JP5969268B2 - Geothermal heat pump device - Google Patents

Geothermal heat pump device Download PDF

Info

Publication number
JP5969268B2
JP5969268B2 JP2012119795A JP2012119795A JP5969268B2 JP 5969268 B2 JP5969268 B2 JP 5969268B2 JP 2012119795 A JP2012119795 A JP 2012119795A JP 2012119795 A JP2012119795 A JP 2012119795A JP 5969268 B2 JP5969268 B2 JP 5969268B2
Authority
JP
Japan
Prior art keywords
heat
heat exchanger
underground
side heat
heat medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012119795A
Other languages
Japanese (ja)
Other versions
JP2013245874A (en
Inventor
焦 石井
焦 石井
村越 康司
康司 村越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Holdings Corp
Original Assignee
Sanden Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Holdings Corp filed Critical Sanden Holdings Corp
Priority to JP2012119795A priority Critical patent/JP5969268B2/en
Priority to PCT/JP2013/003082 priority patent/WO2013175731A1/en
Publication of JP2013245874A publication Critical patent/JP2013245874A/en
Application granted granted Critical
Publication of JP5969268B2 publication Critical patent/JP5969268B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/06Heat pumps characterised by the source of low potential heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • F24F2005/0057Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground receiving heat-exchange fluid from a closed circuit in the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Other Air-Conditioning Systems (AREA)

Description

本発明は、地中熱を採取して空調等を行う地中熱利用ヒートポンプ装置に関するものである。   The present invention relates to a geothermal heat pump that collects geothermal heat and performs air conditioning and the like.

近年では地球温暖化防止のために、圧縮機により冷媒を循環させる冷凍サイクル装置に地中熱を利用した地中熱採熱装置を組み合わせた装置が開発されてきている。この装置は、地中に埋設された地中熱採熱管と室内等に設けられた利用側熱交換器との間で水やブライン等の熱媒体を循環させることにより構成され、冷房時には地中熱採熱管にて地中に放熱することで冷却された熱媒体が、利用側熱交換器に通風される空気から吸熱することにより、冷却作用(冷房)を発揮する。   In recent years, in order to prevent global warming, an apparatus in which a refrigeration cycle apparatus that circulates a refrigerant by a compressor is combined with a geothermal heat collecting apparatus that uses geothermal heat has been developed. This device is configured by circulating a heat medium such as water or brine between the underground heat collection pipe buried in the ground and the use side heat exchanger provided indoors, etc. The heat medium cooled by radiating heat into the ground with the heat heat collection pipe absorbs heat from the air ventilated to the use side heat exchanger, thereby exerting a cooling action (cooling).

また、暖房時には冷凍サイクル装置の蒸発器で熱媒体が吸熱することで、地中熱を暖房に利用するものである(例えば、特許文献1、特許文献2参照)。これは特に外気温度よりも地中の温度の方が高い寒冷地の冬季に有効である。   Further, during heating, the heat medium absorbs heat in the evaporator of the refrigeration cycle apparatus, so that the underground heat is used for heating (for example, see Patent Document 1 and Patent Document 2). This is particularly effective in the winter in cold regions where the underground temperature is higher than the outside air temperature.

特開2005−106384号公報JP-A-2005-106384 特開2010−216783号公報JP 2010-216783 A

しかしながら、上記特許文献1では冷凍サイクル装置と地中熱を利用する地中熱採熱装置は、冷凍サイクル装置の蒸発器とのみ熱交換し、特許文献2では暖房時の冷凍サイクル装置の蒸発器と冷房時の冷凍サイクル装置の凝縮器(何れも熱利用熱交換器31)とのみ熱交換する構成であったため、冷凍サイクル装置に対して地中熱を有効に利用することができない問題があり、更なる運転効率と冷房、暖房性能の向上が望まれていた。   However, in the above-mentioned Patent Document 1, the refrigeration cycle apparatus and the geothermal heat collecting apparatus using the geothermal heat exchange heat only with the evaporator of the refrigeration cycle apparatus, and in Patent Document 2, the evaporator of the refrigeration cycle apparatus during heating. Since the heat exchange is performed only with the condenser of the refrigeration cycle apparatus at the time of cooling (both are heat-use heat exchangers 31), there is a problem that the underground heat cannot be effectively used for the refrigeration cycle apparatus. Further improvement in operating efficiency, cooling and heating performance has been desired.

本発明は、係る従来の技術的課題を解決するためになされたものであり、地中熱を有効に利用して運転効率と性能の改善を図ることができる地中熱利用ヒートポンプ装置を提供するものである。   The present invention has been made to solve the conventional technical problems, and provides a heat pump device using geothermal heat capable of improving operation efficiency and performance by effectively using geothermal heat. Is.

上記課題を解決するために、請求項1の発明の地中熱利用ヒートポンプ装置は、圧縮機と、放熱器と、膨張機構と、蒸発器を含む冷媒回路を有する冷凍サイクル装置と、地中に埋設された地中熱採熱管と、蒸発器と熱交換関係に設けられた地中熱伝熱器と、空調を行うための利用側熱交換器と、放熱器と熱交換関係に設けられた利用側伝熱器と、これら地中熱採熱管、地中熱伝熱器、利用側熱交換器、及び、利用側伝熱器への熱媒体の流通を制御する熱媒体循環装置と、冷凍サイクル装置及び熱媒体循環装置を制御する制御装置を備え、この制御装置は、熱媒体循環装置により、地中熱採熱管、地中熱伝熱器、利用側熱交換器、及び、利用側伝熱器の順で熱媒体を循環させることを特徴とする。 In order to solve the above-described problems, a heat pump device using ground heat according to the invention of claim 1 includes a compressor, a radiator, an expansion mechanism, a refrigeration cycle device having a refrigerant circuit including an evaporator, It was installed in a heat exchange relationship with a buried underground heat collection tube, a ground heat transfer device provided in a heat exchange relationship with an evaporator, a use side heat exchanger for air conditioning, and a heat sink. User side heat exchangers, these underground heat collection tubes, underground heat exchangers, user side heat exchangers, heat medium circulation devices that control the flow of heat medium to the user side heat exchangers, and refrigeration The control device controls the cycle device and the heat medium circulation device, and the control device is configured by the heat medium circulation device to use the underground heat collection pipe, the underground heat transfer device, the use side heat exchanger, and the use side transfer. The heat medium is circulated in the order of the heater .

また、請求項2の発明の地中熱利用ヒートポンプ装置は、圧縮機と、放熱器と、膨張機構と、蒸発器を含む冷媒回路を有する冷凍サイクル装置と、地中に埋設された地中熱採熱管と、蒸発器と熱交換関係に設けられた地中熱伝熱器と、空調を行うための利用側熱交換器と、放熱器と熱交換関係に設けられた利用側伝熱器と、これら地中熱採熱管、地中熱伝熱器、利用側熱交換器、及び、利用側伝熱器への熱媒体の流通を制御する熱媒体循環装置と、冷凍サイクル装置及び熱媒体循環装置を制御する制御装置を備え、この制御装置は、熱媒体循環装置により、地中熱採熱管と地中熱伝熱器との間で熱媒体を循環させると共に、利用側熱交換器と利用側伝熱器との間で熱媒体を循環させる第1の運転モードと、熱媒体循環装置により、地中熱採熱管、地中熱伝熱器、利用側熱交換器、及び、利用側伝熱器の順で熱媒体を循環させる第2の運転モードを有することを特徴とする。   According to a second aspect of the present invention, there is provided a heat pump device using ground heat, a compressor, a radiator, an expansion mechanism, a refrigeration cycle device having a refrigerant circuit including an evaporator, and underground heat embedded in the ground. A heat collection tube, a ground heat exchanger provided in a heat exchange relationship with the evaporator, a use side heat exchanger for performing air conditioning, and a use side heat exchanger provided in a heat exchange relationship with the radiator. , These underground heat collection tubes, underground heat exchangers, use side heat exchangers, heat medium circulation devices that control the flow of the heat medium to the use side heat transfer devices, refrigeration cycle devices, and heat medium circulations And a control device for controlling the device. The control device circulates the heat medium between the geothermal heat collecting pipe and the geothermal heat exchanger by the heat medium circulation device, and uses the heat exchanger with the use side heat exchanger. Ground heat collection using the first operation mode for circulating the heat medium to and from the side heat exchanger and the heat medium circulating device , Underground heat heat transfer device, the usage-side heat exchanger, and characterized by having a second operating mode for circulating the heat medium in the order of the usage-side heat transfer unit.

また、請求項3の発明の地中熱利用ヒートポンプ装置は、圧縮機と、放熱器と、膨張機構と、蒸発器を含む冷媒回路を有する冷凍サイクル装置と、地中に埋設された地中熱採熱管と、蒸発器と熱交換関係に設けられた地中熱伝熱器と、空調を行うための第1及び第2の利用側熱交換器と、放熱器と熱交換関係に設けられた利用側伝熱器と、これら地中熱採熱管、地中熱伝熱器、両利用側熱交換器、及び、利用側伝熱器への熱媒体の流通を制御する熱媒体循環装置と、冷凍サイクル装置及び熱媒体循環装置を制御する制御装置を備え、この制御装置は、熱媒体循環装置により、地中熱採熱管と地中熱伝熱器との間で熱媒体を循環させると共に、第1の利用側熱交換器と利用側伝熱器との間で熱媒体を循環させる第1の運転モードと、熱媒体循環装置により、地中熱採熱管、地中熱伝熱器、第2の利用側熱交換器、及び、利用側伝熱器の順で熱媒体を循環させる第2の運転モードを有することを特徴とする。   According to a third aspect of the present invention, there is provided a heat pump device using ground heat, a compressor, a radiator, an expansion mechanism, a refrigeration cycle device having a refrigerant circuit including an evaporator, and underground heat embedded in the ground. The heat collection tube, the underground heat exchanger provided in a heat exchange relationship with the evaporator, the first and second use side heat exchangers for air conditioning, and the heat exchanger provided in a heat exchange relationship A heat transfer device that controls the flow of the heat medium to the use side heat transfer device, and these underground heat collection tubes, the underground heat transfer device, the two use side heat exchangers, and the use side heat transfer device, A control device for controlling the refrigeration cycle device and the heat medium circulation device is provided. The control device circulates the heat medium between the underground heat collection pipe and the underground heat transfer device by the heat medium circulation device, A first operation mode for circulating a heat medium between the first user-side heat exchanger and the user-side heat exchanger, and heat medium circulation; It has the 2nd operation mode which circulates a heat carrier in order of a geothermal heat collection pipe, a geothermal heat exchanger, a 2nd use side heat exchanger, and a use side heat exchanger. And

また、請求項4の発明の地中熱利用ヒートポンプ装置は、上記発明において制御装置は、熱媒体循環装置により、利用側伝熱器を出た熱媒体の一部を分流し、第1の利用側熱交換器に流した後、第2の利用側熱交換器を出た熱媒体に合流させる第3の運転モードを有することを特徴とする。   According to a fourth aspect of the present invention, there is provided a ground heat utilization heat pump device according to the first aspect, wherein the control device diverts a part of the heat medium exiting the utilization side heat transfer device by the heat medium circulation device. After flowing through the side heat exchanger, it has a third operation mode in which the second utilization side heat exchanger is joined to the heat medium that has exited.

また、請求項5の発明の地中熱利用ヒートポンプ装置は、第1の圧縮機及び第1の放熱器と、膨張機構と、蒸発器と、第1の圧縮機及び第1の放熱器に対して二元接続の高元側、若しくは、二段接続の後段側の関係で設けられた第2の圧縮機及び第2の放熱器を含む冷媒回路を有する冷凍サイクル装置と、地中に埋設された地中熱採熱管と、蒸発器と熱交換関係に設けられた地中熱伝熱器と、空調を行うための利用側熱交換器と、第1の放熱器と熱交換関係に設けられた第1の利用側伝熱器と、第2の放熱器と熱交換関係に設けられた第2の利用側伝熱器と、これら地中熱採熱管、地中熱伝熱器、利用側熱交換器、第1の利用側伝熱器、及び、第2の利用側伝熱器への熱媒体の流通を制御する熱媒体循環装置と、冷凍サイクル装置及び熱媒体循環装置を制御する制御装置を備え、この制御装置は、熱媒体循環装置により、地中熱採熱管と地中熱伝熱器との間で熱媒体を循環させると共に、利用側熱交換器と第1及び第2の利用側伝熱器との間で熱媒体を循環させる第1の運転モードと、熱媒体循環装置により、地中熱採熱管、地中熱伝熱器、利用側熱交換器、及び、第1の利用側伝熱器の順で熱媒体を循環させる第2の運転モードを有することを特徴とする。   The ground heat utilization heat pump device of the invention of claim 5 is provided for the first compressor and the first radiator, the expansion mechanism, the evaporator, the first compressor and the first radiator. And a refrigeration cycle apparatus having a refrigerant circuit including a second compressor and a second radiator provided in a high-level side of the two-way connection or a rear-stage side of the two-stage connection, and embedded in the ground A heat exchanging tube, a geothermal heat exchanger provided in a heat exchange relationship with the evaporator, a use side heat exchanger for air conditioning, and a first heat radiator. The first use side heat transfer device, the second use side heat transfer device provided in a heat exchange relationship with the second heat radiator, and these underground heat collection tubes, the underground heat transfer device, and the use side Heat exchanger, first use side heat transfer device, heat medium circulation device for controlling circulation of heat medium to second use side heat transfer device, refrigeration cycle device, and heat medium A control device for controlling the ring device, and the control device circulates the heat medium between the geothermal heat collecting pipe and the geothermal heat exchanger by the heat medium circulation device, The first operation mode in which the heat medium is circulated between the first and second user-side heat exchangers and the heat medium circulating device, the underground heat collection pipe, the underground heat exchanger, and the user-side heat exchange. And a second operation mode in which the heat medium is circulated in the order of the heat exchanger and the first user-side heat exchanger.

また、請求項6の発明の地中熱利用ヒートポンプ装置は、第1の圧縮機及び第1の放熱器と、膨張機構と、蒸発器と、第1の圧縮機及び第1の放熱器に対して二元接続の高元側、若しくは、二段接続の後段側の関係で設けられた第2の圧縮機及び第2の放熱器を含む冷媒回路を有する冷凍サイクル装置と、地中に埋設された地中熱採熱管と、蒸発器と熱交換関係に設けられた地中熱伝熱器と、空調を行うための第1及び第2の利用側熱交換器と、給湯を行うための第3の利用側熱交換器と、第1の放熱器と熱交換関係に設けられた第1の利用側伝熱器と、第2の放熱器と熱交換関係に設けられた第2の利用側伝熱器と、これら地中熱採熱管、地中熱伝熱器、各利用側熱交換器、第1の利用側伝熱器、及び、第2の利用側伝熱器への熱媒体の流通を制御する熱媒体循環装置と、冷凍サイクル装置及び熱媒体循環装置を制御する制御装置を備え、この制御装置は、熱媒体循環装置により、地中熱採熱管と地中熱伝熱器との間で熱媒体を循環させると共に、第1の利用側熱交換器及び第3の利用側熱交換器と第1及び第2の利用側伝熱器との間で熱媒体を循環させる第1の運転モードと、熱媒体循環装置によって地中熱採熱管、地中熱伝熱器、第2の利用側熱交換器、及び、第2の利用側伝熱器の順で熱媒体を循環させ、且つ、第3の利用側熱交換器と第1の利用側伝熱器との間で熱媒体を循環させる第2の運転モードを有することを特徴とする。   The ground heat utilization heat pump device of the invention of claim 6 relates to the first compressor and the first radiator, the expansion mechanism, the evaporator, the first compressor and the first radiator. And a refrigeration cycle apparatus having a refrigerant circuit including a second compressor and a second radiator provided in a high-level side of the two-way connection or a rear-stage side of the two-stage connection, and embedded in the ground Underground heat collection tubes, underground heat exchangers provided in a heat exchange relationship with the evaporator, first and second use side heat exchangers for air conditioning, and first for performing hot water supply 3 utilization side heat exchangers, a first utilization side heat exchanger provided in a heat exchange relationship with the first radiator, and a second utilization side provided in a heat exchange relationship with the second radiator. Heat transfer devices, heat transfer pipes to these underground heat collection tubes, underground heat transfer devices, each use-side heat exchanger, first use-side heat transfer device, and second use-side heat transfer device Flow And a control device for controlling the refrigeration cycle device and the heat medium circulation device. The control device uses the heat medium circulation device to connect the underground heat collection pipe and the underground heat transfer device. The first heat medium is circulated between the first utilization side heat exchanger and the third utilization side heat exchanger, and the first and second utilization side heat exchangers. Circulate the heat medium in the order of the operation mode and the underground heat collection pipe, the underground heat exchanger, the second usage side heat exchanger, and the second usage side heat exchanger by the heat medium circulation device; And it has the 2nd operation mode which circulates a heat carrier between the 3rd use side heat exchanger and the 1st use side heat exchanger, It is characterized by the above-mentioned.

また、請求項7の発明の地中熱利用ヒートポンプ装置は、上記各発明において蒸発器を流れる冷媒と地中熱伝熱器を流れる熱媒体は対向流となり、放熱器を流れる冷媒と利用側伝熱器を流れる熱媒体、又は、第1の放熱器を流れる冷媒と第1の利用側伝熱器を流れる熱媒体、又は、第2の放熱器を流れる冷媒と第2の利用側伝熱器を流れる熱媒体は対向流となることを特徴とする。 According to a seventh aspect of the present invention, there is provided a heat pump device using ground heat, wherein the refrigerant flowing through the evaporator and the heat medium flowing through the ground heat transfer device are opposed to each other, and the refrigerant flowing through the radiator and the use-side transmission Heat medium flowing through the heater, refrigerant flowing through the first radiator and heat medium flowing through the first user-side heat exchanger, refrigerant flowing through the second radiator, and second user-side heat exchanger The heat medium flowing through is a counter flow.

また、請求項8の発明の地中熱利用ヒートポンプ装置は、上記各発明において制御装置は、地中熱採熱管、地中熱伝熱器、利用側熱交換器、及び、利用側伝熱器の順で熱媒体を循環させる状態における被空調空間の冷房負荷、温度、湿度、外気の温度、湿度のうちの一つ、若しくは、それらの組み合わせ、又は、第2の運転モードにおける被空調空間の冷房負荷、温度、湿度、外気の温度、湿度のうちの一つ、若しくは、それらの組み合わせに基づき、冷凍サイクル装置の運転を制御することを特徴とする。 Moreover, the heat pump apparatus using the ground heat according to the invention of claim 8 is the above-mentioned invention, wherein the control device is a ground heat collection pipe, a ground heat heat exchanger, a use side heat exchanger, and a use side heat exchanger. One of the cooling load, temperature, humidity, outside air temperature, humidity, or a combination thereof , or the air-conditioned space in the second operation mode in a state where the heat medium is circulated in this order The operation of the refrigeration cycle apparatus is controlled based on one of cooling load, temperature, humidity, outside air temperature, humidity, or a combination thereof.

また、請求項9の発明の地中熱利用ヒートポンプ装置は、上記各発明において制御装置は、地中熱採熱管、地中熱伝熱器、利用側熱交換器、及び、利用側伝熱器の順で熱媒体を循環させる状態において、又は、第2の運転モードにおいて冷凍サイクル装置を停止する制御状態を有することを特徴とする。 Moreover, the heat pump apparatus using the ground heat according to the invention of claim 9 is the above-mentioned invention, wherein the control device is a ground heat collection pipe, a ground heat heat exchanger, a use side heat exchanger, and a use side heat exchanger. in the state for circulating the heat medium in the order, or, in a second operating mode, characterized by having a control state of stopping the refrigerating cycle apparatus.

また、請求項10の発明の地中熱利用ヒートポンプ装置は、上記各発明において冷凍サイクル装置の冷媒回路内に、冷媒として二酸化炭素を封入したことを特徴とする。   A ground heat utilization heat pump device according to a tenth aspect of the present invention is characterized in that, in each of the above inventions, carbon dioxide is sealed as a refrigerant in the refrigerant circuit of the refrigeration cycle apparatus.

本発明の地中熱利用ヒートポンプ装置によれば、圧縮機と、放熱器と、膨張機構と、蒸発器を含む冷媒回路を有する冷凍サイクル装置と、地中に埋設された地中熱採熱管と、蒸発器と熱交換関係に設けられた地中熱伝熱器と、空調を行うための利用側熱交換器と、放熱器と熱交換関係に設けられた利用側伝熱器と、これら地中熱採熱管、地中熱伝熱器、利用側熱交換器、及び、利用側伝熱器への熱媒体の流通を制御する熱媒体循環装置と、冷凍サイクル装置及び熱媒体循環装置を制御する制御装置を備えており、この制御装置が、熱媒体循環装置により、地中熱採熱管、地中熱伝熱器、利用側熱交換器、及び、利用側伝熱器の順で熱媒体を循環させるようにしているので、特に利用側熱交換器で冷房(第2の運転モード)を行う場合に、地中熱採熱管で地中に放熱した熱媒体が、地中熱伝熱器に流入して冷凍サイクル装置の蒸発器と熱交換し、当該蒸発器によって更に冷やされた後、利用側熱交換器に流入することになる。これにより、利用側熱交換器による冷房性能を向上させることができるようになる。 According to the ground heat utilization heat pump device of the present invention, a compressor, a radiator, an expansion mechanism, a refrigeration cycle device having a refrigerant circuit including an evaporator, and a underground heat collection pipe buried in the ground, , evaporator and the underground heat heat transfer device provided in heat exchange relation, the utilization-side heat exchanger for performing air conditioning and, radiator and the usage-side heat transfer unit provided in the heat exchange relationship, these locations Medium heat collection tube, underground heat exchanger, use side heat exchanger, heat medium circulation device for controlling the flow of heat medium to the use side heat transfer device, control of the refrigeration cycle device and the heat medium circulation device The control device is provided with a heat medium circulation device, and the heat medium is arranged in the order of the underground heat collection pipe, the underground heat transfer device, the use side heat exchanger, and the use side heat transfer device. In the ground, especially when performing cooling (second operation mode) with the use side heat exchanger. The heat medium radiated into the ground through the heat collection pipe flows into the underground heat exchanger, exchanges heat with the evaporator of the refrigeration cycle device, and further cools by the evaporator, and then flows into the use side heat exchanger. Will do. Thereby, the cooling performance by the utilization side heat exchanger can be improved.

そして、利用側熱交換器を出た熱媒体は次に利用側伝熱器に流入し、冷凍サイクル装置の放熱器と熱交換して温度が上昇した後、再び地中熱採熱管に戻るので、地中での熱交換効率も良好となる。   The heat medium that has exited the use side heat exchanger then flows into the use side heat exchanger, heat exchanges with the radiator of the refrigeration cycle device, and after the temperature rises, returns to the underground heat collection pipe again. Also, heat exchange efficiency in the ground is improved.

一方、冷凍サイクル装置の冷媒は放熱器にて利用側伝熱器を流れる熱媒体に対して放熱し、その後、膨張機構で絞られ、蒸発器に流入して地中熱伝熱器を流れる熱媒体から吸熱する循環を繰り返すので、冷凍サイクル装置の運転効率も良好となる。   On the other hand, the refrigerant in the refrigeration cycle device dissipates heat to the heat medium flowing through the use side heat transfer device with a radiator, and then is squeezed by an expansion mechanism and flows into the evaporator and flows through the underground heat transfer device. Since the circulation of absorbing heat from the medium is repeated, the operation efficiency of the refrigeration cycle apparatus is also improved.

これらにより、本発明の地中熱利用ヒートポンプ装置によれば、極めて性能のよい冷房運転を高効率で実現することが可能となるものである。   As a result, according to the heat pump device using ground heat of the present invention, it is possible to realize a cooling operation with extremely high performance with high efficiency.

また、請求項2の発明の如く制御装置が、熱媒体循環装置により、地中熱採熱管と地中熱伝熱器との間で熱媒体を循環させると共に、利用側熱交換器と利用側伝熱器との間で熱媒体を循環させる第1の運転モードと、熱媒体循環装置により、地中熱採熱管、地中熱伝熱器、利用側熱交換器、及び、利用側伝熱器の順で熱媒体を循環させる第2の運転モードを有することとすれば、第2の運転モードにて利用側熱交換器により上記の如き冷房運転を実行し、且つ、第1の運転モードでは、地中熱採熱管で吸い上げた熱を熱媒体により地中熱伝熱器に搬送し、冷凍サイクル装置の蒸発器に受け渡すと共に、この熱を更に冷凍サイクル装置の放熱器に冷媒を介して搬送し、利用側伝熱器を流れる熱媒体に吸い上げさせることができるようになる。   According to the invention of claim 2, the control device circulates the heat medium between the underground heat collection pipe and the underground heat transfer device by the heat medium circulation device, and the use side heat exchanger and the use side. The first operation mode for circulating the heat medium to and from the heat transfer unit and the heat medium circulation device, the underground heat collection pipe, the underground heat transfer unit, the use side heat exchanger, and the use side heat transfer If there is a second operation mode in which the heat medium is circulated in the order of the coolers, the cooling operation as described above is executed by the use side heat exchanger in the second operation mode, and the first operation mode Then, the heat sucked up by the underground heat collection pipe is transferred to the underground heat transfer device by the heat medium and transferred to the evaporator of the refrigeration cycle apparatus, and this heat is further passed through the refrigerant to the radiator of the refrigeration cycle apparatus. And can be sucked up by the heat medium flowing through the use side heat transfer device.

これにより、第1の運転モードにおいて地中熱を利用した極めて性能のよい暖房運転や給湯運転を高効率で実現することが可能となる。   Thereby, it becomes possible to realize highly efficient heating operation and hot water supply operation using geothermal heat in the first operation mode with high efficiency.

この場合、請求項3の発明の如く空調を行うための第1及び第2の利用側熱交換器を設け、制御装置が、熱媒体循環装置により、地中熱採熱管と地中熱伝熱器との間で熱媒体を循環させると共に、第1の利用側熱交換器と利用側伝熱器との間で熱媒体を循環させる第1の運転モードと、熱媒体循環装置により、地中熱採熱管、地中熱伝熱器、第2の利用側熱交換器、及び、利用側伝熱器の順で熱媒体を循環させる第2の運転モードを有することとしてもよい。その場合は、第1の利用側熱交換器にて暖房運転や給湯運転を行い、第2の利用側熱交換器にて冷房運転を行うことになる。   In this case, the first and second use side heat exchangers for air conditioning are provided as in the invention of claim 3, and the control device uses the heat medium circulation device to provide the underground heat collection pipe and the underground heat transfer. A first operation mode in which the heat medium is circulated between the heat exchanger and the heat medium is circulated between the first user-side heat exchanger and the user-side heat exchanger; It is good also as having the 2nd operation mode which circulates a heat carrier in order of a heat heat collection pipe, a subsurface heat exchanger, a 2nd use side heat exchanger, and a use side heat exchanger. In that case, heating operation or hot water supply operation is performed in the first use side heat exchanger, and cooling operation is performed in the second use side heat exchanger.

また、そのとき請求項4の発明の如く制御装置が、熱媒体循環装置により、利用側伝熱器を出た熱媒体の一部を分流し、第1の利用側熱交換器に流した後、第2の利用側熱交換器を出た熱媒体に合流させる第3の運転モードを有することとすれば、第2の利用側熱交換器で冷房しながら、第1の利用側熱交換器で暖房を行う所謂除湿運転を実現することが可能となる。   Further, at that time, after the control device, like the invention of claim 4, divides a part of the heat medium that has exited the use side heat exchanger by the heat medium circulation device, it flows to the first use side heat exchanger. If it has the 3rd operation mode which joins the heat medium which came out of the 2nd use side heat exchanger, it will be the 1st use side heat exchanger while cooling with the 2nd use side heat exchanger. Thus, it is possible to realize a so-called dehumidifying operation in which heating is performed.

また、請求項5の発明の如く冷凍サイクル装置が、第1の圧縮機及び第1の放熱器と、膨張機構と、蒸発器と、第1の圧縮機及び第1の放熱器に対して二元接続の高元側、若しくは、二段接続の後段側の関係で設けられた第2の圧縮機及び第2の放熱器を含む冷媒回路を有することとし、第1の放熱器と熱交換関係に設けられた第1の利用側伝熱器と、第2の放熱器と熱交換関係に設けられた第2の利用側伝熱器を設け、制御装置が熱媒体循環装置により、地中熱採熱管と地中熱伝熱器との間で熱媒体を循環させると共に、利用側熱交換器と第1及び第2の利用側伝熱器との間で熱媒体を循環させる第1の運転モードと、熱媒体循環装置により、地中熱採熱管、地中熱伝熱器、利用側熱交換器、及び、第1の利用側伝熱器の順で熱媒体を循環させる第2の運転モードを有することとすれば、請求項10の発明の如く冷凍サイクル装置の冷媒として自然冷媒である二酸化炭素を用い、冷凍サイクル装置の冷媒回路の高圧側を超臨界圧力以上で使う場合に、特に有効なものとなる。   Further, as in the invention of claim 5, the refrigeration cycle apparatus is provided with respect to the first compressor and the first radiator, the expansion mechanism, the evaporator, the first compressor and the first radiator. It has a refrigerant circuit including a second compressor and a second radiator provided in a high-side side of the original connection or a rear-stage side of the two-stage connection, and has a heat exchange relationship with the first radiator. A first use side heat transfer device provided in the second heat sink and a second use side heat transfer device provided in a heat exchange relationship with the second heat dissipator. A first operation for circulating the heat medium between the heat collection tube and the underground heat exchanger and circulating the heat medium between the use side heat exchanger and the first and second use side heat exchangers The heat medium is circulated in the order of the underground heat collection tube, the underground heat transfer device, the use side heat exchanger, and the first use side heat transfer device by the mode and the heat transfer device. If the second operation mode is selected, carbon dioxide, which is a natural refrigerant, is used as the refrigerant of the refrigeration cycle apparatus as in the invention of claim 10, and the high pressure side of the refrigerant circuit of the refrigeration cycle apparatus is set to a supercritical pressure or higher. It is particularly effective when used.

これは、請求項6の発明の如く給湯を行うための第3の利用側熱交換器を設け、制御装置が、熱媒体循環装置により、地中熱採熱管と地中熱伝熱器との間で熱媒体を循環させると共に、第1の利用側熱交換器及び第3の利用側熱交換器と第1及び第2の利用側伝熱器との間で熱媒体を循環させる第1の運転モードと、熱媒体循環装置によって地中熱採熱管、地中熱伝熱器、第2の利用側熱交換器、及び、第2の利用側伝熱器の順で熱媒体を循環させ、且つ、第3の利用側熱交換器と第1の利用側伝熱器との間で熱媒体を循環させる第2の運転モードを有することとした場合にも同様である。そして、この場合には第2の利用側熱交換器において冷房を行いながら、第3の利用側熱交換器において給湯も行うことが可能となる。   According to the sixth aspect of the present invention, a third usage-side heat exchanger for performing hot water supply is provided as in the invention of claim 6, and the control device uses a heat medium circulation device to connect the underground heat collection pipe and the underground heat exchanger. The first heat medium is circulated between the first utilization side heat exchanger and the third utilization side heat exchanger, and the first and second utilization side heat exchangers. Circulate the heat medium in the order of the operation mode and the underground heat collection pipe, the underground heat exchanger, the second usage side heat exchanger, and the second usage side heat exchanger by the heat medium circulation device; The same applies to the case where the second operation mode in which the heat medium is circulated between the third user-side heat exchanger and the first user-side heat exchanger is provided. In this case, hot water can be supplied in the third usage-side heat exchanger while cooling in the second usage-side heat exchanger.

また、請求項7の発明の如く蒸発器を流れる冷媒と地中熱伝熱器を流れる熱媒体は対向流となり、放熱器を流れる冷媒と利用側伝熱器を流れる熱媒体、又は、第1の放熱器を流れる冷媒と第1の利用側伝熱器を流れる熱媒体、又は、第2の放熱器を流れる冷媒と第2の利用側伝熱器を流れる熱媒体は対向流となるようにすれば、蒸発器や、放熱器、第1の放熱器、又は、第2の放熱器の入口、出口における冷媒の温度差を大きくとり、冷凍能力と運転効率のより一層の改善を図ることが可能となる。 In addition, the refrigerant flowing through the evaporator and the heat medium flowing through the underground heat exchanger are opposed to each other as in the invention of claim 7, and the refrigerant flowing through the radiator and the heat medium flowing through the user-side heat exchanger , or the first The refrigerant flowing through the radiator and the heat medium flowing through the first use-side heat transfer device, or the refrigerant flowing through the second heat radiator and the heat medium flowing through the second use-side heat transfer device are opposed to each other. By doing so, it is possible to increase the refrigerant temperature difference at the inlet and outlet of the evaporator , radiator, first radiator, or second radiator, and further improve the refrigeration capacity and operating efficiency. It becomes possible.

また、請求項8の発明の如く、制御装置が、地中熱採熱管、地中熱伝熱器、利用側熱交換器、及び、利用側伝熱器の順で熱媒体を循環させる状態における被空調空間の冷房負荷、温度、湿度、外気の温度、湿度のうちの一つ、若しくは、それらの組み合わせ、又は、第2の運転モードにおける被空調空間の冷房負荷、温度、湿度、外気の温度、湿度のうちの一つ、若しくは、それらの組み合わせに基づき、冷凍サイクル装置の運転を制御するようにすれば、季節や環境に応じて冷凍サイクル装置を適切に運転し、効率のよいヒートポンプ運転を実現することが可能となる。 Further, as in the invention of claim 8, the control device is in a state in which the heat medium is circulated in the order of the underground heat collection pipe, the underground heat exchanger, the use side heat exchanger, and the use side heat exchanger. Cooling load, temperature, humidity, outside air temperature, humidity in the air-conditioned space, or a combination thereof , or cooling load, temperature, humidity, outside air temperature in the air-conditioned space in the second operation mode If the operation of the refrigeration cycle apparatus is controlled based on one of the humidity or a combination thereof, the refrigeration cycle apparatus is appropriately operated according to the season and environment, and an efficient heat pump operation is performed. It can be realized.

この場合、特に請求項9の発明の如く制御装置が、地中熱採熱管、地中熱伝熱器、利用側熱交換器、及び、利用側伝熱器の順で熱媒体を循環させる状態において、又は、第2の運転モードにおいて冷凍サイクル装置を停止する制御状態を有するようにすれば、冷凍サイクル装置の運転が不要な、例えば春季や秋季には冷凍サイクル装置を停止して地中熱のみによる冷房や暖房を実現することも可能となるものである。 In this case, in particular, as in the ninth aspect of the invention, the control device circulates the heat medium in the order of the underground heat collection tube, the underground heat transfer device, the use side heat exchanger, and the use side heat transfer device. in, or, in a second operating mode, when to have a control state of stopping the refrigeration cycle apparatus, unnecessary the operation of the refrigeration cycle apparatus, for example in spring or autumn stop the refrigeration cycle device ground It is also possible to realize cooling and heating only by heat.

本発明を適用した地中熱利用ヒートポンプ装置の一実施例の構成図(第2の運転モード)である(実施例1)。It is a block diagram (2nd operation mode) of one Example of the geothermal heat utilization heat pump apparatus to which this invention is applied (Example 1). 図1の地中熱利用ヒートポンプ装置の第1の運転モードを説明する構成図である。It is a block diagram explaining the 1st operation mode of the geothermal heat utilization heat pump apparatus of FIG. 図1の地中熱利用ヒートポンプ装置の制御装置による制御例を説明するフローチャートである。It is a flowchart explaining the example of control by the control apparatus of the geothermal heat utilization heat pump apparatus of FIG. 図1の地中熱利用ヒートポンプ装置で冷凍サイクル装置を停止した状態を示す構成図である。It is a block diagram which shows the state which stopped the refrigerating-cycle apparatus with the geothermal heat utilization heat pump apparatus of FIG. 図1の地中熱利用ヒートポンプ装置の第2の運転モードにおける他の制御例を説明する構成図である(実施例2)。(Example 2) which is the block diagram explaining the other example of control in the 2nd operation mode of the geothermal heat utilization heat pump apparatus of FIG. 図5における制御装置による制御例を説明するフローチャートである。It is a flowchart explaining the example of control by the control apparatus in FIG. 図1の地中熱利用ヒートポンプ装置の第2の運転モードにおける更に他の制御例を説明する構成図である(実施例3)。FIG. 12 is a configuration diagram illustrating still another control example in the second operation mode of the geothermal heat pump device of FIG. 1 (Example 3). 図7における制御装置による制御例を説明するフローチャートである。It is a flowchart explaining the example of control by the control apparatus in FIG. 図1の地中熱利用ヒートポンプ装置の他の構成例を示す図である(実施例4)。(Example 4) which is a figure which shows the other structural example of the geothermal heat utilization heat pump apparatus of FIG. 本発明を適用した地中熱利用ヒートポンプ装置の他の実施例の構成図(第2の運転モード、第3の運転モード)である(実施例5)。It is a block diagram (2nd operation mode, 3rd operation mode) of the other Example of the geothermal heat utilization heat pump apparatus to which this invention is applied (Example 5). 図10の地中熱利用ヒートポンプ装置の第1の運転モードを説明する構成図である。It is a block diagram explaining the 1st operation mode of the geothermal heat utilization heat pump apparatus of FIG. 本発明を適用した地中熱利用ヒートポンプ装置の更に他の実施例の構成図(第2の運転モード)である(実施例6)。It is a block diagram (2nd operation mode) of other Example of the geothermal heat utilization heat pump apparatus to which this invention is applied (Example 6). 図12の地中熱利用ヒートポンプ装置の第1の運転モードを説明する構成図である。It is a block diagram explaining the 1st operation mode of the geothermal heat utilization heat pump apparatus of FIG. 本発明を適用した地中熱利用ヒートポンプ装置の更に他の実施例の構成図(第2の運転モード)である(実施例7)。It is a block diagram (2nd operation mode) of other Example of the geothermal heat utilization heat pump apparatus to which this invention is applied (Example 7). 図14の地中熱利用ヒートポンプ装置の第1の運転モードを説明する構成図である。It is a block diagram explaining the 1st operation mode of the geothermal heat utilization heat pump apparatus of FIG. 図12、図13(実施例6)の地中熱利用ヒートポンプ装置のp−h線図である。FIG. 14 is a ph diagram of the geothermal heat pump device of FIGS. 12 and 13 (Example 6).

以下、本発明の実施の形態について、詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

図1、図2、図4は本発明の一実施例の地中熱利用ヒートポンプ装置1の構成図を示し、図3は制御例のフローチャートを示している。各図において地中熱利用ヒートポンプ装置1は、冷凍サイクル装置2と、地中熱採熱装置3と、これらを制御する制御装置4とから構成されている。   1, 2, and 4 show a configuration diagram of a geothermal heat pump device 1 according to an embodiment of the present invention, and FIG. 3 shows a flowchart of a control example. In each figure, the geothermal heat pump device 1 is composed of a refrigeration cycle device 2, a geothermal heat collecting device 3, and a control device 4 for controlling them.

冷凍サイクル装置2は、圧縮機6と、放熱器(ガスクーラ)7と、膨張機構(電子膨張弁)8と、蒸発器9を配管11にて順次環状に接続した冷媒回路10を備えている。そして、この冷媒回路10内には冷媒として実施例では二酸化炭素が封入されている。   The refrigeration cycle apparatus 2 includes a refrigerant circuit 10 in which a compressor 6, a radiator (gas cooler) 7, an expansion mechanism (electronic expansion valve) 8, and an evaporator 9 are sequentially connected in a ring shape by a pipe 11. In the refrigerant circuit 10, carbon dioxide is sealed as a refrigerant in the embodiment.

また、地中熱採熱装置3は、地中に埋設された地中熱採熱管12と、蒸発器9と熱交換関係に設けられた地中熱伝熱器13と、循環ポンプ14と、三方弁(流路制御手段)16と、家屋の室内等の被空調空間に設けられて空調を行うための利用側熱交換器17と、放熱器7と熱交換関係に設けられた利用側伝熱器18と、三方弁(流路制御手段)19と、もう一つの循環ポンプ21を備えており、地中熱採熱管12と、地中熱伝熱器13と、循環ポンプ14と、三方弁16の第2の出口16Bが配管22にて環状に接続され、利用側熱交換器17と、利用側伝熱器18と、三方弁19の第2の出口19Bと、循環ポンプ21が配管23にて環状に接続されている。   The geothermal heat collecting device 3 includes a geothermal heat collecting pipe 12 embedded in the ground, a geothermal heat transfer device 13 provided in a heat exchange relationship with the evaporator 9, a circulation pump 14, A three-way valve (channel control means) 16, a use side heat exchanger 17 for air conditioning provided in an air-conditioned space such as a house interior, and a use side transmission provided in a heat exchange relationship with the radiator 7. A heater 18, a three-way valve (flow path control means) 19, and another circulation pump 21 are provided, and the underground heat collection pipe 12, the underground heat transfer device 13, the circulation pump 14, and the three-way A second outlet 16B of the valve 16 is annularly connected by a pipe 22, and a use side heat exchanger 17, a use side heat exchanger 18, a second outlet 19B of the three-way valve 19, and a circulation pump 21 are piped. 23 is connected in a ring shape.

更に、循環ポンプ21と利用側熱交換器17との間の配管23と三方弁16の第1の出口16Aとはバイパス管24にて接続され、三方弁16の第2の出口16Bと地中熱採熱管12との間の配管22と三方弁19の第1の出口19Aとはもう一つのバイパス管26にて接続されている。そして、これら循環ポンプ14、21、三方弁16、19、配管22、23、バイパス管24、26により本発明における熱媒体循環装置27が構成されている。そして、この地中熱採熱装置3内には、熱媒体として実施例では水、若しくは、ブラインが封入されている。   Furthermore, the piping 23 between the circulation pump 21 and the use side heat exchanger 17 and the first outlet 16A of the three-way valve 16 are connected by a bypass pipe 24, and the second outlet 16B of the three-way valve 16 and the underground The pipe 22 between the heat collecting pipe 12 and the first outlet 19 </ b> A of the three-way valve 19 are connected by another bypass pipe 26. The circulation pumps 14 and 21, the three-way valves 16 and 19, the pipes 22 and 23, and the bypass pipes 24 and 26 constitute a heat medium circulation device 27 in the present invention. In the geothermal heat collecting device 3, water or brine is sealed as a heat medium in the embodiment.

また、制御装置4は汎用のマイクロコンピュータにて構成されており、その出力に圧縮機6や膨張機構8、各循環ポンプ14、21、三方弁16、19が接続されている。また、制御装置4の入力には、圧縮機6の吐出温度(吐出冷媒温度)を検出する吐出温度センサ28と、被空調空間である室内の温度(室内温度)を検出する室内温度センサ29と、外気温度を検出する外気温度センサ30と、利用側熱交換器17の熱媒体入口温度を検出する熱媒体入口温度センサ31が接続されている。制御装置4はこれら各センサ28〜31が検出する各温度と、指令入力(モード切換、室内設定温度等)に基づき、圧縮機6及び循環ポンプ14、21の回転数と、膨張機構8の開度を制御し、各三方弁16、19を切り換える。   Moreover, the control apparatus 4 is comprised by the general purpose microcomputer, The compressor 6, the expansion mechanism 8, each circulation pump 14, 21 and the three-way valves 16 and 19 are connected to the output. Further, the input of the control device 4 includes a discharge temperature sensor 28 that detects a discharge temperature (discharge refrigerant temperature) of the compressor 6, and an indoor temperature sensor 29 that detects an indoor temperature (indoor temperature) that is an air-conditioned space. The outside air temperature sensor 30 for detecting the outside air temperature and the heat medium inlet temperature sensor 31 for detecting the heat medium inlet temperature of the use side heat exchanger 17 are connected. Based on the temperatures detected by these sensors 28 to 31 and the command input (mode switching, indoor set temperature, etc.), the control device 4 determines the rotational speeds of the compressor 6 and the circulation pumps 14 and 21 and opens the expansion mechanism 8. The three-way valves 16 and 19 are switched by controlling the degree.

以上の構成で、次に本発明の地中熱利用ヒートポンプ装置1の動作を説明する。先ず、図3のフローチャートを参照しながら地中熱利用ヒートポンプ装置1の冷房運転(第2の運転モード)について説明する。例えば、春季から夏季の季節に図示しないモード切換スイッチによる指令入力で冷房運転(第2の運転モード)が開始されると、制御装置4は三方弁16、19を制御し、それぞれの第1の出口16A、19Aを開く。また、図3のステップS1で外気温度センサ30又は室内温度センサ29が検出する外気温度又は室内温度を検知し、被空調空間としての室内設定温度との差(温度差)を算出する。   Next, the operation of the heat pump apparatus 1 using the underground heat according to the present invention will be described. First, the cooling operation (second operation mode) of the geothermal heat pump device 1 will be described with reference to the flowchart of FIG. For example, when the cooling operation (second operation mode) is started by a command input from a mode changeover switch (not shown) from spring to summer, the control device 4 controls the three-way valves 16 and 19 to control the first Open outlets 16A, 19A. Further, in step S1 in FIG. 3, the outside temperature or the room temperature detected by the outside temperature sensor 30 or the room temperature sensor 29 is detected, and a difference (temperature difference) from the indoor set temperature as the air-conditioned space is calculated.

そして、制御装置4はステップS2で算出された差(温度差)が10℃以上か否か判断する。今は例えば夏季で差(温度差)が10℃以上であった場合には、制御装置4は室内の冷房負荷が大なるものと判断してステップS3に進む。このステップS3では冷凍サイクル装置2の圧縮機6を運転する冷房運転(HP運転での冷房)を行うものとし、ステップS4で前記差(温度差)により圧縮機6の回転数と吐出温度を設定する。即ち、差(温度差)が大きく、冷房負荷がより大きい場合には圧縮機6の回転数を高くし、設定吐出温度も高くして冷凍サイクル装置2の冷凍能力を増大させる。逆に差(温度差)が10℃以上ではあるが、比較的小さい場合には回転数及び設定吐出温度を低くして冷凍サイクル装置2の冷凍能力を削減する。また、制御装置4はステップS5で吐出温度センサ28が検出する圧縮機6の吐出温度が前記設定吐出温度となるように膨張機構8の弁開度を制御する。   And the control apparatus 4 judges whether the difference (temperature difference) calculated by step S2 is 10 degreeC or more. For example, if the difference (temperature difference) is 10 ° C. or more in summer, for example, the control device 4 determines that the indoor cooling load is large and proceeds to step S3. In this step S3, the cooling operation (cooling in the HP operation) for operating the compressor 6 of the refrigeration cycle apparatus 2 is performed, and in step S4, the rotational speed and discharge temperature of the compressor 6 are set by the difference (temperature difference). To do. That is, when the difference (temperature difference) is large and the cooling load is larger, the rotation speed of the compressor 6 is increased and the set discharge temperature is also increased, thereby increasing the refrigeration capacity of the refrigeration cycle apparatus 2. Conversely, if the difference (temperature difference) is 10 ° C. or more, but is relatively small, the refrigerating capacity of the refrigeration cycle apparatus 2 is reduced by lowering the rotational speed and the set discharge temperature. Further, the control device 4 controls the valve opening degree of the expansion mechanism 8 so that the discharge temperature of the compressor 6 detected by the discharge temperature sensor 28 in step S5 becomes the set discharge temperature.

更に、制御装置4はステップS6で前記差(温度差)により目標熱媒体入口温度を設定し、熱媒体入口温度センサ31が検出する利用側熱交換器17の熱媒体入口温度がこの目標熱媒体入口温度になるように循環ポンプ14の回転数を制御する(循環ポンプ21は停止)。即ち、熱媒体入口温度センサ31が検出する利用側熱交換器17に流入する熱媒体の温度(熱媒体入口温度)が目標熱媒体入口温度より高く、その差が大きい場合には循環ポンプ14の回転数を低下させる。   Further, the control device 4 sets the target heat medium inlet temperature based on the difference (temperature difference) in step S6, and the heat medium inlet temperature of the use side heat exchanger 17 detected by the heat medium inlet temperature sensor 31 is the target heat medium. The number of rotations of the circulation pump 14 is controlled so as to reach the inlet temperature (the circulation pump 21 is stopped). That is, when the temperature of the heat medium flowing into the use side heat exchanger 17 detected by the heat medium inlet temperature sensor 31 (heat medium inlet temperature) is higher than the target heat medium inlet temperature and the difference is large, the circulation pump 14 Reduce the speed.

冷凍サイクル装置2の圧縮機6が運転されると、圧縮機6から吐出された超臨界状態の二酸化炭素冷媒は放熱器7に流入し、そこで放熱して膨張機構8に至り、液/ガス混合状態となって蒸発器9に流入する。そこで、冷媒は蒸発して吸熱作用を発揮し、圧縮機6に吸い込まれる循環を繰り返す。   When the compressor 6 of the refrigeration cycle apparatus 2 is operated, the supercritical carbon dioxide refrigerant discharged from the compressor 6 flows into the radiator 7, where it dissipates heat and reaches the expansion mechanism 8, where liquid / gas mixing occurs. It enters a state and flows into the evaporator 9. Therefore, the refrigerant evaporates to exhibit an endothermic effect, and repeats circulation that is sucked into the compressor 6.

一方、地中熱採熱装置3の循環ポンプ14が運転されると、地中熱採熱管12で例えば15℃程の温度の地中に放熱し(即ち、地中で冷却され)、40℃であったものが20℃程に温度が低下した熱媒体は地中熱採熱管12から吸引され、配管22を通って地中熱伝熱器13に流入する。ここで、冷凍サイクル装置2の蒸発器9に放熱(蒸発器9は吸熱)して更に冷却され、7℃程となり、循環ポンプ14及び三方弁16を経てバイパス管24を通り、利用側熱交換器17に流入する。   On the other hand, when the circulation pump 14 of the geothermal heat collecting device 3 is operated, the geothermal heat collecting pipe 12 radiates heat to the ground at a temperature of, for example, about 15 ° C. (that is, is cooled in the ground) to 40 ° C. However, the heat medium whose temperature has dropped to about 20 ° C. is sucked from the underground heat collecting pipe 12 and flows into the underground heat exchanger 13 through the pipe 22. Here, heat is radiated to the evaporator 9 of the refrigeration cycle device 2 (the evaporator 9 absorbs heat) and further cooled to about 7 ° C., passes through the bypass pump 24 and the three-way valve 16, passes through the bypass pipe 24, and uses-side heat exchange. Flows into the vessel 17.

利用側熱交換器17には図示しない送風機により室内空気が循環されるので、利用側熱交換器17に流入した熱媒体は室内空気から吸熱して12℃程に温度上昇する。一方、室内空気は熱媒体により冷却されるので、室内(被空調空間)は冷房される。利用側熱交換器17から出た熱媒体は次に利用側伝熱器18に入る。冷凍サイクル装置2の放熱器7には70℃程の冷媒が流入するので、利用側伝熱器18を通過する熱媒体は吸熱し、放熱器7を通過する冷媒は冷却される。そして、冷媒は15℃程にまで冷却されて放熱器7から流出し膨張機構8に向かう。熱媒体は40℃程に温度上昇して三方弁19及びバイパス管26を通り、地中熱採熱管12に戻る。地中熱採熱管12では熱媒体が再度地中(15℃程)に放熱し、地中熱伝熱器13に向かう循環を繰り返す。   Since indoor air is circulated by a blower (not shown) in the usage-side heat exchanger 17, the heat medium flowing into the usage-side heat exchanger 17 absorbs heat from the indoor air and rises to about 12 ° C. On the other hand, since the indoor air is cooled by the heat medium, the room (the air-conditioned space) is cooled. The heat medium exiting from the use side heat exchanger 17 then enters the use side heat exchanger 18. Since the refrigerant of about 70 ° C. flows into the radiator 7 of the refrigeration cycle apparatus 2, the heat medium passing through the use side heat transfer device 18 absorbs heat, and the refrigerant passing through the radiator 7 is cooled. Then, the refrigerant is cooled to about 15 ° C., flows out of the radiator 7, and goes to the expansion mechanism 8. The temperature of the heat medium rises to about 40 ° C., passes through the three-way valve 19 and the bypass pipe 26, and returns to the underground heat collection pipe 12. In the geothermal heat collecting pipe 12, the heat medium again radiates heat into the ground (about 15 ° C.) and repeats circulation toward the underground heat exchanger 13.

このように地中熱採熱装置3の地中熱採熱管12で地中に放熱した熱媒体は、地中熱伝熱器13に流入して冷凍サイクル装置2の蒸発器9と熱交換し、当該蒸発器9によって更に冷やされた後、利用側熱交換器17に流入するので、利用側熱交換器17による冷房性能を向上させることができるようになる。そして、利用側熱交換器17を出た熱媒体は次に利用側伝熱器18に流入し、冷凍サイクル装置2の放熱器7と熱交換して温度が上昇した後、再び地中熱採熱管12に戻るので、地中での熱交換効率も良好となる。   Thus, the heat medium radiated into the ground by the underground heat collecting pipe 12 of the underground heat collecting device 3 flows into the underground heat transfer device 13 and exchanges heat with the evaporator 9 of the refrigeration cycle device 2. After being further cooled by the evaporator 9, it flows into the use side heat exchanger 17, so that the cooling performance by the use side heat exchanger 17 can be improved. Then, the heat medium that has exited the use side heat exchanger 17 flows into the use side heat transfer device 18 and exchanges heat with the radiator 7 of the refrigeration cycle apparatus 2 to increase the temperature. Since it returns to the heat pipe 12, the heat exchange efficiency in the ground is also improved.

一方、冷凍サイクル装置2の冷媒は放熱器7にて利用側伝熱器18を流れる熱媒体に対して放熱し、その後、膨張機構8で絞られ、蒸発器9に流入して地中熱伝熱器9を流れる熱媒体から吸熱する循環を繰り返すので、冷凍サイクル装置2の運転効率も良好となる。これらにより、地中熱利用ヒートポンプ装置1は極めて性能のよい冷房運転を高効率で実現することが可能となる。   On the other hand, the refrigerant of the refrigeration cycle apparatus 2 dissipates heat to the heat medium flowing through the use side heat transfer device 18 by the radiator 7, and then is squeezed by the expansion mechanism 8 and flows into the evaporator 9 to enter the underground heat transfer. Since the circulation of absorbing heat from the heat medium flowing through the heater 9 is repeated, the operation efficiency of the refrigeration cycle apparatus 2 is also improved. Accordingly, the geothermal heat pump device 1 can achieve highly efficient cooling operation with high efficiency.

一方、今は春季で外気温度又は室内温度と室内設定温度との差(温度差)が10℃未満の場合、制御装置4は冷房負荷が小さいものと判断してステップS2からステップS7に進む。このステップS7では図4に示すように冷凍サイクル装置2の圧縮機6を停止して地中熱のみで冷房する冷房運転(地中冷熱での冷房)を行うものとし、ステップS8で前記差(温度差)により循環ポンプ14の回転数を決定して制御する(循環ポンプ21は停止)。即ち、10℃未満ではあるが差(温度差)が比較的大きい場合には循環ポンプ14の回転数を高くし、小さい場合には回転数を低くする。   On the other hand, if the difference (temperature difference) between the outside air temperature or the room temperature and the room set temperature is less than 10 ° C. in the spring, the control device 4 determines that the cooling load is small and proceeds from step S2 to step S7. In this step S7, as shown in FIG. 4, the compressor 6 of the refrigeration cycle apparatus 2 is stopped and the cooling operation (cooling with underground cooling) is performed by cooling only with the underground heat, and the difference ( The rotational speed of the circulation pump 14 is determined and controlled by the temperature difference (circulation pump 21 is stopped). That is, the rotational speed of the circulation pump 14 is increased when the difference (temperature difference) is relatively large although it is less than 10 ° C., and the rotational speed is decreased when the difference is small.

この場合には、冷凍サイクル装置2は停止しているので、循環ポンプ14の運転により地中熱採熱管12で冷えた熱媒体が利用側熱交換器17に循環され、その吸熱作用で室内は冷房されることになる。即ち、地中熱のみで冷房されることになるので、冷凍サイクル装置2の消費電力は零となり、著しく省エネ化した冷房が実現される。   In this case, since the refrigeration cycle apparatus 2 is stopped, the heat medium cooled by the underground heat collection pipe 12 by the operation of the circulation pump 14 is circulated to the use side heat exchanger 17, and the heat absorption action causes the room to It will be cooled. That is, since the cooling is performed only by underground heat, the power consumption of the refrigeration cycle apparatus 2 becomes zero, and cooling with significantly reduced energy is realized.

次に、秋季や冬季に前述したモード切換スイッチによる指令入力で暖房運転(第1の運転モード)が開始されると、制御装置4は三方弁16、19を制御し、図2に示すようにそれぞれの第2の出口16B、19Bを開く。そして、圧縮機6及び各循環ポンプ14、21を運転する。冷凍サイクル装置2の圧縮機6が運転されると、前述同様に圧縮機6から吐出された超臨界状態の二酸化炭素冷媒は放熱器7に流入し、そこで放熱して膨張機構8に至り、液/ガス混合状態となって蒸発器9に流入する。そこで、冷媒は蒸発して吸熱作用を発揮し、圧縮機6に吸い込まれる循環を繰り返す。   Next, when the heating operation (first operation mode) is started by the command input from the mode change switch described above in autumn or winter, the control device 4 controls the three-way valves 16 and 19, as shown in FIG. Open the respective second outlets 16B, 19B. Then, the compressor 6 and the circulation pumps 14 and 21 are operated. When the compressor 6 of the refrigeration cycle apparatus 2 is operated, the supercritical carbon dioxide refrigerant discharged from the compressor 6 flows into the radiator 7 as described above, where it dissipates heat and reaches the expansion mechanism 8. / The gas is mixed and flows into the evaporator 9. Therefore, the refrigerant evaporates to exhibit an endothermic effect, and repeats circulation that is sucked into the compressor 6.

一方、地中熱採熱装置3の循環ポンプ14が運転されると、地中熱採熱管12で例えば15℃程の温度の地中から吸熱し(即ち、地中で温められ)、10℃程に温度が上昇した熱媒体は地中熱採熱管12から吸引され、配管22を通って地中熱伝熱器13に流入する。ここで、冷凍サイクル装置2の蒸発器9に放熱(蒸発器9内の冷媒は吸熱し、5℃程から8℃程になる)して冷却され、7℃程となり、循環ポンプ14及び三方弁16を経て地中熱採熱管12に戻り、再び吸熱する循環を繰り返す。   On the other hand, when the circulation pump 14 of the geothermal heat collecting device 3 is operated, the geothermal heat collecting pipe 12 absorbs heat from the ground at a temperature of about 15 ° C. (ie, warms in the ground), 10 ° C. The heat medium whose temperature has risen to the extent is sucked from the underground heat collecting pipe 12 and flows into the underground heat exchanger 13 through the pipe 22. Here, heat is radiated to the evaporator 9 of the refrigeration cycle apparatus 2 (the refrigerant in the evaporator 9 absorbs heat and becomes about 5 to 8 ° C.) and is cooled to about 7 ° C., and the circulation pump 14 and the three-way valve 16 is returned to the underground heat collecting pipe 12 and the circulation of absorbing heat is repeated.

また、循環ポンプ21が運転されると、利用側伝熱器18内で放熱器7内を流れる冷媒(80℃程)から吸熱して50℃程に温度上昇した熱媒体は(冷媒は45℃程まで冷える)、配管23を通って利用側熱交換器17に入り、そこで放熱して40℃程となった後、再び利用側伝熱器18に流入する循環を繰り返す。利用側熱交換器17には図示しない送風機により室内空気が循環されるので、室内空気は利用側熱交換器17内の熱媒体により加熱され、これにより、室内(被空調空間)は暖房される。   When the circulation pump 21 is operated, the heat medium that has absorbed heat from the refrigerant (about 80 ° C.) flowing through the radiator 7 in the use side heat transfer device 18 and has risen in temperature to about 50 ° C. (the refrigerant is 45 ° C. It cools to a certain extent), enters the use-side heat exchanger 17 through the pipe 23, radiates heat there, reaches about 40 ° C., and then repeats circulation to flow into the use-side heat exchanger 18 again. Since indoor air is circulated by a blower (not shown) in the use-side heat exchanger 17, the indoor air is heated by the heat medium in the use-side heat exchanger 17, thereby heating the room (the air-conditioned space). .

このように、暖房運転では地中熱採熱管12で地中から吸い上げた熱を熱媒体により地中熱伝熱器13に搬送し、冷凍サイクル装置2の蒸発器9に受け渡すと共に、この熱を更に冷凍サイクル装置2の放熱器7に冷媒を介して搬送し、利用側伝熱器18を流れる熱媒体に吸い上げさせる。これにより、地中熱を利用した極めて性能のよい暖房運転を高効率で実現することが可能となる。   In this way, in the heating operation, the heat sucked up from the ground by the underground heat collecting pipe 12 is transferred to the underground heat transfer device 13 by the heat medium and transferred to the evaporator 9 of the refrigeration cycle apparatus 2, and this heat Is further conveyed through the refrigerant to the radiator 7 of the refrigeration cycle apparatus 2 and sucked up by the heat medium flowing through the use side heat transfer device 18. Thereby, it becomes possible to realize highly efficient heating operation using geothermal heat with high efficiency.

尚、この暖房運転においても前述同様に制御装置4により外気温度或いは室内温度と室内設定温度との差(温度差)に基づいて圧縮機6と循環ポンプ14、21が制御される。そして、秋季等に同様に差(温度差)が小さくなった場合、暖房負荷が小さいものと判断して冷凍サイクル装置2を停止し、各三方弁16、19を図4の状態に切り換える。従って、このときには地中熱のみを利用した暖房が行われることになり、特に寒冷地における秋季に省エネ効果を発揮する。   In this heating operation as well, the control device 4 controls the compressor 6 and the circulation pumps 14 and 21 based on the outside air temperature or the difference between the room temperature and the room set temperature (temperature difference) as described above. Then, when the difference (temperature difference) is similarly reduced in the autumn season or the like, it is determined that the heating load is small, the refrigeration cycle apparatus 2 is stopped, and the three-way valves 16 and 19 are switched to the state shown in FIG. Therefore, at this time, heating using only underground heat is performed, and an energy saving effect is exhibited particularly in the autumn season in a cold region.

また、実施例では上記各運転状態において、冷凍サイクル装置2の蒸発器9を流れる冷媒と地中熱採熱装置3の地中熱伝熱器13を流れる熱媒体は対向流となり、放熱器7を流れる冷媒と利用側伝熱器18を流れる熱媒体は対向流となる(以下の各実施例においても同じ)。これにより、蒸発器9或いは放熱器7の入口、出口における冷媒の温度差を大きくとり、冷凍能力と運転効率をより一層の改善することができるようになる。   In the embodiment, in each of the above operating states, the refrigerant flowing through the evaporator 9 of the refrigeration cycle apparatus 2 and the heat medium flowing through the geothermal heat exchanger 13 of the geothermal heat collecting apparatus 3 are counterflows, and the radiator 7 The refrigerant flowing through and the heat medium flowing through the use-side heat transfer device 18 are opposed to each other (the same applies to the following embodiments). Thereby, the refrigerant | coolant temperature difference in the inlet_port | entrance and exit of the evaporator 9 or the heat radiator 7 can be taken large, and it becomes possible to improve refrigerating capacity and operating efficiency further.

尚、上記実施例ではモード切換スイッチで冷房と暖房を切り換えるようにしたが、それに限らず、オートモードを設定し、外気温度等に応じて自動的に上記冷房運転(春季は地中熱採熱装置3による地中熱のみの冷房、夏季には冷凍サイクル装置2と地中熱採熱装置3による冷房)と暖房運転(秋季は地中熱採熱装置3による地中熱のみの暖房、冬季には冷凍サイクル装置2と地中熱採熱装置3による暖房)が実行されるようにしてもよい。   In the above embodiment, the mode changeover switch is used to switch between cooling and heating. However, the present invention is not limited to this, and the auto mode is set, and the cooling operation is automatically performed according to the outside air temperature or the like (geothermal heat collection in the spring season). Cooling only by geothermal heat by the device 3, cooling by the refrigeration cycle device 2 and the geothermal heat sampling device 3 in summer, and heating operation (in the autumn season, heating by geothermal heat only by the geothermal heat sampling device 3, winter season) In this case, heating by the refrigeration cycle apparatus 2 and the geothermal heat collecting apparatus 3 may be performed.

次に、図5、図6は前記図1の地中熱利用ヒートポンプ装置1の制御装置4による他の制御例を示している。この実施例の場合は、図5の構成図に示すように、前記図1の場合に加えて利用側熱交換器17の熱媒体出口温度を検出する熱媒体出口温度センサ32が設けられ、制御装置4の入力に接続されている。そして、この場合制御装置4は、外気温度又は室内温度と室内設定温度との差、及び、熱媒体出入口温度差により冷房負荷を予測して制御する。   Next, FIG. 5 and FIG. 6 show another control example by the control device 4 of the geothermal heat pump device 1 of FIG. In the case of this embodiment, as shown in the block diagram of FIG. 5, in addition to the case of FIG. 1, a heat medium outlet temperature sensor 32 for detecting the heat medium outlet temperature of the use side heat exchanger 17 is provided and controlled. Connected to the input of the device 4. In this case, the control device 4 predicts and controls the cooling load based on the difference between the outside air temperature or the room temperature and the room set temperature, and the heat medium inlet / outlet temperature difference.

即ち、制御装置4は冷房運転(第2の運転モード)が開始されると、図6のフローチャートのステップS9で外気温度又は室内温度を検知し、室内設定温度との差ΔTを算出する。そして、ステップS10で差ΔTにより圧縮機6の回転数と吐出温度を所定の初期値に設定して運転を開始する。所定時間後、ステップS11で再度差ΔTを算出し、ステップS12で熱媒体入口温度と、熱媒体出口温度センサ32が検出する熱媒体出口温度との差Δtを検知する。   That is, when the cooling operation (second operation mode) is started, the control device 4 detects the outside air temperature or the room temperature in step S9 of the flowchart of FIG. 6, and calculates a difference ΔT from the indoor set temperature. In step S10, the rotational speed and discharge temperature of the compressor 6 are set to predetermined initial values based on the difference ΔT, and the operation is started. After a predetermined time, the difference ΔT is calculated again in step S11, and the difference Δt between the heat medium inlet temperature and the heat medium outlet temperature detected by the heat medium outlet temperature sensor 32 is detected in step S12.

そして、ステップS13で差ΔTと差Δtに基づいて圧縮機6のON、OFFを設定する。即ち、差ΔT及び差Δtがそれぞれの所定の閾値以上の場合(冷房負荷大)にはONに設定し、ステップS14に進み、閾値未満の場合(冷房負荷小)にはOFFに設定してステップS18に進む。ステップS14では冷凍サイクル装置2の圧縮機6を運転する冷房運転(HP運転での冷房)を行うものとし、ステップS15で差ΔTと差Δtにより圧縮機6の回転数と吐出温度を設定する。即ち、例えば室内設定温度より室内温度が高く、利用側熱交換器17での熱交換も活発に行われて熱媒体入口と出口の温度差が大きい場合(差ΔT及び差Δtが大きい)、冷房負荷がより大きいので圧縮機6の回転数を高くし、設定吐出温度も高くして冷凍サイクル装置2の冷凍能力を増大させる。逆に差ΔT及び差Δtが閾値以上ではあるが、比較的小さい場合には回転数及び設定吐出温度を低くして冷凍サイクル装置2の冷凍能力を削減する。また、制御装置4はステップS16で吐出温度センサ28が検出する圧縮機6の吐出温度が前記設定吐出温度となるように膨張機構8の弁開度を制御する。   In step S13, ON / OFF of the compressor 6 is set based on the difference ΔT and the difference Δt. That is, when the difference ΔT and the difference Δt are equal to or greater than the respective predetermined threshold values (cooling load is large), the process proceeds to step S14, and when it is less than the threshold value (cooling load is small), the process is set to OFF. Proceed to S18. In step S14, cooling operation (cooling in HP operation) for operating the compressor 6 of the refrigeration cycle apparatus 2 is performed, and in step S15, the rotation speed and discharge temperature of the compressor 6 are set by the difference ΔT and the difference Δt. That is, for example, when the room temperature is higher than the indoor set temperature and heat exchange is actively performed in the use side heat exchanger 17 and the temperature difference between the heat medium inlet and the outlet is large (the difference ΔT and the difference Δt are large), the cooling is performed. Since the load is larger, the rotation speed of the compressor 6 is increased and the set discharge temperature is also increased, thereby increasing the refrigeration capacity of the refrigeration cycle apparatus 2. On the contrary, when the difference ΔT and the difference Δt are equal to or larger than the threshold values but are relatively small, the rotational speed and the set discharge temperature are lowered to reduce the refrigeration capacity of the refrigeration cycle apparatus 2. Further, the control device 4 controls the valve opening degree of the expansion mechanism 8 so that the discharge temperature of the compressor 6 detected by the discharge temperature sensor 28 in step S16 becomes the set discharge temperature.

更に、制御装置4はステップS17で前記差ΔT及びΔtにより目標熱媒体入口温度を設定し、熱媒体入口温度センサ31が検出する利用側熱交換器17の熱媒体入口温度がこの目標熱媒体入口温度になるように循環ポンプ14の回転数を制御する(循環ポンプ21は停止)。即ち、熱媒体入口温度センサ31が検出する利用側熱交換器17に流入する熱媒体の温度(熱媒体入口温度)が目標熱媒体入口温度より高く、その差が大きい場合には循環ポンプ14の回転数を低下させる。   Further, in step S17, the control device 4 sets a target heat medium inlet temperature based on the differences ΔT and Δt, and the heat medium inlet temperature of the use side heat exchanger 17 detected by the heat medium inlet temperature sensor 31 is the target heat medium inlet temperature. The rotational speed of the circulation pump 14 is controlled so as to reach a temperature (the circulation pump 21 is stopped). That is, when the temperature of the heat medium flowing into the use side heat exchanger 17 detected by the heat medium inlet temperature sensor 31 (heat medium inlet temperature) is higher than the target heat medium inlet temperature and the difference is large, the circulation pump 14 Reduce the speed.

一方、今は春季で差ΔT及び差Δtがそれぞれの所定の閾値未満の場合、制御装置4は冷房負荷が小さいものと判断してステップS13で圧縮機6をOFFに設定してステップS18に進む。このステップS18では図4に示すように冷凍サイクル装置2の圧縮機6を停止して地中熱のみで冷房する冷房運転(地中冷熱での冷房)を行うものとし、ステップS19で前記差ΔT及び差Δtにより循環ポンプ14の回転数を決定して制御する(循環ポンプ21は停止)。即ち、閾値未満ではあるが差ΔT及び差Δtが比較的大きい場合には循環ポンプ14の回転数を高くし、小さい場合には回転数を低くする。   On the other hand, if the difference ΔT and the difference Δt are less than the predetermined threshold values in spring, the control device 4 determines that the cooling load is small, sets the compressor 6 to OFF in step S13, and proceeds to step S18. . In this step S18, as shown in FIG. 4, the compressor 6 of the refrigeration cycle apparatus 2 is stopped and the cooling operation (cooling with underground cooling) is performed by cooling only with the underground heat. In step S19, the difference ΔT The rotational speed of the circulation pump 14 is determined and controlled by the difference Δt (circulation pump 21 is stopped). That is, when the difference ΔT and the difference Δt are relatively large, although less than the threshold value, the rotational speed of the circulation pump 14 is increased, and when the difference is small, the rotational speed is decreased.

このように、前記実施例1の外気温度又は室内温度と室内設定温度との差ΔTに、利用側熱交換器17の熱媒体出入口温度差(Δt)を加味して冷房負荷を判断することにより、より正確に冷房負荷を予測して圧縮機6や膨張機構8、循環ポンプ14の制御を行うことができるようになる。   As described above, the cooling load is determined by adding the difference ΔT between the outside air temperature or the indoor temperature and the indoor set temperature in Example 1 to the heat medium inlet / outlet temperature difference (Δt) of the use side heat exchanger 17. Thus, the compressor 6, the expansion mechanism 8, and the circulation pump 14 can be controlled by predicting the cooling load more accurately.

次に、図7、図8は前記図1の地中熱利用ヒートポンプ装置1の制御装置4による更に他の制御例を示している。この実施例の場合は、図7の構成図に示すように、前記図5(実施例2)の場合に加えて放熱器7の出口温度を検出する放熱器出口温度センサ33が設けられ、制御装置4の入力に接続されている。そして、この場合制御装置4は、外気温度又は室内温度と室内設定温度との差、及び、熱媒体出入口温度差により冷房負荷を予測すると共に、冷凍サイクル装置2の放熱器7の出口温度も考慮して制御する。   Next, FIG. 7 and FIG. 8 show still another control example by the control device 4 of the geothermal heat pump device 1 of FIG. In the case of this embodiment, as shown in the configuration diagram of FIG. 7, in addition to the case of FIG. 5 (Embodiment 2), a radiator outlet temperature sensor 33 for detecting the outlet temperature of the radiator 7 is provided and controlled. Connected to the input of the device 4. In this case, the control device 4 predicts the cooling load based on the difference between the outside air temperature or the room temperature and the indoor set temperature, and the heat medium inlet / outlet temperature difference, and also considers the outlet temperature of the radiator 7 of the refrigeration cycle apparatus 2. And control.

即ち、制御装置4は冷房運転(第2の運転モード)が開始されると、図8のフローチャートのステップS20で外気温度又は室内温度を検知し、室内設定温度との差ΔTを算出する。そして、ステップS21で差ΔTにより圧縮機6の回転数と吐出温度を所定の初期値に設定して運転を開始する。所定時間後、ステップS22で再度差ΔTを算出し、ステップS23で熱媒体入口温度と熱媒体出口温度との差Δtを検知する。   That is, when the cooling operation (second operation mode) is started, the control device 4 detects the outside air temperature or the room temperature in step S20 of the flowchart of FIG. 8, and calculates a difference ΔT from the indoor set temperature. In step S21, the rotation speed and discharge temperature of the compressor 6 are set to predetermined initial values based on the difference ΔT, and the operation is started. After a predetermined time, the difference ΔT is calculated again in step S22, and the difference Δt between the heat medium inlet temperature and the heat medium outlet temperature is detected in step S23.

そして、ステップS24で差ΔTと差Δtに基づいて圧縮機6のON、OFFを設定する。即ち、差ΔT及び差Δtがそれぞれの所定の閾値以上の場合(冷房負荷大)にはONに設定し、ステップS25に進み、閾値未満の場合(冷房負荷小)にはOFFに設定してステップS29に進む。ステップS25では冷凍サイクル装置2の圧縮機6を運転する冷房運転(HP運転での冷房)を行うものとし、ステップS26で差ΔTと差Δtにより圧縮機6の回転数と吐出温度、及び、放熱器出口温度を設定する。即ち、例えば室内設定温度より室内温度が高く、利用側熱交換器17と空気との熱交換も活発に行われて熱媒体入口と出口の温度差が大きい場合(差ΔT及び差Δtが大きい)、冷房負荷がより大きいので圧縮機6の回転数を高くし、設定吐出温度も高くして冷凍サイクル装置2の冷凍能力を増大させる。また、設定放熱器出口温度も高くして効率の低下を抑制する。逆に差ΔT及び差Δtが閾値以上ではあるが、比較的小さい場合には回転数及び設定吐出温度を低くして冷凍サイクル装置2の冷凍能力を削減する。また、設定放熱器出口温度も低くする。更に、制御装置4はステップS27で吐出温度センサ28が検出する圧縮機6の吐出温度、及び、放熱器出口温度センサ33が前記設定吐出温度、及び、設定放熱器出口温度となるように膨張機構8の弁開度を制御する。   In step S24, ON / OFF of the compressor 6 is set based on the difference ΔT and the difference Δt. That is, when the difference ΔT and the difference Δt are equal to or larger than the respective predetermined threshold values (cooling load is large), it is set to ON, and the process proceeds to step S25. Proceed to S29. In step S25, the cooling operation (cooling in the HP operation) for operating the compressor 6 of the refrigeration cycle apparatus 2 is performed. In step S26, the rotational speed and discharge temperature of the compressor 6 and the heat radiation are calculated based on the difference ΔT and the difference Δt. Set the outlet temperature. That is, for example, when the room temperature is higher than the indoor set temperature and the heat exchange between the use side heat exchanger 17 and the air is actively performed and the temperature difference between the heat medium inlet and the outlet is large (the difference ΔT and the difference Δt are large). Since the cooling load is larger, the number of revolutions of the compressor 6 is increased and the set discharge temperature is also increased to increase the refrigeration capacity of the refrigeration cycle apparatus 2. In addition, the set radiator outlet temperature is also increased to suppress the decrease in efficiency. On the contrary, when the difference ΔT and the difference Δt are equal to or larger than the threshold values but are relatively small, the rotational speed and the set discharge temperature are lowered to reduce the refrigeration capacity of the refrigeration cycle apparatus 2. The set radiator outlet temperature is also lowered. Further, the control device 4 expands the discharge temperature of the compressor 6 detected by the discharge temperature sensor 28 in step S27, and the expansion mechanism so that the radiator outlet temperature sensor 33 becomes the set discharge temperature and the set radiator outlet temperature. 8 valve opening is controlled.

更に、制御装置4はステップS28で前記差ΔT及びΔtにより目標熱媒体入口温度を設定し、熱媒体入口温度センサ31が検出する利用側熱交換器17の熱媒体入口温度がこの目標熱媒体入口温度になるように循環ポンプ14の回転数を制御する(循環ポンプ21は停止)。即ち、熱媒体入口温度センサ31が検出する利用側熱交換器17に流入する熱媒体の温度(熱媒体入口温度)が目標熱媒体入口温度より高く、その差が大きい場合には循環ポンプ14の回転数を低下させる。   Further, the control device 4 sets a target heat medium inlet temperature based on the differences ΔT and Δt in step S28, and the heat medium inlet temperature of the use side heat exchanger 17 detected by the heat medium inlet temperature sensor 31 is the target heat medium inlet temperature. The rotational speed of the circulation pump 14 is controlled so as to reach a temperature (the circulation pump 21 is stopped). That is, when the temperature of the heat medium flowing into the use side heat exchanger 17 detected by the heat medium inlet temperature sensor 31 (heat medium inlet temperature) is higher than the target heat medium inlet temperature and the difference is large, the circulation pump 14 Reduce the speed.

一方、今は春季で差ΔT及び差Δtがそれぞれの所定の閾値未満の場合、制御装置4は冷房負荷が小さいものと判断してステップS24で圧縮機6をOFFに設定してステップS29に進む。このステップS29では図4に示すように冷凍サイクル装置2の圧縮機6を停止して地中熱のみで冷房する冷房運転(地中冷熱での冷房)を行うものとし、ステップS30で前記差ΔT及び差Δtにより循環ポンプ14の回転数を決定して制御する(循環ポンプ21は停止)。即ち、閾値未満ではあるが差ΔT及び差Δtが比較的大きい場合には循環ポンプ14の回転数を高くし、小さい場合には回転数を低くする。   On the other hand, if the difference ΔT and the difference Δt are less than the predetermined threshold values in spring, the control device 4 determines that the cooling load is small, sets the compressor 6 to OFF in step S24, and proceeds to step S29. . In step S29, as shown in FIG. 4, the compressor 6 of the refrigeration cycle apparatus 2 is stopped and cooling operation (cooling with underground heat) is performed by cooling only with the underground heat. In step S30, the difference ΔT The rotational speed of the circulation pump 14 is determined and controlled by the difference Δt (circulation pump 21 is stopped). That is, when the difference ΔT and the difference Δt are relatively large, although less than the threshold value, the rotational speed of the circulation pump 14 is increased, and when the difference is small, the rotational speed is decreased.

このように、前記実施例2の外気温度又は室内温度と室内設定温度との差ΔT、及び、利用側熱交換器17の熱媒体出入口温度差(Δt)で冷房負荷を判断することに加えて、放熱器出口温度も考慮して膨張機構8の弁開度を制御することで、冷凍サイクル装置2の効率を向上させることができるようになる。   As described above, in addition to determining the cooling load based on the difference ΔT between the outside air temperature or the indoor temperature and the indoor set temperature in Example 2 and the heat medium inlet / outlet temperature difference (Δt) of the use side heat exchanger 17. The efficiency of the refrigeration cycle apparatus 2 can be improved by controlling the valve opening of the expansion mechanism 8 in consideration of the radiator outlet temperature.

尚、図9は図1の地中熱利用ヒートポンプ装置1の他の構成例を示している(実施例4)。尚、図1中と同一符号で示すものは同一若しくは同様の機能を奏するものとする。この場合、循環ポンプ14は利用側熱交換器17と利用側伝熱器18の間の配管23に設けられ、循環ポンプ21は三方弁16の第2の出口16B下流側の配管22に設けられている。制御は図1の場合と同様である、このような循環ポンプの配置としても本発明は有効である。   In addition, FIG. 9 has shown the other structural example of the geothermal heat utilization heat pump apparatus 1 of FIG. 1 (Example 4). In addition, what is shown with the same code | symbol as FIG. 1 shall show | play the same or the same function. In this case, the circulation pump 14 is provided in the pipe 23 between the use side heat exchanger 17 and the use side heat exchanger 18, and the circulation pump 21 is provided in the pipe 22 on the downstream side of the second outlet 16B of the three-way valve 16. ing. The control is the same as in the case of FIG. 1, and the present invention is also effective for such an arrangement of the circulation pump.

次に、図10、図11は本発明の更に他の実施例の地中熱利用ヒートポンプ装置1の構成を示している。尚、図1、図2中と同一符号で示すものは同一若しくは同様の機能を奏するものとする。この場合、バイパス管24は循環ポンプ21と利用側熱交換器17との間の配管23と三方弁16の第1の出口16Aの間では無く、利用側熱交換器(第1の利用側熱交換器)17と利用側伝熱器18との間の配管23と三方弁16の第1の出口16Aの間に接続され、更にこのバイパス管24には第2の利用側熱交換器34が設けられている。従って、利用側熱交換器17は第1の利用側熱交換器となる。そして、第2の利用側熱交換器34は例えば第1の利用側熱交換器17の空気流入側に設けられる。   Next, FIG. 10, FIG. 11 has shown the structure of the heat pump apparatus 1 using geothermal heat of the further another Example of this invention. 1 and 2 denote the same or similar functions. In this case, the bypass pipe 24 is not between the piping 23 between the circulation pump 21 and the use side heat exchanger 17 and the first outlet 16A of the three-way valve 16, but the use side heat exchanger (first use side heat). Exchanger) 17 is connected between pipe 23 between user side heat exchanger 18 and first outlet 16A of three-way valve 16, and second bypass side heat exchanger 34 is connected to this bypass pipe 24. Is provided. Therefore, the use side heat exchanger 17 is a first use side heat exchanger. And the 2nd utilization side heat exchanger 34 is provided in the air inflow side of the 1st utilization side heat exchanger 17, for example.

これにより、暖房運転(第1の運転モード)時は図2と同様であるが、冷房運転(第2の運転モード)時に地中熱採熱装置3の循環ポンプ14が運転されると、地中熱採熱管12で例えば15℃程の温度の地中に放熱し(即ち、地中で冷却され)、20℃程に温度が低下した熱媒体は地中熱採熱管12から吸引され、配管22を通って地中熱伝熱器13に流入し、ここで、冷凍サイクル装置2の蒸発器9に放熱(蒸発器9は吸熱)して更に冷却され、7℃程となり、循環ポンプ14及び三方弁16を経てバイパス管24を通り、第2の利用側熱交換器34に流入するようになる。   Thus, the heating operation (first operation mode) is the same as in FIG. 2, but when the circulation pump 14 of the geothermal heat collection device 3 is operated during the cooling operation (second operation mode), The heat medium radiated into the ground at a temperature of about 15 ° C. (for example, cooled in the ground) by the medium heat collecting pipe 12, and the heat medium whose temperature has dropped to about 20 ° C. is sucked from the ground heat collecting pipe 12 and is piped 22 and flows into the underground heat transfer device 13 where heat is radiated to the evaporator 9 of the refrigeration cycle apparatus 2 (the evaporator 9 absorbs heat) and further cooled to about 7 ° C., and the circulation pump 14 and It passes through the bypass pipe 24 via the three-way valve 16 and flows into the second use side heat exchanger 34.

前述した如く第2の利用側熱交換器34にも図示しない送風機により室内空気が循環されるので、第2の利用側熱交換器34に流入した熱媒体は室内空気から吸熱して12℃程に温度上昇する。一方、室内空気は熱媒体により冷却されるので、室内(被空調空間)は冷房される。利用側熱交換器17から出た熱媒体は次に利用側伝熱器18に入る。冷凍サイクル装置2の放熱器7には70℃程の冷媒が流入するので、利用側伝熱器18を通過する熱媒体は吸熱し、放熱器7を通過する冷媒は冷却される。そして、冷媒は15℃程にまで冷却されて放熱器7から流出し膨張機構8に向かう。熱媒体は40℃程に温度上昇して三方弁19及びバイパス管26を通り、地中熱採熱管12に戻る。地中熱採熱管12では熱媒体が再度地中(15℃程)に放熱し、地中熱伝熱器13に向かう循環を繰り返すようになる。   As described above, the indoor air is also circulated by the blower (not shown) in the second usage-side heat exchanger 34, so that the heat medium flowing into the second usage-side heat exchanger 34 absorbs heat from the indoor air and is about 12 ° C. The temperature rises. On the other hand, since the indoor air is cooled by the heat medium, the room (the air-conditioned space) is cooled. The heat medium exiting from the use side heat exchanger 17 then enters the use side heat exchanger 18. Since the refrigerant of about 70 ° C. flows into the radiator 7 of the refrigeration cycle apparatus 2, the heat medium passing through the use side heat transfer device 18 absorbs heat, and the refrigerant passing through the radiator 7 is cooled. Then, the refrigerant is cooled to about 15 ° C., flows out of the radiator 7, and goes to the expansion mechanism 8. The temperature of the heat medium rises to about 40 ° C., passes through the three-way valve 19 and the bypass pipe 26, and returns to the underground heat collection pipe 12. In the underground heat collecting pipe 12, the heat medium again radiates heat into the ground (about 15 ° C.), and repeats circulation toward the underground heat exchanger 13.

即ち、この実施例5の場合には、冷房は第2の利用側熱交換器34で、暖房は第1の利用側熱交換器17でそれぞれ別々に行われるようになる。そこで、図10の冷房運転状態において、例えば制御装置4により三方弁19の第2の出口19Bも少許開くことで(第1の出口19Aと第2の出口19Bを選択的に開放するデューティー制御、若しくは、第1の出口19Aの開度はそのままで、第2の出口19Bも少許開く等)、利用側伝熱器18を出た熱媒体の一部を三方弁19にて分流し、第1の利用側熱交換器17に流した後、第2の利用側熱交換器34を出た熱媒体に合流させるようにしてもよい。   That is, in the case of the fifth embodiment, cooling is performed separately by the second usage-side heat exchanger 34 and heating is performed separately by the first usage-side heat exchanger 17. Therefore, in the cooling operation state of FIG. 10, for example, the control device 4 opens the second outlet 19B of the three-way valve 19 slightly (duty control for selectively opening the first outlet 19A and the second outlet 19B, Alternatively, the opening degree of the first outlet 19A is kept as it is, and the second outlet 19B is also slightly opened), and a part of the heat medium exiting the use side heat exchanger 18 is diverted by the three-way valve 19, After flowing through the use side heat exchanger 17, the second use side heat exchanger 34 may be joined to the heat medium that has exited.

利用側伝熱器18を出た熱媒体の温度は前述したように40℃程に上昇しているので、このような制御を行うことで、室内空気は第2の利用側熱交換器34で冷却された後、第1の利用側熱交換器17で加温されるようになる。即ち、第2の利用側熱交換器34で空気中の湿気を除去した後、第1の利用側熱交換器17で温度を上げてから室内に吹き出すことができるようになるので、除湿運転が実現される(第3の運転モード)。この除湿運転も制御装置4への図示しないモード切換スイッチによる指令入力により行うものとする。   As described above, the temperature of the heat medium that has exited the use side heat exchanger 18 has increased to about 40 ° C. Therefore, by performing such control, the room air is passed through the second use side heat exchanger 34. After being cooled, the first use side heat exchanger 17 is heated. That is, after the moisture in the air is removed by the second use side heat exchanger 34, the temperature can be increased by the first use side heat exchanger 17 and then blown out into the room. Realized (third operation mode). This dehumidifying operation is also performed by command input to the control device 4 by a mode changeover switch (not shown).

次に、図12、図13は本発明の更に他の実施例の地中熱利用ヒートポンプ装置1の構成を示している。尚、図1、図2中と同一符号で示すものは同一若しくは同様の機能を奏するものとする。この場合、冷凍サイクル装置2は、放熱器7の下流側で膨張機構8との間の冷媒回路10中にもう一つの放熱器(第3の放熱器)36を備えている。また、冷媒回路10に対して高元側となるもう一つの第2の冷媒回路37を備えている。従って、冷媒回路10はこの場合第1の冷媒回路となる。第2の冷媒回路37は第2の圧縮機38と、第2の放熱器39と、第2の膨張機構41と、第2の蒸発器42を順次環状に配管接続して構成されている。従って、この場合圧縮機6は第1の圧縮機、放熱器7は第1の放熱器、膨張機構8は第1の膨張機構、蒸発器9は第1の蒸発器となる。そして、第1の冷媒回路10の放熱器36と第2の冷媒回路37の第2の蒸発器42とがカスケード接続され、これにより両冷媒回路10、37は、第2の冷媒回路37が二元接続の高元側、第1の冷媒回路10が二元接続の低元側となる二元冷凍装置を構成している。   Next, FIG. 12, FIG. 13 has shown the structure of the geothermal heat utilization heat pump apparatus 1 of the further another Example of this invention. 1 and 2 denote the same or similar functions. In this case, the refrigeration cycle apparatus 2 includes another radiator (third radiator) 36 in the refrigerant circuit 10 between the refrigeration cycle 7 and the expansion mechanism 8 on the downstream side of the radiator 7. In addition, another second refrigerant circuit 37 that is on the higher side with respect to the refrigerant circuit 10 is provided. Therefore, the refrigerant circuit 10 is the first refrigerant circuit in this case. The second refrigerant circuit 37 is configured by sequentially connecting a second compressor 38, a second radiator 39, a second expansion mechanism 41, and a second evaporator 42 in an annular manner. Therefore, in this case, the compressor 6 is a first compressor, the radiator 7 is a first radiator, the expansion mechanism 8 is a first expansion mechanism, and the evaporator 9 is a first evaporator. Then, the radiator 36 of the first refrigerant circuit 10 and the second evaporator 42 of the second refrigerant circuit 37 are cascade-connected, so that both the refrigerant circuits 10 and 37 have two second refrigerant circuits 37. The high-reduction side of the original connection and the first refrigerant circuit 10 constitute a binary refrigerating apparatus that becomes the low-source side of the binary connection.

そして、利用側熱交換器17の出口側の配管23には三方弁43が設けられ、この三方弁43の第1の出口43Aが利用側伝熱器18に配管23で接続されている。更に、この三方弁43の第2の出口43Bは配管44を介して第2の放熱器39と熱交換関係に設けられた第2の利用側伝熱器46の入口に接続されている。従って、この場合利用側伝熱器18は第1の利用側伝熱器となる。第2の利用側伝熱器46の出口には三方弁47が接続され、この三方弁47の第1の出口47Aは配管48を介して給湯用熱交換器49に接続され、この給湯用熱交換器49の出口はこれも配管48により循環ポンプ51の入口に接続され、循環ポンプ51の出口は配管48により第2の利用側伝熱器46の入口に接続されている。また、三方弁47の第2の出口47Bは配管52により三方弁19の入口に接続されている。給湯用熱交換器49は図示しない貯湯タンク内の水を加熱する。そして、この配管52中にも同様の熱媒体が封入されるので、この場合の熱媒体循環装置27は、循環ポンプ14、21、51、三方弁16、19、43、47、配管22、23、44、48、52、バイパス管24、26により構成される。また、この場合も前述同様の制御装置4が設けられ、冷凍サイクル装置2及び熱媒体循環装置27を制御する。   A three-way valve 43 is provided in the outlet side pipe 23 of the use side heat exchanger 17, and a first outlet 43 </ b> A of the three-way valve 43 is connected to the use side heat exchanger 18 through the pipe 23. Further, the second outlet 43B of the three-way valve 43 is connected to an inlet of a second use side heat exchanger 46 provided in a heat exchange relationship with the second radiator 39 via a pipe 44. Therefore, in this case, the use side heat transfer device 18 becomes the first use side heat transfer device. A three-way valve 47 is connected to the outlet of the second usage side heat transfer unit 46, and a first outlet 47A of the three-way valve 47 is connected to a hot water supply heat exchanger 49 via a pipe 48, and this hot water supply heat is supplied. The outlet of the exchanger 49 is also connected to the inlet of the circulation pump 51 by a pipe 48, and the outlet of the circulation pump 51 is connected to the inlet of the second usage side heat exchanger 46 by a pipe 48. The second outlet 47B of the three-way valve 47 is connected to the inlet of the three-way valve 19 by a pipe 52. The hot water supply heat exchanger 49 heats water in a hot water storage tank (not shown). And since the same heat medium is enclosed also in this piping 52, the heat medium circulation apparatus 27 in this case is the circulation pumps 14, 21, 51, the three-way valves 16, 19, 43, 47, the piping 22, 23. , 44, 48, 52 and bypass pipes 24, 26. Also in this case, the same control device 4 as described above is provided to control the refrigeration cycle device 2 and the heat medium circulation device 27.

以上の構成で、次にこの実施例の地中熱利用ヒートポンプ装置1の動作を説明する。先ず、冷房運転(第2の運転モード)について説明する。同様に春季から夏季の季節に図示しないモード切換スイッチによる指令入力で冷房運転(第2の運転モード)が開始されると、制御装置4は図12の如く三方弁16、19、43、47を制御し、それぞれの第1の出口16A、19A、43A、47Aを開く。そして、第1の圧縮機6及び第2の圧縮機38を運転し、循環ポンプ14、51を運転する(循環ポンプ21は停止)。   Next, the operation of the heat pump apparatus 1 using geothermal heat according to this embodiment will be described. First, the cooling operation (second operation mode) will be described. Similarly, when the cooling operation (second operation mode) is started by a command input from a mode changeover switch (not shown) from the spring season to the summer season, the control device 4 causes the three-way valves 16, 19, 43, 47 to be opened as shown in FIG. Control and open the respective first outlets 16A, 19A, 43A, 47A. Then, the first compressor 6 and the second compressor 38 are operated, and the circulation pumps 14 and 51 are operated (the circulation pump 21 is stopped).

冷凍サイクル装置2の第2の圧縮機38が運転されると、第2の圧縮機38から吐出された高温高圧の冷媒が第2の放熱器39に流入し、そこで放熱して第2の膨張機構41に至り、減圧されて第2の蒸発器42に流入する。そこで、冷媒は蒸発して吸熱作用を発揮し、第2の圧縮機38に吸い込まれる循環を繰り返す。   When the second compressor 38 of the refrigeration cycle apparatus 2 is operated, the high-temperature and high-pressure refrigerant discharged from the second compressor 38 flows into the second radiator 39, where it dissipates heat and the second expansion. The mechanism 41 is reached, and the pressure is reduced and flows into the second evaporator 42. Therefore, the refrigerant evaporates and exhibits an endothermic effect, and repeats circulation that is sucked into the second compressor 38.

一方、第1の圧縮機6が運転されると、第1の圧縮機6から吐出された超臨界状態の二酸化炭素冷媒は第1の放熱器7、更に、次段の放熱器36に順次流入し、それらで放熱して第1の膨張機構8に至り、液/ガス混合状態となって第1の蒸発器9に流入する。そこで、冷媒は蒸発して吸熱作用を発揮し、第1の圧縮機6に吸い込まれる循環を繰り返す。このとき、冷媒回路10の放熱器36と冷媒回路37の第2の蒸発器42はカスケード接続されているので、第1の膨張機構8に流入する二酸化炭素冷媒は過冷却されることになる。そして、第1の冷媒回路10の高圧と第2の冷媒回路37の高圧は、図16のp−h線図に示すように、共に超臨界圧力でほぼ同等となるように第1及び第2の膨張機構8、41によって制御される。そのため、同じ温度域の熱媒体となり、第1及び第2の冷媒回路10、37の総合効率を向上させることができる。第2の冷媒回路37は、所定の冷媒封入量にすることにより、低圧が最適圧力になり、効率が向上する。   On the other hand, when the first compressor 6 is operated, the supercritical carbon dioxide refrigerant discharged from the first compressor 6 sequentially flows into the first radiator 7 and further to the radiator 36 at the next stage. Then, they dissipate heat to reach the first expansion mechanism 8, enter a liquid / gas mixed state, and flow into the first evaporator 9. Therefore, the refrigerant evaporates and exhibits an endothermic effect, and repeats circulation that is sucked into the first compressor 6. At this time, since the radiator 36 of the refrigerant circuit 10 and the second evaporator 42 of the refrigerant circuit 37 are cascade-connected, the carbon dioxide refrigerant flowing into the first expansion mechanism 8 is supercooled. The first and second high pressures of the first refrigerant circuit 10 and the second refrigerant circuit 37 are substantially equal at the supercritical pressure, as shown in the ph diagram of FIG. Are controlled by the expansion mechanisms 8 and 41. Therefore, it becomes a heat medium of the same temperature range, and the total efficiency of the 1st and 2nd refrigerant circuits 10 and 37 can be improved. By setting the second refrigerant circuit 37 to a predetermined refrigerant filling amount, the low pressure becomes the optimum pressure and the efficiency is improved.

一方、地中熱採熱装置3の循環ポンプ14が運転されると、地中熱採熱管12で例えば15℃程の温度の地中に放熱し(即ち、地中で冷却され)、20℃程に温度が低下した熱媒体は地中熱採熱管12から吸引され、配管22を通って地中熱伝熱器13に流入する。ここで、冷媒回路10の第1の蒸発器9に放熱(蒸発器9は吸熱)して更に冷却され、7℃程となり、循環ポンプ14及び三方弁16を経てバイパス管24を通り、利用側熱交換器17に流入する。   On the other hand, when the circulation pump 14 of the geothermal heat collecting device 3 is operated, the geothermal heat collecting pipe 12 radiates heat to the ground at a temperature of, for example, about 15 ° C. (that is, is cooled in the ground), and 20 ° C. The heat medium whose temperature has decreased to the extent is sucked from the underground heat collecting pipe 12 and flows into the underground heat exchanger 13 through the pipe 22. Here, the first evaporator 9 of the refrigerant circuit 10 dissipates heat (the evaporator 9 absorbs heat) and is further cooled to about 7 ° C., passes through the bypass pump 24 and the three-way valve 16, passes through the bypass pipe 24, and is used. It flows into the heat exchanger 17.

利用側熱交換器17には図示しない送風機により室内空気が循環されるので、利用側熱交換器17に流入した熱媒体は室内空気から吸熱して12℃程に温度上昇する。一方、室内空気は熱媒体により冷却されるので、室内(被空調空間)は冷房される。利用側熱交換器17から出た熱媒体は次に三方弁43を経て第1の利用側伝熱器18に入る。冷媒回路10の第1の放熱器7には70℃程の冷媒が流入するので、第1の利用側伝熱器18を通過する熱媒体は吸熱し、第1の放熱器7を通過する冷媒は冷却される。そして、冷媒は15℃程にまで冷却されて第1の放熱器7から流出し、第1の膨張機構8に向かう。熱媒体は40℃程に温度上昇して三方弁19及びバイパス管26を通り、地中熱採熱管12に戻る。地中熱採熱管12では熱媒体が再度地中(15℃程)に放熱し、地中熱伝熱器13に向かう循環を繰り返す。   Since indoor air is circulated by a blower (not shown) in the usage-side heat exchanger 17, the heat medium flowing into the usage-side heat exchanger 17 absorbs heat from the indoor air and rises to about 12 ° C. On the other hand, since the indoor air is cooled by the heat medium, the room (the air-conditioned space) is cooled. The heat medium exiting from the use side heat exchanger 17 then enters the first use side heat exchanger 18 via the three-way valve 43. Since the refrigerant of about 70 ° C. flows into the first radiator 7 of the refrigerant circuit 10, the heat medium passing through the first use side heat transfer device 18 absorbs heat and passes through the first radiator 7. Is cooled. Then, the refrigerant is cooled to about 15 ° C., flows out of the first radiator 7, and travels to the first expansion mechanism 8. The temperature of the heat medium rises to about 40 ° C., passes through the three-way valve 19 and the bypass pipe 26, and returns to the underground heat collection pipe 12. In the geothermal heat collecting pipe 12, the heat medium again radiates heat into the ground (about 15 ° C.) and repeats circulation toward the underground heat exchanger 13.

この場合も、地中熱採熱装置3の地中熱採熱管12で地中に放熱した熱媒体は、地中熱伝熱器13に流入して冷媒回路10の第1の蒸発器9と熱交換し、当該蒸発器9によって更に冷やされた後、利用側熱交換器17に流入するので、利用側熱交換器17による冷房性能を向上させることができるようになる。そして、利用側熱交換器17を出た熱媒体は次に第1の利用側伝熱器18に流入し、冷媒回路10の第1の放熱器7と熱交換して温度が上昇した後、再び地中熱採熱管12に戻るので、地中での熱交換効率も良好となる。   Also in this case, the heat medium radiated into the ground by the geothermal heat collecting pipe 12 of the geothermal heat collecting apparatus 3 flows into the underground heat transfer device 13 and the first evaporator 9 of the refrigerant circuit 10. After heat exchange and further cooling by the evaporator 9, the heat flows into the use side heat exchanger 17, so that the cooling performance by the use side heat exchanger 17 can be improved. And after the heat medium which exited the use side heat exchanger 17 flows into the 1st use side heat exchanger 18, it heat-exchanges with the 1st radiator 7 of the refrigerant circuit 10, and after temperature rises, Since it returns to the underground heat collecting pipe 12 again, the heat exchange efficiency in the ground is also improved.

一方、冷媒回路10の冷媒は第1の放熱器7にて第1の利用側伝熱器18を流れる熱媒体に対して放熱すると共に、放熱器36で第2の蒸発器42に対して放熱し、その後、第1の膨張機構8で絞られ、第1の蒸発器9に流入して地中熱伝熱器9を流れる熱媒体から吸熱する循環を繰り返すので、冷媒回路10の運転効率も良好となる。   On the other hand, the refrigerant in the refrigerant circuit 10 radiates heat to the heat medium flowing through the first usage-side heat exchanger 18 by the first radiator 7 and radiates heat to the second evaporator 42 by the radiator 36. Then, the circulation of the refrigerant circuit 10 is repeated because it is squeezed by the first expansion mechanism 8 and repeatedly circulates by absorbing heat from the heat medium flowing into the first evaporator 9 and flowing through the underground heat exchanger 9. It becomes good.

また、循環ポンプ51が運転されると、第2の利用側伝熱器46で冷媒回路37の第2の放熱器39からの放熱で加熱された熱媒体は給湯用熱交換器49に流入し、そこで放熱した後、再度第2の利用側伝熱器46に戻る循環を繰り返すので、これにより、給湯用熱交換器49にて貯湯タンク内の水を加熱し、給湯を行うことが可能となる。これらにより、地中熱利用ヒートポンプ装置1は給湯を行いながら、極めて性能のよい冷房運転を高効率で実現することが可能となる。尚、この場合も給湯用熱交換器49を流れる熱媒体と第2の放熱器39を流れる冷媒は同様に対向流となる。   When the circulation pump 51 is operated, the heat medium heated by the second radiator 39 in the refrigerant circuit 37 in the second usage-side heat exchanger 46 flows into the hot water supply heat exchanger 49. Then, after the heat is radiated, the circulation to return to the second use side heat exchanger 46 is repeated, so that the hot water supply heat exchanger 49 can heat the water in the hot water storage tank and supply hot water. Become. As a result, the geothermal heat pump device 1 can achieve highly efficient cooling operation with high efficiency while supplying hot water. In this case as well, the heat medium flowing through the hot water supply heat exchanger 49 and the refrigerant flowing through the second heat radiator 39 are similarly opposed.

次に、秋季や冬季に前述したモード切換スイッチによる指令入力で暖房運転(第1の運転モード)が開始されると、制御装置4は三方弁16、19を制御し、図13に示すようにそれぞれの第2の出口16B、19Bを開く。また、三方弁43、及び、三方弁47については第1、第2の双方の出口43A、43B、及び、47A、47Bを開く。そして、第1の圧縮機6、第2の圧縮機38、及び、各循環ポンプ14、21、51を運転する。第1の冷媒回路10及び第2の冷媒回路37の動作については前述同様である。   Next, when the heating operation (first operation mode) is started by the command input from the mode change switch described above in autumn or winter, the control device 4 controls the three-way valves 16 and 19, as shown in FIG. Open the respective second outlets 16B, 19B. For the three-way valve 43 and the three-way valve 47, both the first and second outlets 43A and 43B and 47A and 47B are opened. Then, the first compressor 6, the second compressor 38, and the circulation pumps 14, 21, 51 are operated. The operations of the first refrigerant circuit 10 and the second refrigerant circuit 37 are the same as described above.

一方、地中熱採熱装置3の循環ポンプ14が運転されると、地中熱採熱管12で例えば15℃程の温度の地中から吸熱し(即ち、地中で温められ)、10℃程に温度が上昇した熱媒体は地中熱採熱管12から吸引され、配管22を通って地中熱伝熱器13に流入する。ここで、冷媒回路10の第1の蒸発器9に放熱(蒸発器9内の冷媒は吸熱し、5℃程から8℃程になる)して冷却され、7℃程となり、循環ポンプ14及び三方弁16を経て地中熱採熱管12に戻り、再び吸熱する循環を繰り返す。   On the other hand, when the circulation pump 14 of the geothermal heat collecting device 3 is operated, the geothermal heat collecting pipe 12 absorbs heat from the ground at a temperature of about 15 ° C. (ie, warms in the ground), 10 ° C. The heat medium whose temperature has risen to the extent is sucked from the underground heat collecting pipe 12 and flows into the underground heat exchanger 13 through the pipe 22. Here, heat is radiated to the first evaporator 9 of the refrigerant circuit 10 (the refrigerant in the evaporator 9 absorbs heat and becomes about 5 to 8 ° C.) and is cooled to about 7 ° C., and the circulation pump 14 and It returns to the underground heat collecting pipe 12 through the three-way valve 16 and repeats the cycle of absorbing heat again.

また、循環ポンプ21が運転されると、第1の利用側伝熱器18、第2の利用側伝熱器46内で第1の放熱器7、第2の放熱器39内を流れる冷媒から吸熱して温度上昇した熱媒体は、配管23、三方弁47、配管52を通って利用側熱交換器17に入り、そこで放熱した後、三方弁43を経て再び第1の利用側伝熱器18、第2の利用側伝熱器46に流入する循環を繰り返す。利用側熱交換器17には図示しない送風機により室内空気が循環されるので、室内空気は利用側熱交換器17内の熱媒体により加熱され、これにより、室内(被空調空間)は暖房される。   Further, when the circulation pump 21 is operated, the refrigerant that flows in the first radiator 7 and the second radiator 39 in the first usage-side heat transfer device 18 and the second usage-side heat transfer device 46 is used. The heat medium that has absorbed heat and has risen in temperature passes through the pipe 23, the three-way valve 47, and the pipe 52, enters the use-side heat exchanger 17, and then radiates heat. 18, The circulation which flows into the 2nd utilization side heat exchanger 46 is repeated. Since indoor air is circulated by a blower (not shown) in the use-side heat exchanger 17, the indoor air is heated by the heat medium in the use-side heat exchanger 17, thereby heating the room (the air-conditioned space). .

また、循環ポンプ51が運転されると、第2の利用側伝熱器46で冷媒回路37の第2の放熱器39からの放熱で加熱された熱媒体は三方弁47を経て給湯用熱交換器49に流入し、そこで放熱した後、再度第2の利用側伝熱器46に戻る循環を繰り返すので、これにより、給湯用熱交換器49にて貯湯タンク内の水を加熱し、給湯を行うことが可能となる。これらにより、この場合の地中熱利用ヒートポンプ装置1は給湯を行いながら、極めて性能のよい暖房運転を高効率で実現することが可能となる。   When the circulation pump 51 is operated, the heat medium heated by the heat radiation from the second radiator 39 of the refrigerant circuit 37 in the second use side heat transfer device 46 passes through the three-way valve 47 to exchange heat for hot water supply. Since the heat is radiated there and then circulated back to the second user-side heat exchanger 46 again, the water in the hot water storage tank 49 is heated in the hot water supply heat exchanger 49, and the hot water is supplied. Can be done. As a result, the heat pump device 1 using the underground heat in this case can realize a highly efficient heating operation with high efficiency while supplying hot water.

次に、図14、図15は本発明の更に他の実施例の地中熱利用ヒートポンプ装置1の構成を示している。尚、図12、図13中と同一符号で示すものは同一若しくは同様の機能を奏するものとする。この場合も、冷凍サイクル装置2は、放熱器7の下流側で膨張機構8との間の冷媒回路10中にもう一つの放熱器(第3の放熱器)36を備えている。また、冷媒回路10に対する高元側としてもう一つ、第2の冷媒回路37を備えている。従って、冷媒回路10はこの場合第1の冷媒回路となる。第2の冷媒回路37は第2の圧縮機38と、第2の放熱器39と、第2の膨張機構41と、第2の蒸発器42を順次環状に配管接続して構成されている。従って、この場合圧縮機6は第1の圧縮機、放熱器7は第1の放熱器、膨張機構8は第1の膨張機構、蒸発器9は第1の蒸発器となる。そして、第1の冷媒回路10の放熱器36と第2の冷媒回路37の第2の蒸発器42とがカスケード接続され、これにより両冷媒回路10、37は、第2の冷媒回路37が二元接続の高元側、第1の冷媒回路10が二元接続の低元側となる二元冷凍装置を構成している。   Next, FIG. 14, FIG. 15 has shown the structure of the heat pump 1 using a geothermal heat of the further another Example of this invention. In addition, what is shown with the same code | symbol as FIG. 12, FIG. 13 shall show | play the same or similar function. Also in this case, the refrigeration cycle apparatus 2 includes another radiator (third radiator) 36 in the refrigerant circuit 10 between the refrigeration cycle 7 and the expansion mechanism 8 on the downstream side of the radiator 7. Further, a second refrigerant circuit 37 is provided as another high-side for the refrigerant circuit 10. Therefore, the refrigerant circuit 10 is the first refrigerant circuit in this case. The second refrigerant circuit 37 is configured by sequentially connecting a second compressor 38, a second radiator 39, a second expansion mechanism 41, and a second evaporator 42 in an annular manner. Therefore, in this case, the compressor 6 is a first compressor, the radiator 7 is a first radiator, the expansion mechanism 8 is a first expansion mechanism, and the evaporator 9 is a first evaporator. Then, the radiator 36 of the first refrigerant circuit 10 and the second evaporator 42 of the second refrigerant circuit 37 are cascade-connected, so that both the refrigerant circuits 10 and 37 have two second refrigerant circuits 37. The high-reduction side of the original connection and the first refrigerant circuit 10 constitute a binary refrigerating apparatus that becomes the low-source side of the binary connection.

また、バイパス管24は三方弁16の第1の出口16Aと第2の利用側伝熱器46の入口管を結んでおり、このバイパス24中には第2の利用側熱交換器53が設けられている。また、第2の利用側伝熱器46は同様に第2の冷媒回路37の第2の放熱器39と熱交換関係に設けられている。また、この第2の利用側伝熱器46の出口が配管61により三方弁19の入口に接続され、三方弁19の第1の出口19Aが地中熱採熱管12の入口にバイパス管26で接続されている。   The bypass pipe 24 connects the first outlet 16 </ b> A of the three-way valve 16 and the inlet pipe of the second usage side heat exchanger 46, and the second usage side heat exchanger 53 is provided in the bypass 24. It has been. Similarly, the second use side heat transfer device 46 is provided in a heat exchange relationship with the second heat radiator 39 of the second refrigerant circuit 37. In addition, the outlet of the second use side heat exchanger 46 is connected to the inlet of the three-way valve 19 by a pipe 61, and the first outlet 19 </ b> A of the three-way valve 19 is connected to the inlet of the underground heat collection pipe 12 by the bypass pipe 26. It is connected.

また、第1の利用側伝熱器18は同様に冷媒回路10の第1の放熱器7と熱交換関係に設けられているが、この第1の利用側伝熱器18の入口は配管62により三方弁54の第1の出口54Aに接続されている。また、三方弁54の第2の出口54Bは配管63におり第2の利用側伝熱器46の入口に接続されている。また、三方弁19の第2の出口19Bは配管64により循環ポンプ56の入口に接続され、第1の利用側伝熱器18の出口は配管66により配管64に接続されている。   Similarly, the first user-side heat exchanger 18 is provided in a heat exchange relationship with the first radiator 7 of the refrigerant circuit 10, and the inlet of the first user-side heat exchanger 18 is connected to the pipe 62. To the first outlet 54A of the three-way valve 54. The second outlet 54 </ b> B of the three-way valve 54 is connected to the inlet of the second usage side heat transfer unit 46 through the pipe 63. The second outlet 19 </ b> B of the three-way valve 19 is connected to the inlet of the circulation pump 56 by a pipe 64, and the outlet of the first usage-side heat exchanger 18 is connected to the pipe 64 by a pipe 66.

循環ポンプ56の出口は配管67により三方弁57の入口に接続され、三方弁57の第1の出口57Aは第3の利用側熱交換器68の入口に接続されている。また、三方弁57の第2の出口57Bは第1の利用側熱交換器58の入口に接続されている。これら利用側熱交換器68、58の出口は合流して配管69を介して三方弁54の入口に接続されている。   The outlet of the circulation pump 56 is connected to the inlet of the three-way valve 57 by a pipe 67, and the first outlet 57 </ b> A of the three-way valve 57 is connected to the inlet of the third usage side heat exchanger 68. Further, the second outlet 57 </ b> B of the three-way valve 57 is connected to the inlet of the first use side heat exchanger 58. The outlets of these use side heat exchangers 68 and 58 are joined together and connected to the inlet of the three-way valve 54 via a pipe 69.

そして、この場合の熱媒体循環装置27は、循環ポンプ14、56、三方弁16、19、54、57、配管22、61、62、63、64、66、67、69、バイパス管24、26等により構成される。また、この場合も前述同様の制御装置4が設けられ、冷凍サイクル装置2及び熱媒体循環装置27を制御する。尚、前記第3の利用側熱交換器68は給湯用熱交換器71と熱交換関係に設けられ、給湯用熱交換器71には循環ポンプ72により循環回路74を経て貯湯タンク73内の水が循環される。   In this case, the heat medium circulation device 27 includes the circulation pumps 14 and 56, the three-way valves 16, 19, 54, and 57, the piping 22, 61, 62, 63, 64, 66, 67, and 69, and the bypass tubes 24 and 26. Etc. Also in this case, the same control device 4 as described above is provided to control the refrigeration cycle device 2 and the heat medium circulation device 27. The third use side heat exchanger 68 is provided in a heat exchange relationship with the hot water supply heat exchanger 71, and the hot water supply heat exchanger 71 is supplied with water in the hot water storage tank 73 through a circulation circuit 74 by a circulation pump 72. Is circulated.

以上の構成で、次にこの実施例の地中熱利用ヒートポンプ装置1の動作を説明する。先ず、冷房運転(第2の運転モード)について説明する。同様に春季から夏季の季節に図示しないモード切換スイッチによる指令入力で冷房運転(第2の運転モード)が開始されると、制御装置4は図14の如く三方弁16、19、54、57を制御し、それぞれの第1の出口16A、19A、54A、57Aを開く。そして、第1の圧縮機6及び第2の圧縮機38を運転し、循環ポンプ14、56、72を運転する。第1及び第2の冷媒回路10、37の動作は前述同様である。   Next, the operation of the heat pump apparatus 1 using geothermal heat according to this embodiment will be described. First, the cooling operation (second operation mode) will be described. Similarly, when the cooling operation (second operation mode) is started by a command input from a mode changeover switch (not shown) from the spring season to the summer season, the control device 4 opens the three-way valves 16, 19, 54, 57 as shown in FIG. Control and open the respective first outlets 16A, 19A, 54A, 57A. Then, the first compressor 6 and the second compressor 38 are operated, and the circulation pumps 14, 56, 72 are operated. The operations of the first and second refrigerant circuits 10 and 37 are the same as described above.

地中熱採熱装置3の循環ポンプ14が運転されると、地中熱採熱管12で例えば15℃程の温度の地中に放熱し(即ち、地中で冷却され)、20℃程に温度が低下した熱媒体は地中熱採熱管12から吸引され、配管22を通って地中熱伝熱器13に流入する。ここで、冷媒回路10の第1の蒸発器9に放熱(蒸発器9は吸熱)して更に冷却され、7℃程となり、循環ポンプ14及び三方弁16を経てバイパス管24を通り、第2の利用側熱交換器53に流入する。   When the circulation pump 14 of the geothermal heat collecting apparatus 3 is operated, the geothermal heat collecting pipe 12 radiates heat to the ground at a temperature of, for example, about 15 ° C. (that is, is cooled in the ground), and reaches about 20 ° C. The heat medium having a lowered temperature is sucked from the underground heat collecting pipe 12 and flows into the underground heat exchanger 13 through the pipe 22. Here, heat is dissipated to the first evaporator 9 of the refrigerant circuit 10 (the evaporator 9 absorbs heat) and further cooled to about 7 ° C., passes through the bypass pump 24 and the three-way valve 16, passes through the bypass pipe 24, To the use side heat exchanger 53.

この第2の利用側熱交換器53にも図示しない送風機により室内空気が循環されるので、第2の利用側熱交換器53に流入した熱媒体は室内空気から吸熱して12℃程に温度上昇する。一方、室内空気は熱媒体により冷却されるので、室内(被空調空間)は冷房される。第2の利用側熱交換器53から出た熱媒体は次に第2の利用側伝熱器46に入る。冷媒回路37の第2の放熱器39には高温の冷媒が流入するので、第2の利用側伝熱器46を通過する熱媒体は吸熱し、第2の放熱器39を通過する冷媒は冷却される。尚、この場合も第2の利用側熱交換器46を流れる熱媒体と第2の放熱器39を流れる冷媒は対向流となる。そして、冷媒は第2の放熱器39から流出し、第2の膨張機構41に向かう。熱媒体は40℃程に温度上昇して三方弁19及びバイパス管26を通り、地中熱採熱管12に戻る。地中熱採熱管12では熱媒体が再度地中(15℃程)に放熱し、地中熱伝熱器13に向かう循環を繰り返す。   Since the indoor air is also circulated by the blower (not shown) in the second usage-side heat exchanger 53, the heat medium flowing into the second usage-side heat exchanger 53 absorbs heat from the indoor air and has a temperature of about 12 ° C. To rise. On the other hand, since the indoor air is cooled by the heat medium, the room (the air-conditioned space) is cooled. The heat medium that has exited from the second usage side heat exchanger 53 then enters the second usage side heat exchanger 46. Since the high-temperature refrigerant flows into the second radiator 39 of the refrigerant circuit 37, the heat medium passing through the second usage-side heat exchanger 46 absorbs heat, and the refrigerant passing through the second radiator 39 is cooled. Is done. In this case as well, the heat medium flowing through the second usage-side heat exchanger 46 and the refrigerant flowing through the second radiator 39 are opposed to each other. Then, the refrigerant flows out from the second radiator 39 and moves toward the second expansion mechanism 41. The temperature of the heat medium rises to about 40 ° C., passes through the three-way valve 19 and the bypass pipe 26, and returns to the underground heat collection pipe 12. In the geothermal heat collecting pipe 12, the heat medium again radiates heat into the ground (about 15 ° C.) and repeats circulation toward the underground heat exchanger 13.

この場合も、地中熱採熱装置3の地中熱採熱管12で地中に放熱した熱媒体は、地中熱伝熱器13に流入して冷媒回路10の第1の蒸発器9と熱交換し、当該蒸発器9によって更に冷やされた後、第2の利用側熱交換器53に流入するので、第2の利用側熱交換器53による冷房性能を向上させることができるようになる。そして、第2の利用側熱交換器53を出た熱媒体は次に第2の利用側伝熱器46に流入し、冷媒回路37の第2の放熱器39と熱交換して温度が上昇した後、再び地中熱採熱管12に戻るので、地中での熱交換効率も良好となる。   Also in this case, the heat medium radiated into the ground by the geothermal heat collecting pipe 12 of the geothermal heat collecting apparatus 3 flows into the underground heat transfer device 13 and the first evaporator 9 of the refrigerant circuit 10. After heat exchange and further cooling by the evaporator 9, the refrigerant flows into the second usage-side heat exchanger 53, so that the cooling performance by the second usage-side heat exchanger 53 can be improved. . Then, the heat medium exiting the second use side heat exchanger 53 flows into the second use side heat exchanger 46 and exchanges heat with the second radiator 39 of the refrigerant circuit 37 to increase the temperature. After that, since it returns to the underground heat collecting pipe 12, the heat exchange efficiency in the ground is also improved.

一方、冷媒回路37の冷媒は第2の放熱器39にて第2の利用側伝熱器46を流れる熱媒体に対して放熱し、その後、第2の膨張機構41で絞られ、第2の蒸発器42に流入して放熱器36を流れる冷媒から吸熱する循環を繰り返すので、冷媒回路37、10の運転効率も良好となる。   On the other hand, the refrigerant in the refrigerant circuit 37 radiates heat to the heat medium flowing through the second usage-side heat exchanger 46 by the second radiator 39, and is then throttled by the second expansion mechanism 41, Since the circulation of absorbing heat from the refrigerant flowing into the evaporator 42 and flowing through the radiator 36 is repeated, the operation efficiency of the refrigerant circuits 37 and 10 is also improved.

また、循環ポンプ56が運転されると、第1の利用側伝熱器18で冷媒回路10の第1の放熱器7からの放熱で加熱された熱媒体は、配管66、循環ポンプ56、配管67、三方弁57を経て第3の利用側熱交換器68に流入し、そこで放熱した後、配管69、三方弁54、配管62を経て再度第1の利用側伝熱器18に戻る循環を繰り返すので、これにより、給湯用熱交換器71に循環される貯湯タンク73内の水を加熱し、給湯を行うことが可能となる。これらにより、地中熱利用ヒートポンプ装置1は給湯を行いながら、極めて性能のよい冷房運転を高効率で実現することが可能となる。   When the circulation pump 56 is operated, the heat medium heated by the heat radiation from the first radiator 7 of the refrigerant circuit 10 by the first usage-side heat transfer device 18 is the piping 66, the circulation pump 56, the piping. 67, flows into the third usage side heat exchanger 68 through the three-way valve 57, radiates heat, and then returns to the first usage side heat exchanger 18 through the pipe 69, the three-way valve 54, and the pipe 62. Since it repeats, it becomes possible to heat the water in the hot water storage tank 73 circulated by the heat exchanger 71 for hot water supply, and to perform hot water supply here. As a result, the geothermal heat pump device 1 can achieve highly efficient cooling operation with high efficiency while supplying hot water.

次に、秋季や冬季に前述したモード切換スイッチによる指令入力で暖房運転(第1の運転モード)が開始されると、制御装置4は三方弁16、19を制御し、図15に示すようにそれぞれの第2の出口16B、19Bを開く。また、三方弁54、及び、三方弁57については第1、第2の双方の出口54A、54B、及び、57A、57Bを開く。そして、第1の圧縮機6、第2の圧縮機38、及び、各循環ポンプ14、56、72を運転する。第1の冷媒回路10及び第2の冷媒回路37の動作については前述同様である。   Next, when the heating operation (first operation mode) is started by the command input from the mode change switch described above in autumn or winter, the control device 4 controls the three-way valves 16 and 19, as shown in FIG. Open the respective second outlets 16B, 19B. For the three-way valve 54 and the three-way valve 57, both the first and second outlets 54A and 54B and 57A and 57B are opened. Then, the first compressor 6, the second compressor 38, and the circulation pumps 14, 56, 72 are operated. The operations of the first refrigerant circuit 10 and the second refrigerant circuit 37 are the same as described above.

一方、地中熱採熱装置3の循環ポンプ14が運転されると、地中熱採熱管12で例えば15℃程の温度の地中から吸熱し(即ち、地中で温められ)、10℃程に温度が上昇した熱媒体は地中熱採熱管12から吸引され、配管22を通って地中熱伝熱器13に流入する。ここで、第1の冷媒回路10の第1の蒸発器9に放熱(蒸発器9内の冷媒は吸熱し、5℃程から8℃程になる)して冷却され、7℃程となり、循環ポンプ14及び三方弁16を経て地中熱採熱管12に戻り、再び吸熱する循環を繰り返す。   On the other hand, when the circulation pump 14 of the geothermal heat collecting device 3 is operated, the geothermal heat collecting pipe 12 absorbs heat from the ground at a temperature of about 15 ° C. (ie, warms in the ground), 10 ° C. The heat medium whose temperature has risen to the extent is sucked from the underground heat collecting pipe 12 and flows into the underground heat exchanger 13 through the pipe 22. Here, heat is radiated to the first evaporator 9 of the first refrigerant circuit 10 (the refrigerant in the evaporator 9 absorbs heat and becomes about 5 to 8 ° C.) and is cooled to about 7 ° C. It returns to the underground heat collecting pipe 12 through the pump 14 and the three-way valve 16 and repeats the cycle of absorbing heat again.

また、循環ポンプ56が運転されると、第1の利用側伝熱器18、第2の利用側伝熱器46内で第1の放熱器7、第2の放熱器39内を流れる冷媒から吸熱して温度上昇した熱媒体は、配管66、61、64、三方弁19、循環ポンプ56、配管67、三方弁57を通って第1の利用側熱交換器58又は第3の利用側熱交換器68に入り、それらで放熱した後、三方弁54、配管62、63を経て再び第1の利用側伝熱器18、第2の利用側伝熱器46に流入する循環を繰り返す。第1の利用側熱交換器58にも図示しない送風機により室内空気が循環されるので、室内空気は第1の利用側熱交換器58内の熱媒体により加熱され、これにより、室内(被空調空間)は暖房される。   In addition, when the circulation pump 56 is operated, the refrigerant that flows in the first radiator 7 and the second radiator 39 in the first user-side heat transfer device 18 and the second user-side heat transfer device 46 is used. The heat medium that has absorbed the temperature and has risen in temperature passes through the pipes 66, 61, 64, the three-way valve 19, the circulation pump 56, the pipe 67, and the three-way valve 57, and then the first use side heat exchanger 58 or the third use side heat. After entering the exchanger 68 and radiating heat with them, the circulation which flows into the 1st utilization side heat exchanger 18 and the 2nd utilization side heat exchanger 46 again through the three-way valve 54 and the piping 62 and 63 is repeated. Since the indoor air is also circulated by the blower (not shown) in the first usage-side heat exchanger 58, the indoor air is heated by the heat medium in the first usage-side heat exchanger 58. The space is heated.

また、給湯用熱交換器71に循環される貯湯タンク73内の水も加熱し、給湯を行うことが可能となるので、これらにより、地中熱利用ヒートポンプ装置1は給湯を行いながら、極めて性能のよい暖房運転を高効率で実現することが可能となる。   Moreover, since the water in the hot water storage tank 73 circulated to the hot water supply heat exchanger 71 can also be heated and hot water can be supplied, the geothermal heat pump device 1 can perform extremely hot performance while supplying hot water. It is possible to realize a good heating operation with high efficiency.

尚、上記各実施例では外気温度、室内温度と室内設定温度で冷凍サイクル装置2と地中熱採熱装置3を制御したが、それに限らず、外気温湿度や室内の湿度に基づき、或いは、温度に加えてそれらを加味して冷房負荷を判断し、制御装置4により制御するようにしてもよい。   In each of the above-described embodiments, the refrigeration cycle device 2 and the geothermal heat collecting device 3 are controlled by the outside air temperature, the room temperature, and the room set temperature, but not limited thereto, based on the outside air temperature humidity or the room humidity, or The cooling load may be determined by considering them in addition to the temperature, and may be controlled by the control device 4.

また、冷凍サイクル装置2を停止する運転状態は上記全ての実施例において有効であり、図11,図15の場合には、利用側熱交換器17、58は床暖房用等の熱交換器でもよい。更に、図12〜図5の場合、第1の冷媒回路10と第2の冷媒回路37から成る所謂二元冷凍装置で冷凍サイクル装置2を構成したが、それに限らず、冷媒回路10の第1の放熱器7の下流側を分流して、一方に第2の圧縮機38を組み込み、第2の放熱器39の出口を膨張機構8の入口で合流させても有効である。その場合には、第2の圧縮機38及び第2の放熱器39は、第1の圧縮機6及び第1の放熱器7の後段側となり、両者は所謂二段冷凍装置を構成することになる。   In addition, the operating state in which the refrigeration cycle apparatus 2 is stopped is effective in all the above embodiments. In the case of FIGS. 11 and 15, the use side heat exchangers 17 and 58 may be heat exchangers for floor heating or the like. Good. Furthermore, in the case of FIG. 12 to FIG. 5, the refrigeration cycle apparatus 2 is configured by a so-called binary refrigeration apparatus including the first refrigerant circuit 10 and the second refrigerant circuit 37. It is also effective to divide the downstream side of the radiator 7 and incorporate the second compressor 38 on one side and join the outlet of the second radiator 39 at the inlet of the expansion mechanism 8. In that case, the second compressor 38 and the second radiator 39 are on the rear stage side of the first compressor 6 and the first radiator 7, and both constitute a so-called two-stage refrigeration apparatus. Become.

更に、上記各実施例では暖房運転も行うことができる地中熱利用ヒートポンプ装置1で説明したが、それに限らず、請求項1の発明については冷房運転のみが可能な装置であっても有効である。   Further, in each of the above embodiments, the geothermal heat pump device 1 that can perform the heating operation has been described. However, the invention is not limited thereto, and the invention of claim 1 is effective even in an apparatus that can perform only the cooling operation. is there.

1 地中熱利用ヒートポンプ装置
2 冷凍サイクル装置
3 地中熱採熱装置
4 制御装置
6、38 圧縮機
7、36、39 放熱器
8、41 膨張機構
9、42 蒸発器
10、37 冷媒回路
12 地中熱採熱管
13 地中熱伝熱器
14、21、51、56、72 循環ポンプ
16、19、43、47、54、57 三方弁
17、34、53、58、68 利用側熱交換器
18、46 利用側伝熱器
24、26 バイパス管
27 熱媒体循環装置
DESCRIPTION OF SYMBOLS 1 Heat pump apparatus using geothermal heat 2 Refrigerating cycle apparatus 3 Geothermal heat collecting apparatus 4 Control apparatus 6, 38 Compressor 7, 36, 39 Radiator 8, 41 Expansion mechanism 9, 42 Evaporator 10, 37 Refrigerant circuit 12 Ground Medium heat collection pipe 13 Geothermal heat exchanger 14, 21, 51, 56, 72 Circulation pump 16, 19, 43, 47, 54, 57 Three-way valve 17, 34, 53, 58, 68 Usage side heat exchanger 18 , 46 Utilization side heat transfer device 24, 26 Bypass pipe 27 Heat medium circulation device

Claims (10)

圧縮機と、放熱器と、膨張機構と、蒸発器を含む冷媒回路を有する冷凍サイクル装置と、
地中に埋設された地中熱採熱管と、
前記蒸発器と熱交換関係に設けられた地中熱伝熱器と、
空調を行うための利用側熱交換器と、
前記放熱器と熱交換関係に設けられた利用側伝熱器と、
これら地中熱採熱管、地中熱伝熱器、利用側熱交換器、及び、利用側伝熱器への熱媒体の流通を制御する熱媒体循環装置と、
前記冷凍サイクル装置及び熱媒体循環装置を制御する制御装置を備え、
該制御装置は、前記熱媒体循環装置により、前記地中熱採熱管、前記地中熱伝熱器、前記利用側熱交換器、及び、前記利用側伝熱器の順で熱媒体を循環させることを特徴とする地中熱利用ヒートポンプ装置。
A refrigeration cycle apparatus having a compressor, a radiator, an expansion mechanism, and a refrigerant circuit including an evaporator;
A underground heat collecting pipe buried in the ground,
An underground heat exchanger provided in a heat exchange relationship with the evaporator;
A user-side heat exchanger for air conditioning;
A use side heat exchanger provided in a heat exchange relationship with the radiator;
These underground heat collection tubes, underground heat exchangers, use side heat exchangers, and heat medium circulation devices that control the flow of the heat medium to the use side heat exchangers ,
A control device for controlling the refrigeration cycle device and the heat medium circulation device;
The control device causes the heat medium circulation device to circulate the heat medium in the order of the underground heat collection pipe, the underground heat transfer device, the use side heat exchanger, and the use side heat transfer device. A heat pump device using underground heat.
圧縮機と、放熱器と、膨張機構と、蒸発器を含む冷媒回路を有する冷凍サイクル装置と、
地中に埋設された地中熱採熱管と、
前記蒸発器と熱交換関係に設けられた地中熱伝熱器と、
空調を行うための利用側熱交換器と、
前記放熱器と熱交換関係に設けられた利用側伝熱器と、
これら地中熱採熱管、地中熱伝熱器、利用側熱交換器、及び、利用側伝熱器への熱媒体の流通を制御する熱媒体循環装置と、
前記冷凍サイクル装置及び熱媒体循環装置を制御する制御装置を備え、
該制御装置は、前記熱媒体循環装置により、前記地中熱採熱管と前記地中熱伝熱器との間で前記熱媒体を循環させると共に、前記利用側熱交換器と前記利用側伝熱器との間で前記熱媒体を循環させる第1の運転モードと、
前記熱媒体循環装置により、前記地中熱採熱管、前記地中熱伝熱器、前記利用側熱交換器、及び、前記利用側伝熱器の順で前記熱媒体を循環させる第2の運転モードを有することを特徴とする地中熱利用ヒートポンプ装置。
A refrigeration cycle apparatus having a compressor, a radiator, an expansion mechanism, and a refrigerant circuit including an evaporator;
A underground heat collecting pipe buried in the ground,
An underground heat exchanger provided in a heat exchange relationship with the evaporator;
A user-side heat exchanger for air conditioning;
A use side heat exchanger provided in a heat exchange relationship with the radiator;
These underground heat collection tubes, underground heat exchangers, use side heat exchangers, and heat medium circulation devices that control the flow of the heat medium to the use side heat exchangers,
A control device for controlling the refrigeration cycle device and the heat medium circulation device;
The control device circulates the heat medium between the underground heat collection pipe and the underground heat transfer device by the heat medium circulation device, and also uses the use side heat exchanger and the use side heat transfer. A first operation mode in which the heat medium is circulated with a container;
A second operation in which the heat medium is circulated in the order of the underground heat collection pipe, the underground heat exchanger, the use side heat exchanger, and the use side heat exchanger by the heat medium circulation device. A heat pump device using geothermal heat, characterized by having a mode.
圧縮機と、放熱器と、膨張機構と、蒸発器を含む冷媒回路を有する冷凍サイクル装置と、
地中に埋設された地中熱採熱管と、
前記蒸発器と熱交換関係に設けられた地中熱伝熱器と、
空調を行うための第1及び第2の利用側熱交換器と、
前記放熱器と熱交換関係に設けられた利用側伝熱器と、
これら地中熱採熱管、地中熱伝熱器、両利用側熱交換器、及び、利用側伝熱器への熱媒体の流通を制御する熱媒体循環装置と、
前記冷凍サイクル装置及び熱媒体循環装置を制御する制御装置を備え、
該制御装置は、前記熱媒体循環装置により、前記地中熱採熱管と前記地中熱伝熱器との間で前記熱媒体を循環させると共に、前記第1の利用側熱交換器と前記利用側伝熱器との間で前記熱媒体を循環させる第1の運転モードと、
前記熱媒体循環装置により、前記地中熱採熱管、前記地中熱伝熱器、前記第2の利用側熱交換器、及び、前記利用側伝熱器の順で前記熱媒体を循環させる第2の運転モードを有することを特徴とする地中熱利用ヒートポンプ装置。
A refrigeration cycle apparatus having a compressor, a radiator, an expansion mechanism, and a refrigerant circuit including an evaporator;
A underground heat collecting pipe buried in the ground,
An underground heat exchanger provided in a heat exchange relationship with the evaporator;
First and second use side heat exchangers for air conditioning;
A use side heat exchanger provided in a heat exchange relationship with the radiator;
These underground heat collection tubes, underground heat exchangers, both use side heat exchangers, and a heat medium circulation device that controls the flow of the heat medium to the use side heat exchangers,
A control device for controlling the refrigeration cycle device and the heat medium circulation device;
The control device circulates the heat medium between the underground heat collection pipe and the underground heat exchanger by the heat medium circulation device, and also uses the first use-side heat exchanger and the use. A first operation mode in which the heat medium is circulated with a side heat exchanger;
The heat medium circulating device circulates the heat medium in the order of the underground heat collection pipe, the underground heat exchanger, the second usage side heat exchanger, and the usage side heat exchanger. A heat pump device using geothermal heat, characterized by having two operation modes.
前記制御装置は、前記熱媒体循環装置により、前記利用側伝熱器を出た前記熱媒体の一部を分流し、前記第1の利用側熱交換器に流した後、前記第2の利用側熱交換器を出た前記熱媒体に合流させる第3の運転モードを有することを特徴とする請求項3に記載の地中熱利用ヒートポンプ装置。   The controller uses the heat medium circulation device to divert a part of the heat medium that has exited the use side heat transfer device, and to flow to the first use side heat exchanger. The geothermal heat utilization heat pump device according to claim 3, further comprising a third operation mode in which the heat medium exiting the side heat exchanger is joined. 第1の圧縮機及び第1の放熱器と、膨張機構と、蒸発器と、前記第1の圧縮機及び第1の放熱器に対して二元接続の高元側、若しくは、二段接続の後段側の関係で設けられた第2の圧縮機及び第2の放熱器を含む冷媒回路を有する冷凍サイクル装置と、
地中に埋設された地中熱採熱管と、
前記蒸発器と熱交換関係に設けられた地中熱伝熱器と、
空調を行うための利用側熱交換器と、
前記第1の放熱器と熱交換関係に設けられた第1の利用側伝熱器と、
前記第2の放熱器と熱交換関係に設けられた第2の利用側伝熱器と、
これら地中熱採熱管、地中熱伝熱器、利用側熱交換器、第1の利用側伝熱器、及び、第2の利用側伝熱器への熱媒体の流通を制御する熱媒体循環装置と、
前記冷凍サイクル装置及び熱媒体循環装置を制御する制御装置を備え、
該制御装置は、前記熱媒体循環装置により、前記地中熱採熱管と前記地中熱伝熱器との間で前記熱媒体を循環させると共に、前記利用側熱交換器と前記第1及び第2の利用側伝熱器との間で前記熱媒体を循環させる第1の運転モードと、
前記熱媒体循環装置により、前記地中熱採熱管、前記地中熱伝熱器、前記利用側熱交換器、及び、前記第1の利用側伝熱器の順で前記熱媒体を循環させる第2の運転モードを有することを特徴とする地中熱利用ヒートポンプ装置。
The first compressor and the first radiator, the expansion mechanism, the evaporator, the high-side side of the binary connection to the first compressor and the first radiator, or the two-stage connection A refrigeration cycle apparatus having a refrigerant circuit including a second compressor and a second radiator provided in a relation on the rear stage side;
A underground heat collecting pipe buried in the ground,
An underground heat exchanger provided in a heat exchange relationship with the evaporator;
A user-side heat exchanger for air conditioning;
A first user-side heat exchanger provided in a heat exchange relationship with the first radiator;
A second user-side heat exchanger provided in a heat exchange relationship with the second radiator;
A heat medium that controls the flow of the heat medium to these underground heat collection tubes, underground heat exchangers, use-side heat exchangers, first use-side heat transfer units, and second use-side heat transfer units A circulation device;
A control device for controlling the refrigeration cycle device and the heat medium circulation device;
The control device circulates the heat medium between the geothermal heat collection pipe and the geothermal heat exchanger by the heat medium circulation device, and the use side heat exchanger and the first and first A first operation mode in which the heat medium is circulated between the two use side heat exchangers;
The heat medium circulating device circulates the heat medium in the order of the underground heat collecting pipe, the underground heat exchanger, the use side heat exchanger, and the first use side heat exchanger. A heat pump device using geothermal heat, characterized by having two operation modes.
第1の圧縮機及び第1の放熱器と、膨張機構と、蒸発器と、前記第1の圧縮機及び第1の放熱器に対して二元接続の高元側、若しくは、二段接続の後段側の関係で設けられた第2の圧縮機及び第2の放熱器を含む冷媒回路を有する冷凍サイクル装置と、
地中に埋設された地中熱採熱管と、
前記蒸発器と熱交換関係に設けられた地中熱伝熱器と、
空調を行うための第1及び第2の利用側熱交換器と、
給湯を行うための第3の利用側熱交換器と、
前記第1の放熱器と熱交換関係に設けられた第1の利用側伝熱器と、
前記第2の放熱器と熱交換関係に設けられた第2の利用側伝熱器と、
これら地中熱採熱管、地中熱伝熱器、各利用側熱交換器、第1の利用側伝熱器、及び、第2の利用側伝熱器への熱媒体の流通を制御する熱媒体循環装置と、
前記冷凍サイクル装置及び前記熱媒体循環装置を制御する制御装置を備え、
該制御装置は、前記熱媒体循環装置により、前記地中熱採熱管と前記地中熱伝熱器との間で前記熱媒体を循環させると共に、前記第1の利用側熱交換器及び第3の利用側熱交換器と前記第1及び第2の利用側伝熱器との間で前記熱媒体を循環させる第1の運転モードと、
前記熱媒体循環装置によって前記地中熱採熱管、前記地中熱伝熱器、前記第2の利用側熱交換器、及び、前記第2の利用側伝熱器の順で前記熱媒体を循環させ、且つ、前記第3の利用側熱交換器と前記第1の利用側伝熱器との間で前記熱媒体を循環させる第2の運転モードを有することを特徴とする地中熱利用ヒートポンプ装置。
The first compressor and the first radiator, the expansion mechanism, the evaporator, the high-side side of the binary connection to the first compressor and the first radiator, or the two-stage connection A refrigeration cycle apparatus having a refrigerant circuit including a second compressor and a second radiator provided in a relation on the rear stage side;
A underground heat collecting pipe buried in the ground,
An underground heat exchanger provided in a heat exchange relationship with the evaporator;
First and second use side heat exchangers for air conditioning;
A third user-side heat exchanger for supplying hot water;
A first user-side heat exchanger provided in a heat exchange relationship with the first radiator;
A second user-side heat exchanger provided in a heat exchange relationship with the second radiator;
Heat that controls the flow of the heat medium to these underground heat collection tubes, underground heat exchangers, each use-side heat exchanger, first use-side heat transfer, and second use-side heat transfer A medium circulation device;
A control device for controlling the refrigeration cycle device and the heat medium circulation device;
The control device circulates the heat medium between the underground heat collection pipe and the underground heat exchanger by the heat medium circulation device, and also includes the first use side heat exchanger and the third heat exchanger. A first operation mode for circulating the heat medium between the use side heat exchanger and the first and second use side heat exchangers;
The heat medium is circulated in the order of the underground heat collection pipe, the underground heat exchanger, the second usage side heat exchanger, and the second usage side heat exchanger by the heating medium circulation device. And a geothermal heat utilization heat pump characterized by having a second operation mode for circulating the heat medium between the third utilization side heat exchanger and the first utilization side heat exchanger. apparatus.
前記蒸発器を流れる冷媒と前記地中熱伝熱器を流れる熱媒体は対向流となると共に、前記放熱器を流れる冷媒と前記利用側伝熱器を流れる熱媒体、又は、前記第1の放熱器を流れる冷媒と前記第1の利用側伝熱器を流れる熱媒体、又は、前記第2の放熱器を流れる冷媒と前記第2の利用側伝熱器を流れる熱媒体は対向流となることを特徴とする請求項1乃至請求項6のうちの何れかに記載の地中熱利用ヒートポンプ装置。 The refrigerant flowing through the evaporator and the heat medium flowing through the underground heat exchanger are opposed to each other, and the refrigerant flowing through the radiator and the heat medium flowing through the user-side heat exchanger , or the first heat dissipation. The refrigerant flowing through the heater and the heat medium flowing through the first user-side heat transfer device, or the refrigerant flowing through the second heat radiator and the heat medium flowing through the second user-side heat transfer device are opposed to each other. The heat pump apparatus using geothermal heat according to any one of claims 1 to 6. 前記制御装置は、前記地中熱採熱管、地中熱伝熱器、利用側熱交換器、及び、利用側伝熱器の順で熱媒体を循環させる状態における被空調空間の冷房負荷、温度、湿度、外気の温度、湿度のうちの一つ、若しくは、それらの組み合わせ、又は、前記第2の運転モードにおける前記被空調空間の冷房負荷、温度、湿度、外気の温度、湿度のうちの一つ、若しくは、それらの組み合わせに基づき、前記冷凍サイクル装置の運転を制御することを特徴とする請求項1乃至請求項7のうちの何れかに記載の地中熱利用ヒートポンプ装置。 The control device is a cooling load and temperature of the air-conditioned space in a state where the heat medium is circulated in the order of the underground heat collection pipe, the underground heat exchanger, the use side heat exchanger, and the use side heat exchanger. , humidity, outside air temperature, one of the humidity, or combinations thereof, or, wherein in the second operating mode cooling load of the air-conditioned space, temperature, humidity, outside air temperature, one of the humidity The operation of the said refrigerating-cycle apparatus is controlled based on one or those combinations, The geothermal heat pump apparatus in any one of the Claims 1 thru | or 7 characterized by the above-mentioned. 前記制御装置は、前記地中熱採熱管、地中熱伝熱器、利用側熱交換器、及び、利用側伝熱器の順で熱媒体を循環させる状態において、又は、前記第2の運転モードにおいて前記冷凍サイクル装置を停止する制御状態を有することを特徴とする請求項1乃至請求項8のうちの何れかに記載の地中熱利用ヒートポンプ装置。 The control device, the underground heat Tonetsu tube, underground heat heat transfer device, the usage-side heat exchanger, and, in a state in which the heat medium is circulated in the order of the usage-side heat transfer unit, or the second operating The geothermal heat pump device according to any one of claims 1 to 8 , wherein in the mode, the refrigeration cycle device is controlled to stop. 前記冷凍サイクル装置の冷媒回路内に、冷媒として二酸化炭素を封入したことを特徴とする請求項1乃至請求項9のうちの何れかに記載の地中熱利用ヒートポンプ装置。
The ground heat utilization heat pump device according to any one of claims 1 to 9, wherein carbon dioxide is enclosed as a refrigerant in a refrigerant circuit of the refrigeration cycle apparatus.
JP2012119795A 2012-05-25 2012-05-25 Geothermal heat pump device Expired - Fee Related JP5969268B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012119795A JP5969268B2 (en) 2012-05-25 2012-05-25 Geothermal heat pump device
PCT/JP2013/003082 WO2013175731A1 (en) 2012-05-25 2013-05-15 Geothermal heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012119795A JP5969268B2 (en) 2012-05-25 2012-05-25 Geothermal heat pump device

Publications (2)

Publication Number Publication Date
JP2013245874A JP2013245874A (en) 2013-12-09
JP5969268B2 true JP5969268B2 (en) 2016-08-17

Family

ID=49623444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012119795A Expired - Fee Related JP5969268B2 (en) 2012-05-25 2012-05-25 Geothermal heat pump device

Country Status (2)

Country Link
JP (1) JP5969268B2 (en)
WO (1) WO2013175731A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6147659B2 (en) * 2013-12-19 2017-06-14 株式会社コロナ Heat pump equipment
CN105627631A (en) * 2014-11-01 2016-06-01 陕西四季春清洁热源股份有限公司 Deep well heat pump device
CN106247507A (en) * 2016-09-08 2016-12-21 安徽新富地能源科技有限公司 A kind of refrigeration plant using ground temperature energy effect
EP3299735B1 (en) * 2016-09-23 2022-11-23 Daikin Industries, Limited System for air-conditioning and hot-water supply
JP6717210B2 (en) * 2017-01-12 2020-07-01 株式会社デンソー Magnetocaloric heat pump system
DE102017208079A1 (en) * 2017-05-12 2018-11-15 Siemens Aktiengesellschaft Apparatus and method for increasing the heat yield of a heat source
JP6912088B2 (en) * 2017-09-25 2021-07-28 伸和コントロールズ株式会社 Liquid temperature controller
CN107965936B (en) * 2017-12-16 2024-04-09 河南博纵新能源科技有限公司 Movable geothermal energy collection system
JP2022177977A (en) * 2021-05-19 2022-12-02 東芝キヤリア株式会社 Heat medium circulation type heating heat pump device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003207225A (en) * 2002-01-11 2003-07-25 Kubota Corp Heat pump device
JP2006125769A (en) * 2004-10-29 2006-05-18 Denso Corp Heat pump cycle device
JP5524571B2 (en) * 2009-10-28 2014-06-18 株式会社コロナ Heat pump equipment
JP2012078080A (en) * 2010-09-07 2012-04-19 Daikin Industries Ltd Underground heat exchanger and heat pump utilizing the same

Also Published As

Publication number Publication date
WO2013175731A1 (en) 2013-11-28
JP2013245874A (en) 2013-12-09

Similar Documents

Publication Publication Date Title
JP5969268B2 (en) Geothermal heat pump device
JP5327308B2 (en) Hot water supply air conditioning system
JP5752148B2 (en) Air conditioner
JP5279919B2 (en) Air conditioner
JP5377653B2 (en) Air conditioner
JP5455521B2 (en) Air conditioning and hot water supply system
JP5595521B2 (en) Heat pump equipment
JP5183804B2 (en) Refrigeration cycle equipment, air conditioning equipment
WO2012104891A1 (en) Air-conditioning device
JP5241923B2 (en) Air conditioner
WO2012070192A1 (en) Air conditioner
JP5166385B2 (en) Air conditioning and hot water supply system
CN103080668B (en) Air-conditioning device
JP6000373B2 (en) Air conditioner
JP4298990B2 (en) Refrigeration equipment using carbon dioxide as refrigerant
JP6548742B2 (en) Air conditioner
JP5312606B2 (en) Air conditioner
JP5955409B2 (en) Air conditioner
JP2013083439A5 (en)
JP2013083439A (en) Hot water supply air conditioning system
JP2008196794A (en) Heat pump hot water supply cooling/heating apparatus
JP2004218943A (en) Air conditioning and water heater
JP2006010137A (en) Heat pump system
KR100877055B1 (en) Hybrid heat pump type heat and cooling system with feeding steam water
JP5333557B2 (en) Hot water supply air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160707

R150 Certificate of patent or registration of utility model

Ref document number: 5969268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees