JP5966602B2 - Turbine repair method - Google Patents

Turbine repair method Download PDF

Info

Publication number
JP5966602B2
JP5966602B2 JP2012113105A JP2012113105A JP5966602B2 JP 5966602 B2 JP5966602 B2 JP 5966602B2 JP 2012113105 A JP2012113105 A JP 2012113105A JP 2012113105 A JP2012113105 A JP 2012113105A JP 5966602 B2 JP5966602 B2 JP 5966602B2
Authority
JP
Japan
Prior art keywords
turbine
turbine efficiency
recovery value
repair
repaired
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012113105A
Other languages
Japanese (ja)
Other versions
JP2013238197A (en
Inventor
梅沢 修一
修一 梅沢
博文 寺崎
博文 寺崎
創 川島
創 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2012113105A priority Critical patent/JP5966602B2/en
Publication of JP2013238197A publication Critical patent/JP2013238197A/en
Application granted granted Critical
Publication of JP5966602B2 publication Critical patent/JP5966602B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Description

本発明は、燃料コストを加味したタービンの補修方法に関する。   The present invention relates to a turbine repair method that takes fuel cost into consideration.

火力発電プラントや原子力発電プラントにおけるタービンは、蒸気に晒されるため静翼や動翼などの部品が損傷されやすい。そこで、定期的に点検を行い、その際に確認される損傷度合いに基づき、部品の補修が実施されている。また、タービンの性能を維持するには保守が不可欠であり、運転実績や補修実績に基づいて部品の余寿命を予測して、部品の補修時期や交換時期を決定する保守支援システムがある。   Since turbines in thermal power plants and nuclear power plants are exposed to steam, components such as stationary blades and moving blades are easily damaged. Therefore, periodic inspections are carried out, and parts are repaired based on the degree of damage confirmed at that time. In addition, maintenance is indispensable for maintaining the performance of the turbine, and there is a maintenance support system that predicts the remaining life of a part based on the operation result and the repair result and determines the repair time and replacement time of the part.

タービンの保守支援システムとして、保守コストを精度よく見積もることが可能で、部品の交換時期をコストの面でも適切に定め得るようにしたものがある(例えば、特許文献1参照)。   As a maintenance support system for turbines, there is one that can accurately estimate maintenance costs and can appropriately determine the replacement timing of parts in terms of costs (see, for example, Patent Document 1).

特開2004−258858号公報JP 2004-258858 A

しかし、燃料コストを加味したタービンの補修効果の評価や定量化はなされていないので、補修コストに対するタービン効率の向上によるメリットの特定は困難であった。例えば、原子力プラントの稼働停止に伴う化石燃料の燃料費の上昇から、火力発電プラントの効率的な運用が求められている。   However, since the evaluation and quantification of the repair effect of the turbine in consideration of the fuel cost has not been made, it is difficult to specify the merit by improving the turbine efficiency with respect to the repair cost. For example, an efficient operation of a thermal power plant is demanded from the increase in the fuel cost of fossil fuels accompanying the suspension of operation of a nuclear power plant.

本発明の目的は、タービンの部品の補修による燃料コストの低減と補修コストとの比較により効率的にタービンの補修を行うことができるタービンの補修方法を提供することである。   The objective of this invention is providing the repair method of the turbine which can repair a turbine efficiently by the reduction of the fuel cost by repair of the components of a turbine, and the comparison with a repair cost.

請求項1の発明に係るタービン補修方法は、複数回の点検で得られた静翼、動翼、静翼パッキン、動翼パッキンの各部品の補修データを蓄積し、部品補修を行った複数回の点検前後のタービン効率の差分を算出してタービン効率回復値として蓄積し、蓄積した前記補修データ及びタービン効率回復値に基づいて、重回帰分析により、タービン効率回復値への各部品の影響係数をそれぞれ求めて蓄積し、それ以降の点検時に、蓄積した各部品の影響係数に基づいて、各部品の補修をした場合の予想タービン効率回復値を求め、予想タービン効率回復値でタービンを運転した場合の燃料コスト低減分が各部品の補修費用より大きいときは各部品の補修を行うタービン補修方法であり、前記部品の補修をした場合の予想タービン効率回復値は、下記(a)式で各部品毎の予想タービン効率回復値を求め、それらを合計して求めることを特徴とする。

Figure 0005966602
Δη:タービン効率の変化
ΔA fin :補修したパッキン面積
C(C 翼_n 、C fin_n ):影響係数 The turbine repair method according to the first aspect of the present invention accumulates repair data of each component of the stationary blade, the moving blade, the stationary blade packing, and the moving blade packing obtained by a plurality of inspections, and performs a plurality of times of repairing the components. The difference in turbine efficiency before and after inspection is calculated and accumulated as a turbine efficiency recovery value. Based on the accumulated repair data and turbine efficiency recovery value, the coefficient of influence of each component on the turbine efficiency recovery value is determined by multiple regression analysis. , And after that, during the subsequent inspections, the expected turbine efficiency recovery value when each part was repaired was determined based on the accumulated influence coefficient of each component, and the turbine was operated at the expected turbine efficiency recovery value. when the fuel cost component of is larger than the maintenance cost of each component is a turbine repair method of performing repairs of the parts, the expected turbine efficiency recovery value when the repair of the part, below (A) determine the expected turbine efficiency recovery value for each component in the formula, and obtaining by summing them.
Figure 0005966602
Δη: Change in turbine efficiency
ΔA fin : Repaired packing area
C (C wing _n, C fin_n): influence coefficient

請求項2の発明に係るタービン補修方法は、複数回の点検で得られた静翼、動翼、静翼パッキン、動翼パッキンの各部品の補修データを蓄積し、部品補修を行った複数回の点検前後のタービン効率の差分を算出してタービン効率回復値として蓄積し、蓄積した前記補修データ及びタービン効率回復値に基づいて、重回帰分析により、タービン効率回復値への各部品の影響係数をそれぞれ求めて蓄積し、それ以降の点検時に、蓄積した各部品の影響係数に基づいて、各部品の補修をした場合の予想タービン効率回復値を求め、予想タービン効率回復値でタービンを運転した場合の燃料コスト低減分が各部品の補修費用より大きいときは各部品の補修を行うタービン補修方法であり、前記各部品の補修をした場合の予想タービン効率回復値は、下記(b)式で各部品毎の予想タービン効率回復値を求め、それらを合計して求めることを特徴とする。

Figure 0005966602
Δη:タービン効率の変化
ΔA fin :補修したパッキン面積
C(C 翼_n 、C fin_n ):影響係数 The turbine repair method according to the invention of claim 2 is a method for accumulating repair data for each component of a stationary blade, a moving blade, a stationary blade packing, and a moving blade packing obtained by a plurality of inspections, and performing a plurality of times of repairing the components. The difference in turbine efficiency before and after inspection is calculated and accumulated as a turbine efficiency recovery value. Based on the accumulated repair data and turbine efficiency recovery value, the coefficient of influence of each component on the turbine efficiency recovery value is determined by multiple regression analysis. , And after that, during the subsequent inspections, the expected turbine efficiency recovery value when each part was repaired was determined based on the accumulated influence coefficient of each component, and the turbine was operated at the expected turbine efficiency recovery value. when the fuel cost component of is larger than the maintenance cost of each component is a turbine repair method of performing repairs of the parts, the expected turbine efficiency recovery value when the repair of the part, below (B) determine the expected turbine efficiency recovery value for each component in the formula, and obtaining by summing them.
Figure 0005966602
Δη: Change in turbine efficiency
ΔA fin : Repaired packing area
C (C wing _n, C fin_n): influence coefficient

請求項3の発明に係るタービン補修方法は、複数回の点検で得られた静翼、動翼、静翼パッキン、動翼パッキンの各部品の補修データを蓄積し、部品補修を行った複数回の点検前後のタービン効率の差分を算出してタービン効率回復値として蓄積し、蓄積した前記補修データ及びタービン効率回復値に基づいて、重回帰分析により、タービン効率回復値への各部品の影響係数をそれぞれ求めて蓄積し、それ以降の点検時に、蓄積した各部品の影響係数に基づいて、各部品の補修をした場合の予想タービン効率回復値を求め、予想タービン効率回復値でタービンを運転した場合の燃料コスト低減分が各部品の補修費用より大きいときは各部品の補修を行うタービン補修方法であり、前記各部品の補修をした場合の予想タービン効率回復値は、下記(c)式で各部品毎の予想タービン効率回復値を求め、それらを合計して求めることを特徴とする。

Figure 0005966602
Δη:タービン効率の変化
ΔA fin :補修したパッキン面積
C(C 翼_n 、C fin_n ):影響係数 The turbine repair method according to the invention of claim 3 accumulates repair data of each component of a stationary blade, a moving blade, a stationary blade packing, and a moving blade packing obtained by a plurality of inspections, and performs a plurality of times of repairing the components. The difference in turbine efficiency before and after inspection is calculated and accumulated as a turbine efficiency recovery value. Based on the accumulated repair data and turbine efficiency recovery value, the coefficient of influence of each component on the turbine efficiency recovery value is determined by multiple regression analysis. , And after that, during the subsequent inspections, the expected turbine efficiency recovery value when each part was repaired was determined based on the accumulated influence coefficient of each component, and the turbine was operated at the expected turbine efficiency recovery value. This is a turbine repair method that repairs each part when the fuel cost reduction is greater than the repair cost of each part. The expected turbine efficiency recovery value when each part is repaired is (C) determine the expected turbine efficiency recovery value for each component in the formula, and obtaining by summing them.
Figure 0005966602
Δη: Change in turbine efficiency
ΔA fin : Repaired packing area
C (C wing _n, C fin_n): influence coefficient

本発明によれば、複数回の点検で得られた各部品の補修データ及び複数回の点検後のタービン効率回復値に基づいてタービン効率回復値への各部品の影響係数をそれぞれ求めて蓄積しておくので、タービンの補修効果を定量化できる。そして、それ以降の点検時に、蓄積した各部品の影響係数に基づいて、各部品の補修をした場合の燃料コスト低減分と各部品の補修費用との比較により、各部品の補修を行うかどうかを判断できるので、各部品の補修の実施による燃料コスト削減、もしくは各部品の補修の非実施による補修コストの削減が期待できる。 According to the present invention , the influence coefficient of each component on the turbine efficiency recovery value is obtained and stored based on the repair data of each component obtained by the multiple inspections and the turbine efficiency recovery value after the multiple inspections. Therefore, the repair effect of the turbine can be quantified. Whether or not to repair each part by comparing the reduction in fuel cost when repairing each part and the repair cost of each part based on the accumulated influence coefficient of each part during subsequent inspections Therefore, it can be expected to reduce the fuel cost by carrying out the repair of each part or the repair cost by not carrying out the repair of each part.

本発明の実施形態に係るタービン補修方法の一例を示すフローチャート。The flowchart which shows an example of the turbine repair method which concerns on embodiment of this invention. 本発明の実施形態で補修対象となるタービンの一部切欠概略構成図。1 is a schematic partially cutaway configuration diagram of a turbine to be repaired in an embodiment of the present invention. 本発明の実施形態により蓄積した高圧タービンの内部効率の一例を示すグラフ。The graph which shows an example of the internal efficiency of the high pressure turbine accumulate | stored by embodiment of this invention.

以下、本発明の実施形態を説明する。図1は本発明の実施形態に係るタービン補修方法の一例を示すフローチャート、図2は本発明の実施形態で補修対象となるタービンの一部切欠概略構成図である。   Embodiments of the present invention will be described below. FIG. 1 is a flowchart showing an example of a turbine repair method according to an embodiment of the present invention. FIG. 2 is a partially cutaway schematic configuration diagram of a turbine to be repaired in the embodiment of the present invention.

図2において、タービン車室には静翼(ノズル)11が外輪12に固定されて設けられ、静翼11を通った蒸気13が回転軸(ロータ)14に取り付けられた動翼(ブレード)15を通り、動翼15に回転力を与える。そして、回転軸14を回転させて回転軸14に取り付けられた図示省略の発電機を駆動する。静翼11と動翼15とは対になって複数段に亘って設けられ、また、各段毎に複数枚数の静翼11と動翼15が設けられている。   In FIG. 2, a stationary blade (nozzle) 11 is fixed to an outer ring 12 in a turbine casing, and a steam 13 passing through the stationary blade 11 is a moving blade (blade) 15 attached to a rotating shaft (rotor) 14. , A rotational force is applied to the moving blade 15. Then, the rotating shaft 14 is rotated to drive a generator (not shown) attached to the rotating shaft 14. The stationary blade 11 and the moving blade 15 are provided as a pair over a plurality of stages, and a plurality of stationary blades 11 and the moving blades 15 are provided for each stage.

蒸気13が静翼11を通り動翼15に流れる際に、静翼入口のほとんどの蒸気は静翼11から動翼15に流れるが、静翼入口の一部の蒸気は、静翼11と回転軸15との間の間隙の静翼パッキン(ノズルパッキン)16及びルートフィン17を通って動翼15に流れる。また、蒸気13が動翼15を通り次段の静翼11に流れる際に、動翼入口のほとんどの蒸気は動翼15を通り静翼11に流れるが、動翼入口の一部の蒸気は、動翼15と外輪12との間の間隙の動翼パッキン(チップフィン)18を通って次段の静翼11に流れる。これら静翼パッキン16及びルートフィン17を流れる蒸気や動翼パッキン18を流れる蒸気は、静翼や動翼をリークした蒸気であり回転軸14を駆動する際のロスとなる。   When the steam 13 flows through the stationary blade 11 to the moving blade 15, most of the steam at the stationary blade inlet flows from the stationary blade 11 to the moving blade 15, but part of the steam at the stationary blade inlet rotates with the stationary blade 11. It flows to the moving blade 15 through the stationary blade packing (nozzle packing) 16 and the root fin 17 in the gap with the shaft 15. Further, when the steam 13 flows through the moving blade 15 to the next stationary blade 11, most of the steam at the moving blade inlet flows through the moving blade 15 to the stationary blade 11. Then, it flows to the next stationary blade 11 through the moving blade packing (chip fin) 18 in the gap between the moving blade 15 and the outer ring 12. The steam flowing through the stationary blade packing 16 and the root fin 17 and the steam flowing through the moving blade packing 18 are steam leaking the stationary blade and the moving blade, and become a loss when driving the rotating shaft 14.

本発明の実施形態では、部品の補修による燃料コスト低減分と部品の補修費用との比較を行うことから、燃料コストに関係する部品に着目する。つまり、部品として、静翼11、動翼15、静翼パッキン16、動翼パッキン18を補修した場合に着目する。   In the embodiment of the present invention, since the fuel cost reduction due to the repair of the component is compared with the repair cost of the component, attention is paid to the component related to the fuel cost. That is, attention is paid to the case where the stationary blade 11, the moving blade 15, the stationary blade packing 16, and the moving blade packing 18 are repaired as parts.

図1において、まず、複数回の点検で得られたタービンの部品の補修データを蓄積する(S1)。すなわち、燃料コストに関係する部品である静翼、動翼、静翼パッキン、動翼パッキンの各部品の補修データを蓄積する。例えば、1回目の点検で、1段目の静翼102枚、1段目の動翼85枚を補修したとか、2回目の点検で、2段目の静翼73枚、2段目の動翼25枚、1段目の静翼パッキン、1段目の動翼パッキンを補修したとか、3回目の点検で、3段目の静翼25枚、3段目の動翼35枚、2段目の静翼パッキン、3段目の動翼パッキンを補修したとかの補修データを蓄積する。なお、ルートフィンの補修も補修データとして蓄積する。   In FIG. 1, first, repair data of turbine parts obtained by a plurality of inspections is accumulated (S1). That is, repair data for each component of the stationary blade, the moving blade, the stationary blade packing, and the moving blade packing, which are components related to the fuel cost, is accumulated. For example, in the first inspection, 102 first-stage vanes were repaired, and in the second inspection, 85 second-stage vanes were repaired. 25 blades, 1st stage stationary blade packing, 1st stage moving blade packing repaired, 3rd stage 25 stationary blades, 3rd stage 35 moving blades, 2nd stage Repair data such as repair of the third stator blade packing and third stator blade packing is stored. Note that repair of root fins is also stored as repair data.

次に、部品補修を行った複数回の点検前後のタービン効率の差分を算出してタービン効率回復値として蓄積する(S2)。例えば、1回目の部品補修を行った点検前のタービン効率がη1であり1回目の点検後のタービン効率がη1’である場合には、その差分η1’−η1を1回目のタービン効率回復値Δη1(=η1’−η1)として算出する。   Next, a difference in turbine efficiency before and after a plurality of inspections in which parts are repaired is calculated and accumulated as a turbine efficiency recovery value (S2). For example, when the turbine efficiency before the inspection after the first part repair is η1 and the turbine efficiency after the first inspection is η1 ′, the difference η1′−η1 is set to the first turbine efficiency recovery value. Calculated as Δη1 (= η1′−η1).

ここで、タービンの各段の内部効率ηn_stageは(1)式で示される。hBn-1はn段目の入口のエンタルピー、hBnはn段目の出口のエンタルピー、hadnは断熱変化時のn段目の出口のエンタルピーである。

Figure 0005966602
Here, the internal efficiency η n_stage of each stage of the turbine is expressed by equation (1). h Bn-1 is the enthalpy of the n - th stage entrance, h Bn is the enthalpy of the n-th stage exit, and h adn is the enthalpy of the n-th stage exit during adiabatic change.
Figure 0005966602

(1)式のhadnは、タービン入口蒸気圧力、タービン入口蒸気温度、タービン出口蒸気圧力特性曲線から計算可能である。また、(1)式のhBn-1及びhBnは(2)式で計算される。

Figure 0005966602
In the equation (1), h adn can be calculated from a turbine inlet steam pressure, a turbine inlet steam temperature, and a turbine outlet steam pressure characteristic curve. Further, h Bn-1 and h Bn in the formula (1) are calculated by the formula (2).
Figure 0005966602

(2)式中のGn はn段目の入口蒸気量、GBLKnはn段目の動翼パッキンを流れる蒸気量(動翼リーク量)、hNn はn段目の静翼出口のエンタルピー、hBn_throughはn段目の動翼を通過した蒸気のエンタルピーである。 In the equation (2), G n is the n-th stage inlet steam amount, G BLKn is the steam amount flowing through the n-th stage blade packing (blade leakage), and h Nn is the enthalpy of the n-th stage stationary blade outlet. , H Bn_through is the enthalpy of the steam that has passed through the nth stage blade.

(2)式のn段目の入口蒸気量Gn は各段ともに同じである。これは、静翼パッキンを通過した静翼リーク量や動翼パッキンを通過した動翼リーク量は次段の入口では合流するからである。従って、n段目の入口蒸気量Gn はタービンに供給される蒸気流量である。動翼のパッキン漏れ量(動翼リーク量)GBLKnはマーチンの公式を用いて算出できる。また、(2)式のhBn_throughは、(3)式で計算できる。

Figure 0005966602
The n-th stage inlet steam amount G n in the equation (2) is the same in each stage. This is because the amount of stator blade leak that has passed through the stator blade packing and the amount of rotor blade leak that has passed through the rotor blade packing merge at the inlet of the next stage. Therefore, the n-th stage inlet steam amount G n is the steam flow rate supplied to the turbine. The packing leakage amount of the moving blade (moving blade leakage amount) G BLKn can be calculated using the Martin formula. In addition, h Bn_through in equation (2) can be calculated by equation (3).
Figure 0005966602

n段目の動翼を通過した蒸気のエンタルピーhBn_throughは、(3)式に示すように、n段目の静翼出口のエンタルピーhNn 、動翼の効率ΦBn の関数fBnで示される。また、(2)式及び(3)式のn段目の静翼出口のエンタルピーhNn は(4)式で計算される。

Figure 0005966602
The enthalpy h Bn_through of the steam that has passed through the n-stage moving blade is expressed by a function f Bn of the n-stage stationary blade outlet enthalpy h Nn and the moving blade efficiency Φ Bn as shown in the equation (3). . Further, the enthalpy h Nn at the nth stage stationary blade outlet in the equations (2) and (3) is calculated by the equation (4).
Figure 0005966602

(4)式中のGn はn段目の入口蒸気量、GNLKnはn段目の静翼パッキンを流れる蒸気量(静翼リーク量)、hBn-1はn段目の入口のエンタルピー、hNn_throughはn段目の静翼を通過した蒸気のエンタルピーである。また、(4)式のhNn_throughは、(5)式で計算できる。

Figure 0005966602
In the equation (4), G n is the n-th stage inlet steam amount, G NLKn is the steam amount flowing through the n-th stage stationary blade packing (static blade leakage amount), and h Bn-1 is the n - th stage inlet enthalpy. , H Nn_through is the enthalpy of the steam that has passed through the nth vane. In addition, h Nn_through in equation (4) can be calculated by equation (5).
Figure 0005966602

n段目の静翼を通過した蒸気のエンタルピーhNn_throughは、(5)式に示すように、n−1段目の動翼出口のエンタルピーhNn 、静翼の効率ΦNn の関数fNnで示される。 The enthalpy h Nn_through of the steam that has passed through the nth stage stator blade is expressed by the function f Nn of the enthalpy h Nn of the n-1 stage rotor blade outlet and the efficiency Φ Nn of the stator blade, as shown in the equation (5). Indicated.

このようにして、部品を補修した場合には、部品を補修した各段の内部効率ηn_stageを(1)式より求め、部品を補修した各段タービン効率回復値を求める。また、タービン全体のタービン効率回復値も求める。 In this way, when the part is repaired, the internal efficiency η n_stage of each stage where the part is repaired is obtained from the equation (1), and each stage turbine efficiency recovery value after repairing the part is obtained. Also, the turbine efficiency recovery value of the entire turbine is obtained.

次に、部品の補修データ及びタービン効率回復値に基づいて、各部品のタービン効率回復値への各部品の影響係数をそれぞれ求める(S3)。   Next, an influence coefficient of each component on the turbine efficiency recovery value of each component is obtained based on the repair data of the component and the turbine efficiency recovery value (S3).

以下、この影響係数について説明する。例えば、100kWの高圧タービンは初段から9段で構成されており、また、各段落は80〜200枚程度の翼(静翼、動翼)から構成されている。これらから、以下のことが考えられる。   Hereinafter, this influence coefficient will be described. For example, a high-pressure turbine of 100 kW is composed of nine stages from the first stage, and each paragraph is composed of about 80 to 200 blades (static blades, moving blades). From these, the following can be considered.

[1](1)式で示される各段落の効率から全体の効率を計算することができる。ここで、各段落の全体効率への影響比率があり、各段落は熱落差や翼長が異なることから各段落の全体効率への影響比率が異なる。なお、各段落内の各翼の影響比率は均等である。 [1] The overall efficiency can be calculated from the efficiency of each paragraph expressed by equation (1). Here, there is an influence ratio on the overall efficiency of each paragraph, and since each paragraph has a different heat drop and blade length, the influence ratio on the overall efficiency of each paragraph is different. In addition, the influence ratio of each wing in each paragraph is equal.

[2]全体効率には、静翼性能(速度係数)、静翼リーク量、動翼性能(速度係数)、動翼リーク量が影響する。各段落においては、翼(静翼、動翼)の枚数が異なるので、各段落の翼(動翼、静翼)に関する影響係数が異なり、また、各段落のパッキンの大きさが異なるので、各段落のパッキン(動翼パッキン、静翼パッキン)に関する影響係数も異なる。なお、ルートフィンは静翼リーク量に影響するので、各段落の静翼に関する影響係数に含める。 [2] The overall efficiency is affected by the stator blade performance (speed coefficient), the stator blade leak amount, the rotor blade performance (speed coefficient), and the rotor blade leak amount. In each paragraph, the number of blades (stator blades, moving blades) is different, so the coefficient of influence on the wings (moving blades, stationary blades) in each paragraph is different, and the packing size in each paragraph is different, so each The influence coefficients for the paragraph packing (moving blade packing, stationary blade packing) are also different. In addition, since a root fin affects a stator blade leak amount, it is included in the influence coefficient regarding the stator blade of each paragraph.

[3](2)式、(4)式において、リーク量は線形的に出口エンタルピー、つまりタービン効率に影響する。 [3] In the equations (2) and (4), the leak amount linearly affects the outlet enthalpy, that is, the turbine efficiency.

[4](2)式、(4)式において、Gn≫GNLKn、Gn≫GBLKnから、翼性能とリーク量の相関によるタービン効率への影響は小さいと考えられ、独立変数とおくことができる。 [4] (2) and (4), G n »G NLKn, from G n »G BLKn, influence on the turbine efficiency due to the correlation of the blade performance and leakage quantity is considered small, put the independent variable be able to.

以上のことから、各段落の影響比率、各段落の翼(動翼、静翼)に関する影響係数、各段落のパッキン(動翼パッキン、静翼パッキン)に関する影響係数が定まると、部品の補修前後でのタービン効率の変化(タービン効率回復値)を求めることができる。   From the above, when the influence ratio of each paragraph, the influence coefficient related to the wing (moving blade, stationary blade) of each paragraph, and the influence coefficient related to the packing (moving blade packing, stationary blade packing) of each paragraph are determined, before and after repair of the parts The change in turbine efficiency (turbine efficiency recovery value) can be obtained.

各段落の影響比率を、各段落の翼(動翼、静翼)に関する影響係数に含めると、部品の補修前後でのタービン効率の変化(タービン効率回復値)は(6)式で表現できる。

Figure 0005966602
When the influence ratio of each paragraph is included in the influence coefficient relating to the blades (moving blades, stationary blades) of each paragraph, the change in turbine efficiency (turbine efficiency recovery value) before and after repair of the parts can be expressed by equation (6).
Figure 0005966602

Δηはタービン効率の変化(タービン効率回復値)、ΔAfinは補修したパッキン面積(各段の静翼パッキンまたは動翼パッキンの面積)、C(C翼_n、Cfin_n)は影響係数(C翼_n:各段の静翼または動翼の影響係数、Cfin_n:各段の静翼パッキンまたは動翼パッキンの影響係数)である。 Δη change in turbine efficiency (turbine efficiency recovery value), (area of vanes packing or blades packing each stage) .DELTA.A fin seal area was repaired, C (C wing _n, C fin_n) is influence coefficient (C wings _n: stationary blades or moving blades of the influence coefficients of each stage, C fin_n: a static influence coefficients of the blade packing or blades packing) of each stage.

(6)式の翼影響係数C翼_n 、パッキン影響係数Cfin_n を予め定めておくと、(6)式を用いて、部品の補修データに基づきタービン効率回復値を求めることができ、部品の補修によるタービン効率回復値を予想できる。つまり、部品の補修データに基づき予想タービン効率回復値を算出できる。 (6) of the wing influence coefficient C wing _n, when determined in advance packing influence coefficient C Fin_n, (6) using the formula, based on the components of the repair data can be obtained turbine efficiency recovery value, parts The turbine efficiency recovery value due to repairs can be predicted. That is, the expected turbine efficiency recovery value can be calculated based on the part repair data.

そこで、ステップS3では、ステップS1で得られた部品の補修データ(実績データ)、及びステップS2で得られたタービン効率回復値(実績データ)に基づいて、多変量解析(重回帰分析)により、タービン効率回復値への各部品の影響係数C(C翼_n:各段の静翼または動翼の影響係数、Cfin_n:各段の静翼パッキンまたは動翼パッキンの影響係数)を予め求めておく。部品の補修データ(実績データ)及びタービン効率回復値(実績データ)が多いほど影響係数C(C翼_n、Cfin_n)の精度は向上する。 Therefore, in step S3, multivariate analysis (multiple regression analysis) is performed based on the part repair data (actual data) obtained in step S1 and the turbine efficiency recovery value (actual data) obtained in step S2. turbine efficiency each component of influence coefficient C to recovery value (C wing _n: stationary blades or moving blades of the influence coefficients of each stage, C fin_n: influence coefficient vane packing or blades packing each stage) previously obtained Keep it. Repair data (actual data) and turbine efficiency recovery value of the component (actual data) the more influence coefficient C (C wing _n, C fin_n) accuracy is improved.

次に、このように各部品の影響係数C(C翼_n、Cfin_n)が蓄積された状態で、タービン効率を計測して蓄積する(S4)。タービン効率の計測は、タービン運転中のタービン効率の監視のためであり、次の点検があるまで定期的または不定期で断続的に行う。なお、タービン効率の計測は、前述したように、タービン入口蒸気圧力及びタービン入口蒸気温度を計測し、(1)式により計算して求める。 Then, In a state where each component of the influence coefficients C (C wing _n, C fin_n) are accumulated, and accumulates the measured turbine efficiency (S4). The measurement of the turbine efficiency is for monitoring the turbine efficiency during turbine operation, and is performed periodically or irregularly until the next inspection. As described above, the turbine efficiency is measured by measuring the turbine inlet steam pressure and the turbine inlet steam temperature and calculating the turbine efficiency using the equation (1).

そして、タービンの点検があるかどうかを判断し(S5)、タービンの点検がない場合にはステップS4に戻り、タービンの点検があるまで待つ。一方、タービンの点検がある場合には、蓄積したタービン効率のうち、点検直前のタービン効率を点検前のタービン効率とする(S6)。タービンの点検にあっては、部品の損傷度合いが必ず補修をしなければならないレベルかどうかを判断する(S7)。例えば、損傷度合いが大きく次回の点検まで使用に耐えないかどうかを判断する。次回の点検まで使用に耐えないと判断される場合には、部品の補修を行い(S8)、部品補修後のタービン効率を計測し点検後のタービン効率とする。そして、点検後にステップS1に戻る。   Then, it is determined whether or not there is a turbine inspection (S5), and if there is no turbine inspection, the process returns to step S4 and waits until there is a turbine inspection. On the other hand, when the turbine is inspected, the turbine efficiency immediately before the inspection among the accumulated turbine efficiencies is set as the turbine efficiency before the inspection (S6). In the inspection of the turbine, it is determined whether or not the damage level of the parts is at a level that must be repaired (S7). For example, it is determined whether the degree of damage is large and it cannot be used until the next inspection. If it is determined that the product cannot be used until the next inspection, the part is repaired (S8), and the turbine efficiency after the part repair is measured to obtain the turbine efficiency after the inspection. And it returns to step S1 after inspection.

一方、ステップS7の判断で部品の補修を必ずしも行う必要がない場合、つまり、次回の点検まで使用に耐え得ると判断される場合には、その点検時に各部品の補修をした場合の予想タービン効率回復値を求める(S10)。この予想タービン効率回復値は、蓄積された影響係数C(C翼_n、Cfin_n)を用いて、(6)式により、各部品毎の予想タービン効率回復値を求め、それらを合計してタービン全体のタービン効率回復値を求める。 On the other hand, if it is not always necessary to repair the part in the determination in step S7, that is, if it is determined that the part can be used until the next inspection, the expected turbine efficiency when each part is repaired at the time of the inspection A recovery value is obtained (S10). The predicted turbine efficiency recovery value is stored influence coefficients C (C wing _n, C fin_n) using, by (6), determine the expected turbine efficiency recovery value for each component, sums them Obtain the turbine efficiency recovery value of the entire turbine.

そして、ここで得られた予想タービン効率回復値でタービンを運転した場合の燃料コスト低減分が各部品の補修費用より大きいか否かを判断する(S11)。ここで、予想タービン効率回復値でタービンを運転した場合の燃料コスト低減分は、例えば、以下のようにして求める。プラント効率は下記の(A)式で示され、燃料コストは下記の(B)式で示される。   Then, it is determined whether or not the fuel cost reduction when the turbine is operated with the predicted turbine efficiency recovery value obtained here is larger than the repair cost of each component (S11). Here, the fuel cost reduction when the turbine is operated at the expected turbine efficiency recovery value is obtained as follows, for example. The plant efficiency is expressed by the following equation (A), and the fuel cost is expressed by the following equation (B).

プラント効率=ボイラ効率×タービン効率×発電機効率
=発電量(燃料量換算)/投入燃料量 …(A)
燃料コスト=投入燃料量×燃料単価 …(B)
すなわち、(A)式から分かるように、タービン効率を向上させるとプラント効率が向上し、同じ発電量であれば投入燃料量が少なくて済む。(B)式から分かるように、投入燃料量が少なくて済むと燃料コストは低減できる。このようにして、タービン効率を向上させたことによる投入燃料量の低減を求め、この投入燃料量の低減分から燃料コスト低減分を求める。そして、燃料コスト低減分が各部品の補修費用より大きいときは、部品の補修は行わない(S12)。その場合は、点検後にステップS4に戻る。
Plant efficiency = boiler efficiency x turbine efficiency x generator efficiency
= Power generation amount (fuel amount conversion) / Input fuel amount (A)
Fuel cost = input fuel amount x fuel unit price (B)
That is, as can be seen from the formula (A), when the turbine efficiency is improved, the plant efficiency is improved. If the power generation amount is the same, the amount of input fuel can be reduced. As can be seen from the equation (B), the fuel cost can be reduced if the amount of input fuel is small. In this way, a reduction in the amount of input fuel due to the improvement in turbine efficiency is obtained, and a reduction in fuel cost is obtained from the reduction in the amount of input fuel. When the fuel cost reduction is larger than the repair cost of each part, the part is not repaired (S12). In that case, it returns to step S4 after inspection.

一方、ステップS11の判定で、燃料コスト低減分が各部品の補修費用より大きくないと判断された場合は、部品の補修を行い(S8)、部品補修後のタービン効率を計測し点検後のタービン効率とする。そして、点検後にステップS1に戻る。   On the other hand, if it is determined in step S11 that the fuel cost reduction is not greater than the repair cost of each part, the part is repaired (S8), the turbine efficiency after the part repair is measured, and the turbine after the inspection is measured. Efficiency. And it returns to step S1 after inspection.

図3は、ある発電プラントの高圧タービンについて、本発明の実施形態により蓄積した高圧タービンの内部効率の一例を示すグラフである。この発電プラントの高圧タービンは9段落からなり、時点T1での点検の際には、すべての段落の静翼を取り替える補修をした。これにより、高圧タービン内部効率は、(A+2)%から(A+6.3)%まで上昇した。その後、(A+5)%〜(A+4)%の範囲で推移した。   FIG. 3 is a graph showing an example of the internal efficiency of the high-pressure turbine accumulated according to the embodiment of the present invention for the high-pressure turbine of a certain power plant. The high-pressure turbine of this power plant consists of nine paragraphs, and during the inspection at time T1, repairs were made by replacing the stationary blades of all paragraphs. This increased the internal efficiency of the high-pressure turbine from (A + 2)% to (A + 6.3)%. Then, it changed in the range of (A + 5)% to (A + 4)%.

そして、時点T2の点検の際には、次回の点検まで使用に耐えないほどの損傷がなかったので、すべての部品について無補修とした。そうすると、高圧タービン内部効率は、(A+4.3)%から(A+2.5)%まで下降した。(A+1)%まで下降した時点T3で点検した。   In the inspection at time point T2, since there was no damage that could not be used until the next inspection, all parts were not repaired. As a result, the internal efficiency of the high-pressure turbine decreased from (A + 4.3)% to (A + 2.5)%. Inspection was performed at time T3 when the temperature dropped to (A + 1)%.

時点T3の点検では、1段目の静翼をすべて取り替えるとともに、4段目、5段目の損傷が激しい静翼の一部を取り替える補修をした。また、2段目〜9段目の他の静翼の一部を溶接補修した。これにより、高圧タービン内部効率は、(A+1)%から(A+5.5)%まで上昇した。その後、(A+5)%〜(A+4)%の範囲で推移した。   In the inspection at time point T3, all the first-stage vanes were replaced, and repairs were performed by replacing a part of the fourth and fifth-stage vanes that were severely damaged. In addition, a part of other stationary blades in the second to ninth stages were repaired by welding. As a result, the internal efficiency of the high-pressure turbine increased from (A + 1)% to (A + 5.5)%. Then, it changed in the range of (A + 5)% to (A + 4)%.

そして、時点T4の点検の際には、次回の点検まで使用に耐えないほどの損傷がなかったので、すべての部品について無補修とした。そうすると、高圧タービン内部効率は、(A+4.7)%から徐々に下降し、次回の点検(時点T5)の際には(A+3.4)%まで下降した。   In the inspection at time T4, since there was no damage that could not be used until the next inspection, all parts were not repaired. Then, the internal efficiency of the high-pressure turbine gradually decreased from (A + 4.7)%, and decreased to (A + 3.4)% at the next inspection (time point T5).

次に、時点T5の点検の際には、1段目の静翼をすべて取り替えるとともに、3段目、4段目、5段目の損傷が激しい静翼の一部を取り替える補修をした。これにより、高圧タービン内部効率は、現時点で(A+4.7)%まで上昇している。   Next, at the time of inspection at time T5, all the first-stage vanes were replaced, and repairs were performed by replacing part of the third, fourth, and fifth-stage vanes. Thereby, the internal efficiency of the high-pressure turbine has increased to (A + 4.7)% at the present time.

以上の説明では、ステップS10において、(6)式により、予想タービン効率回復値を求めるようにしたが、下記の(7)式により、予想タービン効率回復値を求めるようにしてもよい。

Figure 0005966602
In the above description, in step S10 , the expected turbine efficiency recovery value is obtained from equation (6). However, the expected turbine efficiency recovery value may be obtained from equation (7) below.
Figure 0005966602

前述の(6)式では、各段落の影響比率を、各段落の翼(動翼、静翼)に関する影響係数に含めたが、(7)式では、各段落の影響比率を各段落の翼(動翼、静翼)に関する影響係数に含めず、独立変数として扱うようにしたものである。これにより、各段落の熱落差や翼長に応じた影響比率を採用することができる。   In the above equation (6), the influence ratio of each paragraph is included in the influence coefficient related to the wing (moving blade, stationary blade) of each paragraph, but in the expression (7), the influence ratio of each paragraph is the wing ratio of each paragraph. It is not included in the influence coefficient for (moving blades, stationary blades) and is treated as an independent variable. Thereby, the influence ratio according to the heat drop and blade length of each paragraph is employable.

また、(7)式に代えて、下記の(8)式により、予想タービン効率回復値を求めるようにしてもよい。

Figure 0005966602
Further, instead of the equation (7), the expected turbine efficiency recovery value may be obtained by the following equation (8).
Figure 0005966602

この(8)式では、各段落の影響比率を熱落差としたものである。Δhはタービン全体の熱落差比、Δhnはn段目での熱落差比である。 In this equation (8), the influence ratio of each paragraph is a heat drop. Δh is the heat drop ratio of the entire turbine, and Δh n is the heat drop ratio at the nth stage.

以上のように、本発明の実施形態では、タービンの補修内容とプラント性能の向上の関係を定量化した。そのために、まず、タービンにおける燃料コストに関係する部品を、静翼、動翼、静翼パッキン(ルートフィン含む)、動翼パッキンとし、過去の複数回の点検の補修データと、点検前後のタービンの性能向上の比較分析結果のタービン効率回復値とを蓄積する。また、部品の補修内容は、各段落の静翼の交換、修理枚数、動翼の交換、修理枚数、静翼パッキンや動翼パッキンの交換、修理数、チップフィン等の交換、修理数とする。なお、部品の交換、修理数としたが、損傷の度合いを考慮に入れてもよい。   As described above, in the embodiment of the present invention, the relationship between the turbine repair content and the improvement in plant performance is quantified. For this purpose, first, the components related to the fuel cost in the turbine are the stationary blade, the moving blade, the stationary blade packing (including the root fin), and the moving blade packing, and the repair data of the past multiple inspections and the turbine before and after the inspection. The turbine efficiency recovery value of the comparative analysis result of the performance improvement is accumulated. In addition, the repair contents of the parts are the replacement of the stationary blades in each paragraph, the number of repairs, the replacement of the blades, the number of repairs, the replacement of the stator blade packing and the blade packing, the number of repairs, the replacement of tip fins, etc. . In addition, although it was set as the replacement | exchange of parts and the number of repairs, you may consider the degree of damage.

そして、部品の補修がタービン効率の向上に与える影響を多変量解析(重回帰分析)により定量化する。つまり、各部品の影響係数を求めて蓄積し、タービン効率がプラント効率(燃料費)に与える影響をヒートバランス解析し、これらとプラントの稼働率を考慮し、各構成部品の補修による燃料費削減分を算出する。これにより、補修費用と燃料費削減分とから補修メリットを求め、部品の修理の可否を決定する。   Then, the effect of the repair of parts on the improvement of turbine efficiency is quantified by multivariate analysis (multiple regression analysis). In other words, the influence coefficient of each part is obtained and accumulated, heat balance analysis is performed on the effect of turbine efficiency on plant efficiency (fuel cost), and fuel cost reduction is achieved by repairing each component considering these and plant availability. Calculate minutes. Thus, the repair merit is obtained from the repair cost and the fuel cost reduction, and whether or not the part can be repaired is determined.

従って、タービンの補修効果を定量化できることから、補修の実施による燃料費削減、もしくは、補修の非実施による補修費の削減が期待できるものである。   Therefore, since the repair effect of the turbine can be quantified, it can be expected to reduce the fuel cost by performing the repair or the repair cost by not performing the repair.

本発明の実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。この実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   The embodiments of the present invention are presented as examples and are not intended to limit the scope of the invention. The novel embodiment can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. This embodiment and its modifications are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

11…静翼、12…外輪、13…蒸気、14…回転軸、15…動翼、16…静翼パッキン、17…ルートフィン、18…動翼パッキン DESCRIPTION OF SYMBOLS 11 ... Stator blade, 12 ... Outer ring, 13 ... Steam, 14 ... Rotating shaft, 15 ... Rotor blade, 16 ... Stator blade packing, 17 ... Root fin, 18 ... Rotor blade packing

Claims (3)

複数回の点検で得られた静翼、動翼、静翼パッキン、動翼パッキンの各部品の補修データを蓄積し、
部品補修を行った複数回の点検前後のタービン効率の差分を算出してタービン効率回復値として蓄積し、
蓄積した前記補修データ及びタービン効率回復値に基づいて、重回帰分析により、タービン効率回復値への各部品の影響係数をそれぞれ求めて蓄積し、
それ以降の点検時に、蓄積した各部品の影響係数に基づいて、各部品の補修をした場合の予想タービン効率回復値を求め、
予想タービン効率回復値でタービンを運転した場合の燃料コスト低減分が各部品の補修費用より大きいときは各部品の補修を行うタービン補修方法であり、
前記各部品の補修をした場合の予想タービン効率回復値は、下記(a)式で各部品毎の予想タービン効率回復値を求め、それらを合計して求めることを特徴とするタービン補修方法。
Figure 0005966602
Δη:タービン効率の変化
ΔA fin :補修したパッキン面積
C(C 翼_n 、C fin_n ):影響係数
Accumulate repair data for each component of stator blade, rotor blade, stator blade packing, and rotor blade packing obtained through multiple inspections.
Calculate the difference in turbine efficiency before and after multiple inspections where parts were repaired, and accumulate as a turbine efficiency recovery value.
Based on the accumulated repair data and the turbine efficiency recovery value, the multiple regression analysis is used to determine and accumulate the influence coefficient of each component on the turbine efficiency recovery value,
At the subsequent inspection, based on the accumulated influence coefficient of each part, obtain the expected turbine efficiency recovery value when each part is repaired.
This is a turbine repair method that repairs each part when the fuel cost reduction when operating the turbine with the expected turbine efficiency recovery value is greater than the repair cost of each part .
The expected turbine efficiency recovery value when each of the parts is repaired is obtained by calculating an expected turbine efficiency recovery value for each part according to the following equation (a), and summing them .
Figure 0005966602
Δη: Change in turbine efficiency
ΔA fin : Repaired packing area
C (C wing _n, C fin_n): influence coefficient
複数回の点検で得られた静翼、動翼、静翼パッキン、動翼パッキンの各部品の補修データを蓄積し、
部品補修を行った複数回の点検前後のタービン効率の差分を算出してタービン効率回復値として蓄積し、
蓄積した前記補修データ及びタービン効率回復値に基づいて、重回帰分析により、タービン効率回復値への各部品の影響係数をそれぞれ求めて蓄積し、
それ以降の点検時に、蓄積した各部品の影響係数に基づいて、各部品の補修をした場合の予想タービン効率回復値を求め、
予想タービン効率回復値でタービンを運転した場合の燃料コスト低減分が各部品の補修費用より大きいときは各部品の補修を行うタービン補修方法であり、
前記各部品の補修をした場合の予想タービン効率回復値は、下記(b)式で各部品毎の予想タービン効率回復値を求め、それらを合計して求めることを特徴とするタービン補修方法。
Figure 0005966602
Δη:タービン効率の変化
ΔA fin :補修したパッキン面積
C(C 翼_n 、C fin_n ):影響係数
Accumulate repair data for each component of stator blade, rotor blade, stator blade packing, and rotor blade packing obtained through multiple inspections.
Calculate the difference in turbine efficiency before and after multiple inspections where parts were repaired, and accumulate as a turbine efficiency recovery value.
Based on the accumulated repair data and the turbine efficiency recovery value, the multiple regression analysis is used to determine and accumulate the influence coefficient of each component on the turbine efficiency recovery value,
At the subsequent inspection, based on the accumulated influence coefficient of each part, obtain the expected turbine efficiency recovery value when each part is repaired.
This is a turbine repair method that repairs each part when the fuel cost reduction when operating the turbine with the expected turbine efficiency recovery value is greater than the repair cost of each part.
The expected turbine efficiency recovery value when each of the parts is repaired is obtained by calculating an expected turbine efficiency recovery value for each part by the following equation (b) , and summing them .
Figure 0005966602
Δη: Change in turbine efficiency
ΔA fin : Repaired packing area
C (C wing _n, C fin_n): influence coefficient
複数回の点検で得られた静翼、動翼、静翼パッキン、動翼パッキンの各部品の補修データを蓄積し、
部品補修を行った複数回の点検前後のタービン効率の差分を算出してタービン効率回復値として蓄積し、
蓄積した前記補修データ及びタービン効率回復値に基づいて、重回帰分析により、タービン効率回復値への各部品の影響係数をそれぞれ求めて蓄積し、
それ以降の点検時に、蓄積した各部品の影響係数に基づいて、各部品の補修をした場合の予想タービン効率回復値を求め、
予想タービン効率回復値でタービンを運転した場合の燃料コスト低減分が各部品の補修費用より大きいときは各部品の補修を行うタービン補修方法であり、
前記各部品の補修をした場合の予想タービン効率回復値は、下記(c)式で各部品毎の予想タービン効率回復値を求め、それらを合計して求めることを特徴とするタービン補修方法。
Figure 0005966602
Δη:タービン効率の変化
ΔA fin :補修したパッキン面積
C(C 翼_n 、C fin_n ):影響係数
Accumulate repair data for each component of stator blade, rotor blade, stator blade packing, and rotor blade packing obtained through multiple inspections.
Calculate the difference in turbine efficiency before and after multiple inspections where parts were repaired, and accumulate as a turbine efficiency recovery value.
Based on the accumulated repair data and the turbine efficiency recovery value, the multiple regression analysis is used to determine and accumulate the influence coefficient of each component on the turbine efficiency recovery value,
At the subsequent inspection, based on the accumulated influence coefficient of each part, obtain the expected turbine efficiency recovery value when each part is repaired.
This is a turbine repair method that repairs each part when the fuel cost reduction when operating the turbine with the expected turbine efficiency recovery value is greater than the repair cost of each part.
The expected turbine efficiency recovery value when each of the parts is repaired is obtained by calculating an expected turbine efficiency recovery value for each part by the following equation (c) , and summing them .
Figure 0005966602
Δη: Change in turbine efficiency
ΔA fin : Repaired packing area
C (C wing _n, C fin_n): influence coefficient
JP2012113105A 2012-05-17 2012-05-17 Turbine repair method Active JP5966602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012113105A JP5966602B2 (en) 2012-05-17 2012-05-17 Turbine repair method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012113105A JP5966602B2 (en) 2012-05-17 2012-05-17 Turbine repair method

Publications (2)

Publication Number Publication Date
JP2013238197A JP2013238197A (en) 2013-11-28
JP5966602B2 true JP5966602B2 (en) 2016-08-10

Family

ID=49763436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012113105A Active JP5966602B2 (en) 2012-05-17 2012-05-17 Turbine repair method

Country Status (1)

Country Link
JP (1) JP5966602B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6676445B2 (en) * 2016-04-07 2020-04-08 株式会社日立製作所 Maintenance planning support system for power generation units

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11141352A (en) * 1997-11-07 1999-05-25 Hitachi Ltd Maintenance managing device and method for gas turbine high temperature components
JP3614640B2 (en) * 1998-02-10 2005-01-26 東京電力株式会社 Thermal efficiency diagnosis method and apparatus for thermal power plant
JP2002297710A (en) * 2001-03-29 2002-10-11 Hitachi Ltd System and method for supporting maintenance plan of power plant
JP3556931B2 (en) * 2001-09-25 2004-08-25 三菱重工業株式会社 Optimal maintenance plan decision system
JP2004211587A (en) * 2002-12-27 2004-07-29 Toshiba Corp Operational support system for power generation plant
JP2004258858A (en) * 2003-02-25 2004-09-16 Mitsubishi Heavy Ind Ltd Maintenance support system and maintenance method of turbine
US20090125206A1 (en) * 2007-11-08 2009-05-14 General Electric Company Automatic detection and notification of turbine internal component degradation
US20110106680A1 (en) * 2009-10-30 2011-05-05 General Electric Company Turbine operation degradation determination system and method

Also Published As

Publication number Publication date
JP2013238197A (en) 2013-11-28

Similar Documents

Publication Publication Date Title
Chiesa et al. A thermodynamic analysis of different options to break 60% electric efficiency in combined cycle power plants
Zhao et al. Poststall behavior of a multistage high speed compressor at off-design conditions
Aretakis et al. Compressor washing economic analysis and optimization for power generation
Pierobon et al. Design methodology for flexible energy conversion systems accounting for dynamic performance
Schneider et al. Analysis of compressor on-line washing to optimize gas turbine power plant performance
Yoon et al. The effect of clearance on shrouded and unshrouded turbines at two levels of reaction
McBean et al. The development of long last stage steam turbine blades
Lee et al. Thermo-economic analysis on the impact of improving inter-stage packing seals in a 500 MW class supercritical steam turbine power plant
JP5966602B2 (en) Turbine repair method
JP5302264B2 (en) High temperature component life diagnosis method and diagnostic device
JP5618322B2 (en) Thermal efficiency analysis method and thermal efficiency analysis program
Uemura et al. Simulation of unsteady flows through three-stage middle pressure steam turbine in operation
Ito et al. Conceptual design and cooling blade development of 1700° C class high-temperature gas turbine
Maceli et al. Two Phase Flow CFD Modeling of a Steam Turbine Low Pressure Section: Comparison With Data and Correlations
Dinc et al. Fundamental design issues of brush seals for industrial applications
McBean Steam turbine retrofits for power increase and efficiency enhancement
McBean Steam turbine retrofitting for power increase and efficiency enhancement
Eulitz et al. Design and validation of a compressor for a new generation of heavy-duty gas turbines
US20240125673A1 (en) Blade damage evaluation system, blade damage evaluation method, and blade damage evaluation program
Cerri et al. Optimum planning of electricity production
Bancalari et al. Adaptation of the SGT6-6000G to a dynamic power generation market
Banaszkiewicz et al. A Computational Analysis of the Aerodynamic and Aeromechanical Behavior of a Thermo-Well for Steam Temperature Measurement in a Steam Turbine
WO2022255229A1 (en) Steam turbine damage evaluating device, method, and program
Fancello Reliability improvement of gas turbine performance monitoring based on online measurement data processing
Kulkarni Component level modeling of materials degradation for insights into operational flexibility of Existing Coal Power Plants

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160620

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5966602

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150