德利科技股份有限公司 永磁电动机
CN109787444B (zh) * 2019-03-29 2021-02-26 重庆长安新能源汽车科技有限公司 一种驱动电机
US20200381984A1 (en) 2019-05-31 2020-12-03 MagniX USA, Inc. High-torque electric motor assembly
WO2021002381A1 (ja) * 2019-07-01 2021-01-07 日本電産株式会社 モータおよびモータユニット
US11594921B2 (en) * 2019-12-11 2023-02-28 GM Global Technology Operations LLC Electric machine with noise-reducing rotor notches
CN111769670A (zh) * 2020-07-16 2020-10-13 精进电动科技股份有限公司 一种分段斜极电机的转子铁芯和永磁同步电机
US11575285B2 (en) * 2020-12-09 2023-02-07 Ford Global Technologies, Llc Electric machine
CN112865368A (zh) * 2021-02-26 2021-05-28 合肥巨一动力***有限公司 一种转子冲片结构
CN112968560A (zh) * 2021-03-26 2021-06-15 合肥巨一动力***有限公司 一种旋转电机冲片及转子
TWI801840B (zh) * 2021-04-14 2023-05-11 東元電機股份有限公司 具有邊緣缺口之轉子結構
US11646617B2 (en) * 2021-08-30 2023-05-09 Hiwin Mikrosystem Corp. High-frequency rotating structure with permanent magnet rotor having grooves and magnetic barrier spaces

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2408219A (en) * 1944-01-29 1946-09-24 Westinghouse Electric Corp Polyphase multipolar winding
JPS59117451A (ja) * 1982-12-24 1984-07-06 Fanuc Ltd 同期電機
US5627419A (en) * 1994-03-31 1997-05-06 United Technologies Corporation Self-adjusting airgap motor/generator for flywheel system
US6133662A (en) 1996-09-13 2000-10-17 Hitachi, Ltd. Permanent magnet dynamoelectric rotating machine and electric vehicle equipped with the same
JP3370901B2 (ja) 1996-09-13 2003-01-27 株式会社日立製作所 永久磁石回転電機およびそれを用いた電動車両
JPH1118339A (ja) * 1997-06-27 1999-01-22 Aisin Aw Co Ltd モータ
JP2000134891A (ja) 1998-10-28 2000-05-12 Okuma Corp 同期電動機およびその制御装置
EP1014542B1 (en) * 1998-12-25 2005-11-16 Matsushita Electric Industrial Co., Ltd. Motor having a rotor with interior split-permanent-magnet
JP2004248422A (ja) * 2003-02-14 2004-09-02 Moric Co Ltd 磁石界磁型回転電気機器
US6867524B2 (en) * 2003-06-04 2005-03-15 Ford Global Technologies, Llc Rotor skew methods for permanent magnet motors
JP4070674B2 (ja) * 2003-07-31 2008-04-02 株式会社東芝 リラクタンス型回転電機の回転子
JP4269953B2 (ja) * 2004-01-23 2009-05-27 株式会社デンソー 回転電機
JP4449035B2 (ja) * 2004-03-10 2010-04-14 日立オートモティブシステムズ株式会社 電動車両用の永久磁石回転電機
JP4668721B2 (ja) 2004-11-30 2011-04-13 日立オートモティブシステムズ株式会社 永久磁石式回転電機
JP2008131693A (ja) * 2006-11-17 2008-06-05 Daikin Ind Ltd 界磁子、回転電機及び圧縮機
JP5305887B2 (ja) * 2008-12-18 2013-10-02 株式会社東芝 永久磁石式回転電機
JP5447418B2 (ja) * 2011-03-28 2014-03-19 株式会社豊田自動織機 回転電機の永久磁石埋設型回転子及び回転電機

Also Published As

Publication number Publication date
US20130270958A1 (en) 2013-10-17
US9236775B2 (en) 2016-01-12
JP2013223257A (ja) 2013-10-28

Similar Documents

Publication Publication Date Title
JP5974599B2 (ja) 回転電機
US9083217B2 (en) Rotor for electric motor
US9627936B2 (en) Permanent magnet motor
US8436504B2 (en) Stator for an electric machine
JP5620759B2 (ja) 電気機械
JP5757281B2 (ja) 回転電機のロータ
JP5813254B2 (ja) 永久磁石式回転電機
JP7302186B2 (ja) 回転電機
KR101604966B1 (ko) 회전 전기
JP2012517209A (ja) 同期機
JP2008306849A (ja) 回転電機
US9917481B2 (en) Synchronous reluctance machine
JP5835253B2 (ja) 回転電機
JP2012100497A (ja) ステータコア
WO2017171037A1 (ja) ロータ及びロータの設計方法
JP2009027849A (ja) 永久磁石式回転電機
JP5844205B2 (ja) ステータコアおよびそれを用いた回転電動機
JP5839298B2 (ja) モータ
JP5491344B2 (ja) モータ
JP5947744B2 (ja) 回転電機のステータ、および、回転電機
JP2021058018A (ja) モータ
JP6181525B2 (ja) ロータ、3相用ロータ、モータ及びモータの回転検出方法
JP2011083114A (ja) 電動機
JP2012139102A (ja) 永久磁石式回転電機
JP2021058004A (ja) モータ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160704

R151 Written notification of patent or utility model registration

Ref document number: 5974599

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250