JP5966390B2 - Continuous fiber reinforcement and method for producing continuous fiber reinforcement - Google Patents

Continuous fiber reinforcement and method for producing continuous fiber reinforcement Download PDF

Info

Publication number
JP5966390B2
JP5966390B2 JP2012017973A JP2012017973A JP5966390B2 JP 5966390 B2 JP5966390 B2 JP 5966390B2 JP 2012017973 A JP2012017973 A JP 2012017973A JP 2012017973 A JP2012017973 A JP 2012017973A JP 5966390 B2 JP5966390 B2 JP 5966390B2
Authority
JP
Japan
Prior art keywords
fiber
continuous fiber
resin
reinforcing material
dtex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012017973A
Other languages
Japanese (ja)
Other versions
JP2013155089A (en
Inventor
大林正佳
野村幸弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2012017973A priority Critical patent/JP5966390B2/en
Publication of JP2013155089A publication Critical patent/JP2013155089A/en
Application granted granted Critical
Publication of JP5966390B2 publication Critical patent/JP5966390B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Reinforcement Elements For Buildings (AREA)

Description

本発明は構造物を補強する、繊維補強材に関する。より詳しくは連続繊維補強材に関する。   The present invention relates to a fiber reinforcing material for reinforcing a structure. More particularly, it relates to a continuous fiber reinforcement.

連続繊維補強材は一般に高強度繊維を連続繊維束とし、結合材として樹脂を含浸させ、熱処理を行い一体化させて製造される。連続繊維補強材は様々な産業分野において使用されており、とりわけ土木や建築の分野においては鉄筋以上の引張強度、耐腐食性に加えて軽量、非磁性の特徴を有するため、鉄筋代替材料としての利用がなされている。
一般に鉄筋はコンクリートと組み合わせて構造材料として使用される。そのため鉄筋代替材料として連続繊維補強材を使用するためには高強度、耐腐食性に加えてコンクリートとの付着性能が高いことが求められる。付着性能は一般に、(1)コンクリートと連続繊維補強材との界面接着と摩擦抵抗、および(2)コンクリートと連続繊維補強材とのアンカー効果で生じると言われているが、一般に連続繊維補強材の表面は結合材である樹脂で覆われているため(1)が付着性能へ与える影響は小さい。そのため付着性能の向上には(2)の検討が重要であり、アンカー効果を高めるために種々の工夫がなされた連続繊維補強材が各メーカーから提案されている。
The continuous fiber reinforcing material is generally manufactured by making high-strength fibers into continuous fiber bundles, impregnating a resin as a binder, and performing heat treatment to integrate them. Continuous fiber reinforcement is used in various industrial fields, especially in the fields of civil engineering and construction, because it has light weight and non-magnetic characteristics in addition to tensile strength and corrosion resistance higher than those of reinforcing bars. It is being used.
In general, reinforcing steel is used as a structural material in combination with concrete. Therefore, in order to use a continuous fiber reinforcement as a reinforcing steel substitute material, in addition to high strength and corrosion resistance, it is required to have high adhesion performance with concrete. Adhesion performance is generally said to be caused by (1) interfacial adhesion and frictional resistance between concrete and continuous fiber reinforcement, and (2) anchor effect between concrete and continuous fiber reinforcement, but generally continuous fiber reinforcement. Since the surface of is covered with a resin as a binding material, the effect of (1) on the adhesion performance is small. For this reason, the study of (2) is important for improving the adhesion performance, and continuous fiber reinforcing materials that have been devised in various ways to enhance the anchor effect have been proposed by various manufacturers.

連続繊維補強材にアンカー効果を生じさせるためには、長さ方向に対して断面積をとったとき、平均断面積に対して大となる断面積を持つ箇所、つまり突起(凸)が存在する必要がある。連続繊維補強材に突起を作る方法としては、大きく以下の2種類が考えられる。それは(i)結合材を熱処理して連続繊維束と一体化させる際に連続繊維補強材の表面に突起を作る方法と、(ii)連続繊維束を編成する際に連続繊維束を長さ方向に対して直行する軸方向への角度が大きくなる様に形成することにより、表面に突起を作る方法である。
(i)の例として、プラスチックロッドの表面に、繊維束等を綾状または螺旋状に巻きつけ付けたものがある。しかしながらこの構造では、突起が破壊され易く、アンカー効果を維持することが難しい問題があった(例えば特許文献1を参照)。
(ii)の例として、連続繊維を組紐や撚糸に編成したものがある。しかしながらアンカー効果を有する突起を作るためには連続繊維束の長さ方向に対して直行する軸方向への角度が大きくなる様に形成する必要がある。つまり組紐では組紐ピッチ(組紐2節当たりの長さ)を減少させることが必要であり、撚糸では撚数を増加させることが必要である。しかしながら組紐ピッチを減少させたり撚数を増加させると連続繊維補強材の引張強度は減少する問題が生じる。すなわちコンクリートの引張強度を補強するために必要な連続繊維補強材の付着性能と引張強度について両者は反比例する関係にあることから、付着性能と引張強度の両方に優れた連続繊維補強材は存在していない。(例えば特許文献2を参照)
In order to produce the anchor effect in the continuous fiber reinforcing material, there is a portion having a cross-sectional area that is larger than the average cross-sectional area when the cross-sectional area is taken in the length direction, that is, a protrusion (convex). There is a need. As a method for forming a protrusion on a continuous fiber reinforcing material, the following two types can be considered. (I) a method in which protrusions are formed on the surface of the continuous fiber reinforcing material when the binder is heat-treated and integrated with the continuous fiber bundle, and (ii) when the continuous fiber bundle is knitted in the longitudinal direction. In this method, protrusions are formed on the surface by forming the angle so as to increase the angle in the direction perpendicular to the axis.
As an example of (i), there is one in which a fiber bundle or the like is wound around the surface of a plastic rod in a twill shape or a spiral shape. However, this structure has a problem that the protrusions are easily broken and it is difficult to maintain the anchor effect (see, for example, Patent Document 1).
As an example of (ii), there is one obtained by knitting continuous fibers into braids or twisted yarns. However, in order to make a projection having an anchor effect, it is necessary to form the projection so that the angle in the axial direction perpendicular to the length direction of the continuous fiber bundle becomes large. That is, it is necessary to decrease the braid pitch (length per two knots of braid) for braids, and it is necessary to increase the number of twists for twisted yarns. However, when the braid pitch is reduced or the number of twists is increased, there arises a problem that the tensile strength of the continuous fiber reinforcement is reduced. In other words, since there is an inverse relationship between the adhesion performance and tensile strength of continuous fiber reinforcement necessary to reinforce the tensile strength of concrete, there is a continuous fiber reinforcement excellent in both adhesion performance and tensile strength. Not. (For example, see Patent Document 2)

社団法人土木学会,コンクリートライブラリー, vol. 72,「連続繊維補強材のコンクリート構造物への適用」(平成4年)Japan Society of Civil Engineers, Concrete Library, vol. 72, “Application of continuous fiber reinforcement to concrete structures” (1992) 社団法人土木学会,コンクリートライブラリー, vol. 88,「連続繊維補強材を用いたコンクリート構造物の設計・施工指針(案)」(平成14年)Japan Society of Civil Engineers, Concrete Library, vol. 88, “Design and construction guidelines for concrete structures using continuous fiber reinforcement (draft)” (2002)

特開平08−199733JP 08-199733 A 特開2003−074146JP2003-074146

本発明は、従来技術の課題を背景になされたもので、付着性能と引張強度の両方に優れた連続繊維補強材を提供することを課題とするものである。   The present invention has been made against the background of the problems of the prior art, and an object of the present invention is to provide a continuous fiber reinforcing material excellent in both adhesion performance and tensile strength.

本発明者らは鋭意検討した結果、以下に示す手段により上記課題を解決できることを見出し本発明に到達した。すなわち本発明は以下の構成からなる。   As a result of intensive studies, the present inventors have found that the above problems can be solved by the following means, and have reached the present invention. That is, the present invention has the following configuration.

1.引張強度が12cN/dtex以上60cN/dtex以下である繊維を使用した補強材であって、任意の長さ1mの試験片に対し、試験片の平均断面積より大となる断面積をとる箇所について直径を求め、直径の大きい上位5点の平均値をxとしたとき、試験片の平均直径yとの比x/yが1.05以上2.00以下となることを特徴とする、連続繊維補強材。
2.任意の長さ1mの試験片に対し、試験片の平均断面積より大となる断面積をとる箇所が5〜30個存在することを特徴とする、上記1に記載の連続繊維補強材。
3. 繊維が組紐または撚糸により形状を形成し、組紐または撚糸の内側に芯材があることを特徴とする、上記1、2いずれかに記載の連続繊維補強材。
4.連続繊維補強材に用いる繊維が炭素繊維、全芳香族ポリアミド繊維、全芳香族ポリエステル繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリビニルアルコール繊維、ポリアセタール繊維、ポリパラフェニレンベンゾビスオキサゾール(PBO)繊維のうち少なくとも1種類以上で構成されていることを特徴とする、上記1〜3いずれかに記載の連続繊維補強材。
5.繊維のヤング係数が400cN/dtex以上3000cN/dtex以下であることを特徴とする、上記1〜4いずれかに記載の連続繊維補強材。
6.連続繊維補強材に熱硬化性樹脂が使用されていること特徴とする、上記1〜5いずれかに記載の連続繊維補強材。
7.樹脂としてエポキシ樹脂又はビニルエステル樹脂が使用されていることを特徴とする、上記1〜6いずれかに記載の連続繊維を使用した補強材。
8.引張強度が12cN/dtex以上60cN/dtex以下である繊維を芯材の外周に組紐、撚糸により配することで、任意の長さ1mの試験片に対し、長さ1cm間隔で直径を100箇所測定し、直径の大きさが上位5点の平均値をx、100点の平均値をyとしたとき、x/yが1.05以上2.00以下となることを特徴とする、連続繊維補強材の製造方法。
1. About a reinforcing material using a fiber having a tensile strength of 12 cN / dtex or more and 60 cN / dtex or less and having a cross-sectional area larger than the average cross-sectional area of the test piece with respect to a test piece having an arbitrary length of 1 m Continuous fiber, characterized in that the ratio x / y with respect to the average diameter y of the test piece is 1.05 or more and 2.00 or less when the diameter is obtained and the average value of the top five points with the largest diameter is x Reinforcement.
2. 2. The continuous fiber reinforcing material according to 1 above, wherein there are 5 to 30 portions having a cross-sectional area larger than the average cross-sectional area of the test piece with respect to a test piece having an arbitrary length of 1 m.
3. 3. The continuous fiber reinforcing material according to any one of the above items 1 and 2, wherein the fiber is formed by a braid or twisted yarn, and a core material is provided inside the braid or twisted yarn.
4). The fiber used for the continuous fiber reinforcing material is at least one of carbon fiber, wholly aromatic polyamide fiber, wholly aromatic polyester fiber, polyethylene fiber, polypropylene fiber, polyvinyl alcohol fiber, polyacetal fiber, and polyparaphenylene benzobisoxazole (PBO) fiber. The continuous fiber reinforcing material according to any one of the above 1 to 3, wherein the continuous fiber reinforcing material is composed of more than one type.
5. 5. The continuous fiber reinforcing material according to any one of 1 to 4 above, wherein the fiber has a Young's modulus of 400 cN / dtex or more and 3000 cN / dtex or less.
6). The continuous fiber reinforcing material according to any one of the above 1 to 5, wherein a thermosetting resin is used for the continuous fiber reinforcing material.
7). The reinforcing material using the continuous fiber according to any one of 1 to 6 above, wherein an epoxy resin or a vinyl ester resin is used as the resin.
8). 100 fibers with a tensile strength of 12 cN / dtex or more and 60 cN / dtex or less are measured at intervals of 1 cm in length with respect to a test piece of arbitrary length of 1 m by arranging braided and twisted fibers on the outer periphery of the core material. The continuous fiber reinforcement is characterized in that x / y is 1.05 or more and 2.00 or less, where x is the average value of the top five points and y is the average value of 100 points. A method of manufacturing the material.

本発明により付着性能および引張強度に優れた連続繊維補強材を提供することができる。   According to the present invention, a continuous fiber reinforcing material excellent in adhesion performance and tensile strength can be provided.

本発明の連続繊維補強材の形状を示す概略図である。It is the schematic which shows the shape of the continuous fiber reinforcement material of this invention. 本発明の連続繊維補強材の作製方法を示す概略図である。It is the schematic which shows the preparation methods of the continuous fiber reinforcement material of this invention. 組紐ピッチの求め方を示す図である。It is a figure which shows how to obtain | require a braid pitch. 突起の数が多い連続繊維補強材を用いて付着性能を測定する際の概略図である。It is the schematic at the time of measuring adhesion | attachment performance using the continuous fiber reinforcement material with many protrusions. 突起の数が少ない連続繊維補強材を用いて付着性能を測定する際の概略図である。It is the schematic at the time of measuring adhesion | attachment performance using the continuous fiber reinforcement material with few protrusions.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明に好ましく使用される高強度繊維は、全芳香族ポリアミド繊維、全芳香族ポリエステル繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリビニルアルコール繊維、ポリアセタール繊維、ポリパラフェニレンベンゾオキサゾール(PBO)繊維などであり、この中から1種類以上の繊維を用いて構成されていることが望ましい。非磁性、耐アルカリ性、耐薬品性、耐候性に優れた高強度ポリエチレン繊維、又は引張強度に優れたポリパラフェニレンベンゾオキサゾール(PBO)繊維を用いるとより望ましい。   High-strength fibers preferably used in the present invention are wholly aromatic polyamide fibers, wholly aromatic polyester fibers, polyethylene fibers, polypropylene fibers, polyvinyl alcohol fibers, polyacetal fibers, polyparaphenylenebenzoxazole (PBO) fibers, and the like. It is desirable to use one or more types of fibers among these. It is more desirable to use a high-strength polyethylene fiber excellent in nonmagnetic properties, alkali resistance, chemical resistance, and weather resistance, or polyparaphenylenebenzoxazole (PBO) fiber excellent in tensile strength.

本発明に用いる高強度繊維の引張強度は12cN/dtex以上60cN/dtex以下が望ましい。より好ましくは14N/dtex以上50N/dtex以下、さらに好ましくは18cN/dtex以上、45cN/dtex以下である。   The tensile strength of the high strength fiber used in the present invention is preferably 12 cN / dtex or more and 60 cN / dtex or less. More preferably, it is 14 N / dtex or more and 50 N / dtex or less, More preferably, it is 18 cN / dtex or more and 45 cN / dtex or less.

連続繊維補強材のヤング係数は一般に鋼材よりも小さい。そのため連続繊維補強材はコンクリートのクリープや乾燥収縮によるプレストレスの減少が少なくなるため、プレストレスコンクリート用緊張材として優れている。しかし鋼材と比較して、同一荷重における弾性ひずみが大きいため、コンクリートのひび割れ幅やたわみ量が大きくなることも分かっている。以上の点から連続繊維補強材を使用する場合は、使用される用途や状態に応じて必要なヤング係数を求めて選定していくことが望ましい。
本発明の目的は付着性能と引張強度に優れた連続繊維補強材を提供することであり、ヤング係数が低いとひび割れによって補強効果の減少が懸念されることから、本発明ではヤング係数の高い繊維を用いることが必要である。すなわち本発明における高強度繊維束に用いられる高強度繊維は、400cN/dtex以上3000cN/dtex以下であることが望ましい。より望ましくは500cN/dtex以上2500cN/dtex以下である。
The Young's modulus of continuous fiber reinforcement is generally smaller than steel. Therefore, the continuous fiber reinforcing material is excellent as a tension material for prestressed concrete because it reduces decrease in prestress due to creep or drying shrinkage of concrete. However, it is also known that the crack width and the amount of deflection of the concrete are increased because the elastic strain at the same load is larger than that of the steel material. From the above points, when using a continuous fiber reinforcing material, it is desirable to obtain and select a necessary Young's modulus according to the intended use and state.
An object of the present invention is to provide a continuous fiber reinforcing material having excellent adhesion performance and tensile strength. If the Young's modulus is low, there is a concern that the reinforcing effect may be reduced due to cracking. Must be used. That is, the high-strength fiber used for the high-strength fiber bundle in the present invention is desirably 400 cN / dtex or more and 3000 cN / dtex or less. More desirably, it is 500 cN / dtex or more and 2500 cN / dtex or less.

本発明に使用する組紐や撚糸を作るための製造装置(製紐機や撚糸機など)は一般的な製造装置であれば良い。また必要に応じて組紐や撚糸の内側に芯材挿入するためのガイドなどを用いても良い。これら製造装置については本発明品が得られるものであれば良く、特に限定しない。
製造装置に供給する繊維の繊度および供給する繊維の本数については生産性、芯材を挿入する際の作業性、作製した連続繊維補強材の付着性能および引張強度を著しく阻害しないものであれば良く、特に限定しない。
製造装置で編成して得られる組紐または撚糸の総繊度は、一般に用いられる連続繊維補強材の公称径である2mm以上35mm以下になる様に設計することが望ましい。公称径とは連続繊維補強材の直径であり、公称断面積を円周率で除した値の平方根を2倍した値の平均値である。試験片の採り方や試験片の個数については、土木学会刊、「連続繊維補強材を用いたコンクリート構造物の設計・施工指針(案)」 8.2(2)「公称断面積測定方法」に準じた。公称断面積とは連続繊維補強材の体積を長さで除した値であり、土木学会刊、「連続繊維補強材を用いたコンクリート構造物の設計・施工指針(案)」 8.2(2)「公称断面積測定方法」で求めた値とする。
組紐ピッチや撚数は本発明が用いられる各用途に応じて必要な付着性能、引張強度を得られれば良いため特に限定しない。
A manufacturing apparatus (such as a stringing machine or a twisting machine) for making braids and twisted yarns used in the present invention may be a general manufacturing apparatus. Moreover, you may use the guide for inserting a core material inside a braid or twisted yarn as needed. These manufacturing apparatuses are not particularly limited as long as the product of the present invention can be obtained.
The fineness of the fibers supplied to the production equipment and the number of fibers to be supplied need only be those that do not significantly impair productivity, workability when inserting the core material, adhesion performance and tensile strength of the produced continuous fiber reinforcement. There is no particular limitation.
It is desirable to design the total fineness of the braid or twisted yarn obtained by knitting with the production apparatus so that it is 2 mm or more and 35 mm or less, which is the nominal diameter of a generally used continuous fiber reinforcing material. The nominal diameter is the diameter of the continuous fiber reinforcement, and is an average value obtained by doubling the square root of the value obtained by dividing the nominal cross-sectional area by the circumference. About how to take test pieces and the number of test pieces, published by Japan Society of Civil Engineers, "Design and construction guidelines for concrete structures using continuous fiber reinforcement (draft)" 8.2 (2) "Nominal cross section measurement method" According to Nominal cross-sectional area is a value obtained by dividing the volume of continuous fiber reinforcement by length. Published by Japan Society of Civil Engineers, "Design and construction guidelines for concrete structures using continuous fiber reinforcement (draft)" 8.2 (2 ) The value obtained in “Nominal Cross Section Measurement Method”.
The braid pitch and the number of twists are not particularly limited as long as necessary adhesion performance and tensile strength can be obtained according to each application in which the present invention is used.

本発明に用いる芯材の素材に例えば天然ゴムやシリコーンなど圧縮強度の低い素材を用いると突起の圧縮強度が低いため破壊されて連続繊維補強材とコンクートにおける付着性能が低くなる。よって本発明に用いる芯材の素材は圧縮強度が高いものを選定することが望ましい。具体的には金属、樹脂、FRPなど圧縮強度が高い物を各用途に応じて選定することが望ましいが、非磁性用途に用いる場合は非磁性金属(アルミなど)、樹脂、非磁性のFRPを選定することが望ましい。芯材の具体的な圧縮強度の数値については特に限定しないが、一般的な非磁性金属(アルミなど)や樹脂や非磁性のFRPの圧縮強度である47N/mm以上1079N/mm以下が望ましく、より望ましくは167N/mm以上343N/mm以下である。この値はJIS K 7181により求めた。
芯材に突起を施す方法については切削を施す方法、凹溝の金型でプレス成型を施す方法、プリプレグ樹脂を含浸させた繊維束を凹溝のあるローラー対に通す方法、熱硬化性樹脂などにより成形加工を行い、凸部を形成する方法が挙げられる。また意匠撚糸を用いてもよく、樹脂を含浸・硬化させることで突起のあるFRPを得ることも可能である。しかしこれらに限定されることなく各目的に応じて様々な加工方法を使い分けることが望ましい。
When a material having a low compressive strength such as natural rubber or silicone is used as the core material used in the present invention, the protrusions have a low compressive strength, so that they are broken and the adhesion performance between the continuous fiber reinforcing material and the concrete is lowered. Therefore, it is desirable to select a core material used in the present invention having a high compressive strength. Specifically, it is desirable to select metal, resin, FRP, etc. with high compressive strength according to each application. However, when using for non-magnetic applications, non-magnetic metal (such as aluminum), resin, non-magnetic FRP should be used. It is desirable to select. Not particularly limited specific value of the compression strength of the core material, but common non-magnetic metal (such as aluminum) and a compressive strength of FRP resins and nonmagnetic 47N / mm 2 or more 1079N / mm 2 or less Desirably, more desirably 167 N / mm 2 or more and 343 N / mm 2 or less. This value was determined according to JIS K 7181.
As for the method of giving protrusions to the core material, a method of cutting, a method of press molding with a concave groove mold, a method of passing a fiber bundle impregnated with a prepreg resin through a pair of rollers having a concave groove, a thermosetting resin, etc. There is a method of forming a convex portion by performing a molding process. Design twisted yarns may be used, and it is also possible to obtain FRP with protrusions by impregnating and curing a resin. However, without being limited thereto, it is desirable to use various processing methods depending on the purpose.

土木学会刊、「連続繊維補強材を用いたコンクリート構造物の設計・施工指針(案)」では連続繊維補強材に使用できる結合材はエポキシ樹脂とビニルエステル樹脂の2種であると定められており、本発明で用いる結合材はエポキシおよびビニルエステル樹脂であることが好ましい。製造時の取り扱い易さを考慮し、熱硬化性樹脂を使用する。熱硬化塑性樹脂は連続繊維束と芯材との結合に適したものを選定すればよい。
主剤、硬化剤、促進剤の種類と処方比は各用途によって使い分けることが望ましいが、とりわけ繊維との接着性が良好であり硬化発熱による温度変化が小さい酸無水系エポキシ樹脂の使用が特に望ましい。熱硬化時間の短縮にはアミン系エポキシ樹脂の使用が特に望ましい。
Published by Japan Society of Civil Engineers, “Design Guidelines for Concrete Structures Using Continuous Fiber Reinforcement (Draft)” stipulates that there are two types of binders that can be used for continuous fiber reinforcement: epoxy resin and vinyl ester resin. The binder used in the present invention is preferably an epoxy or vinyl ester resin. A thermosetting resin is used in consideration of ease of handling during manufacturing. What is necessary is just to select the thermosetting plastic resin suitable for the coupling | bonding of a continuous fiber bundle and a core material.
The types and prescription ratios of the main agent, the curing agent, and the accelerator are preferably properly used depending on each application, but it is particularly desirable to use an acid-free epoxy resin that has good adhesion to fibers and a small temperature change due to heat generated by curing. It is particularly desirable to use an amine-based epoxy resin for shortening the heat curing time.

熱硬化樹脂の含浸方法や硬化方法については特に限定しないが生産性を考慮すると引抜成形法を用いることが望ましい。具体的には、樹脂浴で結合材を含浸させた後、ダイスなどで繊維体積率を調節し、その後熱硬化させる方法が望ましい。また必要に応じて硬化後にアフターキュアを行っても良い。硬化時間や硬化温度については特に限定はなく、用いる連続繊維束、芯材、結合材、設備条件などを考慮して設計することが望ましい。   The impregnation method and the curing method of the thermosetting resin are not particularly limited, but it is desirable to use a pultrusion method in consideration of productivity. Specifically, a method of impregnating the binder with a resin bath, adjusting the fiber volume ratio with a die, etc., and then thermosetting is desirable. If necessary, after-curing may be performed after curing. There is no particular limitation on the curing time and the curing temperature, and it is desirable to design in consideration of the continuous fiber bundle to be used, the core material, the binder, the equipment conditions, and the like.

組紐のピッチは図3に示す様に、組紐の長さ方向について節2つ当たりの長さを組紐ピッチと定義した。これは、製紐機の巻取り速度とボビンの回転数により制御できる。
撚糸の撚数は単位長さあたりの撚数T/mで定義し撚糸品の拡大写真から、撚数を測定した。これは、撚糸機の巻取り速度とボビンの回転数により制御できる。
As shown in FIG. 3, the braid pitch is defined as the braid pitch in terms of the length of two nodes in the braid length direction. This can be controlled by the winding speed of the string making machine and the rotational speed of the bobbin.
The number of twists of the twisted yarn was defined by the number of twists T / m per unit length, and the number of twists was measured from an enlarged photograph of the twisted yarn product. This can be controlled by the winding speed of the twisting machine and the rotational speed of the bobbin.

本発明において平均直径および平均断面積については、以下の通り求めた。
(1)連続繊維補強材から長さ1mを切り出し、さらに長さ1cm間隔で切断し100個のサンプルを得る。
(2)全てのサンプルについて最大直径をノギスを当てて0.1mmまで計測する。
(3)全てのサンプルから得られた結果について平均値を求め、平均直径とする。
(4)(3)で得られた平均直径から平均半径を求め、以下の式から平均断面積を求める。
平均断面積=(平均半径)2×円周率
なお上記の平均直径は公称径と同意と見なしてよく、また平均断面積は公称断面積と同意と見なしてよい。
また、1m長さが入手できない場合は、各サンプルから1cm間隔で100ケのサンプルを集めることで評価可能である。
In the present invention, the average diameter and average cross-sectional area were determined as follows.
(1) Cut out a length of 1 m from the continuous fiber reinforcing material, and further cut at intervals of 1 cm to obtain 100 samples.
(2) For all samples, measure the maximum diameter to 0.1 mm with calipers.
(3) The average value is calculated | required about the result obtained from all the samples, and let it be an average diameter.
(4) The average radius is obtained from the average diameter obtained in (3), and the average cross-sectional area is obtained from the following formula.
Average cross-sectional area = (average radius) 2 × circularity Note that the above average diameter may be regarded as the same as the nominal diameter, and the average cross-sectional area may be regarded as the same as the nominal cross-sectional area.
Moreover, when 1 m length cannot be obtained, it can be evaluated by collecting 100 samples at 1 cm intervals from each sample.

本発明では長さ1mの試験片を取ったとき、試験片の平均断面積より大となる断面積をとる箇所について最大直径を求め上位5点の平均値をxとして求めている。容易に想像できることであるが平均直径yとの比、x/yを大きくするとアンカー効果が大きくなるため付着性能が増加する。x/yの値については大きいほど付着性能の増加が期待できるが、生産速度、製造難度を考慮して適切な値を決定するのが望ましい。本発明において、x/yは1.05以上2.00以下が望ましく、1.10以上1.90以下がより好ましい。   In the present invention, when a test piece having a length of 1 m is taken, the maximum diameter is obtained for a portion having a cross-sectional area larger than the average cross-sectional area of the test piece, and the average value of the top five points is obtained as x. As can be easily imagined, if the ratio to the average diameter y, x / y, is increased, the anchoring effect is increased and the adhesion performance is increased. As the value of x / y increases, the adhesion performance can be expected to increase. However, it is desirable to determine an appropriate value in consideration of the production speed and the manufacturing difficulty. In the present invention, x / y is preferably 1.05 or more and 2.00 or less, and more preferably 1.10 or more and 1.90 or less.

連続繊維補強材の突起の数は多い方が好ましいが、多すぎるとアンカー効果が減少するため好ましくない。具体的には30個/m以下が好ましく、より好ましくは25個/m以下である。突起の数が少ないとコンクリートとの優れた付着性が低下するため、好ましく無い。具体的には、突起の数が5個/m以上であり、より好ましくは10個/以上である。
さらに、凸部の形状に制限はないが、組紐または撚糸形状の内側に芯材を配する構造を考慮すると、凸部は球形状等の尖った形状を含まないものが好ましい。これは凸部とコンクリートとの間に存在する繊維が、引抜きの等の力が生じた際にも凸部によるダメージを受けにくい構造とすることが好ましいためである。
Although it is preferable that the number of protrusions of the continuous fiber reinforcing material is large, too much is not preferable because the anchor effect is reduced. Specifically, it is preferably 30 pieces / m or less, more preferably 25 pieces / m or less. If the number of protrusions is small, the excellent adhesion to concrete is lowered, which is not preferable. Specifically, the number of protrusions is 5 / m or more, more preferably 10 / or more.
Furthermore, although there is no restriction | limiting in the shape of a convex part, Considering the structure which distributes a core material inside a braided string or a twisted yarn shape, what does not contain sharp shapes, such as spherical shape, is preferable. This is because the fiber existing between the convex portion and the concrete preferably has a structure that is not easily damaged by the convex portion even when a force such as drawing is generated.

コンクリート補強効果の確認試験のため以下に述べる方法で連続繊維補強材の引抜試験を行った。
(1)試験用サンプル(コンクリートサンプル)の作製方法
a.長さ50cm、幅25cm、厚さ25cmの型枠を2個作製した。
b.連続繊維補強材を長さ150cmとした。
c.連続繊維補強材の両端部に型枠を以下の通り配置した。つまり型枠のZ軸に平行で、XY軸に対して中心となる位置に連続繊維補強材を配置した。
d.家庭化学工業(株)製インスタントセメントを用いて、水:セメント = 1:4の比で混合して型枠に注入し、温度20℃湿度65%R.H.で1週間養生した。
(2)引抜試験方法
コンクリートサンプルのZ軸方向が引張方向となるように試験機に取り付けた後、試験速度10mm/minで引抜試験を行い、最大荷重を引抜荷重として求めた。計2回の測定を行い、平均値を求めた。
In order to confirm the concrete reinforcement effect, a continuous fiber reinforcement was pulled out by the method described below.
(1) Preparation method of test sample (concrete sample) a. Two molds having a length of 50 cm, a width of 25 cm, and a thickness of 25 cm were produced.
b. The continuous fiber reinforcement was 150 cm long.
c. Formwork was arranged at both ends of the continuous fiber reinforcement as follows. That is, the continuous fiber reinforcing material was disposed at a position parallel to the Z axis of the mold and centered with respect to the XY axis.
d. Using instant cement manufactured by Home Chemical Industry Co., Ltd., mixed at a ratio of water: cement = 1: 4 and injected into the mold, temperature 20 ° C. humidity 65% R.C. H. I was cured for a week.
(2) Pull-out test method After attaching the concrete sample to the testing machine so that the Z-axis direction is the tensile direction, a pull-out test was performed at a test speed of 10 mm / min, and the maximum load was determined as the pull-out load. A total of two measurements were taken to determine the average value.

以下に実施例と比較例を示して本発明を具体的に説明するが、本発明は実施例に限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to the examples.

(実施例1)
以下に記す方法でサンプルを作製した。
a.連続繊維
高強度ポリエチレン連続繊維(東洋紡績(株)製高強力ポリエチレン繊維ダイニーマ(登録商標)(SK60))を使用した。
b.連続繊維束の形状
2,400dの高強度連続繊維束を8本用意し、8打製紐機を用いて製紐の中心に突起のある棒状の芯材を配して製紐した。
c.芯材の素材
熱硬化性樹脂のエポキシ樹脂を使用した。樹脂処方を以下に記す。エピコート827(ジャパンエポキシレジン株式会社製、商品名)、硬化剤酸無水物硬化剤HN7200(日立化成工業株式会社製、商品名)、エポメートBMI−12(ジャパンエポキシレジン株式会社製、商品名)、キュアゾール2E4MZ−CN(四国化成工業株式会社製、商品名)を重量比100:85:1:1で混合したものを使用した。型枠に流し込んだ後、120℃、2時間で硬化させたものを使用した。
d.芯材の形状
上記熱硬化性樹脂を用い、平均直径0.7mmの棒体形状を作製し、その外周に直径1.0mmの樹脂球体が長さ方向に20個/mの頻度で存在する様に棒体形状へ樹脂加工を行った。
e.結合材に使用した樹脂
熱硬化性樹脂のエポキシ樹脂を使用した。樹脂処方を以下に記す。エピコート827(ジャパンエポキシレジン株式会社製、商品名)、硬化剤酸無水物硬化剤HN7200(日立化成工業株式会社製、商品名)、エポメートBMI−12(ジャパンエポキシレジン株式会社製、商品名)、キュアゾール2E4MZ−CN(四国化成工業株式会社製、商品名)を重量比100:85:1:1で混合したものを使用した。
f.樹脂含浸、硬化方法
引抜成形方法で実施した。芯材を含む組紐を樹脂浴に通した後、高強度連続繊維束の繊維体積率65%±10%となる様にダイス(絞り)で樹脂量を調節し、オーブンで120℃、2時間熱硬化させた。
g.連続繊維補強材の組紐ピッチ
36mmとなる様に製紐条件を設定した。
Example 1
Samples were prepared by the method described below.
a. Continuous fiber A high-strength polyethylene continuous fiber (a high-strength polyethylene fiber Dyneema (registered trademark) (SK60) manufactured by Toyobo Co., Ltd.) was used.
b. Shape of continuous fiber bundle Eight high-strength continuous fiber bundles of 2,400d were prepared, and a string-like core material having a protrusion was arranged at the center of the string making by using an 8-punch stringing machine.
c. Core material A thermosetting epoxy resin was used. The resin formulation is described below. Epicoat 827 (trade name, manufactured by Japan Epoxy Resin Co., Ltd.), curing agent acid anhydride curing agent HN7200 (trade name, manufactured by Hitachi Chemical Co., Ltd.), Epomate BMI-12 (trade name, manufactured by Japan Epoxy Resin Co., Ltd.), A mixture of Curazole 2E4MZ-CN (trade name, manufactured by Shikoku Kasei Kogyo Co., Ltd.) at a weight ratio of 100: 85: 1: 1 was used. After pouring into a mold, one cured at 120 ° C. for 2 hours was used.
d. Shape of core material Using the thermosetting resin described above, a rod shape having an average diameter of 0.7 mm is prepared, and resin spheres having a diameter of 1.0 mm are present on the outer periphery at a frequency of 20 pieces / m in the length direction. The resin was processed into a rod shape.
e. Resin used for binding material A thermosetting epoxy resin was used. The resin formulation is described below. Epicoat 827 (trade name, manufactured by Japan Epoxy Resin Co., Ltd.), curing agent acid anhydride curing agent HN7200 (trade name, manufactured by Hitachi Chemical Co., Ltd.), Epomate BMI-12 (trade name, manufactured by Japan Epoxy Resin Co., Ltd.), A mixture of Curazole 2E4MZ-CN (trade name, manufactured by Shikoku Kasei Kogyo Co., Ltd.) at a weight ratio of 100: 85: 1: 1 was used.
f. Resin impregnation and curing method The pultrusion method was used. After the braid containing the core material is passed through the resin bath, the resin amount is adjusted with a die so that the fiber volume ratio of the high-strength continuous fiber bundle is 65% ± 10%, and heated in an oven at 120 ° C. for 2 hours. Cured.
g. The stringing conditions were set so that the braid pitch of the continuous fiber reinforcement was 36 mm.

(実施例2)
実施例1に準じてサンプルを作製した。なお、変更点は次の通りである。
d.芯材の形状
上記熱硬化性樹脂を用い、平均直径0.7mmの棒体形状を作製し、その外周に直径1.1mmの樹脂球体が長さ方向に20個/mの頻度で存在する様に棒体形状へ樹脂加工を行った。
(Example 2)
A sample was prepared according to Example 1. The changes are as follows.
d. Shape of core material Using the thermosetting resin described above, a rod shape having an average diameter of 0.7 mm is prepared, and resin spheres having a diameter of 1.1 mm are present on the outer periphery at a frequency of 20 pieces / m in the length direction. The resin was processed into a rod shape.

(実施例3)
実施例1に準じてサンプルを作製した。なお、変更点は次の通りである。
d.芯材の形状
上記熱硬化性樹脂を用い、平均直径0.7mmの棒体形状を作製し、その外周に直径1.5mmの樹脂球体が長さ方向に20個/mの頻度で存在する様に棒体形状へ樹脂加工を行った。
(Example 3)
A sample was prepared according to Example 1. The changes are as follows.
d. Shape of core material Using the above thermosetting resin, a rod shape having an average diameter of 0.7 mm is produced, and a resin sphere having a diameter of 1.5 mm is present on the outer periphery at a frequency of 20 pieces / m in the length direction. The resin was processed into a rod shape.

(実施例4)
実施例1に準じてサンプルを作製した。なお、変更点は次の通りである。
d.芯材の形状
上記熱硬化性樹脂を用い、平均直径0.7mmの棒体形状を作製し、その外周に直径2.0mmの樹脂球体が長さ方向に20個/mの頻度で存在する様に棒体形状へ樹脂加工を行った。
Example 4
A sample was prepared according to Example 1. The changes are as follows.
d. Shape of core material Using the above thermosetting resin, a rod shape having an average diameter of 0.7 mm is produced, and resin spheres having a diameter of 2.0 mm are present on the outer periphery at a frequency of 20 pieces / m in the length direction. The resin was processed into a rod shape.

(実施例5)
実施例1に準じてサンプルを作製した。なお、変更点は次の通りである。
d.芯材の形状
上記熱硬化性樹脂を用い、平均直径0.7mmの棒体形状を作製し、その外周に直径1.5mmの樹脂球体が長さ方向に5個/mの頻度で存在する様に棒体形状へ樹脂加工を行った。
(Example 5)
A sample was prepared according to Example 1. The changes are as follows.
d. Shape of core material Using the thermosetting resin described above, a rod shape having an average diameter of 0.7 mm is produced, and a resin sphere having a diameter of 1.5 mm is present on the outer periphery at a frequency of 5 / m in the length direction. The resin was processed into a rod shape.

(実施例6)
実施例1に準じてサンプルを作製した。なお、変更点は次の通りである。
d.芯材の形状
上記熱硬化性樹脂を用い、平均直径0.7mmの棒体形状を作製し、その外周に直径1.5mmの樹脂球体が長さ方向に30個/mの頻度で存在する様に棒体形状へ樹脂加工を行った。
(Example 6)
A sample was prepared according to Example 1. The changes are as follows.
d. Shape of core material Using the thermosetting resin described above, a rod shape having an average diameter of 0.7 mm is produced, and resin spheres having a diameter of 1.5 mm are present on the outer periphery at a frequency of 30 / m in the length direction. The resin was processed into a rod shape.

(実施例7)
実施例1に準じてサンプルを作製した。なお、変更点は次の通りである。
a.連続繊維
PBO連続繊維(東洋紡績株式会社製ザイロン(登録商標)(HM))を使用した。
d.芯材の形状
上記熱硬化性樹脂を用い、平均直径0.7mmの棒体形状を作製し、その外周に直径1.5mmの樹脂球体が長さ方向に20個/mの頻度で存在する様に棒体形状へ樹脂加工を行った。
(Example 7)
A sample was prepared according to Example 1. The changes are as follows.
a. Continuous fiber PBO continuous fiber (Zylon (registered trademark) (HM) manufactured by Toyobo Co., Ltd.) was used.
d. Shape of core material Using the above thermosetting resin, a rod shape having an average diameter of 0.7 mm is produced, and a resin sphere having a diameter of 1.5 mm is present on the outer periphery at a frequency of 20 pieces / m in the length direction. The resin was processed into a rod shape.

(実施例8)
実施例1に準じてサンプルを作製した。なお、変更点は次の通りである。
a.連続繊維
溶融高強度ポリエチレン連続繊維(東洋紡績株式会社製ツヌーガ(登録商標))を使用した。
d.芯材の形状
上記熱硬化性樹脂を用い、平均直径0.7mmの棒体形状を作製し、その外周に直径1.5mmの樹脂球体が長さ方向に20個/mの頻度で存在する様に棒体形状へ樹脂加工を行った。
(Example 8)
A sample was prepared according to Example 1. The changes are as follows.
a. Continuous fiber melted high-strength polyethylene continuous fiber (Tunuga (registered trademark) manufactured by Toyobo Co., Ltd.) was used.
d. Shape of core material Using the above thermosetting resin, a rod shape having an average diameter of 0.7 mm is produced, and a resin sphere having a diameter of 1.5 mm is present on the outer periphery at a frequency of 20 pieces / m in the length direction. The resin was processed into a rod shape.

(実施例9)
実施例1に準じてサンプルを作製した。なお、変更点は次の通りである。
d.芯材の形状
上記熱硬化性樹脂を用い、平均直径0.7mmの棒体形状を作製し、その外周に直径1.5mmの樹脂球体が長さ方向に20個/mの頻度で存在する様に棒体形状へ樹脂加工を行った。
e.結合材に使用した樹脂
熱硬化性樹脂のビニルエステル樹脂を使用した。樹脂処方を以下に記す。リポキシR806(昭和電工株式会社製(登録商標))、ナイパー(日本油脂株式会社製(登録商標))NSを重量比100:1で混合し120℃、2時間で硬化させたものを使用した。
Example 9
A sample was prepared according to Example 1. The changes are as follows.
d. Shape of core material Using the above thermosetting resin, a rod shape having an average diameter of 0.7 mm is produced, and a resin sphere having a diameter of 1.5 mm is present on the outer periphery at a frequency of 20 pieces / m in the length direction. The resin was processed into a rod shape.
e. The vinyl ester resin of the thermosetting resin used for the binder was used. The resin formulation is described below. Lipoxy R806 (manufactured by Showa Denko Co., Ltd. (registered trademark)) and niper NS (manufactured by Nippon Oil & Fats Co., Ltd. (registered trademark)) NS were mixed at a weight ratio of 100: 1 and cured at 120 ° C. for 2 hours.

(実施例10)
実施例1に準じてサンプルを作製した。なお、変更点は次の通りである。
b.連続繊維束の形状
6,400dの高強度連続繊維束を3本用意し、3打撚糸機を用いて撚糸の中心に突起のある棒状の芯材を配して撚掛けした。
d.芯材の形状
上記熱硬化性樹脂を用い、平均直径0.7mmの棒体形状を作製し、その外周に直径1.5mmの樹脂球体が長さ方向に20個/mの頻度で存在する様に棒体形状へ樹脂加工を行った。
g.連続繊維繊維補強材の組紐ピッチまたは撚数
1)6,400dの高強度連続繊維束に撚(S方向に20T/m)をかけた。
2)1)の連続繊維束を3つ束ねて撚掛け(Z方向に10T/m)して3打撚糸を作製した。
(Example 10)
A sample was prepared according to Example 1. The changes are as follows.
b. Three high-strength continuous fiber bundles having a continuous fiber bundle shape of 6,400d were prepared, and a rod-like core material having a protrusion at the center of the twisted yarn was arranged and twisted using a three-ply twisting machine.
d. Shape of core material Using the above thermosetting resin, a rod shape having an average diameter of 0.7 mm is produced, and a resin sphere having a diameter of 1.5 mm is present on the outer periphery at a frequency of 20 pieces / m in the length direction. The resin was processed into a rod shape.
g. The braid pitch or the number of twists 1) of continuous fiber fiber reinforcement was twisted (20 T / m in the S direction) on a high strength continuous fiber bundle of 6,400d.
2) Three continuous fiber bundles of 1) were bundled and twisted (10 T / m in the Z direction) to produce a three-ply twisted yarn.

(比較例1)
実施例1に準じてサンプルを作製した。なお、変更点は次の通りである。
d.芯材の形状
上記熱硬化性樹脂を用い、平均直径0.7mmの棒体形状を作製した。
(Comparative Example 1)
A sample was prepared according to Example 1. The changes are as follows.
d. Shape of core material A rod shape having an average diameter of 0.7 mm was prepared using the thermosetting resin.

(比較例2)
実施例1に準じてサンプルを作製した。なお、変更点は次の通りである。
d.芯材の形状
上記熱硬化性樹脂を用い、平均直径0.7mmの棒体形状を作製し、その外周に直径5.0mmの樹脂球体が長さ方向に20個/mの頻度で存在する様に棒体形状へ樹脂加工を行った。
(Comparative Example 2)
A sample was prepared according to Example 1. The changes are as follows.
d. Shape of core material Using the above thermosetting resin, a rod shape having an average diameter of 0.7 mm is produced, and resin spheres having a diameter of 5.0 mm are present on the outer periphery at a frequency of 20 pieces / m in the length direction. The resin was processed into a rod shape.

(比較例3)
実施例1に準じてサンプルを作製した。なお、変更点は次の通りである。
d.芯材の形状
上記熱硬化性樹脂を用い、平均直径0.7mmの棒体形状を作製し、その外周に直径1.5mmの樹脂球体が長さ方向に1個/mの頻度で存在する様に棒体形状へ樹脂加工を行った。
(Comparative Example 3)
A sample was prepared according to Example 1. The changes are as follows.
d. Shape of core material Using the thermosetting resin described above, a rod shape having an average diameter of 0.7 mm is produced, and a resin sphere having a diameter of 1.5 mm is present on the outer periphery at a frequency of 1 / m in the length direction. The resin was processed into a rod shape.

(比較例4)
実施例1に準じてサンプルを作製した。なお、変更点は次の通りである。
d.芯材の形状
上記熱硬化性樹脂を用い、平均直径0.7mmの棒体形状を作製し、その外周に直径1.5mmの樹脂球体が長さ方向に50個/mの頻度で存在する様に棒体形状へ樹脂加工を行った。
(Comparative Example 4)
A sample was prepared according to Example 1. The changes are as follows.
d. Shape of core material Using the thermosetting resin described above, a rod shape having an average diameter of 0.7 mm is produced, and a resin sphere having a diameter of 1.5 mm is present on the outer periphery at a frequency of 50 / m in the length direction. The resin was processed into a rod shape.

(比較例5)
実施例1に準じてサンプルを作製した。なお、変更点は次の通りである。
a.連続繊維
ポリエステル長繊維(強度 8.5cN/dtex)を使用した。
d.芯材の形状
上記熱硬化性樹脂を用い、平均直径0.7mmの棒体形状を作製し、その外周に直径1.5mmの樹脂球体が長さ方向に20個/mの頻度で存在する様に棒体形状へ樹脂加工を行った。
(Comparative Example 5)
A sample was prepared according to Example 1. The changes are as follows.
a. Continuous fibers Polyester long fibers (strength 8.5 cN / dtex) were used.
d. Shape of core material Using the above thermosetting resin, a rod shape having an average diameter of 0.7 mm is produced, and a resin sphere having a diameter of 1.5 mm is present on the outer periphery at a frequency of 20 pieces / m in the length direction. The resin was processed into a rod shape.

(参考例1)
実施例1に準じてサンプルを作製した。なお、変更点は次の通りである。
c.芯材の素材
軟質塩化ビニル樹脂(CH=CHCl)を使用した。
d.芯材の形状
上記樹脂を用い、平均直径0.7mmの棒体形状を作製し、その外周に直径1.5mmの樹脂球体が長さ方向に20個/mの頻度で存在する様に棒体形状へ樹脂加工を行った。
(Reference Example 1)
A sample was prepared according to Example 1. The changes are as follows.
c. Core Material A soft vinyl chloride resin (CH 2 = CHCl) was used.
d. Shape of core material Using the above resin, a rod shape having an average diameter of 0.7 mm is produced, and a rod body having a diameter of 1.5 mm on the outer periphery thereof is present at a frequency of 20 pieces / m in the length direction. Resin processing was performed to the shape.

比較例1では連続繊維補強材に突起がないため付着性能は低かった。また、比較例2 ではx/yの値が過大と考えらる形状のため、コンクリートとの境界面で連続繊維補強材に対しての応力集中と見られる破壊が生じ、引抜荷重が低かった。   In Comparative Example 1, the adhesion performance was low because the continuous fiber reinforcing material had no protrusions. Further, in Comparative Example 2, because of the shape in which the value of x / y is considered to be excessive, a fracture that appears to be stress concentration on the continuous fiber reinforcement occurred at the interface with the concrete, and the pull-out load was low.

比較例3の試験形態を図5に示す。連続繊維補強材の突起の数が少ないため付着性能が低く、引抜荷重が低い結果であった。比較例4、では、突起の数を多くしたが、多すぎるためにアンカー効果が減少し、引抜強度が低くなった。   The test configuration of Comparative Example 3 is shown in FIG. Since the number of protrusions of the continuous fiber reinforcing material was small, the adhesion performance was low, and the pull-out load was low. In Comparative Example 4, although the number of protrusions was increased, the anchor effect was reduced due to being too large, and the pullout strength was lowered.

比較例5において、強度が7.0cN/dtexを有するポリエステル糸を用いたため、連続繊維の引張強度が低く、連続繊維補強材が破壊した。   In Comparative Example 5, since the polyester yarn having the strength of 7.0 cN / dtex was used, the continuous fiber reinforcing material was broken because the tensile strength of the continuous fiber was low.

参考例1の結果より、軟質塩化ビニル樹脂を用いると、アンカー効果が減少し、引張強度が低くなることが分かった。   From the results of Reference Example 1, it was found that when a soft vinyl chloride resin was used, the anchor effect was reduced and the tensile strength was lowered.

付着性能と引張強度に優れた連続繊維補強材を得ることができ、鉄筋代替材料として特に耐腐食性、軽量、非磁性の特徴を生かした用途への利用が可能である。   A continuous fiber reinforcing material excellent in adhesion performance and tensile strength can be obtained, and it can be used for applications that take advantage of the characteristics of corrosion resistance, light weight and non-magnetic properties as an alternative to reinforcing bars.

10−1 本発明品の連続繊維補強材
10−2 突起の直径
10−3 突起のない箇所の直径
20−1 高強度連続繊維束
20−2 突起のある芯材
20−3 形成箇所(製紐、撚掛)
30−1 ピッチは組紐の2節当たりの長さである。
40−1 連続繊維補強材(突起の個数:多)
40−2 コンクリート
40−3 金属型枠
40−4 引張試験把持箇所
50−1 連続繊維補強材(突起の個数:少)
50−2 コンクリート
50−3 金属型枠
50−4 引張試験把持箇所
10-1 Continuous Fiber Reinforcement Material 10-2 of the Present Invention 10-2 Diameter of Protrusion 10-3 Diameter 20-1 of No-Protrusion High Strength Continuous Fiber Bundle 20-2 Core Material 20-3 with Protrusion , Twisted)
30-1 Pitch is the length per two nodes of braid.
40-1 Continuous fiber reinforcement (number of protrusions: many)
40-2 Concrete 40-3 Metal mold 40-4 Tensile test grip location 50-1 Continuous fiber reinforcement (number of protrusions: small)
50-2 Concrete 50-3 Metal mold 50-4 Tensile test grip location

Claims (6)

連続繊維補強材に用いる繊維の引張強度が12cN/dtex以上60cN/dtex以下であり、炭素繊維、全芳香族ポリアミド繊維、全芳香族ポリエステル繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリビニルアルコール繊維、ポリアセタール繊維、ポリパラフェニレンベンゾビスオキサゾール(PBO)繊維のうち少なくとも1種類以上により組紐または撚糸により形状を形成し、組紐または撚糸の内側に、JIS K 7181で測定された圧縮強度が 47N/mm 以上1079N/mm 以下の、突起を有する芯材が配された補強材であって、任意の長さ1mの試験片に対し、試験片の平均断面積より大となる断面積をとる箇所について直径を求め、直径の大きい上位5点の平均値をxとしたとき、試験片の平均直径yとの比x/yが1.05以上2.00以下となることを特徴とする、鉄筋代替用連続繊維補強材。 The fiber used for the continuous fiber reinforcing material has a tensile strength of 12 cN / dtex or more and 60 cN / dtex or less, carbon fiber, wholly aromatic polyamide fiber, wholly aromatic polyester fiber, polyethylene fiber, polypropylene fiber, polyvinyl alcohol fiber, polyacetal fiber, A shape is formed of braided or twisted yarn by at least one kind of polyparaphenylene benzobisoxazole (PBO) fibers, and the compression strength measured by JIS K 7181 is 47 N / mm 2 or more and 1079 N / inside of the braided or twisted yarn. It is a reinforcing material provided with a core material having a protrusion of 2 mm or less, and for a test piece having an arbitrary length of 1 m, a diameter is obtained for a portion having a cross-sectional area larger than the average cross-sectional area of the test piece. , Where x is the average value of the top five points with the largest diameters, The ratio x / y is characterized by comprising 1.05 to 2.00, rebar alternative for continuous fiber reinforcement. 任意の長さ1mの試験片に対し、試験片の平均断面積より大となる断面積をとる箇所が
5〜30個存在することを特徴とする、請求項1に記載の鉄筋代替用連続繊維補強材。
The continuous fiber for reinforcing steel bars according to claim 1, wherein there are 5 to 30 portions having a cross-sectional area larger than the average cross-sectional area of the test piece with respect to a test piece having an arbitrary length of 1 m. Reinforcement.
繊維のヤング係数が400cN/dtex以上3000cN/dtex以下であること
を特徴とする、請求項1、2いずれかに記載の鉄筋代替用連続繊維補強材。
The continuous fiber reinforcing material for reinforcing bar replacement according to any one of claims 1 and 2, wherein Young's modulus of the fiber is 400 cN / dtex or more and 3000 cN / dtex or less.
連続繊維補強材に熱硬化性樹脂が使用されていること特徴とする、請求項1から3のい
ずれかに記載の鉄筋代替用連続繊維補強材。
The continuous fiber reinforcing material for reinforcing bar replacement according to any one of claims 1 to 3, wherein a thermosetting resin is used for the continuous fiber reinforcing material.
熱硬化樹脂としてエポキシ樹脂又はビニルエステル樹脂が使用されていることを特徴と
する、請求項1から4のいずれかに記載の連続繊維を使用した鉄筋代替用補強材。
The reinforcing material for reinforcing steel bars using continuous fibers according to any one of claims 1 to 4, wherein an epoxy resin or a vinyl ester resin is used as the thermosetting resin.
連続繊維補強材に用いる繊維の引張強度が12cN/dtex以上60cN/dtex以下であり、炭素繊維、全芳香族ポリアミド繊維、全芳香族ポリエステル繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリビニルアルコール繊維、ポリアセタール繊維、ポリパラフェニレンベンゾビスオキサゾール(PBO)繊維のうち少なくとも1種類以上により組紐または撚糸により形状を形成し、組紐または撚糸の内側に、JIS K 7181で測定された圧縮強度が 47N/mm 以上1079N/mm 以下の、突起を有する芯材が配された補強材であって、任意の長さ1mの試験片に対し、試験片の平均断面積より大となる断面積をとる箇所について直径を求め、直径の大きい上位5点の平均値をxとしたとき、試験片の平均直径yとの比x/yが1.05以上2.00以下となることを特徴とする、鉄筋代替用連続繊維補強材の製造方法。
The fiber used for the continuous fiber reinforcing material has a tensile strength of 12 cN / dtex or more and 60 cN / dtex or less, carbon fiber, wholly aromatic polyamide fiber, wholly aromatic polyester fiber, polyethylene fiber, polypropylene fiber, polyvinyl alcohol fiber, polyacetal fiber, A shape is formed of braided or twisted yarn by at least one kind of polyparaphenylene benzobisoxazole (PBO) fibers, and the compression strength measured by JIS K 7181 is 47 N / mm 2 or more and 1079 N / inside of the braided or twisted yarn. It is a reinforcing material provided with a core material having a protrusion of 2 mm or less, and for a test piece having an arbitrary length of 1 m, a diameter is obtained for a portion having a cross-sectional area larger than the average cross-sectional area of the test piece. , Where x is the average value of the top five points with the largest diameters, The ratio x / y is characterized by comprising 1.05 to 2.00, the production method of the reinforcing bar alternative for continuous fiber reinforcement.
JP2012017973A 2012-01-31 2012-01-31 Continuous fiber reinforcement and method for producing continuous fiber reinforcement Active JP5966390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012017973A JP5966390B2 (en) 2012-01-31 2012-01-31 Continuous fiber reinforcement and method for producing continuous fiber reinforcement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012017973A JP5966390B2 (en) 2012-01-31 2012-01-31 Continuous fiber reinforcement and method for producing continuous fiber reinforcement

Publications (2)

Publication Number Publication Date
JP2013155089A JP2013155089A (en) 2013-08-15
JP5966390B2 true JP5966390B2 (en) 2016-08-10

Family

ID=49050664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012017973A Active JP5966390B2 (en) 2012-01-31 2012-01-31 Continuous fiber reinforcement and method for producing continuous fiber reinforcement

Country Status (1)

Country Link
JP (1) JP5966390B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200126366A (en) 2018-03-02 2020-11-06 도레이 카부시키가이샤 Twisted yarn cord made of liquid crystal polyester multifilament, method for manufacturing the same, and products made using the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01208349A (en) * 1988-12-02 1989-08-22 Teijin Ltd Fiber-reinforced cement product
AU2764199A (en) * 1998-02-13 1999-08-30 Regents Of The University Of California, The Reinforced composites including bone-shaped short fibers
JP2001328853A (en) * 2000-05-16 2001-11-27 Teijin Ltd Reinforcing material for concrete, etc.
WO2003001005A1 (en) * 2001-06-22 2003-01-03 Concordia University Non-metallic reinforcement member for the reinforcement of a structure and process of its manufacture
JP2003055011A (en) * 2001-08-09 2003-02-26 Aisawa Construction Co Ltd Rod for reinforcing concrete and manufacturing method therefor
JP4752596B2 (en) * 2006-04-28 2011-08-17 東洋紡績株式会社 Concrete structure with excellent explosion resistance

Also Published As

Publication number Publication date
JP2013155089A (en) 2013-08-15

Similar Documents

Publication Publication Date Title
US5989713A (en) Optimized geometries of fiber reinforcements of cement, ceramic and polymeric based composites
CA2025281C (en) Filament-reinforced resinous structural rod
JP6035129B2 (en) Composite FRP short wire for cement reinforcement and method for producing the same
JP2012251378A (en) String-like reinforcement fiber composite
JP5670230B2 (en) String-like reinforcing fiber composite
RU2482247C2 (en) Method to manufacture non-metal reinforcement element with periodic surface and reinforcement element with periodic surface
WO2016125666A1 (en) Concrete reinforcing material and concrete formed body
RU77309U1 (en) BAR FOR CONCRETE REINFORCEMENT
RU2612284C1 (en) Composite reinforcement
JP5966390B2 (en) Continuous fiber reinforcement and method for producing continuous fiber reinforcement
JPH0533278A (en) Rope comprising carbon fiber-reinforced composite material and production thereof
RU2684271C1 (en) Composite reinforcement bars
RU2520542C1 (en) Composite fibre-glass reinforcement (versions)
JP5100867B2 (en) Method for producing carbon fiber bundle for filament winding
JPH0323676B2 (en)
JPH0474494B2 (en)
Correia et al. Pseudo-ductile braided composite rods (BCRs) produced by braidtrusion
Elsayed et al. Hybrid fiber reinforced polymers rebars
RU2818634C1 (en) Combined metal-fiber rope
JP2744258B2 (en) Reinforcing material comprising wholly aromatic polyester fiber and method for producing the same
JP2001150433A (en) Shearing reinforcing thermoplastic resin coated frp rod
JPS5955946A (en) Light weight composite member
JPH0530614B2 (en)
JP2010084312A (en) Entangled glass strand and method for producing the same, and draw molded material of fiber reinforced resin
JPH02133348A (en) Reinforcing material containing very thick polyvinyl alcohol-based fiber and production thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160620

R151 Written notification of patent or utility model registration

Ref document number: 5966390

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350