JP5970964B2 - Grinding resistance measuring method and grinding machine - Google Patents

Grinding resistance measuring method and grinding machine Download PDF

Info

Publication number
JP5970964B2
JP5970964B2 JP2012127783A JP2012127783A JP5970964B2 JP 5970964 B2 JP5970964 B2 JP 5970964B2 JP 2012127783 A JP2012127783 A JP 2012127783A JP 2012127783 A JP2012127783 A JP 2012127783A JP 5970964 B2 JP5970964 B2 JP 5970964B2
Authority
JP
Japan
Prior art keywords
torque
grinding
grinding wheel
axis
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012127783A
Other languages
Japanese (ja)
Other versions
JP2013252570A (en
Inventor
昌史 頼経
昌史 頼経
誠 田野
誠 田野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2012127783A priority Critical patent/JP5970964B2/en
Publication of JP2013252570A publication Critical patent/JP2013252570A/en
Application granted granted Critical
Publication of JP5970964B2 publication Critical patent/JP5970964B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Description

本発明は、クランクシャフトのクランクピンをジャーナル軸線回りに周回運動させ、クランクピンの研削加工中に研削抵抗力を測定する研削抵抗力測定方法および研削盤に関するものである。   The present invention relates to a grinding force measurement method and a grinding machine that measure a grinding resistance force during grinding of a crankpin by rotating a crankpin of a crankshaft around a journal axis.

研削盤においては、工作物を高精度かつ高能率に研削することを目的として、研削中の接線研削抵抗力と法線研削抵抗力の比率を用いて砥石車の切れ味を判定し、研削条件やドレスインターバルを設定することが行われている。通常研削抵抗の測定は、接線研削抵抗力を工作物回転駆動トルクから測定し、法線研削抵抗力を砥石の切込み送りの推力から測定している。(例えば、特許文献1参照)。   In the grinding machine, for the purpose of grinding the workpiece with high accuracy and high efficiency, the sharpness of the grinding wheel is judged using the ratio of the tangential grinding resistance force and the normal grinding resistance force during grinding, and grinding conditions and Setting the dress interval is done. Normally, the grinding resistance is measured by measuring the tangential grinding resistance force from the workpiece rotation driving torque and measuring the normal grinding resistance force from the thrust of the grinding wheel cutting feed. (For example, refer to Patent Document 1).

特開2000−84849号公報JP 2000-84849 A

クランクシャフトのクランクピンをジャーナル軸線回りに周回運動させクランクピンを研削する研削盤においては、クランクシャフトの回転位相に対応して、クランクシャフトの回転に必要なトルクと研削抵抗力の方向と研削液の動圧力が変動する。このため従来は、クランクシャフトを回転駆動するトルクと砥石の切込み送りの推力を用いて研削抵抗力を測定することができない。   In a grinding machine that circulates the crank pin of the crank shaft around the journal axis and grinds the crank pin, the direction of the torque required for rotation of the crank shaft, the direction of the grinding resistance force, and the grinding fluid correspond to the rotational phase of the crank shaft. The dynamic pressure of fluctuates. For this reason, conventionally, it is impossible to measure the grinding resistance force using the torque for rotationally driving the crankshaft and the thrust of the cutting feed of the grindstone.

本発明は上記事情に鑑みてなされたものであり、クランクシャフトのクランクピンをジャーナルの軸線回りに周回運動させクランクピンを研削する研削盤において、正確な接線研削抵抗力と法線研削抵抗力の比率を測定できる研削抵抗力測定方法および研削盤を提供することを目的とする。   The present invention has been made in view of the above circumstances, and in a grinder that grinds a crank pin by rotating the crank pin of the crank shaft around the axis of the journal, accurate tangential grinding resistance force and normal grinding resistance force are obtained. An object of the present invention is to provide a grinding resistance measuring method and a grinding machine capable of measuring the ratio.

上記の課題を解決するため、請求項1に係る発明の特徴は、回転する砥石車と、クランクシャフトをジャーナル軸線回りに回転させてクランクピンを前記ジャーナル軸線回りに周回運動させる主軸と、前記砥石車を前記ジャーナル軸線に直交する方向に進退させる砥石車送り装置と、前記主軸の回転と前記砥石車の進退とを加工データに基づき同期制御する同期制御装置と、前記クランクピンの中心軸線であるピン軸線の回転位相を前記ジャーナル軸線と前記砥石車の回転中心を結ぶ線を基準とした前記ピン軸線の回転位相をΘとして測定する位相測定手段と、前記主軸のトルクを測定するトルク測定手段と、前記同期制御装置と位相測定手段と前記トルク測定手段を制御する制御手段とを備え、前記クランクピンの研削作用点で研削を行う研削盤を用いて、
前記クランクシャフトを前記主軸に装着し、前記砥石車を前記クランクピンに切込まない状態で、前記加工データに基づき前記主軸を回転させ、前記ピン軸線の回転位相Θを測定し、同時に前記主軸のトルクを表す基準トルクを測定し、前記砥石車を前記クランクピンに切込み、前記同期制御装置による前記加工データに基づく研削中に、前記ピン軸線の回転位相を前記位相測定手段で測定し同時に前記主軸のトルクを表す実トルクを前記トルク測定手段により測定し、前記ピン軸線の同一回転位相における、前記実トルクから前記基準トルクを差引いて、前記ピン軸線の回転位相Θに対するトルクを表す判定トルクを演算し、
前記砥石車の半径をRwとし、前記クランクピンの半径をRpとし、前記ピン軸線の周回運動半径をR とするとき、前記判定トルクの値が0となるときの前記ピン軸線の回転位相Θを使用して、
前記砥石車接触角αを式α=sin −1 (R ・sinΘ/(Rw+Rp))で演算し、
前記研削点角度Φを式Φ=tan −1 (Rw・sinα/(R ・cosΘ+Rp・cosα))で演算し、
接線研削抵抗力に対する法線研削抵抗力の倍率kを、前記砥石車接触角αの値と前記研削点角度Φの値を用いて、式k=cos(Φ+α)/sin(Φ+α)で演算することである。
In order to solve the above-mentioned problems, the invention according to claim 1 is characterized in that a grinding wheel that rotates, a main shaft that rotates a crankshaft around a journal axis and moves a crankpin around the journal axis, and the grindstone These are a grinding wheel feeding device for moving a vehicle back and forth in a direction perpendicular to the journal axis, a synchronous control device for synchronously controlling the rotation of the main shaft and the advance and retreat of the grinding wheel based on machining data, and a central axis of the crank pin. Phase measuring means for measuring the rotational phase of the pin axis with respect to the line connecting the journal axis and the rotational center of the grinding wheel as Θ, and a torque measuring means for measuring the torque of the main shaft; , and control means for controlling said torque measuring means and said synchronization control unit and the phase measurement unit performs grinding grinding the point of the crank pin Using a Kezuban,
With the crankshaft attached to the spindle and the grinding wheel not cut into the crankpin, the spindle is rotated based on the machining data, and the rotational phase Θ of the pin axis is measured, and at the same time, the spindle A reference torque representing torque is measured, the grinding wheel is cut into the crank pin, and during the grinding based on the machining data by the synchronous control device, the rotational phase of the pin axis is measured by the phase measuring means and simultaneously the spindle The actual torque representing the torque of the pin axis is measured by the torque measuring means, and the reference torque is subtracted from the actual torque at the same rotational phase of the pin axis to calculate a judgment torque representing the torque with respect to the rotational phase Θ of the pin axis. And
When the radius of the grinding wheel is Rw, the radius of the crank pin is Rp, and the rotational radius of the pin axis is R 0 , the rotational phase Θ of the pin axis when the determination torque value is 0 using,
The grinding wheel contact angle α is calculated by the formula α = sin −1 (R 0 · sin Θ / (Rw + Rp)),
The grinding point angle Φ is calculated by the formula Φ = tan −1 (Rw · sin α / (R 0 · cos Θ + Rp · cos α))
The magnification k normal grinding resistance to tangential grinding resistance, before SL using the values of the value of the grinding wheel contact angle alpha the grinding point angle [Phi, calculated by the formula k = cos (Φ + α) / sin (Φ + α) Is to do .

請求項に係る発明の特徴は、回転する砥石車と、
クランクシャフトをジャーナル軸線回りに回転させてクランクピンを前記ジャーナル軸線回りに周回運動させる主軸と、
回転する砥石車を前記ジャーナル軸線に直交する方向に進退する砥石車送り装置と
前記主軸の回転と前記砥石車送り装置の進退とを加工データに基づき同期制御する同期制御装置と、
前記クランクピンの中心軸線であるピン軸線の回転位相を前記ジャーナル軸線と前記砥石車の回転中心を結ぶ線を基準とした前記ピン軸線の回転位相をΘとして測定する位相測定手段と、
前記主軸のトルクを測定するトルク測定手段と、
前記同期制御装置と位相測定手段と前記トルク測定手段を制御する制御手段を備え
前記制御手段は、
前記クランクシャフトを前記主軸に装着し、前記砥石車を前記クランクピンに切込まない状態で、前記同期制御装置により前記加工データに基づき前記主軸を回転させ、前記ピン軸線の回転位相を前記位相測定手段で測定し同時に前記主軸のトルクを表す基準トルクを前記トルク測定手段で測定し、
前記砥石車を前記クランクピンに切込み、前記同期制御装置による前記加工データに基づく研削中に、前記ピン軸線の回転位相を前記位相測定手段で測定し同時に前記主軸のトルクを表す実トルクを前記トルク測定手段により測定し、
前記ピン軸線の同一回転位相における、前記実トルクから前記基準トルクを差引いて、前記ピン軸線の回転位相に対するトルクを表す判定トルクを演算し、
前記砥石車の半径をRwとし、前記クランクピンの半径をRpとし、前記ピン軸線の周回運動半径をRとして記憶し、
砥石車接触角αを式α=sin−1(R・sinΘ/(Rw+Rp))で演算し、
研削点角度Φを式Φ=tan−1(Rw・sinα/(R・cosΘ+Rp・cosα))で演算し、
接線研削抵抗力に対する法線研削抵抗力の倍率kを、前記判定トルクの値が0となる前記ピン軸線の回転位相Θの値を用いて演算した前記砥石車接触角αの値と前記研削点角度Φの値を用いて、式k=cos(Φ+α)/sin(Φ+α)で演算することである。
The features of the invention according to claim 2 are: a rotating grinding wheel;
A main shaft that rotates the crankshaft around the journal axis and moves the crankpin around the journal axis;
A grinding wheel feeding device that advances and retreats a rotating grinding wheel in a direction perpendicular to the journal axis, and a synchronous control device that synchronously controls the rotation of the main shaft and the advancement and retraction of the grinding wheel feeding device based on machining data;
Phase measuring means for measuring the rotational phase of the pin axis, which is the central axis of the crankpin, with the rotational phase of the pin axis relative to the line connecting the journal axis and the rotational center of the grinding wheel as Θ,
Torque measuring means for measuring the torque of the spindle;
Control means for controlling the synchronization control device, phase measuring means and torque measuring means, the control means,
With the crankshaft attached to the main shaft and the grinding wheel not being cut into the crank pin, the synchronous control device rotates the main shaft based on the machining data, and the rotational phase of the pin axis is measured by the phase measurement. Measuring a reference torque representing the torque of the spindle at the same time with the torque measuring means,
The grinding wheel is cut into the crank pin, and during the grinding based on the processing data by the synchronous control device, the rotational phase of the pin axis is measured by the phase measuring means, and at the same time, an actual torque representing the torque of the main shaft is obtained as the torque. Measured by measuring means,
Subtracting the reference torque from the actual torque at the same rotational phase of the pin axis to calculate a determination torque representing the torque with respect to the rotational phase of the pin axis;
The radius of the grinding wheel is Rw, the radius of the crankpin is Rp, and the orbiting radius of the pin axis is stored as R0 .
The grinding wheel contact angle α is calculated by the formula α = sin −1 (R 0 · sin Θ / (Rw + Rp)),
The grinding point angle Φ is calculated by the formula Φ = tan −1 (Rw · sin α / (R 0 · cos Θ + Rp · cos α))
The grinding wheel contact angle α value and the grinding point, which are calculated by using the rotational phase Θ value of the pin axis at which the judgment torque value is 0, the magnification k of the normal grinding resistance force to the tangential grinding resistance force Using the value of the angle Φ, the calculation is performed using the equation k = cos (Φ + α) / sin (Φ + α).

請求項1に係る発明によれば、砥石車をクランクピンに切込まない状態で加工データに基づき前記主軸を回転させた基準トルクと、研削中の実トルクを測定し、実トルクから基準トルクを差引いたピン軸線の回転位相Θに対する判定トルクを演算し、前記判定トルクの値が0となるときの前記ピン軸線の回転位相Θを使用して、砥石車接触角αと研削点角度Φを算出できる。さらに、接線研削抵抗力に対する法線研削抵抗力の倍率kを演算することができる。研削抵抗力以外の外力に起因する誤差を除去できるため、より精度の高い接線研削抵抗力に対する法線研削抵抗力の倍率kを求めることができる。
According to the first aspect of the present invention, the reference torque obtained by rotating the spindle based on the machining data and the actual torque during grinding are measured based on the machining data in a state where the grinding wheel is not cut into the crankpin, and the reference torque is calculated from the actual torque. It calculates the determination torque for rotating the phase Θ of subtracting the pin axis, the value of the determination torque using the rotational phase Θ of the pin axis when the 0, calculates the grinding wheel contact angle α and the grinding point angle Φ it can. Furthermore, the magnification k of the normal grinding resistance against the tangential grinding resistance can be calculated. Since an error caused by an external force other than the grinding resistance can be removed, the magnification k of the normal grinding resistance with respect to the tangential grinding resistance with higher accuracy can be obtained.

請求項に係る発明によれば、砥石車をクランクピンに切込まない状態で加工データに基づき前記主軸を回転させた基準トルクと、実研削工程における実トルクを測定し、実トルクから基準トルクを差引いたピン軸線の回転位相に対する判定トルクを演算し、判定トルクから接線研削抵抗力に対する法線研削抵抗力の倍率kを演算することができる。測定する項目が1つなので誤差要因が最小となり、かつ、研削抵抗力以外の外力に起因する誤差を除去できるため、精度の高い接線研削抵抗力に対する法線研削抵抗力の倍率kを求めることが可能な研削盤を実現できる。
According to the second aspect of the present invention, the reference torque obtained by rotating the spindle based on the machining data without cutting the grinding wheel into the crank pin and the actual torque in the actual grinding process are measured, and the reference torque is calculated from the actual torque. The determination torque with respect to the rotational phase of the pin axis that is subtracted can be calculated, and the magnification k of the normal grinding resistance against the tangential grinding resistance can be calculated from the determination torque. Since there is only one item to measure, the error factor is minimized, and errors due to external forces other than the grinding resistance force can be eliminated, so the ratio k of the normal grinding resistance force to the tangential grinding resistance force can be obtained with high accuracy. Possible grinders can be realized.

本実施形態の研削盤の全体構成を示す概略平面図である。It is a schematic plan view which shows the whole structure of the grinding machine of this embodiment. 図1のB−B断面図である。It is BB sectional drawing of FIG. 本実施形態の研削方法におけるクランクピンと砥石車の位置関係を示す図である。It is a figure which shows the positional relationship of the crankpin and grinding wheel in the grinding method of this embodiment. 本実施形態の研削方法における研削抵抗力と主軸トルクの関係を示す図である。It is a figure which shows the relationship between the grinding | polishing resistance force and spindle torque in the grinding method of this embodiment. 本実施形態の測定工程を示すフローチャートである。It is a flowchart which shows the measurement process of this embodiment. 本実施形態のピン軸線位相と判定トルクの関係を示すグラフである。It is a graph which shows the relationship between the pin axis phase of this embodiment, and determination torque. 本実施形態の基準ルク測定工程を示すフローチャートである。It is a flowchart which shows the reference | standard luk measurement process of this embodiment. 本実施形態の研削工程を示すフローチャートである。It is a flowchart which shows the grinding process of this embodiment.

以下、本発明の実施の形態を図面を参照しつつ説明する。
図1に示すように、研削盤1は、ベッド2を備え、ベッド2上に砥石車送り装置を構成するベース3を備え、ベース3上にはベース3によりX軸方向に往復可能に支持される砥石車送り装置を構成する砥石台4を備えている。さらに、ベッド2上にはX軸に直交するZ軸方向に往復可能なテーブル5を備えている。砥石台4は砥石車8を回転自在に支持し、砥石車8は砥石軸回転モータ(図示省略する)により回転駆動される。また、砥石台4の上部に研削液ノズル11が設置されている。テーブル5上には、クランクシャフトWの一端を把持して回転自在に支持し主軸モータ(図示省略する)により回転駆動され、クランクシャフトWの回転位相を検出する位相検出器10(位相測定手段)を備えた主軸6と、クランクシャフトWの他端を回転自在に支持する心押し台7が設置されている。クランクシャフトWは主軸6と心押し台7により支持されて、研削加工時に回転駆動される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the grinding machine 1 includes a bed 2, and includes a base 3 that constitutes a grinding wheel feeder on the bed 2, and is supported on the base 3 so as to be reciprocable in the X-axis direction. A grinding wheel base 4 constituting the grinding wheel feeder. Further, a table 5 that can reciprocate in the Z-axis direction orthogonal to the X-axis is provided on the bed 2. The grinding wheel base 4 rotatably supports the grinding wheel 8, and the grinding wheel 8 is rotationally driven by a grinding wheel shaft rotating motor (not shown). Further, a grinding liquid nozzle 11 is installed on the upper portion of the grindstone table 4. On the table 5, one end of the crankshaft W is gripped and rotatably supported, and is rotationally driven by a spindle motor (not shown) to detect the rotational phase of the crankshaft W (phase measuring means). And a tailstock 7 that rotatably supports the other end of the crankshaft W are installed. The crankshaft W is supported by the main shaft 6 and the tailstock 7 and is driven to rotate during grinding.

図2に示すように、クランクシャフトWはジャーナルWjの軸線であるジャーナル軸線pが主軸6の回転中心と一致するように保持され、クランクピンWpはジャーナル軸線pの回りを周回運動する。ジャーナル軸線pと砥石車8の回転中心qは垂直方向で同一の高さに保持されている。砥石台4の下部には砥石車送り装置を構成するリニアモータ9の可動部91が取り付けられ、ベース3の上部に、リニアモータ9の固定部92が可動部91に対向するように取り付けられている。可動部91と固定部92の間に推力が作用することで、砥石台4および砥石車8はジャーナル軸線pに直交するX方向で進退がなされる。   As shown in FIG. 2, the crankshaft W is held so that the journal axis p, which is the axis of the journal Wj, coincides with the rotation center of the main shaft 6, and the crankpin Wp circulates around the journal axis p. The journal axis p and the rotation center q of the grinding wheel 8 are held at the same height in the vertical direction. A movable part 91 of the linear motor 9 constituting the grinding wheel feeder is attached to the lower part of the grinding wheel base 4, and a fixed part 92 of the linear motor 9 is attached to the upper part of the base 3 so as to face the movable part 91. Yes. When a thrust acts between the movable portion 91 and the fixed portion 92, the grinding wheel base 4 and the grinding wheel 8 are advanced and retracted in the X direction orthogonal to the journal axis p.

この研削盤1は制御装置30を備えており、制御装置30の機能的構成として、砥石台4の進退と主軸6の回転を同期制御する同期制御部31(同期制御装置)、テーブル5の送りを制御するZ軸制御部32、クランクシャフトWの形状データや、研削動作を指示する加工データ等を記録する記録部33、各種の演算を行う演算部34などを具備している。同期制御部31には、砥石台4の進退を制御するX軸制御部311と、主軸6の回転を制御する主軸制御部312を備えている。主軸制御部312には主軸の回転トルクを主軸モータの電流値から測定するトルク測定部313(トルク測定手段)を内蔵している。   The grinding machine 1 includes a control device 30. As a functional configuration of the control device 30, a synchronous control unit 31 (synchronous control device) that synchronously controls the advance / retreat of the grindstone table 4 and the rotation of the spindle 6, A Z-axis control unit 32 for controlling the shape, a recording unit 33 for recording the shape data of the crankshaft W, machining data for instructing a grinding operation, and the like, and a calculation unit 34 for performing various calculations. The synchronization control unit 31 includes an X-axis control unit 311 that controls the advancing and retreating of the grindstone table 4 and a spindle control unit 312 that controls the rotation of the spindle 6. The spindle control unit 312 incorporates a torque measurement unit 313 (torque measurement means) that measures the rotational torque of the spindle from the current value of the spindle motor.

ここで、クランクピンWpの研削方法の概略を説明する。
図2において、主軸6が回転すると、クランクピンWpはジャーナル軸線pの回りを周回運動する。この時、砥石車8の外周が、クランクピンWpの研削作用点Guに常に接するように、主軸6の回転と砥石台4の進退を同期運動させることで、クランクピンWpを研削する。また、研削熱を除去するための研削液をノズル11から研削作用点Guに供給する。
図3に示す研削中のクランクピンWpと砥石車8の位置関係において、クランクピンWpの中心軸線をピン軸線nとし、ジャーナル軸線pと砥石車8の回転中心qを結ぶ線を基準線mとする。ピン軸線nのジャーナル軸線pに対する周回半径をR、クランクピンWpの半径をRp、砥石車8の半径をRw、基準線mに対するピン軸線nの位相をピン軸線位相Θ、研削作用点Guと回転中心qを結ぶ線と基準線mのなす角度を砥石車接触角αとする。幾何学的な関係から、式R・sinΘ=(Rp+Rw)・sinαが成り立つ。
Here, an outline of a grinding method of the crankpin Wp will be described.
In FIG. 2, when the main shaft 6 rotates, the crank pin Wp moves around the journal axis p. At this time, the crank pin Wp is ground by synchronizing the rotation of the main shaft 6 and the advancement and retraction of the grinding wheel base 4 so that the outer periphery of the grinding wheel 8 is always in contact with the grinding action point Gu of the crank pin Wp. Further, a grinding liquid for removing grinding heat is supplied from the nozzle 11 to the grinding action point Gu.
In the positional relationship between the crank pin Wp and the grinding wheel 8 during grinding shown in FIG. 3, the central axis of the crank pin Wp is the pin axis n, and the line connecting the journal axis p and the rotation center q of the grinding wheel 8 is the reference line m. To do. The rotation radius of the pin axis n with respect to the journal axis p is R 0 , the radius of the crank pin Wp is Rp, the radius of the grinding wheel 8 is Rw, the phase of the pin axis n with respect to the reference line m is the pin axis phase Θ, and the grinding action point Gu An angle formed by a line connecting the rotation center q and the reference line m is a grinding wheel contact angle α. From the geometric relationship, the equation R 0 · sin Θ = (Rp + Rw) · sin α holds.

以下に、接線研削抵抗力に対する法線研削抵抗力の倍率を求める研削抵抗力測定方法の概念を説明する。
図4に研削抵抗力と主軸トルクの関係を示す。ジャーナル軸線pを回転中心とする研削作用点Guの基準線mに対する位相を研削点角度Φ、法線研削抵抗力をFn、接線研削抵抗力をFtとする。主軸にトルクを与える力は、ジャーナル軸線pと研削作用点Guを結ぶ線に直交する方向の力であるから、その方向の法線研削抵抗力Fnの分力をFns、接線研削抵抗力Ftの分力をFtsとする。FnとFnsの成す角をβ、FtとFtsの成す角をγとすると、式Fn・cosβ=Fnsと式Ft・cosγ=Ftsが成り立ち、幾何学的な関係からβ=π/2−Φ−α、γ=Φ+αであるから、Fns=Fn・cos(π/2−Φ−α)=Fn・sin(Φ+α)とFts=Ft・cos(Φ+α)が成り立つ。
Below, the concept of the grinding resistance measuring method which calculates | requires the magnification of the normal grinding resistance with respect to a tangential grinding resistance is demonstrated.
FIG. 4 shows the relationship between grinding resistance and spindle torque. The phase of the grinding action point Gu with the journal axis p as the rotation center with respect to the reference line m is the grinding point angle Φ, the normal grinding resistance is Fn, and the tangential grinding resistance is Ft. Since the force that gives torque to the main shaft is a force in a direction perpendicular to the line connecting the journal axis p and the grinding action point Gu, the component of the normal grinding resistance force Fn in that direction is Fns, and the tangential grinding resistance force Ft The component force is Fts. If the angle formed by Fn and Fns is β, and the angle formed by Ft and Fts is γ, the formula Fn · cos β = Fns and the formula Ft · cos γ = Fts hold, and β = π / 2−Φ− Since α and γ = Φ + α, Fns = Fn · cos (π / 2−Φ−α) = Fn · sin (Φ + α) and Fts = Ft · cos (Φ + α) are established.

研削抵抗力により主軸に作用するトルクをTとし、ジャーナル軸線pと研削作用点Guの距離をRとし、右回りを正として表すと、T=R・Fts−R・Fns=R・(Ft・cos(Φ+α)−Fn・sin(Φ+α))となる。T=0のとき0=R・(Ft・cos(Φ+α)−Fn・sin(Φ+α))でRは0でないので、0=Ft・cos(Φ+α)−Fn・sin(Φ+α)となり、Ft・cos(Φ+α)=Fn・sin(Φ+α)からFn/Ft=cos(Φ+α)/sin(Φ+α)が成り立つ。
つまり、接線研削抵抗力Ftに対する法線研削抵抗力Fnの倍率kを式k=cos(Φ+α)/sin(Φ+α)で演算して求めることができる。
また、ΘとΦとαの幾何学的な関係から、tanΦ=Rw・sinα/(R・cosΘ+Rp・cosα)が成り立ち、Φ=tan−1(Rw・sinα/(R・cosΘ+Rp・cosα))となる。さらに、R・sinΘ=(Rp+Rw)・sinαよりα=sin−1(R・sinΘ/(Rp+Rw))となる。R、Rp、Rwの値はクランクシャフトWの形状データにより既知であるから、Φとαの値はΘの値を用いて演算することができる。
つまり、研削抵抗力により主軸6に作用するトルクTが0となる時の、基準線mに対するピン軸線nの位相Θを測定することで、接線研削抵抗力に対する法線研削抵抗力の倍率kを求めることができる。
The torque acting on the spindle and T by the grinding resistance, the distance of journal axis p and the grinding action point Gu and R 1, to represent the clockwise as positive, T = R 1 · Fts- R 1 · Fns = R 1 (Ft · cos (Φ + α) −Fn · sin (Φ + α)) When T = 0, 0 = R 1 · (Ft · cos (Φ + α) −Fn · sin (Φ + α)) and R 1 is not 0, so 0 = Ft · cos (Φ + α) −Fn · sin (Φ + α) From Ft · cos (Φ + α) = Fn · sin (Φ + α), Fn / Ft = cos (Φ + α) / sin (Φ + α) is established.
That is, the magnification k of the normal grinding resistance force Fn with respect to the tangential grinding resistance force Ft can be calculated by the equation k = cos (Φ + α) / sin (Φ + α).
Also, the geometric relationship between Θ and [Phi and α, tanΦ = Rw · sinα / (R 0 · cosΘ + Rp · cosα) holds is, Φ = tan -1 (Rw · sinα / (R 0 · cosΘ + Rp · cosα) ) Further, from R 0 · sin Θ = (Rp + Rw) · sin α, α = sin −1 (R 0 · sin Θ / (Rp + Rw)). Since the values of R 0 , Rp, and Rw are known from the shape data of the crankshaft W, the values of Φ and α can be calculated using the value of Θ.
That is, by measuring the phase Θ of the pin axis n with respect to the reference line m when the torque T acting on the spindle 6 due to the grinding resistance becomes 0, the magnification k of the normal grinding resistance against the tangential grinding resistance is obtained. Can be sought.

ところで、実際の研削中に主軸6に作用する力は、研削抵抗力の外に、主軸の軸受部に作用する摩擦力、研削液の噴出抵抗力、クランクシャフトW自身の回転方向のアンバランス力などの合力である。このため、研削中に測定した主軸のトルクである実トルクには研削抵抗力以外の力に起因するトルクも含まれ、これによる誤差が倍率kの値に含まれる。
この誤差を除去するためには、砥石車8をクランクピンWpの表面からわずかに離した状態で実研削と同じ条件で同期運転をした時のピン軸線nの位相に対する主軸のトルクである基準トルクを測定し、実トルクから基準トルクを差引くことで判定トルクを演算し、この判定トルクを用いて倍率kを求めることが有効である。
By the way, the forces acting on the main shaft 6 during actual grinding include the frictional force acting on the bearing portion of the main shaft, the spraying resistance force of the grinding fluid, and the unbalance force in the rotational direction of the crankshaft W itself. It is a resultant force. For this reason, the actual torque, which is the torque of the main shaft measured during grinding, includes torque resulting from a force other than the grinding resistance force, and an error due to this is included in the value of the magnification k.
In order to eliminate this error, the reference torque which is the torque of the main shaft with respect to the phase of the pin axis n when the grinding wheel 8 is operated slightly in the same condition as actual grinding with the wheel pin 8 slightly separated from the surface of the crank pin Wp. It is effective to calculate the determination torque by subtracting the reference torque from the actual torque and obtain the magnification k using this determination torque.

本研削盤1において、判定トルクを用いて研削抵抗力を測定する工程について、図5のフローチャートに基づき説明する。
はじめに、基準トルク測定工程(後に詳細を説明する)を実施し、基準トルクTmを測定し、記録部33に記録する(S1)。研削工程(後に詳細を説明する)を実施し、実トルクTgを測定し、記録部33に記録する(S2)。判定トルク演算工程を実施する。ピン軸線nの同一回転位相における実トルクと基準トルクの差である判定トルクThを式Th=Tg−Tmで演算し、記録部33に記録する。判定トルクをピン軸線位相Θに対応してグラフ化すると図6のようになり、ピン軸線位相2・πの間にTh=0となる位相がΘ、Θの2回ある(S3)。Th=0となるピン軸線位相Θ、Θを検出し、記録部33に記録する(S4)。砥石車接触角αを式α=α=sin−1(R・sinΘ/(Rp+Rw))で演算し、研削点角度Φを式Φ=tan−1(Rw・sinα/(R・cosΘ+Rp・cosα))で演算し、記録部33に記録する。ここでは、ピン軸線位相Θを用いたが、ピン軸線位相Θを用いてもよい(S5)。法線研削抵抗力の接線研削抵抗力に対する倍率kを式k=cos(Φ+α)/sin(Φ+α)で演算し、記録部33に記録する(S6)。
A process of measuring the grinding resistance force using the determination torque in the grinding machine 1 will be described based on the flowchart of FIG.
First, a reference torque measurement step (details will be described later) is performed, and the reference torque Tm is measured and recorded in the recording unit 33 (S1). A grinding step (details will be described later) is performed, and the actual torque Tg is measured and recorded in the recording unit 33 (S2). A determination torque calculation step is performed. The determination torque Th, which is the difference between the actual torque and the reference torque at the same rotational phase of the pin axis n, is calculated by the formula Th = Tg−Tm and recorded in the recording unit 33. When the determination torque is graphed in correspondence with the pin axis phase Θ, the result is as shown in FIG. 6, and there are two phases Θ 1 and Θ 2 at which Th = 0 between the pin axis phase 2 · π (S3). The pin axis phases Θ 1 and Θ 2 at which Th = 0 are detected and recorded in the recording unit 33 (S4). The grinding wheel contact angle α is calculated by the equation α = α = sin −1 (R 0 · sin Θ 1 / (Rp + Rw)), and the grinding point angle Φ is calculated by the equation Φ = tan −1 (Rw · sin α / (R 0 · cos Θ). 1 + Rp · cos α)) and record in the recording unit 33. Although the pin axis phase Θ 1 is used here, the pin axis phase Θ 2 may be used (S5). The magnification k of the normal grinding resistance to the tangential grinding resistance is calculated by the equation k = cos (Φ + α) / sin (Φ + α) and recorded in the recording unit 33 (S6).

基準トルク測定工程について、図7のフローチャートに基づき説明する。
砥石車8を回転させた状態で、クランクシャフトWを研削盤1に搬入する(S101)。砥石台4を早送り前進させる(S102)。同期運転開始位置へ主軸6と砥石台4を位置決めする。主軸6の位相をピン軸線位相ΘがΘ=0°となる位相とし、砥石台位置x=x1+Δx1とする。このとき、クランクピンWpと砥石車8の間にはΔx1の隙間を備えている(S103)。同期運転を開始する(S104)。所定の位相間隔で、Θ=0からΘ=2πまでのピン軸線位相Θに対応する主軸のトルクTmを測定し、記録部33に記録する(S105)。Θ=2πに達したら同期研削を終了する(S106)。砥石台4を早送り後退させる(S107)。クランクシャフトWを研削盤1から搬出する(S108)。
The reference torque measurement process will be described based on the flowchart of FIG.
With the grinding wheel 8 rotated, the crankshaft W is carried into the grinding machine 1 (S101). The grindstone table 4 is fast-forwarded (S102). The spindle 6 and the grindstone platform 4 are positioned to the synchronous operation start position. The phase of the main shaft 6 is set to a phase at which the pin axis phase Θ becomes Θ = 0 °, and the grindstone head position x = x 1 + Δx 1 . At this time, a gap of Δx 1 is provided between the crankpin Wp and the grinding wheel 8 (S103). Synchronous operation is started (S104). At a predetermined phase interval, the main shaft torque Tm corresponding to the pin axis phase Θ from Θ = 0 to Θ = 2π is measured and recorded in the recording unit 33 (S105). When Θ = 2π is reached, the synchronous grinding is finished (S106). The grindstone table 4 is fast-forwarded and retracted (S107). The crankshaft W is unloaded from the grinding machine 1 (S108).

研削工程について、図8のフローチャートに基づき説明する。
砥石車8を回転させた状態で、クランクシャフトWを研削盤1に搬入する(S201)。砥石台4を早送り前進させる(S202)。同期研削開始位置へ主軸6と砥石台4を位置決めする。ピン軸線位相Θ=0°、砥石台位置x=x1+Δxとする(S203)。同期研削を砥石台位置x=x1−Δx、ピン軸線位相ΘがΘ=0°となるまで継続する。これにより、クランクピンWpは半径でΔxだけ研削される(S204)。実トルク測定工程を実施する。砥石台位置x=x1−Δx、まで主軸の1回転分同期研削し所定の位相間隔で、Θ=0からΘ=2πまでのピン軸線位相Θに対応する主軸のトルクTgを測定し、記録部33に記録する(S205)。さらに、同期研削を続けクランクピンWpが所定の径に達したら同期研削を終了する(S206)。砥石台4を早送り後退させる(S207)。クランクシャフトWを研削盤1から搬出する(S208)。
A grinding process is demonstrated based on the flowchart of FIG.
While the grinding wheel 8 is rotated, the crankshaft W is carried into the grinding machine 1 (S201). The grindstone table 4 is fast-forwarded and advanced (S202). The spindle 6 and the wheel head 4 are positioned to the synchronous grinding start position. It is assumed that the pin axis phase Θ = 0 ° and the wheel head position x = x 1 + Δx 2 (S203). Synchronous grinding is continued until the wheel head position x = x 1 −Δx 2 and the pin axis phase Θ becomes Θ = 0 °. As a result, the crank pin Wp is ground by Δx 2 in radius (S204). The actual torque measurement process is performed. The spindle torque Tg corresponding to the pin axis phase Θ from Θ = 0 to Θ = 2π is measured at a predetermined phase interval by synchronous grinding for one revolution of the spindle until the wheel head position x = x 1 −Δx 3 , Recording is performed in the recording unit 33 (S205). Further, the synchronous grinding is continued, and the synchronous grinding is finished when the crank pin Wp reaches a predetermined diameter (S206). The grindstone table 4 is fast-forwarded and retracted (S207). The crankshaft W is unloaded from the grinding machine 1 (S208).

以上のように、本実施事例の研削抵抗力測定方法を用いると、判定トルクのトルクが0となるピン軸線位相Θを測定することで、正確な接線研削抵抗力に対する法線研削抵抗力の倍率kを演算できる。その比率の変化から砥石車8の切れ味変化を監視することができ、研削条件の変更や、砥石車8のドレッシング時期の設定などができる。   As described above, when the grinding resistance force measuring method of this embodiment is used, the ratio of the normal grinding resistance force to the accurate tangential grinding resistance force is measured by measuring the pin axis phase Θ where the torque of the judgment torque becomes zero. k can be calculated. The change in sharpness of the grinding wheel 8 can be monitored from the change in the ratio, and the grinding conditions can be changed and the dressing time of the grinding wheel 8 can be set.

上記事例では実トルクTgと基準トルクTmの差である判定トルクThのトルクが0となるピン軸線位相Θから接線研削抵抗力に対する法線研削抵抗力の倍率kを演算したが、主軸の軸受部に作用する摩擦力、研削液の噴出抵抗力、クランクシャフトW自身の回転方向のアンバランス力などが小さい場合は、実トルクTgのトルクが0となるピン軸線位相Θを用いて倍率kを演算してもよい。
In the above example, the ratio k of the normal grinding resistance force to the tangential grinding resistance force is calculated from the pin axis phase Θ where the torque of the determination torque Th that is the difference between the actual torque Tg and the reference torque Tm is 0. When the frictional force acting on the friction, the spraying resistance of the grinding fluid, and the unbalance force in the rotational direction of the crankshaft W itself are small, the magnification k is calculated using the pin axis phase Θ where the torque of the actual torque Tg becomes zero May be.

W:クランクシャフト Wj:ジャーナル Wp:クランクピン 4:砥石台 5:テーブル 6:主軸 7:心押し台 8:砥石車 9:リニアモータ 11:研削液ノズル 30:制御装置 31:同期制御部 33:記録部 34:演算部 311:X軸制御部 312:主軸制御部 313:トルク測定部 W: Crankshaft Wj: Journal Wp: Crankpin 4: Whetstone stand 5: Table 6: Spindle 7: Tailstock 8: Grinding wheel 9: Linear motor 11: Grinding fluid nozzle 30: Controller 31: Synchronous control section 33: Recording unit 34: Calculation unit 311: X-axis control unit 312: Spindle control unit 313: Torque measurement unit

Claims (2)

回転する砥石車と、
クランクシャフトをジャーナル軸線回りに回転させてクランクピンを前記ジャーナル軸線回りに周回運動させる主軸と、
前記砥石車を前記ジャーナル軸線に直交する方向に進退させる砥石車送り装置と、
前記主軸の回転と前記砥石車の進退とを加工データに基づき同期制御する同期制御装置と、
前記クランクピンの中心軸線であるピン軸線の回転位相を前記ジャーナル軸線と前記砥石車の回転中心を結ぶ線を基準とした前記ピン軸線の回転位相をΘとして測定する位相測定手段と、
前記主軸のトルクを測定するトルク測定手段と、
前記同期制御装置と位相測定手段と前記トルク測定手段を制御する制御手段とを備え、
前記クランクピンの研削作用点で研削を行う研削盤を用いて、
前記クランクシャフトを前記主軸に装着し、前記砥石車を前記クランクピンに切込まない状態で、前記加工データに基づき前記主軸を回転させ、前記ピン軸線の回転位相Θを測定し、
同時に前記主軸のトルクを表す基準トルクを測定し、
前記砥石車を前記クランクピンに切込み、前記同期制御装置による前記加工データに基づく研削中に、前記ピン軸線の回転位相を前記位相測定手段で測定し同時に前記主軸のトルクを表す実トルクを前記トルク測定手段により測定し、
前記ピン軸線の同一回転位相における、前記実トルクから前記基準トルクを差引いて、前記ピン軸線の回転位相Θに対するトルクを表す判定トルクを演算し、
前記砥石車の半径をRwとし、前記クランクピンの半径をRpとし、前記ピン軸線の周回運動半径をR とするとき、前記判定トルクの値が0となるときの前記ピン軸線の回転位相Θを使用して、
前記砥石車接触角αを式α=sin −1 (R ・sinΘ/(Rw+Rp))で演算し、
前記研削点角度Φを式Φ=tan −1 (Rw・sinα/(R ・cosΘ+Rp・cosα))で演算し、
接線研削抵抗力に対する法線研削抵抗力の倍率kを、前記砥石車接触角αの値と前記研削点角度Φの値を用いて、式k=cos(Φ+α)/sin(Φ+α)で演算する研削抵抗力測定方法。
A rotating grinding wheel,
A main shaft that rotates the crankshaft around the journal axis and moves the crankpin around the journal axis;
A grinding wheel feeder that moves the grinding wheel forward and backward in a direction perpendicular to the journal axis ;
A synchronous control device for synchronously controlling the rotation of the spindle and the advancement and retraction of the grinding wheel based on machining data ;
Phase measuring means for measuring the rotational phase of the pin axis, which is the central axis of the crankpin, with the rotational phase of the pin axis relative to the line connecting the journal axis and the rotational center of the grinding wheel as Θ,
Torque measuring means for measuring the torque of the spindle;
A control means for controlling the synchronous control device, the phase measuring means and the torque measuring means;
Using a grinding machine that performs grinding at the grinding action point of the crankpin,
The crankshaft is mounted on the main shaft, the grinding wheel is not cut into the crank pin, the main shaft is rotated based on the processing data, and the rotational phase Θ of the pin axis is measured.
At the same time, a reference torque representing the torque of the spindle is measured,
The grinding wheel is cut into the crank pin, and during the grinding based on the processing data by the synchronous control device, the rotational phase of the pin axis is measured by the phase measuring means, and at the same time, an actual torque representing the torque of the main shaft is obtained as the torque. Measured by measuring means,
Subtracting the reference torque from the actual torque at the same rotational phase of the pin axis to calculate a determination torque representing the torque with respect to the rotational phase Θ of the pin axis,
When the radius of the grinding wheel is Rw, the radius of the crank pin is Rp, and the rotational radius of the pin axis is R 0 , the rotational phase Θ of the pin axis when the determination torque value is 0 using,
The grinding wheel contact angle α is calculated by the formula α = sin −1 (R 0 · sin Θ / (Rw + Rp)),
The grinding point angle Φ is calculated by the formula Φ = tan −1 (Rw · sin α / (R 0 · cos Θ + Rp · cos α))
The magnification k normal grinding resistance to tangential grinding resistance, by using the value and the value of the grinding point angle [Phi of the grinding wheel contact angle alpha, is calculated by the formula k = cos (Φ + α) / sin (Φ + α) Grinding resistance measurement method.
回転する砥石車と、
クランクシャフトをジャーナル軸線回りに回転させてクランクピンを前記ジャーナル軸線回りに周回運動させる主軸と、
回転する砥石車を前記ジャーナル軸線に直交する方向に進退する砥石車送り装置と
前記主軸の回転と前記砥石車送り装置の進退とを加工データに基づき同期制御する同期制御装置と、
前記クランクピンの中心軸線であるピン軸線の回転位相を前記ジャーナル軸線と前記砥石車の回転中心を結ぶ線を基準とした前記ピン軸線の回転位相をΘとして測定する位相測定手段と、
前記主軸のトルクを測定するトルク測定手段と、
前記同期制御装置と位相測定手段と前記トルク測定手段を制御する制御手段を備え
前記制御手段は、
前記クランクシャフトを前記主軸に装着し、前記砥石車を前記クランクピンに切込まない状態で、前記同期制御装置により前記加工データに基づき前記主軸を回転させ、前記ピン軸線の回転位相を前記位相測定手段で測定し同時に前記主軸のトルクを表す基準トルクを前記トルク測定手段で測定し、
前記砥石車を前記クランクピンに切込み、前記同期制御装置による前記加工データに基づく研削中に、前記ピン軸線の回転位相を前記位相測定手段で測定し同時に前記主軸のトルクを表す実トルクを前記トルク測定手段により測定し、
前記ピン軸線の同一回転位相における、前記実トルクから前記基準トルクを差引いて、前記ピン軸線の回転位相に対するトルクを表す判定トルクを演算し、
前記砥石車の半径をRwとし、前記クランクピンの半径をRpとし、前記ピン軸線の周回運動半径をRとして記憶し、
砥石車接触角αを式α=sin−1(R・sinΘ/(Rw+Rp))で演算し、
研削点角度Φを式Φ=tan−1(Rw・sinα/(R・cosΘ+Rp・cosα))で演算し、
接線研削抵抗力に対する法線研削抵抗力の倍率kを、前記判定トルクの値が0となる前記ピン軸線の回転位相Θの値を用いて演算した前記砥石車接触角αの値と前記研削点角度Φの値を用いて、式k=cos(Φ+α)/sin(Φ+α)で演算する、
研削盤。
A rotating grinding wheel,
A main shaft that rotates the crankshaft around the journal axis and moves the crankpin around the journal axis;
A grinding wheel feeding device that advances and retreats a rotating grinding wheel in a direction perpendicular to the journal axis, and a synchronous control device that synchronously controls the rotation of the main shaft and the advancement and retraction of the grinding wheel feeding device based on machining data;
Phase measuring means for measuring the rotational phase of the pin axis, which is the central axis of the crankpin, with the rotational phase of the pin axis relative to the line connecting the journal axis and the rotational center of the grinding wheel as Θ,
Torque measuring means for measuring the torque of the spindle;
Control means for controlling the synchronization control device, phase measuring means and torque measuring means, the control means,
With the crankshaft attached to the main shaft and the grinding wheel not being cut into the crank pin, the synchronous control device rotates the main shaft based on the machining data, and the rotational phase of the pin axis is measured by the phase measurement. Measuring a reference torque representing the torque of the spindle at the same time with the torque measuring means,
The grinding wheel is cut into the crank pin, and during the grinding based on the processing data by the synchronous control device, the rotational phase of the pin axis is measured by the phase measuring means, and at the same time, an actual torque representing the torque of the main shaft is obtained as the torque. Measured by measuring means,
Subtracting the reference torque from the actual torque at the same rotational phase of the pin axis to calculate a determination torque representing the torque with respect to the rotational phase of the pin axis;
The radius of the grinding wheel is Rw, the radius of the crankpin is Rp, and the orbiting radius of the pin axis is stored as R0 .
The grinding wheel contact angle α is calculated by the formula α = sin −1 (R 0 · sin Θ / (Rw + Rp)),
The grinding point angle Φ is calculated by the formula Φ = tan −1 (Rw · sin α / (R 0 · cos Θ + Rp · cos α))
The grinding wheel contact angle α value and the grinding point, which are calculated by using the rotational phase Θ value of the pin axis at which the judgment torque value is 0, the magnification k of the normal grinding resistance force to the tangential grinding resistance force Using the value of the angle Φ, calculation is performed using the equation k = cos (Φ + α) / sin (Φ + α).
Grinder.
JP2012127783A 2012-06-05 2012-06-05 Grinding resistance measuring method and grinding machine Expired - Fee Related JP5970964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012127783A JP5970964B2 (en) 2012-06-05 2012-06-05 Grinding resistance measuring method and grinding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012127783A JP5970964B2 (en) 2012-06-05 2012-06-05 Grinding resistance measuring method and grinding machine

Publications (2)

Publication Number Publication Date
JP2013252570A JP2013252570A (en) 2013-12-19
JP5970964B2 true JP5970964B2 (en) 2016-08-17

Family

ID=49950527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012127783A Expired - Fee Related JP5970964B2 (en) 2012-06-05 2012-06-05 Grinding resistance measuring method and grinding machine

Country Status (1)

Country Link
JP (1) JP5970964B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103753357B (en) * 2014-01-23 2015-12-02 南京理工大学 The axial cutting force Forecasting Methodology of fragile material supersonic vibration assistant grinding
CN104759950B (en) * 2015-04-24 2017-06-06 南京理工大学 Supersonic vibration assistant grinding fragile material is along direction of feed prediction of Turning Force with Artificial method
CN107733305A (en) * 2017-10-12 2018-02-23 上海仪电汽车电子***有限公司 The anti-zero-bit bounce-back back to zero driving method of motor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04141364A (en) * 1990-09-28 1992-05-14 Toyoda Mach Works Ltd Detection device for abnormal overload of grinding wheel shaft
JPH04315571A (en) * 1991-04-12 1992-11-06 Hitachi Seiko Ltd Instituting method for grinding condition
US5251404A (en) * 1992-02-28 1993-10-12 General Motors Corporation Belt grinder for crankshaft pins
JP2000033557A (en) * 1998-07-21 2000-02-02 Systemseiko Co Ltd Control method for polishing panel and device therefor
JP2009291915A (en) * 2008-06-09 2009-12-17 Jtekt Corp Machine tool

Also Published As

Publication number Publication date
JP2013252570A (en) 2013-12-19

Similar Documents

Publication Publication Date Title
JP5857660B2 (en) Grinding machine truing device
JP5970964B2 (en) Grinding resistance measuring method and grinding machine
JP6165464B2 (en) Gear grinding machine
US9238297B2 (en) Actual grinding depth measurement method, machining method, and machine tool
JP6089774B2 (en) Grinding machine and grinding method
JP2010194623A (en) Thread grinding machine and thread groove grinding method
JP5446889B2 (en) Grinding machine and grinding method
JP6383632B2 (en) Threaded grinding wheel dressing method
US7901268B2 (en) Method for grinding journal section of workpiece
JP3783998B2 (en) Radius measurement type sizing control method and radius measurement type sizing device
JP2013237127A (en) Method for measuring grinding resistance force, and grinding machine
JP2013071204A (en) Rigidity measuring method and grinder
JP6089752B2 (en) Grinding machine and grinding method
TWI418431B (en) Phase alignment method and phase alignment device of helical wheel
JP6186739B2 (en) Grinding machine and grinding method
JP6102502B2 (en) Grinding machine and grinding method
JP6107348B2 (en) Internal grinding machine
JP3777825B2 (en) Precision grinding machine and grinding wheel radius measurement method
WO1998030942A1 (en) Method of controlling a machine tool
JP2013123758A (en) Mechanical rigidity measuring method and machine tool
JP5857692B2 (en) Grinding method and grinding machine
JP5724666B2 (en) Runout accuracy measuring method and grinding machine
JP2013154462A (en) Truing device of grinding machine
JP2010173005A (en) High-speed automatic centering method of eccentric part of eccentric workpiece, and apparatus for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160627

R150 Certificate of patent or registration of utility model

Ref document number: 5970964

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees