JP5964540B2 - Mvaを使ってがんを処置する方法 - Google Patents

Mvaを使ってがんを処置する方法 Download PDF

Info

Publication number
JP5964540B2
JP5964540B2 JP2009531472A JP2009531472A JP5964540B2 JP 5964540 B2 JP5964540 B2 JP 5964540B2 JP 2009531472 A JP2009531472 A JP 2009531472A JP 2009531472 A JP2009531472 A JP 2009531472A JP 5964540 B2 JP5964540 B2 JP 5964540B2
Authority
JP
Japan
Prior art keywords
mva
taxane
mher2
antigen
mice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009531472A
Other languages
English (en)
Other versions
JP2010505850A5 (ja
JP2010505850A (ja
Inventor
デルケール・アラン
ラウス・ライナー
マンドル・ステファニー
Original Assignee
バヴァリアン・ノルディック・アクティーゼルスカブ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バヴァリアン・ノルディック・アクティーゼルスカブ filed Critical バヴァリアン・ノルディック・アクティーゼルスカブ
Publication of JP2010505850A publication Critical patent/JP2010505850A/ja
Publication of JP2010505850A5 publication Critical patent/JP2010505850A5/ja
Application granted granted Critical
Publication of JP5964540B2 publication Critical patent/JP5964540B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001102Receptors, cell surface antigens or cell surface determinants
    • A61K39/001103Receptors for growth factors
    • A61K39/001106Her-2/neu/ErbB2, Her-3/ErbB3 or Her 4/ErbB4
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55544Bacterial toxins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55566Emulsions, e.g. Freund's adjuvant, MF59
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/24011Poxviridae
    • C12N2710/24111Orthopoxvirus, e.g. vaccinia virus, variola
    • C12N2710/24141Use of virus, viral particle or viral elements as a vector
    • C12N2710/24143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/60Vector systems having a special element relevant for transcription from viruses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Oncology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Cell Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Peptides Or Proteins (AREA)

Description

本願は、2006年10月6日に出願された仮出願第60/850,031号の利益を主張し、前記仮出願は参照により本明細書に組み入れられる。
本発明は、腫瘍関連抗原をコードするMVAウイルスを、特にタキサン類と組み合わせて使用する、がんの処置に関する。
改変ワクシニアアンカラ(Modified Vaccinia Ankara:MVA)ウイルスは、ポックスウイルス科のオルトポックスウイルス属のメンバーであるワクシニアウイルスと類縁関係にある。MVAは、ワクシニアウイルスのアンカラ株(CVA)をニワトリ胚線維芽細胞で516代にわたって連続継代することによって作出された(概要については、非特許文献1を参照されたい)。これらの長期間にわたる継代の結果、得られたMVAウイルスのゲノムではそのゲノム配列のうち約31キロ塩基が欠失しているので、複製に関して宿主細胞は鳥類細胞に著しく制限されると記載されている(非特許文献2)。得られたMVAは著しく非病原性であることが、さまざまな動物モデルで示されている(非特許文献3)。また、このMVA株は、ヒト痘瘡疾患に対する免疫を与えるためのワクチンとして、臨床試験でも検討されている(非特許文献4;非特許文献6)。これらの研究には高リスク患者を含めて120,000人を超える人々が関与し、これらの研究からMVAは、ワクシニアに基づくワクチンと比較して、低下したビルレンスまたは感染性を持ちつつ、良好な特異的免疫応答を誘導することが判明した。
その後の数十年間に、MVAは、組換え遺伝子発現用のウイルスベクターとして使用するために、または組換えワクチンとして使用するために、改変された(非特許文献5)。
MVAがヒトおよび哺乳動物では著しく弱毒化されていて非病原性であることはMayrらが1970年代に証明したにもかかわらず、一部の研究者らは、哺乳動物細胞株およびヒト細胞株では、残存複製(residual replication)が起こるかもしれないので、MVAがこれらの細胞では完全には弱毒化されていないと報告している(非特許文献7;非特許文献8;特許文献1;非特許文献9)。これらの刊行物で報告された結果は、MVAのさまざまな既知株を使って得られたものであると考えられる。というのも、使用されたウイルスは、その性質、特にさまざまな細胞株におけるそれらの成長挙動が、本質的に異なるからである。そのような残存複製は、ヒトでの使用に関する安全性の懸念を含めて、さまざまな理由から望ましくない。
より安全な製品(例えばワクチンまたは医薬品)を開発するために強化された安全性プロファイルを持つMVAの株が記載されている。特許文献2および特許文献3を参照されたい。そのような株は、非ヒト細胞および細胞株、とりわけニワトリ胚線維芽細胞(CEF)では増殖的複製(reproductive replication)が可能であるが、既知のワクシニア株で複製を許容することが知られている一定のヒト細胞株では有意な増殖的複製を行うことができない。そのような細胞株には、ヒトケラチノサイト細胞株HaCat(非特許文献10)、ヒト頚部腺癌細胞株HeLa(ATCC No.CCL-2)、ヒト胚性腎臓細胞株293(ECACC No.85120602)、およびヒト骨肉腫細胞株143B(ECACC No.91112502)が含まれる。そのような株は、インビボでも、例えば重度の免疫低下状態にあって複製ウイルスに対する感受性が高いトランスジェニックマウスモデルAGR129などといった一定のマウス系統においても、有意な増殖的複製を行うことができない。特許文献2を参照されたい。「MVA-BN」と呼ばれる、そのようなMVA株の一つ、ならびにその誘導体および組換え体が記載されている。特許文献2および特許文献3を参照されたい。
MVAおよびMVA-BNはそれぞれ、組換え遺伝子発現用のウイルスベクターとして使用するために、または組換えワクチンとして使用するために、改変されている。例えば非特許文献5、特許文献2および特許文献3を参照されたい。
がん免疫療法へのいくつかのアプローチには、腫瘍関連抗原によるワクチン接種が含まれている。いくつかの例では、そのようなアプローチに、腫瘍関連抗原に対する宿主免疫応答を促進するための送達システムの使用が含まれている。いくつかの例では、そのような送達システムに、組換えウイルスベクターが含まれている。例えば非特許文献11;非特許文献12;非特許文献13を参照されたい。
HER-2は、多くのがん患者の腫瘍細胞において過剰発現される腫瘍関連抗原である。さまざまなHER-2ポリペプチドによる免疫化が、この抗原を発現させる腫瘍細胞に対する免疫応答を生じさせるために用いられてきた。例えば非特許文献14;非特許文献15を参照されたい。
パクリタキセルおよびドセタキセルなどのタキサン類は、がん患者に化学療法剤として使用されてきた。タキサン類による化学療法は、異なる腫瘍ワクチン処置と併用されて、さまざまな結果をもたらしてきた。非特許文献16;非特許文献17;非特許文献18;非特許文献19;および非特許文献20を参照されたい。がんワクチンと化学療法剤との組合せは、非特許文献21、および非特許文献22に概説されている。
Altenberger, 米国特許第5,185,146号 米国特許第6,761,893号 米国特許第6,193,752号 Mayr, A.ら, Infection 3, 6-14 (1975) Meyer, H.ら, J. Gen. Virol. 72, 1031-1038 (1991) Mayr, A.およびDanner, K., Dev. Biol. Stand. 41:225-34 (1978) Mayrら, Zbl. Bakt. Hyg. I, Abt. Org. B 167, 375-390 (1987) Sutter, G.ら, Vaccine 12:1032-40 (1994) Sticklら, Dtsch. med. Wschr. 99, 2386-2392 (1974) Blanchardら, J Gen Virol 79, 1159-1167 (1998) CarrollおよびMoss, Virology 238, 198-211 (1997) Ambrosiniら, J Neurosci Res 55(5), 569 (1999) Boukampら, J Cell Biol 106(3):761-71 (1988) Harropら, Front. Biosci. 11:804-817 (2006) Arlenら, Semin. Oncol. 32:549-555 (2005) Liuら, Proc. Natl. Acad. Sci. USA 101 (suppl. 2):14567-14571 (2004) Renardら, J. Immunology 171:1588-1595 (2003) Mittendorfら, Cancer 106:2309-2317 (2006) Chuら, J. Immunotherapy 29:367-380 (2006) Machielsら, Cancer Res. 61:3689-3697 (2001) Prellら, Cancer Immunol. Immunother. 55:1285-1293 (2006) Arlenら, Clinical Breast Cancer 7:176-179 (2006) Arlenら, Clinical Cancer Res. 12:1260-1269 (2006) Chongら, Expert Opin. Phamacother. 6:1-8 (2005) Emensら, Endocrine-Related Cancer 12:1-17 (2005)
上記に基づいて、当技術分野では、がん治療のための試薬および方法が必要とされている。
本発明はがん患者を処置するための方法を包含する。ある実施形態において、本方法は、HER-2抗原を含むポリペプチドをコードする組換えMVAを患者に投与すること、および殺腫瘍量のタキサンを患者に投与することを含む。本併用処置はどちらか一方のみの処置よりも優れている。
好ましい一実施形態では、MVAがMVA-BNである。
ある実施形態では、HER-2抗原が配列番号2を含む。
組換えMVAは、殺腫瘍量のタキサンの前に、殺腫瘍量のタキサンと同時に、または殺腫瘍量のタキサンの後に投与することができる。
好ましい一実施形態では、タキサンがドセタキセルである。もう一つの好ましい実施形態では、タキサンがパクリタキセルである。ある実施形態では、タキサンが用量75〜100mg/m2のドセタキセルである。ある実施形態では、タキサンが用量135〜175mg/m2のパクリタキセルである。
ある実施形態では、組換えMVAが殺腫瘍量のタキサンの1〜26週間前に投与される。ある実施形態では、組換えMVAが殺腫瘍量のタキサンの1〜3週間前に投与される。
ある実施形態では、組換えMVAが殺腫瘍量のタキサンの2〜60日後に投与される。ある実施形態では、組換えMVAが殺腫瘍量のタキサンの2〜7日後に投与される。
さらに本発明は、HER-2抗原を含むポリペプチドをコードする組換えMVAと、組換えMVAを殺腫瘍量のタキサンに先だって、または殺腫瘍量のタキサンと同時に、または殺腫瘍量のタキサンの後に投与するようにという指示とを含有する、がん患者を処置するためのキットを包含する。
さらに本発明は、HER-2抗原を含むポリペプチドをコードし、そのHER-2抗原が配列番号2を含む、組換えワクシニアウイルスを包含する。
A〜B:MVA-BN-mHER2を接種した後の初代CEF細胞(A)またはHeLa細胞(B)におけるmHER2発現のウェスタンブロット解析。実施例1で説明するように、細胞培養物に、MVA-BNまたはMVA-BN-mHER2を、表示した希釈度で接種するか、TBS緩衝液を接種した。24時間後に培養物から細胞を収集し、細胞溶解物を調製した。試料をSDS-PAGEゲルで電気泳動し、ニトロセルロース膜にエレクトロブロットした。実施例1で説明するように、ウサギ抗HER-2抗血清と共にインキュベートした後、アルカリホスファターゼ標識抗ウサギ抗体および発色性基質を使って検出することにより、mHER2タンパク質を検出した。参照用に、完全長HER-2タンパク質およびHER-2の細胞外ドメインを示す。矢印は、細胞培養物から得た溶解物中に抗HER-2抗血清によって検出されたタンパク質の位置を示す。 A〜C:MVA-BN-mHER2で処置された異なるマウス系統における抗HER-2抗体応答。実施例2で説明するように、C57BL/6(A)またはBALB/c(B)マウス(各群5匹)を、1日目、15日目および29日目(矢印で示す)に、2E6(◆)、1E7(■)および5E7(▲)TCID50のMVA-BN-mHER2で処置した。血液試料を集め、実施例2で説明するように、プール血清の連続希釈液を抗HER-2 IgGの存在についてELISAで分析した。バックグラウンドの2倍のシグナルが検出された力価または希釈率を、異なる時点について示す。(C)BALB/c(◆)およびHER-2トランスジェニックBALB/c NeuT(■)マウスをMVA-BN-mHER2(1E7 TCID50)で処置した。パネルAおよびBの場合と同様に、抗HER-2 IgG価を決定した。 A〜C:MVA-BN-mHER2誘導性抗HER-2抗体応答の抗原特異性。(A)実施例2で説明するように、微量滴定プレートのウェルをHER-2 ecd-Fc(黒い棒)、HER-3 ecd-Fc(灰色の棒)およびHER-4 ecd-Fc(白い棒)でコーティングした。次に、モノクローナル抗HER-2抗体(HER-2 Ab;AB-5、Calbiochem)、モノクローナル抗ヒトIg Fcフラグメント抗体(Fc Ab;Southern Biotech)またはモノクローナルアイソタイプ対照抗体(Contr Ab)を使って、抗原をELISAによって検出した。(B)および(C)。MVA-BN-mHER2(5E7 TCID50)で処置されたC57BL/6(B)またはBALB/c(C)マウスから得た血清を使ってELISAアッセイを行った。最初の処置の前に処置前血清を集め、処置後血清を42日目(2週間間隔で行った3回の注射のうち最後の注射の2週間後)に集めた。表示のデータは平均±標準偏差(標準誤差バーで示す)である。 A〜D:MVA-BN-mHER2で処置された異なるマウス系統におけるHER-2誘導性T細胞応答。実施例3で説明するように、C57BL/6(AおよびB)またはBALB/c(CおよびD)マウス(各群5匹)をTBSまたは1E7 TCID50のMVA-BN-mHER2で処置した。最後の処置の5日後に脾臓を集め、インビトロ再刺激用に細胞懸濁液を調製した。分泌されたIFNγを、実施例3で説明するように、標準的ELISpotアッセイで検出した。AおよびC、増加する量のHER-2 ecd(黒塗りの記号)または培地のみ(白抜きの記号)を、TBS(丸印)またはMVA-BN-mHER2(菱形)で処置されたマウスから得た脾細胞に加えた。BおよびD、実施例3で説明するように、TBS(中空の棒)またはMVA-BN-mHER2(黒い棒)で処置されたマウスから得た脾細胞を、HER-2ペプチドまたは破傷風毒素ペプチドの一つ(TTp2もしくはTTp30)で再刺激した。表示のデータは平均±標準偏差(標準誤差バーで示す)である。 MVA-BN-mHER2で前処置されたマウスにおける腫瘍成長の解析(予防的設定)。実施例5で説明するように、BALB/c マウス(各群5匹)にTBS(黒い三角形)、MVA-BN-mHER2(2E7 TCID50、黒い丸印)またはMVA-BN-mHER2(2E6 TCID50、白抜きの丸印)を皮下注射した。最後の注射の6週間後に、マウスに、TUBO細胞(1E5個)を皮内注射でチャレンジした。その後、週に2回、腫瘍成長を決定した。表示のデータは平均±標準偏差(標準誤差バーで示す)である。 MVA-BN-mHER2で処置されたマウスにおける腫瘍成長の解析。実施例5で説明するように、1日目に、BALB/cマウス(各群9匹)にCT26-HER-2をチャレンジし(5E5個の細胞を静脈内注射)、4日目にTBS、MVA-BN-mHER2(5E7 TCID50)、またはMVA-BN(5E7 TCID50)による腹腔内処置を行った。マウスを14日目に屠殺し、その肺を重量測定した。腫瘍チャレンジしたマウスの平均肺重量からナイーブマウスの平均肺重量を差し引くことによって、腫瘍質量を算出した。表示のデータは平均±標準偏差(標準誤差バーで示す)である。 MVA-BN-mHER2またはMVA-BNで処置されたマウスにおける腫瘍成長の解析。実施例5で説明するように、1日目に、BALB/cマウス(各群9匹)にCT26-HER-2をチャレンジし(5E5個の細胞を静脈内注射)、同じ日にTBS、MVA-BN(5E6もしくは5E7 TCID50)またはMVA-BN-mHER2(5E6もしくは5E7 TCID50)による腹腔内処置を行った。マウスを14日目に屠殺し、その肺を重量測定した。腫瘍チャレンジしたマウスの平均肺重量からナイーブマウスの平均肺重量を差し引くことによって、腫瘍質量を算出した。表示のデータは平均±標準偏差(標準誤差バーで示す)である。 A〜B:MVA-BN-mHER2およびドセタキセルで併用処置されたマウスにおける抗HER-2抗体応答。C57BL/6マウスに、対照(トリス緩衝食塩水(TBS);5匹のI群)または5E7 TCID50のMVA-BN-mHER2(5匹ずつの9群)による皮下処置を、1日目、22日目および43日目(3週毎×3)に行った。MVA-BN-mHER2処置の2日前(-2日目)(A)または1週間前(-7日目)に殺腫瘍量(33mg/Kg)の薬物で動物を処置することにより、化学療法剤ドセタキセルが抗HER-2抗体誘導に及ぼす影響を評価した。表2に記載するように、薬物を1回、2回(3週毎×2)、3回(3週毎×3)または4回(3週毎×4)、iv注射した。 A〜B:ドセタキセルおよびMVA-BN-mHER2で前処置されたマウスにおける腫瘍成長の解析(予防的設定)。殺腫瘍量のドセタキセルで処置されたマウスにおいてMVA-BN-mHER2が誘導する免疫応答の完全性を、MVA-BN-mHER2の抗腫瘍活性を測定することによって、さらに評価した。図8の説明文で述べたように処置されたマウスに、71日目にMC38-HER-2腫瘍細胞をチャレンジし、図5の説明文で述べたように腫瘍成長を評価した。 A〜C:ドセタキセルおよびMVA-BN-mHER2で併用処置されたマウスにおける腫瘍成長の解析。各実験サブセットA、BおよびCごとに、C57BL/6マウス(40匹)に、1日目にMC38-HER-2細胞をチャレンジし、次に、図に示したように各実験サブセットごとに、さまざまな時点で、対照(トリス緩衝食塩水(TBS);10匹を3回処置)、ドセタキセルのみ(33mg/Kg;10匹を1回処置)、MVA-BN-mHER2(5E7 TCID50;10匹を2回処置)またはドセタキセル(1回処置)およびMVA-BN-mHER2(2回処置)による皮下処置を行った。23日目に屠殺するまで腫瘍成長を週に2回評価した。
ある実施形態において、本発明はがん治療のための組換えMVAウイルスの使用を包含する。組換えMVAはMVAウイルスへの異種配列の挿入によって作製される。本発明の実施に役立ち、ブダペスト条約の要件に従って寄託されているMVAウイルス株の例は、ソールズベリー(英国)のEuropean Collection of Animal Cell Cultures(ECACC)に受託番号ECACC 94012707として1994年1月27日に寄託されたMVA572株、および2000年12月7日にECACC 00120707として寄託されたMVA575株である。European Collection of Cell Cultures(ECACC)に番号V00083008として2000年8月30日に寄託されたMVA-BN、およびその誘導体も、模範的な株である。
MVA-BNはその高い安全性(低い複製能)ゆえに好ましいが、本発明には全てのMVAが適している。本発明のある実施形態によれば、MVA株はMVA-BNおよびその誘導体である。MVA-BNおよびその誘導体の定義はPCT/EP01/13628に記載されている。
一定の実施形態では、MVAが少なくとも一つの腫瘍関連抗原を含む。好ましい一実施形態では、その腫瘍関連抗原がHER-2抗原である。ある実施形態では、そのHER-2抗原が配列番号2の配列を含む。
さらなる実施形態では、腫瘍関連抗原が1つまたはそれ以上の外来THエピトープを含むように修飾される。そのようながん免疫治療剤の一つを、限定でない例として本明細書に記載し、「MVA-BN-mHER2」と呼ぶ。本明細書に記載するように、そのようながん免疫治療剤、例えばMVA-BN-mHER2(ただしこれに限るわけではない)は、がんの処置に役立つ。本発明は、免疫低下患者を含むヒトおよび他の哺乳動物の初回(prime)/追加(boost)ワクチン接種レジメンでそのような薬剤を使用して、体液性および細胞性免疫応答の両方を誘導すること、例えば既存のTh2環境におけるTh1免疫応答の誘導などを可能にする。
「ポリペプチド」という用語は、2つ以上のアミノ酸が互いにペプチド結合または修飾ペプチド結合で連結されたポリマーを指す。アミノ酸は天然アミノ酸であってもよいし、非天然アミノ酸、または天然アミノ酸の化学的類似体であってもよい。この用語は、タンパク質、すなわち、少なくとも一つのポリペプチドを含む機能的生体分子も指し、少なくとも2つのポリペプチドを含む場合、それらは複合体を形成するか、共有結合的に連結されるか、または非共有結合的に連結されうる。タンパク質中のポリペプチドは糖鎖付加され、かつ/または脂質付加され、かつ/または補欠分子族を含むことができる。
一定の実施形態では、MVAが、European Collection of Cell Cultures(ECACC)に番号V00083008として2000年8月30日に寄託され、特許文献2および特許文献3に記載されているMVA-BNである。これらの特許公報に記載されているように、MVA-BNは、細胞株293、143B、HeLaおよびHaCat中で増殖的に複製しない。特にMVA-BNは、ヒト胚性腎臓細胞株293では、0.05〜0.2の増幅比を示す。ヒト骨肉腫細胞株143Bにおいて、MVA-BNは0.0〜0.6の増幅比を示す。MVA-BNは、ヒト頚部腺癌細胞株HeLaでは0.04〜0.8の増幅比を示し、ヒトケラチノサイト細胞株HaCatでは0.02〜0.8の増幅比を示す。MVA-BNはアフリカミドリザル腎臓細胞(CV1:ATCC No. CCL-70)では0.01〜0.06の増幅比を持つ。
特許文献2および特許文献3で述べられているように、MVA-BNの増幅比はニワトリ胚線維芽細胞(CEF:初代培養物)では1を上回る。このウイルスはCEF初代培養物では500を上回る比で容易に増殖、増幅させることができる。
一定の実施形態では、組換えMVAがMVA-BNの誘導体である。そのような「誘導体」には、寄託株(ECACC No.V00083008)と本質的に同じ複製特徴を示すが、そのゲノムの1つまたはそれ以上の部分に相違を示すウイルスが含まれる。寄託されたウイルスと同じ「複製特徴」を持つウイルスは、CEF細胞および細胞株HeLa、HaCatおよび143Bにおいて寄託株と類似する増幅比で複製するウイルス;および例えばAGR129トランスジェニックマウスモデルで決定した場合に、インビボで類似する複製特徴を示すウイルスである。
一定の実施形態では、MVAが、ワクシニアウイルスにとって異種である追加ヌクレオチド配列を含有する組換えワクシニアウイルスである。そのような実施形態のいくつかでは、異種配列が、免疫系による応答を誘導するエピトープをコードする。したがって、一定の実施形態では、組換えMVAを使って、そのエピトープを含むタンパク質または作用物質に対するワクチン接種が行われる。好ましい一実施形態では、エピトープが腫瘍関連抗原、好ましくはHER-2である。ある実施形態では、HER-2抗原が配列番号2の配列を含む。
一定の実施形態では、異種核酸配列がウイルスゲノムの非必須領域に挿入される。これらの実施形態のいくつかでは、PCT/EP96/02926に記載されているMVAゲノムの天然欠失部位に、異種核酸配列が挿入される。ポックスウイルスゲノムに異種配列を挿入するための方法は当業者には知られている。
一定の実施形態では、医薬組成物が1つまたはそれ以上の薬学的に許容できかつ/または承認された担体、添加剤、抗生物質、保存剤、アジュバント、希釈剤および/または安定剤を含む。そのような添加剤には、例えば水、食塩水、グリセロール、エタノール、湿潤または乳化剤、およびpH緩衝物質が含まれるが、これらに限るわけではない。模範的な担体は、典型的には、大きくてゆっくり代謝される分子、例えばタンパク質、多糖、ポリ乳酸、ポリグリコール酸、アミノ酸ポリマー、アミノ酸コポリマー、脂質凝集物などである。
ワクチンを製造するために、MVAを生理学的に許容できる形態に変換することができる。一定の実施形態では、そのような製造が、例えばStickl, H.ら, Dtsch. med. Wschr. 99, 2386-2392 (1974)に記載されているような、痘瘡のワクチン接種に用いられるポックスウイルスワクチンの製造における経験に基づいて行われる。
模範的な製造例を以下に述べる。精製ウイルスは、5×108 TCID50/mlの力価で、約10mMトリス、140mMのNaCl、pH7.4中に製剤化して、-80℃で保存される。ワクチン注射剤を製造するために、例えば2%ペプトンおよび1%ヒトアルブミンの存在下で、リン酸緩衝食塩水(PBS)中のウイルス粒子102〜108個を、アンプル(好ましくはガラスアンプル)内で凍結乾燥することができる。あるいは、製剤中のウイルスを段階的に凍結乾燥することによって、ワクチン注射剤を製造することができる。一定の実施形態において、この製剤は、さらに、例えばマンニトール、デキストラン、糖、グリシン、ラクトース、ポリビニルピロリドンなどの添加剤、または例えばインビボ投与に適した酸化防止剤もしくは不活性ガス、安定剤もしくは組換えタンパク質(例えばヒト血清アルブミン)などを含む(ただしこれらに限るわけではない)他の添加剤を含有する。次にアンプルを封止して、好適な温度で、例えば4℃〜室温で数ヶ月間保存することができる。ただし、必要がない限り、アンプルは-20℃未満の温度で保存することが好ましい。
ワクチン接種または治療を伴うさまざまな実施形態では、凍結乾燥物を0.1〜0.5mlの水性溶液、好ましくは生理食塩水またはトリス緩衝液に溶解し、それを全身的もしくは局所的に、すなわち非経口経路、皮下経路、静脈内経路、筋肉内経路、鼻腔内経路、皮内経路で、または熟練した医師に知られる他の任意の経路で投与することができる。投与様式、投与量および投与回数の最適化は、当業者の技量および知識の範囲内で行うことができる。
一定の実施形態では、免疫低下動物、例えばSIVに感染したサル(CD4<400/μl血液)、または免疫低下状態のヒトにおける免疫応答を誘導するために、弱毒化ワクシニアウイルス株が役立つ。「免疫低下(状態)」という用語は、不完全な免疫応答しか示さないか、感染性物質に対する防御の効率が低下している個体の免疫系の状態を表す。
いくつかの模範的腫瘍関連抗原
一定の実施形態では、細胞関連ポリペプチド抗原に対する免疫応答を、対象内で生じさせる。そのような実施形態のいくつかでは、細胞関連ポリペプチド抗原が腫瘍関連抗原である。
一定の実施形態では、細胞関連ポリペプチド抗原が、さまざまな病的過程に関係する腫瘍関連抗原以外の自己タンパク質抗原、またはウイルス抗原、または細胞内寄生虫もしくは細菌に由来する抗原である。一定の例では、そのような病原体関連抗原が、しばしば比較的弱い免疫原(例えば結核菌およびライ菌などのマイコプラズマ由来の抗原、あるいはマラリア原虫などの原虫由来の抗原)である。
当技術分野では非常に多くの腫瘍関連抗原が知られている。模範的な腫瘍関連抗原には、例えば5アルファレダクターゼ、アルファ-フェトプロテイン、AM-1、APC、April、BAGE、ベータ-カテニン、Bcl12、bcr-abl、CA-125、CASP-8/FLICE、カテプシン類、CD19、CD20、CD21、CD23、CD22、CD33 CD35、CD44、CD45、CD46、CD5、CD52、CD55、CD59、CDC27、CDK4、CEA、c-myc、Cox-2、DCC、DcR3、E6/E7、CGFR、EMBP、Dna78、ファルネシルトランスフェラーゼ、FGF8b、FGF8a、FLK-1/KDR、葉酸受容体、G250、GAGEファミリー、ガストリン17、ガストリン放出ホルモン、GD2/GD3/GM2、GnRH、GnTV、GP1、gp100/Pmel17、gp-100-in4、gp15、gp75/TRP-1、hCG、ヘパランス(heparanse)、Her2/neu、HMTV、Hsp70、hTERT、IGFR1、IL-13R、iNOS、Ki67、KIAA0205、K-ras、H-ras、N-ras、KSA、LKLR-FUT、MAGEファミリー、マンマグロビン、MAP17、melan-A/MART-1、メソテリン、MIC A/B、MT-MMP類、ムチン、NY-ESO-1、オステオネクチン、p15、P170/MDR1、p53、p97/メラノトランスフェリン、PAI-1、PDGF、uPA、PRAME、プロバシン、プロジェニポエチン(progenipoientin)、PSA、PSM、RAGE-1、Rb、RCAS1、SART-1、SSXファミリー、STAT3、STn、TAG-72、TGF-アルファ、TGF-ベータ、チモシン-ベータ-15、TNF-アルファ、TP1、TRP-2、チロシナーゼ、VEGF、ZAG、p16INK4、およびグルタチオン-S-トランスフェラーゼが含まれるが、これらに限るわけではない。
模範的な腫瘍関連抗原の一つがHER-2である。HER-2は、今のところ4つの異なる受容体、すなわちc-erbB-1(EGFr)、c-erbB-2(HER-2、c-Neu)、c-erbB-3およびc-erbB-4からなる上皮細胞成長因子受容体ファミリー(c-erbB)のメンバーである(Salomonら, 1995)。c-erbB-3およびc-erbB-4はEGFrおよびHER-2ほど十分には特徴づけられていない。HER-2は内在性膜糖タンパク質である。成熟タンパク質は185kDの分子量を持ち、EGFr受容体によく似た構造上の特徴を有する(Prigentら, 1992)。EGFrも1つのサブユニットからなる内在性膜受容体である。これは170kDaという見掛けの分子量を持ち、621アミノ酸の表面リガンド結合ドメイン、23アミノ酸の単一疎水性膜貫通ドメイン、および542アミノ酸の高度に保存された細胞質チロシンキナーゼドメインからなる。このタンパク質はN-グリコシル化される(Prigentら, 1994)。
このファミリーに属するタンパク質は全てチロシンキナーゼである。リガンドとの相互作用は受容体のダイマー化につながり、それがチロシンキナーゼの触媒作用を増加させる(Bernard. 1995、Chantry 1995)。このファミリーのタンパク質は、ホモダイマー化よびヘテロダイマー化することができ、これはその活性にとって重要である。EGFrは成長促進効果を伝達し、細胞によるグルコースおよびアミノ酸の取り込みを刺激する(Prigentら 1992)。HER-2も成長促進シグナルを伝達する。
上皮成長因子受容体は正常細胞では少量発現するが、多くのタイプのがんでは過剰発現する。EGFrは、乳がん(Earpら, 1993、Eppenberger 1994)、神経膠腫(Schlegelら, 1994)、胃がん(Tkunagaら, 1995)、皮膚扁平上皮癌(Fujii 1995)、卵巣がん(van Damら, 1994)などにおいて過剰発現する。HER-2も、数少ない正常ヒト組織で、最も特徴的には分泌上皮で、少量発現する。HER-2の過剰発現は、乳がん、胃がん、膵がん、膀胱がんおよび卵巣がんの約30%で起こる。
これらの受容体の発現は腫瘍の分化度およびがんタイプに応じて変動し、例えば乳がんでは、原発腫瘍が両方の受容体を過剰発現させるのに対して、胃がんでは、転移性腫瘍において後期に過剰発現が起こる(Salomonら, 1995)。癌細胞上の過剰発現された受容体の数は、いくつかの頭頚部癌、患者から単離された外陰がん、乳がんおよび卵巣がん株では、106/細胞を上回る(Deanら, 1994)。
受容体のEGFrファミリーが腫瘍免疫療法の適切なターゲットを構成する理由はいくつかある。第1に、これらは数多くのがんタイプで過剰発現され、それが免疫応答をその腫瘍に向かわせるはずである。第2に、腫瘍はこの受容体ファミリーのリガンドを発現または過剰発現させることが多く、一部の腫瘍はそれらのリガンドが媒介する増殖作用に対して過敏である。第3に、成長因子受容体を過剰発現させる腫瘍を持つ患者は予後不良であることが多い。過剰発現は特に乳がん、肺がんおよび膀胱がんでは、予後不良と密接に関連づけられており、従来の治療法に対する感受性がかなり低い浸潤性/転移性表現型と対応させることができる(Ecclesら, 1994)。
修飾腫瘍関連抗原
一定の実施形態において、細胞関連ポリペプチド抗原は、APCの表面にMHCクラスI分子と会合して提示された場合に、ポリペプチド抗原に由来するエピトープをその表面に提示する細胞に対するCTL応答が誘導されるように修飾される。そのような実施形態のいくつかでは、少なくとも一つの第1外来性THエピトープが、提示される際に、APCの表面でMHCクラスII分子と会合する。そのような実施形態のいくつかでは、細胞関連抗原が腫瘍関連抗原である。
エピトープを提示する能力を持つ模範的なAPCには樹状細胞およびマクロファージが含まれる。他の模範的APCには、1)MHCクラスI分子に結合したCTLエピトープおよび2)MHCクラスII分子に結合したTHエピトープを同時に提示する能力を持つ任意の飲作用性または食作用性APCが含まれる。
一定の実施形態では、対象への投与後に、主としてHER-2と反応するポリクローナル抗体が惹起されるように、HER-2への修飾が行われる。そのような抗体は腫瘍細胞を攻撃して排除すると共に、転移細胞が転移へと発達するのを防止することができるだろう。この抗腫瘍効果のエフェクター機構は、補体および抗体依存性の細胞性細胞傷害によって媒介されるだろう。また、誘導される抗体は、受容体の成長因子依存的なオリゴ-ダイマー化(oligo-dimerisation)および内在化を阻害することによって、がん細胞成長を阻害することもできるだろう。一定の実施形態において、そのような修飾HER-2ポリペプチド抗原は、腫瘍細胞によってディスプレイされる既知および/または予想HER-2エピトープに対するCTL応答を誘導することができるだろう。
一定の実施形態では、修飾HER-2ポリペプチド抗原が、細胞関連ポリペプチド抗原のCTLエピトープと、変異(variation)とを含み、その変異は外来性THエピトープの少なくとも一つのCTLエピトープを含む。少なくとも一つのCTLエピトープと、外来性THエピトープの少なくとも一つのCTLエピトープを含む変異とを含むそのような修飾HER-2ポリペプチド抗原のいくつか、およびそれらを製造する方法は、米国特許第7,005,498号ならびに米国特許出願公開第2004/0141958号および同第2006/0008465号に記載されている。
一定の実施形態では、外来性THエピトープが天然の「プロミスカス(promiscuous)」T細胞エピトープである。そのようなプロミスカスT細胞エピトープは、ある動物種または動物集団の個体の大部分において活性である。一定の実施形態では、ワクチンが、そのようなプロミスカスT細胞エピトープを含む。そのような実施形態のいくつかでは、プロミスカスT細胞エピトープの使用により、同じワクチンに極めて多数の異なるCTLエピトープを使用する必要性が少なくなる。模範的なプロミスカスT細胞エピトープには、例えば破傷風毒素由来のエピトープ(P2およびP30エピトープ(Panina-Bordignonら, 1989)を含むがこれらに限るわけではない)、ジフテリア毒素、インフルエンザウイルスヘマグルチニン(HA)、および熱帯熱マラリア原虫CS抗原などが含まれるが、これらに限るわけではない。
さらなるプロミスカスT細胞エピトープとして、異なるHLA-DRによってコードされるHLA-DR分子の大部分を結合する能力を持つペプチドも挙げられる。例えばWO 98/23635(Frazer IHら, クイーンズランド大学に譲渡);Southwood Sら, 1998, J. Immunol. 160: 3363 3373;Sinigaglia Fら, 1988, Nature 336:778 780;Rammensee HGら, 1995, Immunogenetics 41:4 178 228;Chicz RMら, 1993, J. Exp. Med 178:27 47;Hammer Jら, 1993, Cell 74:197 203;およびFalk Kら, 1994, Immunogenetics 39:230 242を参照されたい。最後の参考文献はHLA-DQおよび-DPリガンドも扱っている。これらの参考文献に列挙されているエピトープは全て、これらと共通のモチーフを共有するエピトープと同様、本明細書に記載する天然エピトープ候補として重要である。
他の一定の実施形態では、プロミスカスT細胞エピトープが、ハプロタイプの大部分を結合する能力を持つ人工T細胞エピトープである。そのような実施形態のいくつかでは、人工T細胞エピトープが、WO 95/07707および対応する論文Alexander Jら, 1994, Immunity 1:751 761に記載のパンDRエピトープペプチド(pan DR epitope peptide;「PADRE」)である。
mHER2
さまざまな修飾HER-2ポリペプチド抗原と、それを製造するための方法が、参照により本明細書に組み入れられる米国特許第7,005,498号ならびに米国特許出願公開第2004/0141958号および同第2006/0008465号に記載されている。これらの文書には、HER-2ポリペプチド中の異なる位置にプロミスカスT細胞エピトープを含むさまざまな修飾HER-2ポリペプチド抗原が記載されている。
ヒトHER-2配列は、タンパク質の一次構造だけに基づいて、いくつかのドメインに分割することができる。それらのドメインは次のとおりである。細胞外(受容体)ドメインはアミノ酸1〜654にわたり、以下のようにいくつかのサブドメインを含有する:ドメインI(成熟ポリペプチドのN末端ドメイン)はアミノ酸1〜173にわたる;ドメインII(システインリッチドメイン、24個のシステイン残基)はアミノ酸173〜323にわたる;ドメインIII(相同なEGF受容体中におけるリガンド結合ドメイン)はアミノ酸324〜483にわたる;そしてドメインIV(システインリッチドメイン、20個のシステイン残基)はアミノ酸484〜623にわたる。膜貫通残基はアミノ酸654〜675にわたる。細胞内(キナーゼ)ドメインはアミノ酸655〜1235にわたり、アミノ酸655〜1010にわたるチロシンキナーゼドメイン(コアTKドメインは725〜992にわたる)およびアミノ酸1011〜1235にわたるC末端ドメインを含有する。
P2またはP30ヒトTヘルパーエピトープのどちらか一方で置換されるべきHER-2のアミノ酸配列中の部位の選択は、米国特許第7,005,498号ならびに米国特許出願公開第2004/0141958および同第2006/0008465号に記載されている。要約すると、以下のパラメータが考慮された:
1.既知および予想CTLエピトープ;
2.関連受容体(特にEGFR)に対する相同性;
3.システイン残基の保存;
4.予想されるループ、α-ヘリックスおよびβ-シート構造;
5.潜在的N-糖鎖付加部位;
6.露出および埋没アミノ酸残基の予想;
7.ドメイン構成。
CTLエピトープは、ドメインI、ドメインIII、TMドメイン中、およびTKドメイン内にある2または3箇所の「ホットスポット」中に集まっているようである。米国特許第7,005,498号ならびに米国特許出願公開第2004/0141958号および同第2006/0008465号で述べられているように、これらは大部分が保存されているはずである。
他の受容体との高度な相同性を持つ領域は、HER-2の「全体的な」三次元構造にとって、それゆえ抗体認識にとって、構造上重要であると思われるのに対して、相同性の低い領域は、おそらく結果として局所的な構造変化が起こるだけで、交換することができるだろう。
システイン残基は、多くの場合、分子内ジスルフィド橋形成に関与し、したがって三次構造に関与するので、変化させるべきでない。アルファ-ヘリックスまたはベータ-シート構造を形成すると予想される領域は、タンパク質のフォールディングに関与していると考えられるので、これらの領域は外来性エピトープの挿入点としては避けるべきである。
潜在的N-糖鎖付加部位は、タンパク質のマンノシル化が望まれるのであれば、保存されるべきである。
分子の内部にあると(その疎水性によって)予想される領域は、フォールディングに関与しうるので、好ましくは、保存されるべきである。対照的に、溶媒露出領域は、モデルTHエピトープP2およびP30の挿入位置候補として役立つだろう。
最後に、タンパク質のドメイン構成は、タンパク質の構造と機能にとって重要であるから、考慮すべきである。
米国特許第7,005,498号ならびに米国特許出願公開第2004/0141958号および同第2006/0008465号で述べられているように、戦略の焦点はHER-2の細胞外部分の構造を可能な限り保存することであった。なぜなら、タンパク質のなかでも、これが中和抗体のターゲットとして重要な部分だからである。対照的に、がん細胞の表面にあるネイティブ膜結合型HER-2の細胞内部分には、体液性免疫系はアクセスできない。
米国特許第7,005,498号ならびに米国特許出願公開第2004/0141958号および同第2006/0008465号には、HER-2のさまざまなドメインに挿入された破傷風毒素のP2およびP30エピトープを使ったさまざまな模範的コンストラクトが記載されている。「mHER2」と呼ばれる模範的修飾HER-2ポリペプチド抗原の一つは、細胞外ドメインおよび膜貫通ドメインの9アミノ酸;修飾HER-2ポリペプチドのドメインII中、アミノ酸残基273〜287の間に挿入されたP2エピトープ;および修飾HER-2ポリペプチドのドメインIV中、アミノ酸残基655〜675の間に挿入されたP30エピトープを含む。
組換えMVA-BN-mHER2
限定でない一実施形態では、腫瘍関連抗原を含む組換えMVA、例えばMVA-BN-mHER2が、以下のように構築される。複製を許容する細胞タイプ、例えばCEF細胞を使って、細胞培養での組換えによって、最初のウイルスストックを作製する。細胞に、弱毒化ワクシニアウイルス、例えばMVA-BNを接種すると共に、腫瘍関連抗原(例えばmHER2)配列とウイルスゲノムの隣接領域とをコードする組換えプラスミド(例えばpBN146)をトランスフェクトする。限定でない一実施形態では、プラスミドpBN146が、MVA-BN中にも存在する配列(14Lおよび15Lオープンリーディングフレーム)を含有する。mHER2配列は、MVA-BNウイルスゲノムへの組換えが可能になるように、そのMVA-BN配列の間に挿入される。一定の実施形態では、プラスミドが、CEF細胞における組換えコンストラクトの選択が可能なように、1つまたはそれ以上の選択遺伝子を含む選択カセットも含有する。好ましい一実施形態では、組換えMVAが配列番号2を含むポリペプチドをコードする。
培養物の同時の感染およびトランスフェクションにより、ウイルスゲノムと組換えプラスミドの間で、相同組換えが起こりうる。次に、インサートを保持するウイルスを単離し、特徴づけ、ウイルスストックを調製する。一定の実施形態では、選択遺伝子gptおよびEGFPをコードする領域を欠失させるために、選択の非存在下で、ウイルスをCEF細胞培養物で継代する。
細胞毒性剤との併用療法
細胞毒性剤は、ワクチン効力にとって有益であるだろう免疫調整活性を、サブ殺腫瘍量で示す。しかし、殺腫瘍量(高用量)では、これらの薬剤はワクチン活性にとって有害になりうる。MVA-BN-mHER2処置の過程でマウスに投与されたヒト等価殺腫瘍量のドセタキセルは、ワクチンが誘導する抗HER-2抗体価に影響を及ぼさないことが、ここに証明された。そのうえ、MVA-BN-mHER2によるマウスの処置は、インビボでドセタキセルに対する腫瘍の感受性を増加させた。したがって、MVA-BN-mHER2処置と同時に、またはMVA-BN-mHER2処置に先だって、またはMVA-BN-mHER2処置の後に行われる化学療法は、どちらか一方の処置だけよりも優れている可能性がある。
腫瘍関連抗原HER-2を過剰発現させる細胞が媒介するがんを持つ患者は、HER-2抗原をコードするMVAとタキサンとの併用によって処置することができる。好ましい一実施形態では、MVAがMVA-BNである。特に好ましい一実施形態では、MVAが配列番号2を含むポリペプチドをコードする。
HER-2抗原をコードする組換えMVAは、全身的もしくは局所的に、すなわち非経口経路、皮下経路、静脈内経路、筋肉内経路、鼻腔内経路、皮内経路で、または熟練した医師に知られる他の任意の経路で投与することができる。ある実施形態では、105〜1010TCID50の組換えMVAが、患者に投与される。好ましくは、107〜1010 TCID50の組換えMVAが患者に投与される。より好ましくは108〜1010TCID50の組換えMVAが患者に投与される。最も好ましくは108〜109 TCID50の組換えMVAが患者に投与される。
がんは、好ましくは、乳がん、肺がん、胃がん、膵がん、膀胱がん、または卵巣がんである。好ましい一実施形態では、がんが転移性乳がんである。
がん患者は、マウスまたはラットを含む任意の哺乳動物であることができる。好ましくは、がん患者が霊長類、最も好ましくはヒトである。
ある実施形態では、タキサンがドセタキセルである。もう一つの実施形態では、タキサンがパクリタキセルである。タキサンは好ましくは殺腫瘍量で投与される。ドセタキセルの「殺腫瘍量」は少なくとも50mg/m2である。好ましくは、ドセタキセルの殺腫瘍量は75〜100mg/m2であり、これは約25〜33mg/kgの投与量に相当する。パクリタキセルの「殺腫瘍量」は少なくとも90mg/m2である。好ましくは、パクリタキセルの殺腫瘍量は135〜175mg/m2である。タキサンの「サブ殺腫瘍量」とは、殺腫瘍投与量より低い投与量である。タキサンは、当業者に知られる手段で、例えば静脈内に、投与することができる。
ある実施形態では、タキサンと、HER-2抗原を含むポリペプチドをコードするMVAとが、同時に投与される。この併用処置はどちらか一方の処置だけよりも優れている。
ある実施形態では、HER-2抗原を含むポリペプチドをコードするMVAに先だって、タキサンが投与される。ある実施形態では、HER-2抗原をコードするMVAが6ヶ月以内に投与される。一定の実施形態では、タキサン後、3ヶ月以内、2ヶ月以内、または1ヶ月以内に、HER-2抗原をコードするMVAが投与される。ある実施形態では、タキサン後、21日以内に、HER-2抗原をコードするMVAが投与される。ある実施形態では、タキサン後、14日以内に、HER-2抗原をコードするMVAが投与される。ある実施形態では、タキサン後、7日以内に、HER-2抗原をコードするMVAが投与される。通常、HER-2抗原をコードするMVAは、タキサンによる処置の少なくとも2日後に投与される。この併用処置はどちらか一方の処置だけよりも優れている。
ある実施形態では、HER-2抗原を含むポリペプチドをコードするMVAの後に、タキサンが投与される。通常、HER-2抗原をコードするMVAは、タキサンによる処置の少なくとも1週間前に投与される。ある実施形態では、タキサンに先だつこと2年未満の間に、HER-2抗原をコードするMVAが投与される。一定の実施形態では、タキサンに先立つこと1年未満、6ヶ月未満、または3ヶ月未満の間に、HER-2抗原をコードするMVAが投与される。ある実施形態では、タキサンの1〜26週間前に、HER-2抗原をコードするMVAが投与される。ある実施形態では、タキサンの1〜9週間前に、HER-2抗原をコードするMVAが投与される。ある実施形態では、タキサンの1〜3週間前に、HER-2抗原をコードするMVAが投与される。この併用処置はどちらか一方の処置だけよりも優れている。
一定の実施形態では、HER-2抗原をコードするMVAの前と後の両方に、タキサンが投与される。別の実施形態では、タキサンの前と後の両方に、HER-2抗原をコードするMVAが投与される。MVAおよびタキサンの投与は、単回投与または複数回投与であることができる。例えば投与は、1、2、3、4、5、または6週間隔てて行うことができる。
本発明は、組換えMVAを含むキットを包含する。組換えMVAはバイアルまたは容器内に含まれうる。好ましくは、組換えMVAが、HER-2抗原を含むポリペプチドをコードする。さまざまな実施形態において、ワクチン接種用のキットは、第1バイアルまたは第1容器に第1ワクチン接種(「初回免疫」)用の組換えMVAを含み、第2バイアルまたは第2容器に第2ワクチン接種(「追加免疫」)用の組換えMVAを含む。
ある実施形態において、キットは、組換えMVAと、殺腫瘍量のタキサンの投与前にその組換えMVAを投与するようにという指示とを含有することができる。この指示は、MVAがタキサン投与の6ヶ月前から1週間前までのいずれかの時点に投与されるべきであることを指示することができる。好ましい実施形態において、指示は、MVAがタキサン投与の3ヶ月前から1週間前まで、6週間前から1週間前まで、1ヶ月前から1週間前まで、3週間前から1週間前まで、および2週間前から1週間前までの間のいずれかの時点に投与されるべきであることを指示する。ある実施形態において、指示は、MVAがタキサン投与の1週間前から0日前までの間のいずれかの時点に投与されるべきであることを指示することができる。
キットは、組換えMVAと、殺腫瘍量のタキサンの投与と同時にその組換えMVAを投与するようにという指示とを含有することもできる。
キットは、組換えMVAと、殺腫瘍量のタキサンの投与後にその組換えMVAを投与するようにという指示とを含有することもできる。この指示は、MVAがタキサン投与の1日後から6ヶ月後までのいずれかの時点に投与されるべきであることを指示することができる。好ましい実施形態において、指示は、MVAがタキサン投与の2日後から1週間後まで、2日後から2週間後まで、2日後から3週間後まで、2日後から1ヶ月後まで、2日後から2ヶ月後まで、2日後から3ヶ月後まで、および2日後から6ヶ月後までの間のいずれかの時点に投与されるべきであることを指示する。ある実施形態において、指示は、MVAがタキサン投与の0日後から2日後までの間のいずれかの時点に投与されるべきであることを指示することができる。
<実施例1>
MVA-BN-mHER2の構築および感染細胞におけるタンパク質発現の解析
培養物の同時の感染およびトランスフェクションにより、ウイルスゲノムと組換えプラスミドの間で、相同組換えを起こさせた。インサートを保持するウイルスを単離し、特徴づけ、ウイルスストックを調製した。
プラスミドpBN146は、MVA-BN中にも存在する配列(14Lおよび15Lオープンリーディングフレーム)を含有する。MVA-BNウイルスゲノムへの組換えが可能になるように、mHER2配列を、それらMVA-BN配列中に挿入した。こうして、ポックスウイルスプロモーター(具体的には牛痘ウイルスA型封入体遺伝子プロモーター)の下流にmHER2配列を含有するプラスミドが構築された。このプラスミドは、合成ワクシニアウイルスプロモーター(Ps)、薬剤耐性遺伝子(グアニン-キサンチンホスホリボシルトランスフェラーゼ;Ecogpt)、内部リボソームエントリーサイト(IRES)、および強化緑色蛍光タンパク質(EGFP)を含む選択カセットも含有した。両方の選択遺伝子(gptおよびEGFP)が単一の2シストロン性転写物によってコードされた。
HER-2配列を、それに対する免疫応答を増加させるために、p2およびp30の破傷風毒素エピトープをコードするヌクレオチド配列の付加によって修飾した。mHER2をMVA-BNゲノムに挿入した後のウイルス「インサート領域」は以下の構造を持った:
ATIプロモーター−mHER2配列−Psプロモーター−gpt−IRES−EGFP。このインサート領域が、細菌組換えプラスミドpBN146中のMVA-BN I4L遺伝子間領域配列(F1およびF2)で挟まれた。このコンストラクトのヌクレオチド配列を以下に示す。
Figure 0005964540
(配列番号1)
HER2開始および停止コドンを太字で示す。隣接配列を斜体で示す。
コードされているmHER2ポリペプチドの翻訳を以下に示す。
Figure 0005964540
(配列番号2)
p2およびp30配列の破傷風毒素エピトープを太字で示す。
CEF培養物にMVA-BNを接種すると共に、pBN146プラスミドDNAもトランスフェクトした。次に、これらの細胞培養物から得た試料を、選択薬を含有する培地中のCEF培養物に接種し、EGFP発現ウイルスクローンをプラーク精製によって単離した。選択薬の存在下で成長してEGFPを発現させるウイルスストックを、MVA-BN-mHER2と名付けた。MVA-BN-mHER2の作製およびウイルスストックの調製には、5回のプラーク精製を含む12代の連続継代を要した。
次に、選択薬の非存在下で、MVA-BN-mHER2をCEF細胞培養物中で継代した。選択薬の不在が、挿入された配列からの選択遺伝子gptおよびEGFPをコードする領域ならびに関連プロモーター(選択カセット)の喪失を可能にした。選択カセットの喪失をもたらす組換えは、プラスミドpBN146中の選択カセットに隣接するF1 I4L領域およびその領域の小単位F1リピート(F1 rpt)によって媒介される。これらの重複配列は、選択カセットの喪失をもたらしてI4L遺伝子間領域中に挿入されたmHER2配列だけを残すような組換えを媒介するために、含められたものである。
選択カセットを欠くプラーク精製ウイルスを調製した。その調製には、5回のプラーク精製を含む15代の継代を要した。
MVA-BN-mHER2ストックにおけるmHER2配列の存在および親MVA-BNウイルスの非存在をPCRによって確認し、ネステッドPCRを使って、選択カセット(gptおよびEGFP遺伝子)の非存在を検証した。
インビトロでMVA-BN-mHER2を接種した細胞において、mHER2タンパク質の発現を証明した。ニワトリ胚線維芽細胞(CEF)またはHeLa細胞の培養物に、表示した希釈度のMVA-BN-mHER2もしくはMVA-BN、またはTBS緩衝液を接種した。24時間後に培養物から細胞を収集し、細胞溶解物を調製した。試料をSDS-PAGEゲル(NuPAGE(登録商標)Novex 4%−12%ビス-トリスゲル、Invitrogen)に適用し、MOPS緩衝液中、還元条件下(ジチオスレイトール)で電気泳動した。Pharmexa A/Sから入手した2つの参照標準、すなわちHER-2標準およびHER-2細胞外ドメイン標準(0.3ug HER-2 ecd)を含めた。ゲルをニトロセルロース膜上にエレクトロブロットし、それをウサギ抗HER-2抗血清(Pharmexa A/Sから入手)と共にインキュベートした。結合したHER-2抗体を、アルカリホスファターゼ標識抗ウサギ抗体および発色性基質(Western Breeze(商標)、Invitrogen)で明らかにした。
結果を図1に示す。矢印は、MVA-BN-mHER2を接種した細胞培養物から得られる溶解物中の、抗HER-2抗血清で検出されるタンパク質の位置を示す。MVA-BN-mHER2を接種したどちらの細胞タイプから得た溶解物でも、HER-2タンパク質参照標準と類似するサイズの抗原が検出された(図1の矢印で示す)。MVA-BNまたはトリス緩衝食塩水(TBS)を接種した培養物から得られる溶解物には、HER-2タンパク質参照標準とサイズが類似するタンパク質は、検出されなかった。
これらのデータは、MVA-BN-mHER2による細胞の接種後に起こる、鳥類細胞およびヒト細胞におけるmHER2の発現を証明している。したがってMVA-BNは、mHER2のようなトランスジェニック抗原をヒト細胞で発現させるための有効な送達ビヒクルになる。
<実施例2>
MVA-BN-mHER2で処置されたマウスにおける抗HER-2免疫応答の誘導
MVA-BN-mHER2による処置後に起こる抗HER-2免疫応答の誘導を、免疫学的バックグラウンドまたはハプロタイプが異なる2つのマウス系統BALB/cおよびC57BL/6マウスの両方で評価した。MVA-BN-mHER2による処置後に起こる抗HER-2免疫応答の誘導を、トランスジェニックHER-2マウス系統BALB/c NeuTマウスでも評価した。これらの研究では、2E6〜5E7 TCID50の範囲にわたるさまざまな用量のMVA-BN-mHER2を、以下に詳述するように評価した。以下に述べるように、各処置の前日ならびに処置中および処置後のさまざまな時点で、血液試料を収集した。体液性応答(抗HER-2 IgGの産生)をELISAアッセイによって解析した。最終処置後に脾細胞を集め、細胞性応答をELISpotで解析した。これらの研究を実施例3で説明する。
マウス系統:8〜10週齢の雌BALB/cおよびC57BL/6マウスをHSDから入手した。BALB/c NeuTマウスはGuido Forniの厚意で提供された。このマウスは、キメラマウス***腫瘍ウイルス(MMTV)プロモーターの制御下にある活性化HER-2/Neuがん遺伝子を発現させる。BALB/c NeuT雌は、3週齢までは乳腺の形態学的異常を示さない。次にこれらは非定型過形成を経て上皮内小葉癌に進行する。25週齢までに10個の乳腺全てが浸潤癌を示す(Boggioら, 1998, J. Exp. Med.)。全ての実験に、1群あたり5〜10匹のマウスを使用した。
MVA-BN-mHER2処置したマウスにおける抗HER-2抗体応答の誘導
BALB/c、C57BL/6、およびBALB/c NeuTマウスに、対照溶液(トリス緩衝食塩水(TBS))、または2E6、1E7、もしくは5E7 TCID50のMVA-BN-mHER2を、1日目、15日目および29日目に皮下注射した。これらの試験処置群はそれぞれ5匹とした。0日目、14日目、28日目、42日目および56日目に、血液試料を集めた。各試験群の5匹の動物のそれぞれから得た血清をプールし、ELISAアッセイを使って抗HER-2 IgGの存在について分析した。
ELISAアッセイは以下のように行った。まず、ELISAプレートを、2μg/ml(50μl/ウェル)の組換えErbB2/Fcキメラ(R+D System、コーティング緩衝液(200mM Na2CO3、pH9.6)に希釈したもの)により、室温で1時間コーティングした。プレート洗浄機(Wellwash AC、Thermo Electronics)を使ってプレートをPBS+0.05%ツイーンで6回洗浄した後、PBS+0.05%ツイーンで1時間ブロックした。プレートを再び6回洗浄した。マウス血清をPBS+0.05%ツイーンに希釈し、50μl/ウェルずつ加えた。プレートを室温で1時間インキュベートした。次にプレートを6回洗浄し、ヒツジ抗マウスIgG-HRP二次抗体(Southern Biotech J3003-VI4513)を加えた(50μl/ウェル、PBS+0.05%ツイーンに1:1000希釈したもの)。プレートを室温で1時間インキュベートした。プレートを6回洗浄した後、100μl/ウェルのTMB基質を全てのウェルに加えた。プレートを暗所で20分間インキュベートした後、100μlの0.5M H2SO4を全てのウェルに加えた。プレートリーダー(Thermo Electronics)を使って、各ウェルにおける450nmでの吸光度を決定した。
結果を図2A〜Cに示す。図2Aおよび2Bは、抗HER-2抗体応答が、C57BL/6マウスでもBALB/cマウスでも、全てのMVA-BN-mHER2処置群で検出されることを示している。どちらの系統においても、抗HER-2抗体価はMVA-BN-mHER2の複数回投与によって増加し、処置を停止した後はプラトーに達した。図2Cは、HER-2を構成的に発現させるHER-2トランスジェニックBALB/c NeuTマウスでも抗HER-2抗体応答が検出されたことを示している。こうして、これらのデータは、MVA-BN-mHER2がHER-2に対する免疫寛容を克服することのできる強力な免疫原であること(これはがん患者の処置に役立ちうる属性である)を証明している。
MVA-BN-mHER2誘導性抗HER-2抗体応答の抗原特異性
MVA-BN-mHER2処置マウスの血清を、上述の手法を使って、同様にELISAで評価した。HER-2、HER-3、およびHER-4 ecd-Fcキメラタンパク質を、微量滴定プレートのウェルにコーティングされる抗原として使用した。モノクローナル抗HER-2抗体(HER-2 Ab;AB-5、Calbiochem)、モノクローナル抗ヒトIg Fcフラグメント抗体(Fc Ab;Southern Biotech)、またはモノクローナルアイソタイプ対照抗体(Contr Ab)を使って抗原を検出した。結果を図3に示す。図3AはELISA対照を示し、モノクローナル抗HER-2抗体がHER-2 ecd-Fc被覆ウェルだけと特異的に反応するのに対して、モノクローナル抗ヒトIg Fcフラグメント抗体は3つのキメラタンパク質の全てと反応する。図3Bおよび3Cは、MVA-BN-mHER2で処置されたC57BL/6マウスとBALB/cマウスのどちらにおいても、血清がHER-2 ecd-Fcキメラだけを検出したことを示している。これらのデータは、どちらのマウス系統でも、MVA-BN-mHER2処置後に誘導される抗体応答は、HER-2に対して高度に特異的であり、上皮成長因子受容体ファミリーの他の一定のメンバー、例えばHER-3およびHER-4とは、交差反応しないことを示している。
MVA-BN-mHER2処置マウスにおける抗HER-2抗体の誘導を、ヒトHER-2を発現させるマウス細胞株(CT26-HER-2;後述)を使って、蛍光活性化細胞スキャン(FACS)解析でも評価した。MVA-BN-mHER2で処置されたマウスの血清は、ヒトHER-2を発現させる細胞に結合するが、この受容体を発現させないその親対応物には結合しない抗体を含有した(データ未掲載)。
要約すると、MVA-BN-mHER2によるマウスの処置が、ヒトHER-2ポリペプチドに結合する能力および細胞表面に発現されたヒトHER-2に結合する能力を持つ抗体の形成を刺激することを、これらのデータは証明している。
<実施例3>
抗HER-2 T細胞応答の誘導
BALB/cマウスおよびC57BL/6マウス(各群5匹)に、対照(TBS)または1E7 TCID50のMVA-BN-mHER2を、1日目、15日目、29日目、および43日目に皮下注射した。48日目に動物から脾臓を収集し、各試験群から得た細胞懸濁液を分析用にプールした。インビトロ抗原特異的再刺激後のIFNγ産生を測定するELISpotアッセイによって、T細胞応答の誘導を評価した。再刺激には、HER-2 ecd、MHCクラスI HER-2ペプチド、およびmHER2配列に含まれる破傷風毒素由来の2つのMHCクラスII Tヘルパーペプチドを、個別に使用した。クラスI HER-2ペプチドはアミノ酸配列TYLPTNASL(配列番号3)を持った。MHCクラスII Tヘルパー破傷風毒素ペプチドP2はアミノ酸配列QYIKANSKFIGITEL(配列番号4)(図4ではTTp2と表記)を持ち、MHCクラスII Tヘルパー破傷風毒素ペプチドP30はアミノ酸配列FNNFTVSFWLRVPKVSASHLE(配列番号5)(図4ではTTp30と表記)を持った。
ELISpotアッセイは以下のように行った。15μlの35%エタノールを各ウェルに加えることにより、Millipore Multiscreen 96ウェル濾過プレートの膜を前もって濡らして、アッセイプレートの準備をした。エタノールを直ちに払い落とし、プレートを200μl/ウェルのPBSで2回洗浄した。プレートを、2μg/ml(50μl/ウェル、PBSに希釈)のラット抗マウスIFN-γ捕捉抗体(BD Pharmingen、551216、ロット番号34503)でコーティングし、4℃で終夜インキュベートした。コーティング抗体を払い落とし、プレートを滅菌条件下にPBSで3回洗浄した。100μl/ウェルのRPMI-10(RPMI+10%FCS+β-メルカプトエタノール)により、プレートを室温で30分間ブロックした後、PBSで2回洗浄した。
エフェクター細胞を50μlのRPMI-10(RPMI+10%FCS+2-ME 5×10-5M+1×Pen/Strep.)に表示した濃度で加えた。HER-2タンパク質、HER-2ペプチド、または破傷風毒素タンパク質およびペプチドをRPMI-10に希釈し、適当な希釈度(通常、タンパク質の場合は10ug/ml、ペプチドの場合は25μMから出発するが、実験によって変動する)で、エフェクターウェルに加えた(50μl/ウェル)。プレートをCO2培養器中、37℃で、約18時間インキュベートした。
細胞をウェルから払い落とし、100μl/ウェルのdH2Oを全てのウェルに室温で5分間加えた。ウェルを100μl/ウェルのdH2Oで3回洗浄した。次に、PBS+0.05%ツイーンを洗浄緩衝液として、プレートをプレート洗浄機(Wellwash AC、Thermo Electron)で6回洗浄した。
50μl/ウェルの抗IFN-γ-ビオチン(Serotec、MCA1548B、バッチ番号0803)を、PBS+5%FCS中、1:5000の希釈度で、全てのウェルに加え、室温で1〜2時間インキュベートした。次に、PBS+0.05%ツイーンを洗浄緩衝液とし、プレート洗浄機(Wellwash AC、Thermo Electron)を使って、プレートを6サイクル洗浄した。次に、50μl/ウェルのストレプトアビジン-アルカリホスファターゼ(BD Pharmingen、554065、ロット番号46484)を、PBS+5%BSA中、1:5000の希釈度で全てのウェルに加え、室温で1時間インキュベートした。
次に、プレート洗浄機(Wellwash AC、Thermo Electron)を使って、プレートを再び6サイクル洗浄した後、50μl/ウェルのBCIP/NBT基質を15分間加えることにより、暗所で発色させた。基質を流しに払い落とし、水道水で十分に洗浄した。プレートの裏材を取り除き、プレートをドラフト内で乾燥させた。CellCount Proソフトウェアを使用して、ImmunoSpotプレートスキャナーで、プレートをスキャンし、読み取った。
結果を図4A〜Dに示す。図4AおよびCは、HER-2 ecdによる再刺激時に、C57BL/6系統マウス(図4A)およびBALB/c系統マウス(図4C)のどちらの脾細胞でも、用量依存的なT細胞応答が検出されたことを示している。
図4B(C57BL/6マウス)および図4D(BALB/cマウス)は、このアッセイでは、HER-2 MHCクラスIペプチドならびに両破傷風毒素MHCクラスIIペプチドと共にインキュベートした後に、IFNγ産生も検出されたことを示している。この結果は、MVA-BN-mHER2で処置されたマウスでは、MHCクラスI特異的CD8 T細胞とMHCクラスII特異的CD4 T細胞がどちらも誘導されたことを示している。これらのデータは、mHER2中の破傷風毒素ペプチドがTヘルパーエピトープとして作用することをことを裏付け、MVA-BN-mHER2処置が、ネイティブHER-2タンパク質中に存在するエピトープと反応するT細胞(CD8 T細胞を含む)を誘導することを示している。
要約すると、これらの研究は、MVA-BN-mHER2によるマウスの反復処置が、抗体ならびにCD4およびCD8 T細胞サブタイプの両方を含む幅広い抗原特異的適応免疫応答を誘導することを示している。同様の結果がC57BL/6マウスとBALB/cマウスの両方で得られたことで、異なるMHCハプロタイプを持つ動物が同じように応答することが示された。上記実施例2で述べたように、HER-2寛容マウスにおいて特異的抗体応答が得られた。したがってMVA-BN-mHER2処置は、複数の経路による、さまざまなMHC環境での、自己抗原発現腫瘍細胞の排除を媒介する潜在能力を持ち、それは癌処置にとって望ましい。したがって、MVA-BN-mHER2の複数回注射を使用する処置レジメンを、ヒトがん患者の処置に使用することができる。
<実施例4>
MVA-BN-mHER2処置マウスにおけるTh1免疫調整
上記実施例のデータは、MVA-BNが、強い免疫原性をも示す効率のよい導入遺伝子送達ビヒクルであることを示している。MVAが、痘瘡からの防御を付与するTh1適応免疫応答をトリガーし(Earlら, 2004;Wyattら, 2004)、先天免疫応答も誘導すること(Brutkiewiczら, 1992;Dokunら, 2001)は、以前に報告されている。したがって、MVA-BNの固有の免疫特性は、導入遺伝子に対する免疫応答を調整するのに、潜在的に役立ちうる。
免疫原の投与後に産生される一定の抗体サブタイプを調べることにより、免疫応答の一定の特徴が明らかになることが知られている。例えば、Th1免疫環境ではIgG2a抗体が優勢になるのに対して、Th2免疫応答が誘導されると、IgG1抗体が優勢になる。Th1免疫環境は、免疫応答の体液性成分と細胞性成分を両方とも含むので、がん免疫治療においては望ましいであろう長期にわたる防御応答に貢献する。対照的に、Th2免疫環境は、がん免疫治療においてはそれほど望ましくない短寿命な免疫応答の体液性成分を含む。したがって、マウスにおいて免疫原を投与した後のIgG2aサブタイプとIgG1サブタイプとの比を測定することは、免疫応答のTh1/Th2特徴を評価する手段になる。免疫原の投与後に起こるIgG2a/IgG1比の増加は、Th1環境へのシフトのしるしである。逆に、比の低下はTh2応答へのシフトを示す。
HER-2配列を含むさまざまな製剤でマウスを処置した後に産生される抗HER-2 IgG2a抗体サブタイプとIgG1抗体サブタイプとの比を測定することにより、HER-2に対する免疫応答を調整するMVA-BN-mHER2の能力を評価した。MVA-BN-mHER2、フロイントアジュバントエマルション中のmHER2タンパク質、またはHER-2(+)腫瘍細胞株のいずれか一つによるBALB/cマウスの処置後に誘導される抗HER-2抗体のIgG2a/IgG1比を、抗体サブタイプ特異的検出抗体を用いるELISAによって決定した。このELISAアッセイは、検出抗体を取り替えた点以外は、上述のように行った。結果を下記表1に示す。
これらの結果は、フロイントアジュバント中のHER-2またはHER-2(+)腫瘍細胞で処置されたマウスと比較して、MVA-BN-mHER2で処置されたマウスでは、IgG2a/IgG1比が有意に高かったことを示している。さらにまた、これらの結果は、HER-2(+)腫瘍細胞株で処置されたマウスから得られる血清における抗体のIgG2a/IgG1比が、これらのマウスをMVA-BN-mHER2で併用処置した場合には増加したことも示している。この結果は、HER-2(+)腫瘍細胞株の投与によってもたらされたTh2環境においてさえ、MVA-BN-mHER2の追加投与によって、Th1応答が効果的に誘導されたことを示している。
Figure 0005964540
要約すると、これらのデータは、Th1免疫応答への強いバイアスを特徴とするMVA-BNの固有の免疫原性が、HER-2に対する免疫応答に、Th1環境に向かう影響を及ぼすことを証明している。これは、HER-2を発現させる腫瘍細胞によって誘導されるTh2に偏った抗HER-2抗体応答が存在する場合にも当てはまる。乳がん患者では腫瘍によって誘導された既存の抗HER-2抗体応答が報告されているので、治療との関連において、本明細書に記載するMVA-BNの強力な免疫調整特性は望ましい。したがって、たとえHER-2に対する望ましくないTh2応答が既に存在していたとしても、患者をMVA-BN-mHER2で処置することにより、免疫応答の性質がTh1プロファイルへと方向を変えるはずである。
<実施例5>
MVA-BN-mHER2で処置されたマウスにおける抗腫瘍活性
予防的処置
予防的状況において腫瘍成長を防止するというMVA-BN-mHER2の能力を、マウスにおける乳がんモデルとして、移植されたTUBO細胞を使って評価した。TUBO細胞は、トランスフォーミングラットHER-2(HER-2/neu)がん遺伝子が導入されたトランスジェニックBALB/cマウスで発生した乳腺癌に由来する(Roveroら, J. Immunol. 165, 5133-5142(2000))。HER-2配列はラットとヒトの間で高度に保存されているので、HER-2のラットまたはヒトホモログのどちらか一方を含むワクチンの効力を評価するために、TUBO細胞は日常的に使用される(Dela Cruzら, Vaccine 23, 4793-4803 (2005))。
この効力研究では、マウスを上述のようにMVA-BN-mHER2で免疫化した(すなわち、TBSまたはMVA-BN-mHER2(2E6もしくは5E7 TCID50)のどちらか一方を2週間隔で3回)。次に、処置したマウスを、最後のワクチン注射の6週間後に、3E5個のTUBO細胞を皮内注射することによる腫瘍チャレンジに付した。その後、注射部位における腫瘍成長を週に2回観察し、ノギスを使って皮膚下の固形腫瘍のサイズを測定した。腫瘍体積(mm3)は、式:V=(L×W2)/2[式中、L=長さ、W=幅]を使って算出した(1mm3=1mg)。図5に示す結果は、MVA-BN-mHER2で前処置された動物における腫瘍が、対照処置マウスにおける腫瘍より、有意に小さかったことを示している。
MVA-BN-mHER2をいずれかの用量で与えられたマウスでは、TBS処置マウスにおける腫瘍のサイズと比較して、腫瘍サイズの相違が統計的に有意だった(p<0.005)。25日目に、数匹のMVA-BN-mHER2処置マウスが、腫瘍の安定化、退縮、さらには根絶を示した。最後のMVA-BN-mHER2処置の6週間後にマウスに腫瘍細胞をチャレンジしたので、これらのデータは、観察された腫瘍成長の阻害が、おそらくは、MVA-BN-mHER2投与によって誘導された記憶免疫応答の想起によって媒介されたのであろうことを示している。
要約すると、これらのデータは、MVA-BN-mHER2によるマウスの処置が、抗原特異的適応免疫応答および免疫記憶の樹立を誘導することを示している。その後に、HER-2を発現させる腫瘍細胞をマウスにチャレンジすると、その免疫記憶が想起されて、腫瘍細胞の成長を阻害する。
治療的処置:MVA-BN-mHER2を使った処置による定着腫瘍の抑制
定着腫瘍を抑制するMVA-BN-mHER2の能力を、ヒトHER-2を安定して発現させるCT26細胞を用いる実験的肺転移モデルで評価した。CT26は、BALB/cマウスの化学的に誘導された結腸直腸癌である(Brattainら, 1980)。このモデルでは、CT26-HER-2細胞がBALB/cマウスに静脈内注射され、腫瘍小結節が成長する肺における腫瘍量が評価される。
1日目にCT26-HER-2細胞(5E5個)を静脈内注射によってマウスにチャレンジし、4日目に、TBS、MVA-BN(5E7 TCID50)またはMVA-BN-mHER2(5E7 TCID50)の腹腔内への単回注射によって、マウスを処置した。次に、14日目にマウスを屠殺し、その肺を重量測定した。ナイーブマウス(腫瘍細胞をチャレンジしていないもの)の平均肺重量を腫瘍チャレンジしたマウスの平均肺重量から差し引くことによって、腫瘍質量を算出した。
結果を図6に示す。これらの結果は、MVA-BN-mHER2で処置されたマウスにおける腫瘍量が、対照マウスにおける腫瘍量よりも有意に低いことを示している(p<0.000001)。実際、MVA-BN-mHER2群の全ての動物において、対照群と比較して、明確に減少した肺重量が観察された。対照的に、対照群およびMVA-BN処置群のマウスでは、腫瘍量は類似していた。要約すると、MVA-BN-mHER2によるマウスの処置は、マウスにおける定着HER-2(+)腫瘍の成長を阻害する。
治療的処置:MVA-BN-mHER2またはMVA-BNによる処置後の防御先天免疫の誘導
先天免疫をトリガーすることによってMVA-BN-mHER2の抗腫瘍活性に寄与するMVA-BNの能力を、上述のCT26腫瘍モデルで評価した。この実験では、腫瘍チャレンジの日に(この時点で腫瘍量は少ない)、MVA-BN(5E6もしくは5E7 TCID50)またはMVA-BN-mHER2(5E6もしくは5E7 TCID50)のどちらか一方で、マウスを処置した。チャレンジされたマウスの肺において、上述のように腫瘍量を評価した。結果を図7に示す。これらの結果は、MVA-BN(5E7 TCID50)を使った処置による腫瘍成長阻害(TGI)が>70%であったこと(p<0.0001)を示している。MVA-BN(5E6 TCID50)による処置は5E7 TCID50による処置ほど効率がよくなかった(32%TGI;p=0.002)ので、MVA-BNの抗腫瘍活性は用量依存的だった。対照的に、MVA-BN-mHER2(5E6または5E7 TCID50のどちらか一方)で処置したマウスは、類似する防御を示した(>70%TGI;p<0.000001)。
総合すると、図6および7に示すデータは、MVA-BNとMVA-BN-mHER2はどちらも抗腫瘍活性を持っているが、MVA-BN-mHER2の活性の方が優れていることを証明している。実際、肺転移モデルでは、MVA-BN-mHER2(5E6 TCID50)による1日目のマウスの処置(図7)は、同じ用量のMVA-BNによる処置よりも有効だった。このモデルでは、MVA-BN-mHER2による4日目のマウスの処置(図6)も腫瘍成長を抑制したが、MVA-BNでは効果がなかった。したがって、一定の設定において観察されたMVA-BNの抗腫瘍活性は、おそらくは、先天免疫の刺激によるものであるだろう。全ての実験で観察されたMVA-BN-mHER2の優れた活性は、先天免疫系の刺激と特異的抗HER-2適応免疫応答の誘導との組合せによるものと思われる。
<実施例6>
細胞毒性剤との併用療法
C57BL/6マウスに、対照(トリス緩衝食塩水(TBS);5匹のI群)または5E7 TCID50のMVA-BN-mHER2(5匹ずつの9群)による皮下処置を、1日目、22日目および43日目(3週毎×3)に行った。化学療法剤ドセタキセルが抗HER-2抗体誘導に及ぼす影響を、MVA-BN-mHER2処置の1週間前(-7日目)または2日前(-2日目)に殺腫瘍量(33mg/Kg)の薬物で動物を処置することによって評価した。薬物を、1回、2回(3週毎×2)、3回(3週毎×3)または4回(3週毎×4)、iv注射した。動物群の配置、投与レジメンおよびスケジュールを、表2に要約する。
Figure 0005964540
-9日目(前採血)、各ワクチン処置の13日後(d14、35、56)および最後の薬物処置の1週間後(d70)に、血液試料を収集した。各試験群から得た血清をプールし、ELISAにより、微量滴定プレートのウェル上にコーティングされる抗原として市販のHER-2 ecd-Fcキメラタンパク質を使って分析した。このキメラタンパク質は、ヒト免疫グロブリンGのFcドメインに融合されたネイティブヒトHER-2の細胞外ドメインを含む。図8AおよびBに示すように、抗HER-2抗体応答は、全てのMVA-BN-mHER2処置群で、どの時点においても検出され、ワクチン接種の2日前または7日前にマウスを殺腫瘍量のドセタキセル(33mg/Kg)で前処置した場合、力価は有意に異ならなかった。さらにまた、ドセタキセル処置を3回のワクチン接種スケジュールの全体にわたって継続した場合でも、抗体応答は影響を受けなかった。
MVA-BN-mHER2の抗腫瘍活性を測定することにより、殺腫瘍量のドセタキセルで処置されたマウスにおいてMVA-BN-mHER2が誘導する免疫応答の完全性を、さらに評価した。実際、MVA-BN-mHER2は、ワクチン接種後に移植された腫瘍の成長を遅らせる能力を持つ記憶応答を誘導することが、先に(実施例5)に示されている(予防的腫瘍モデル)。そこで、上記表2の試験群のマウスに、71日目にMC38-HER-2腫瘍細胞(Penichetら, Laboratory Animal Science 49, 179-188(1999))をチャレンジし、実施例5で説明したように、腫瘍成長を評価した。図9AおよびBに示すように、MVA-BN-mHER2で処置したマウス群の全てにおいて、腫瘍成長が遅延した。殺腫瘍量のドセタキセルによる前処置および同時処置は、腫瘍成長遅延に有意な影響を持たなかった。この実験は予防的設定で行ったので、測定された抗腫瘍効果は、おそらく、MVA-BN-mHER2誘導性抗HER-2免疫応答によって媒介されたものであり、ドセタキセルは腫瘍に対する直接の細胞傷害効果を持たなかったのだろう。実際、ドセタキセル処置と腫瘍チャレンジの間の最短の時間間隔は9日だった(62日目にドセタキセル投与を受けた第6群)。化学療法剤の薬理学的性質を考えると、腫瘍移植の時点では薬物濃度が低すぎて有効ではなかったと思われる。したがって、このデータにより、MVA-BN-mHER2とドセタキセルとの併用処置は、このワクチンによる防御免疫応答の誘導にとって有害でないことが確認された。このことは、ヒトでの標準的処置レジメンを反映して殺腫瘍量の化学療法剤を3週間間隔で使用した場合にも当てはまる。
次に、化学療法と免疫療法の併用処置によってもたらされる潜在的利益を、治療的設定のマウスMC38-HER-2腫瘍モデルで評価した。この実験では、1回の化学療法処置がそれぞれ2回の免疫療法処置前、2回の免疫療法処置中、または2回の免疫療法処置後に行われる3つのサブセット(サブセットA、BおよびC)に、動物を分割した。
サブセットAでは、C57BL/6マウス(40匹)に1日目にMC38-HER-2細胞をチャレンジした後、対照(トリス緩衝食塩水(TBS);d1、8および15に10匹を処置)、ドセタキセルのみ(33mg/Kg;d1に10匹を処置)、MVA-BN-mHER2(5E7 TCID50;d8および15に10匹を処置)、または1日目にドセタキセルの後、d8および15にMVA-BN-mHER2を使って皮下処置を行った。23日目に屠殺するまで、腫瘍成長を週に2回評価した。図10Aに示すように、1日目のドセタキセル処置が腫瘍成長のわずかな一過性の遅延(統計的に有意な差は19日目までしか検出されなかった)をもたらしたのに対して、8日目および15日目のMVA-BN-mHER2処置は腫瘍成長に影響を持たなかった。対照的に、d8および15におけるMVA-BN-mHER2投与に先だってドセタキセル(d1)を投与する併用処置は、この研究の全体を通して腫瘍成長を阻害するのに、著しく有効だった(23日目でp=0.001)。
サブセットBでは、同じ4つの動物群で実験を行ったが、ドセタキセルをd8に与えたのに対して、MVA-BN-mHER2は1日目および15日目に投与した。腫瘍サイズが重量で50mg(このモデルでは8日目付近でこの重量に到達する)をひとたび超えると、ドセタキセルがMC38-HER-2成長に影響を持たないことは、以前に決定されている。予想どおり、8日目のドセタキセル処置が腫瘍成長に何の影響も持たなかったのに対し(図10B)、2週間間隔で2回のMVA-BN-mHER2投与(1日目および15日目)は腫瘍成長の阻害に著しく有効だった(23日目でp=0.002)。さらに重要なことに、この抗腫瘍活性は、ワクチン処置の間に投与された高用量のドセタキセルによって、負の影響を受けなかった(図10B)。
サブセットCでは、同じ4つの動物群で実験を行ったが、ドセタキセルをd15に与えたのに対して、MVA-BN-mHER2は1日目および8日目に投与した。サブセットBと同様に、全ての群において腫瘍は、化学療法処置の時点(15日目)で、MC38-HER-2成長の低減に関してドセタキセルが無効になるサイズ限界を超えた。そして予想どおり、図10Cは、ドセタキセルが、単独で投与された場合に、腫瘍成長に影響を持たなかったことを示している。サブセットAと同様に、1週間間隔で行われる2回のMVA-BN-mHER2投与からなるワクチン処置も最適ではなく、同様に腫瘍成長には影響を持たなかった。驚いたことに、ワクチン投与後にドセタキセルを与えられたMVA-BN-mHER2処置群に属するマウスの平均腫瘍サイズは、MVA-BN-mHER2だけで処置されたマウスの腫瘍サイズの平均よりも有意に小さかった(23日目でp=0.036)。このデータは、MVA-BN-mHER2処置がインビボでドセタキセルに対するMC38-HER2の感受性を増加させることを示している。
全体として、このデータは、ワクチンの効力に有害な影響を及ぼすことなく、MVA-BN-mHER2と殺腫瘍量の化学療法剤とを併用できることを示している。実際、化学療法前処置はワクチン効力を増大させ、ワクチン前処置は化学療法に対する腫瘍の感受性を増加させたので、これら二つの治療法を併用することは互いに有益でありうることが見出された。したがって、ワクチンと化学療法とを継続的に交互投与するという併用処置は、より強力ながん処置レジメンを作成するための新しい手段にもなると考えられる。
<実施例7>
エピトープ/抗原拡大(epitope/antigen spreading)
エピトープ/抗原拡大は、瀕死の腫瘍細胞からのエピトープ/抗原の露出によってトリガーされる免疫応答の誘導によってもたらされる。ワクチンが誘導するエピトープ/抗原拡大は、最大限の抗腫瘍活性にとって著しく有利である。HER-2+腫瘍に対して保護されたマウスは、HER-2を発現させない親腫瘍による2回目のチャレンジに抵抗するので、MVA-BN-mHER2処置はエピトープ/抗原拡大をもたらすことが見出された。したがって、MVA-BN-mHER2は、HER-2以外の腫瘍抗原にも拡大することができる幅広い防御免疫応答のトリガリング(これは、不均一な腫瘍を処置し、腫瘍エスケープを防止するための前提条件である)を可能にする。
<実施例8>
NeuTマウスにおける自然発生腫瘍
異種HER-2(例えばヒトHER-2)で処置されたラットHER-2/neuを発現させるトランスジェニックマウス(NeuTマウス)において生じる自然発生腫瘍を遅延させるには、高力価かつ広スペクトルの抗体が要求される。裸のDNAのような異種HER-2のワクチン製剤はこのモデルにおける腫瘍成長を遅延させることができなかったが、ウイルスに基づく製剤は抗腫瘍活性を示した。MVA-BN-mHER2は、処置を腫瘍発生の後期に開始した場合でさえ、NeuTにおける自然発生腫瘍成長を遅延させることが見出された。したがってMVA-BNは抗腫瘍活性を誘導するための優れた抗原製剤を与える。

Claims (19)

  1. 殺腫瘍量のタキサンとの併用療法のための、HER−2抗原を含むポリペプチドをコードする遺伝子を含む組換え改変ワクシニアアンカラ(MVA)を含有し、タキサンがドセタキセルである、ヒトがん患者を処置するための医薬組成物。
  2. MVAが、European Collection of Cell Cultures(ECACC)に番号V00083008として寄託された改変ワクシニアアンカラバーバリアンノルディック(MVA−BN)である、請求項1の医薬組成物。
  3. HER−2抗原を含む前記ポリペプチドが配列番号2を含む、請求項の医薬組成物。
  4. 組換えMVAが殺腫瘍量のタキサンに先だって投与されるように用いられることを特徴とする、請求項1の医薬組成物。
  5. 組換えMVAが殺腫瘍量のタキサンと同時に投与されるように用いられることを特徴とする、請求項1の医薬組成物。
  6. 組換えMVAが殺腫瘍量のタキサン後に投与されるように用いられることを特徴とする、請求項1の医薬組成物。
  7. タキサンが用量75〜100mg/m ある、請求項1〜5のいずれか一つの医薬組成物。
  8. 組換えMVAが殺腫瘍量のタキサンの1〜26週間前に投与されるように用いられることを特徴とする、請求項4の医薬組成物。
  9. 組換えMVAが殺腫瘍量のタキサンの1〜3週間前に投与されるように用いられることを特徴とする、請求項4の医薬組成物。
  10. 組換えMVAが殺腫瘍量のタキサンの2〜60日後に投与されるように用いられることを特徴とする、請求項6の医薬組成物。
  11. 組換えMVAが殺腫瘍量のタキサンの2〜7日後に投与されるように用いられることを特徴とする、請求項6の医薬組成物。
  12. HER−2抗原を含むポリペプチドをコードする遺伝子を含む組換えMVAと殺腫瘍量のタキサンとを含有し、タキサンがドセタキセルである、ヒトがん患者を処置するための医薬組成物。
  13. (a)HER−2抗原を含むポリペプチドをコードする遺伝子を含む組換えMVA;および
    (b)組換えMVAを殺腫瘍量のタキサンによる処置に先だって投与するようにという指示書類を含み、
    タキサンがドセタキセルである、がん患者を処置するためのキット。
  14. (a)HER−2抗原を含むポリペプチドをコードする遺伝子を含む組換えMVA;および
    (b)組換えMVAを殺腫瘍量のタキサンによる処置と同時に投与するようにという指示書類を含み、
    タキサンがドセタキセルである、がん患者を処置するためのキット。
  15. (a)HER−2抗原を含むポリペプチドをコードする遺伝子を含む組換えMVA;および
    (b)組換えMVAを殺腫瘍量のタキサンによる処置後に投与するようにという指示書類を含み、
    タキサンがドセタキセルである、がん患者を処置するためのキット。
  16. HER−2抗原を含む前記ポリペプチドが配列番号2を含む、請求項13のキット。
  17. HER−2抗原を含む前記ポリペプチドが配列番号2を含む、請求項14のキット。
  18. HER−2抗原を含む前記ポリペプチドが配列番号2を含む、請求項15のキット。
  19. HER−2抗原を含むポリペプチドをコードする遺伝子を含み、HER−2抗原を含むポリペプチドが配列番号2を含む、組換えワクシニアウイルス。
JP2009531472A 2006-10-06 2007-10-05 Mvaを使ってがんを処置する方法 Active JP5964540B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US85003106P 2006-10-06 2006-10-06
US60/850,031 2006-10-06
PCT/US2007/021436 WO2008045346A2 (en) 2006-10-06 2007-10-05 Recombinant modified vaccinia ankara encoding a her-2 antigen for use in treating cancer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014047741A Division JP6124822B2 (ja) 2006-10-06 2014-03-11 Mvaを使ってがんを処置する方法

Publications (3)

Publication Number Publication Date
JP2010505850A JP2010505850A (ja) 2010-02-25
JP2010505850A5 JP2010505850A5 (ja) 2010-08-19
JP5964540B2 true JP5964540B2 (ja) 2016-08-03

Family

ID=39283388

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2009531472A Active JP5964540B2 (ja) 2006-10-06 2007-10-05 Mvaを使ってがんを処置する方法
JP2014047741A Active JP6124822B2 (ja) 2006-10-06 2014-03-11 Mvaを使ってがんを処置する方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2014047741A Active JP6124822B2 (ja) 2006-10-06 2014-03-11 Mvaを使ってがんを処置する方法

Country Status (11)

Country Link
US (2) US7807146B2 (ja)
EP (2) EP2596801B1 (ja)
JP (2) JP5964540B2 (ja)
AU (1) AU2007307080B2 (ja)
CA (1) CA2665068C (ja)
DK (2) DK2073837T3 (ja)
ES (1) ES2500465T3 (ja)
IL (1) IL197633A (ja)
NZ (2) NZ575388A (ja)
PT (1) PT2073837E (ja)
WO (1) WO2008045346A2 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ524661A (en) * 2000-11-23 2005-03-24 Bavarian Nordic As Modified vaccinia ankara virus variant
ES2500465T3 (es) * 2006-10-06 2014-09-30 Bavarian Nordic Inc. Virus vaccinia Ankara modificado recombinante que codifica antígeno HER-2 en combinación con un taxano para uso en el tratamiento del cáncer
WO2010036652A1 (en) * 2008-09-23 2010-04-01 Thomas Jefferson University Cancer vaccines against mucosal antigens and methods of making and using the same
EP2636201B1 (en) * 2010-11-02 2019-02-27 Telefonaktiebolaget LM Ericsson (publ) Methods and devices for media description delivery
US9659706B2 (en) 2011-09-22 2017-05-23 The Trustees Of Dartmouth College Methods for making radially anisotropic thin-film magnetic torroidal cores
EP2788021B1 (en) 2011-12-09 2017-01-18 Bavarian Nordic A/S Poxvirus vector for the expression of bacterial antigens linked to tetanus toxin fragment c
US9463238B2 (en) 2011-12-09 2016-10-11 Bavarian Nordic A/S Recombinant poxvirus vector comprising tetanus toxin fragment C
WO2014062778A1 (en) * 2012-10-19 2014-04-24 Bavarian Nordic, Inc. Methods and compositions for the treatment of cancer
EP2777711A1 (en) * 2013-03-11 2014-09-17 Icon Genetics GmbH Her2/Neu cancer vaccine
CN105379295A (zh) 2013-07-03 2016-03-02 皇家Kpn公司 分段内容的流送
EP3412304A3 (en) 2013-10-23 2019-03-20 The United States of America, as represented by The Secretary, Department of Health and Human Services Hla-a24 agonist epitopes of muc1-c oncoprotein and compositions and methods of use
CN115300622A (zh) 2015-02-25 2022-11-08 纪念斯隆-凯特琳癌症中心 使用灭活的修饰的痘苗病毒安卡拉作为实体肿瘤的单一免疫疗法或与免疫检查点阻断剂组合
EP3283088A4 (en) 2015-04-17 2018-10-24 Memorial Sloan-Kettering Cancer Center Use of mva or mvadeltae3l as immunotherapeutic agents against solid tumors
FR3042121A1 (fr) 2015-10-08 2017-04-14 Jean-Marc Limacher Composition anti-tumorale
JP7025339B2 (ja) 2016-02-25 2022-02-24 メモリアル スローン ケタリング キャンサー センター 癌免疫療法のための、チミジンキナーゼの欠失を伴い、ヒトflt3lまたはgm-csfの発現を伴うかまたは伴わない、複製可能な弱毒化ワクシニアウイルス
SG11201807022XA (en) 2016-02-25 2018-09-27 Memorial Sloan Kettering Cancer Center Recombinant mva or mvadele3l expressing human flt3l and use thereof as immuno-therapeutic agents against solid tumors
WO2018209315A1 (en) 2017-05-12 2018-11-15 Memorial Sloan Kettering Cancer Center Vaccinia virus mutants useful for cancer immunotherapy
JP2020519666A (ja) 2017-05-15 2020-07-02 ヤンセン ファッシンズ アンド プリベンション ベーフェーJanssen Vaccines & Prevention B.V. 安定性のウイルス含有組成物
AU2018270375A1 (en) 2017-05-15 2019-10-31 Bavarian Nordic A/S Stable virus-containing composition
EP3706768A4 (en) * 2017-11-06 2021-08-25 Memorial Sloan Kettering Cancer Center USE OF THE HEAT-INACTIVATED VACCINE VIRUS AS A VACCINE IMMUNE ADJUDENT
TW202043256A (zh) 2019-01-10 2020-12-01 美商健生生物科技公司 ***新抗原及其用途

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1341245C (en) 1988-01-12 2001-06-05 F. Hoffmann-La Roche Ag Recombinant vaccinia virus mva
DK96493D0 (da) 1993-08-26 1993-08-26 Mouritsen Og Elsner Aps Fremgangsmaade til at inducere antistofresponser mod selvproteiner og autovaccine fremstillet ved fremgangsmaaden
DK0735893T3 (da) 1993-09-14 2009-03-09 Pharmexa Inc PAN DR-bindende peptider til styrkelse af immunsvaret
US6326356B1 (en) * 1996-10-18 2001-12-04 Board Of Regents, The University Of Texas System Suppression of neu overexpression using a mini-E1A gene
UA68327C2 (en) 1995-07-04 2004-08-16 Gsf Forschungszentrum Fur Unwe A recombinant mva virus, an isolated eukaryotic cell, infected with recombinant mva virus, a method for production in vitro of polypeptides with use of said cell, a method for production in vitro of virus parts (variants), vaccine containing the recombinant mva virus, a method for immunization of animals
AUPO390396A0 (en) 1996-11-29 1996-12-19 Csl Limited Novel promiscuous T helper cell epitopes
DE19729279A1 (de) 1997-07-09 1999-01-14 Peter Hildebrandt Urologisches Implantat, insbesondere Gefäßwandstütze für den Urinaltrakt
TR200100936T2 (tr) * 1998-10-05 2001-08-21 Pharmexa A/S Terapötik aşılama
DE10042598A1 (de) * 2000-08-30 2002-03-28 Gsf Forschungszentrum Umwelt Rekombinantes MVA mit der Fähigkeit zur Expression des HER-2/Neu-GENS
NZ524661A (en) * 2000-11-23 2005-03-24 Bavarian Nordic As Modified vaccinia ankara virus variant
US20040191218A1 (en) * 2001-09-26 2004-09-30 Emlen James W Pharmaceutical compositions and methods for treating cancer
ES2318202T3 (es) * 2002-11-06 2009-05-01 Cyclacel Limited Combinacion que comprende docetaxel y un inhibidor de cdk.
AU2003297155B2 (en) 2002-12-16 2010-03-18 The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Recombinant vaccine viruses expressing IL-15 and methods of using the same
CN1511549A (zh) * 2002-12-27 2004-07-14 张小丽 含有黄芩的抗肿瘤、抗炎症及肿瘤预防药物的组合物
ITMI20030317A1 (it) * 2003-02-21 2004-08-22 Pharmacia Italia Spa Terapia combinata comprendente un derivato dell'indolopirrolocarbazolo ed un altro agente antitumorale.
US20040197312A1 (en) * 2003-04-02 2004-10-07 Marina Moskalenko Cytokine-expressing cellular vaccine combinations
KR20060012622A (ko) * 2003-05-16 2006-02-08 하이브리돈, 인코포레이티드 화학요법제와 함께 이뮤노머를 사용하는 상승적 암 치료방법
ATE429447T1 (de) * 2003-06-25 2009-05-15 Bn Immunotherapeutics Inc Aufreinigung von her-2-varianten
EA008827B1 (ru) * 2003-06-25 2007-08-31 Фармекса А/С Очистка вариантов her-2
US7951780B2 (en) * 2004-02-25 2011-05-31 Astellas Pharma Inc. Antitumor agent
UA100836C2 (ru) 2005-02-23 2013-02-11 Бавариан Нордик А/С Применение модифицированного вируса осповакцины анкара (mva) для быстрой индукции иммунитета против поксвирусных или других инфекционных агентов
ES2500465T3 (es) * 2006-10-06 2014-09-30 Bavarian Nordic Inc. Virus vaccinia Ankara modificado recombinante que codifica antígeno HER-2 en combinación con un taxano para uso en el tratamiento del cáncer

Also Published As

Publication number Publication date
PT2073837E (pt) 2014-09-22
JP2010505850A (ja) 2010-02-25
US20110008294A1 (en) 2011-01-13
JP2014129416A (ja) 2014-07-10
US7807146B2 (en) 2010-10-05
IL197633A (en) 2017-03-30
EP2073837A2 (en) 2009-07-01
WO2008045346A3 (en) 2009-06-04
CA2665068C (en) 2016-01-05
JP6124822B2 (ja) 2017-05-10
CA2665068A1 (en) 2008-04-17
AU2007307080B2 (en) 2014-01-09
NZ597998A (en) 2013-08-30
EP2596801B1 (en) 2018-05-02
AU2007307080A1 (en) 2008-04-17
WO2008045346A2 (en) 2008-04-17
ES2500465T3 (es) 2014-09-30
EP2073837B1 (en) 2014-06-25
DK2596801T3 (en) 2018-08-13
US8313740B2 (en) 2012-11-20
DK2073837T3 (da) 2014-09-29
EP2596801A1 (en) 2013-05-29
NZ575388A (en) 2012-03-30
IL197633A0 (en) 2011-08-01
US20080213302A1 (en) 2008-09-04

Similar Documents

Publication Publication Date Title
JP6124822B2 (ja) Mvaを使ってがんを処置する方法
JP7368305B2 (ja) 腫瘍抗原を発現するポックスウイルス及びtim-3に対するモノクローナル抗体を用いた癌治療のための併用療法
CA2702586C (en) Use of mva to treat prostate cancer
RU2714142C2 (ru) Комбинированное лекарственное средство для лечения рака с использованием поксвируса, экспрессирующего опухолевый антиген, и антагониста и/или агониста ингибитора имунной контрольной точки
AU2013331328B2 (en) Methods and compositions for the treatment of cancer
JP2017515837A (ja) 腫瘍抗原発現組換えポックスウイルス及び免疫チェックポイント分子アンタゴニストまたはアゴニストを用いた癌治療のための併用療法

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100630

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130107

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130115

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130213

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130415

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131112

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150904

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20151113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151210

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160318

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160630

R150 Certificate of patent or registration of utility model

Ref document number: 5964540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250