JP5960581B2 - Optical receiver - Google Patents

Optical receiver Download PDF

Info

Publication number
JP5960581B2
JP5960581B2 JP2012251468A JP2012251468A JP5960581B2 JP 5960581 B2 JP5960581 B2 JP 5960581B2 JP 2012251468 A JP2012251468 A JP 2012251468A JP 2012251468 A JP2012251468 A JP 2012251468A JP 5960581 B2 JP5960581 B2 JP 5960581B2
Authority
JP
Japan
Prior art keywords
signal
optical
quadrant
equalization
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012251468A
Other languages
Japanese (ja)
Other versions
JP2014099804A (en
Inventor
賢瑛 崔
賢瑛 崔
釣谷 剛宏
剛宏 釣谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
KDDI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KDDI Corp filed Critical KDDI Corp
Priority to JP2012251468A priority Critical patent/JP5960581B2/en
Publication of JP2014099804A publication Critical patent/JP2014099804A/en
Application granted granted Critical
Publication of JP5960581B2 publication Critical patent/JP5960581B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、光通信システムで使用する光受信装置に関する。   The present invention relates to an optical receiver used in an optical communication system.

種々の変調方式に対応する光変調装置について提案がなされている。例えば、非特許文献1は、BPSK、QPSK、16QAMといった変調方式の切り替えができる光変調装置を開示している。   Proposals have been made on optical modulation devices that support various modulation schemes. For example, Non-Patent Document 1 discloses an optical modulation device that can switch modulation schemes such as BPSK, QPSK, and 16QAM.

H.Y.Choi,et.al,"BER−adaptive flexible−foramat transmitter for elastic optical networks",OPTICS EXPRESS,Vol.20,pp.18652−18658H. Y. Choi, et. al, “BER-adaptive flexible-foramate transmitter for elastic optical networks”, OPTICS EXPRESS, Vol. 20, pp. 18652-18658

例えば、非特許文献1では、デュアル・ドライブ光変調器(DD光変調器)と、IQ光変調器(直交光変調器)をシリアルに接続し、16QAMの場合、DD光変調器でIQ平面上(複素平面)の第1象限の4つの信号のいずれかを生成し、この4つの信号をさらにIQ変調することで第1象限から第4象限に渡る合計16個の信号を生成している。ここで、例えば、非特許文献1に示す構成において、DD光変調器に印加する電圧の誤差や、DD光変調器の特性のばらつきにより、DD光変調器が出力する第1象限の信号点の位置には誤差が生じ得る。DD光変調器が出力する第1象限の信号点の位置に誤差が生じると、たとえ、光IQ変調器の動作が理想的であっても、第2象限から第4象限の信号点の位置には、第1象限の信号点の位置の誤差による誤差が生じる。この信号点の誤差は、各象限で対称に生じるため、受信側においては、従来の等化方法でこの誤差を補償することはできない。   For example, in Non-Patent Document 1, a dual drive optical modulator (DD optical modulator) and an IQ optical modulator (orthogonal optical modulator) are serially connected. In the case of 16QAM, a DD optical modulator is used on the IQ plane. One of four signals in the first quadrant of the (complex plane) is generated, and the four signals are further IQ-modulated to generate a total of 16 signals from the first quadrant to the fourth quadrant. Here, for example, in the configuration shown in Non-Patent Document 1, the signal point of the first quadrant output by the DD optical modulator due to an error in the voltage applied to the DD optical modulator or variations in characteristics of the DD optical modulator. There may be errors in position. If an error occurs in the position of the signal point in the first quadrant output from the DD optical modulator, even if the operation of the optical IQ modulator is ideal, the signal point position in the second quadrant to the fourth quadrant Causes an error due to an error in the position of the signal point in the first quadrant. Since this signal point error occurs symmetrically in each quadrant, this error cannot be compensated for by the conventional equalization method on the receiving side.

本発明は、1つの象限の信号点をまず生成し、その後、当該1つの象限の信号点をIQ光変調(直交光変調)することで生成した光信号を補償できる光受信装置を提供するものである。   The present invention provides an optical receiver capable of compensating for an optical signal generated by first generating a signal point in one quadrant and then performing IQ optical modulation (orthogonal optical modulation) on the signal point in the one quadrant. It is.

本発明の一側面によると、光変調された光信号を受信する光受信装置であって、前記光変調された光信号を受信し、前記光信号の位相及び振幅に対応する複素平面上の信号位置を示す電気信号を出力する変換手段と、前記電気信号が示す前記複素平面上の信号位置を0、π/2、π又は3π/2だけ回転させて、前記複素平面の4つの象限の内の1つの象限である基準象限内の信号位置に移動させる第1の回転手段と、前記基準象限における基準位置に基づき、前記第1の回転手段による回転後の前記信号位置の等化処理を行う等化手段と、前記等化手段による等化後の信号位置を、前記第1の回転手段が与えた回転量だけ前記第1の回転手段とは逆方向に回転させる第2の回転手段と、前記第2の回転手段による回転後の信号位置に基づき前記電気信号を復号する復号手段と、を備えていることを特徴とする。   According to one aspect of the present invention, an optical receiver that receives an optically modulated optical signal, receives the optically modulated optical signal, and is a signal on a complex plane corresponding to the phase and amplitude of the optical signal. Conversion means for outputting an electric signal indicating a position, and rotating the signal position on the complex plane indicated by the electric signal by 0, π / 2, π, or 3π / 2, and within four quadrants of the complex plane The first rotation means for moving to a signal position in a reference quadrant, which is one of the quadrants, and the signal position after the rotation by the first rotation means are equalized based on the reference position in the reference quadrant An equalizing means, and a second rotating means for rotating the signal position after equalization by the equalizing means by a rotation amount given by the first rotating means in a direction opposite to the first rotating means; Based on the signal position after rotation by the second rotation means Characterized in that it comprises decoding means for decoding the electrical signal.

1つの象限の信号点をまず生成し、当該1つの象限の信号点をIQ光変調することで生成した光信号を補償できる。   An optical signal generated by first generating a signal point in one quadrant and performing IQ optical modulation on the signal point in the one quadrant can be compensated.

一実施形態による光受信装置の概略的な構成図。1 is a schematic configuration diagram of an optical receiver according to an embodiment. FIG. 一実施形態による光受信装置が受信する光信号の説明図。Explanatory drawing of the optical signal which the optical receiver by one Embodiment receives. 信号点の誤差の説明図。Explanatory drawing of the error of a signal point. 一実施形態による光受信装置での処理の説明図。Explanatory drawing of the process in the optical receiver by one Embodiment. 一実施形態による光受信装置での処理の説明図。Explanatory drawing of the process in the optical receiver by one Embodiment.

以下、本発明の例示的な実施形態について図面を参照して説明する。なお、以下の各図においては、実施形態の説明に必要ではない構成要素については図から省略する。   Hereinafter, exemplary embodiments of the present invention will be described with reference to the drawings. In the following drawings, components that are not necessary for the description of the embodiments are omitted from the drawings.

図1は、本実施形態による光受信装置200の概略的な構成図である。図1(A)に示す様に、光受信装置200は、光送信装置100が生成して送信した光信号を受信して復調する。ここで、光送信装置100が送信する光信号について図2を用いて説明する。図2(A)に示す様に、光送信装置100は、例えば、デュアル・ドライブIQ光変調器(デュアル・ドライブ直交光変調器)と、IQ光変調器をシリアルに接続して構成される。デュアル・ドライブIQ光変調器に入力される連続光は、4ビットデータにより、IQ平面(複素平面)上の16個の信号点のいずれかに変調される。図2(B)にデュアル・ドライブIQ光変調器が出力する16個の信号点を示す。IQ光変調器には、デュアル・ドライブIQ光変調器から、図2(B)に示す16個の信号点のいずれかが入力され、2ビットデータによりIQ変調される。したがって、IQ光変調器の出力は、図2(C)に示す計64個の信号点のいずれかの信号となる。つまり、図2(A)に示す構成により64QAM方式が可能となる。   FIG. 1 is a schematic configuration diagram of an optical receiver 200 according to the present embodiment. As shown in FIG. 1A, the optical receiver 200 receives and demodulates the optical signal generated and transmitted by the optical transmitter 100. Here, an optical signal transmitted by the optical transmission device 100 will be described with reference to FIG. As shown in FIG. 2A, the optical transmission device 100 is configured by serially connecting a dual drive IQ optical modulator (dual drive quadrature optical modulator) and an IQ optical modulator, for example. The continuous light input to the dual drive IQ optical modulator is modulated into one of 16 signal points on the IQ plane (complex plane) by 4-bit data. FIG. 2B shows 16 signal points output by the dual drive IQ optical modulator. One of the 16 signal points shown in FIG. 2B is input to the IQ optical modulator from the dual drive IQ optical modulator, and IQ modulation is performed using 2-bit data. Therefore, the output of the IQ optical modulator is one of a total of 64 signal points shown in FIG. That is, the structure shown in FIG. 2A enables the 64QAM system.

ここで、図3(A)に示す様にデュアル・ドライブIQ光変調器が出力する信号点に誤差が生じたものとする。図3(A)に示す信号配置は、図2(B)と比較して、第2列目の信号点と、第3列目の信号点の間隔が広くなっている。これは、逆に、第1列目の信号点と第2列目の信号点の間隔が狭くなっており、第3列目の信号点と第4列目の信号点の間隔が狭くなっていることにも相当する。各信号点の間隔が等しいときに雑音に対する耐力が最も強くなるため、これは雑音に対する耐力が劣化していることになる。後段のIQ光変調器は、デュアル・ドライブIQ光変調器からの信号をIQ変調するのみであり、よって、図3(A)に示す信号が入力された場合、IQ光変調器の出力は、図3(B)に示す様になる。図3(B)の信号は、図3(A)の各信号点の位置を、それぞれ、π/2、π、+3π/2だけ時計回り方向に回転させたものであるため、各象限において信号点の配置に誤差が生じる。   Here, it is assumed that an error has occurred in the signal point output from the dual drive IQ optical modulator, as shown in FIG. In the signal arrangement shown in FIG. 3A, the interval between the signal points in the second column and the signal points in the third column is wider than that in FIG. Conversely, the interval between the signal points in the first column and the signal points in the second column is narrow, and the interval between the signal points in the third column and the signal points in the fourth column is narrowed. It is equivalent to being. Since the tolerance to noise is strongest when the intervals between the signal points are equal, this means that the tolerance to noise is degraded. The rear-stage IQ optical modulator only IQ-modulates the signal from the dual drive IQ optical modulator. Therefore, when the signal shown in FIG. 3A is input, the output of the IQ optical modulator is As shown in FIG. The signal in FIG. 3B is obtained by rotating the position of each signal point in FIG. 3A in the clockwise direction by π / 2, π, and + 3π / 2. An error occurs in the arrangement of points.

例えば、従来の等化処理では、受信した信号をそのときの等化情報で等化し、等化後の信号のIQ平面上の位置と、最も近い理想的な信号位置との差を誤差として、この誤差を減少させるように等化情報を更新する。なお、等化情報の更新には、例えば、定包絡線基準アルゴリズム(CMA:Constant−Modulus Algorithm)や、半径指向アルゴリズム(RDA:Radius−Directed Algorithm)や、判定指向型最小平均二乗法(DD−LMS:Decision−Directed Least−Mean−Square)といった種々の線形アルゴリズムが提案されている。しかしながら、図3(B)に示す様に、1つの象限の信号を生成し、その信号をIQ変調して生成した光信号では、その誤差はIQ平面の原点を中心に対称となるため、従来からの方法では信号点のずれを補償することはできない。以下、本実施形態による光受信装置200について説明する。   For example, in the conventional equalization process, the received signal is equalized with the equalization information at that time, and the difference between the position on the IQ plane of the equalized signal and the nearest ideal signal position is taken as an error, The equalization information is updated so as to reduce this error. The update of the equalization information includes, for example, a constant envelope reference algorithm (CMA: Constant-Modulus Algorithm), a radius-oriented algorithm (RDA: Radius-Directed Algorithm), a decision-oriented least mean square method (DD-). Various linear algorithms such as LMS: Decision-Directed Least-Mean-Square have been proposed. However, as shown in FIG. 3B, in an optical signal generated by generating a signal in one quadrant and IQ-modulating the signal, the error is symmetric about the origin of the IQ plane. The method from (1) cannot compensate for signal point shift. Hereinafter, the optical receiver 200 according to the present embodiment will be described.

図1(B)に示す様に、本実施形態による光受信装置200は、光/電気(O/E)変換部1と、回転部2と、等化部3と、回転部4と、復号部5と、を備えている。光/電気(O/E)変換部1は、受信した光信号を電気信号に変換し、同相成分(I)の振幅情報を示す信号と、直交成分(Q)の振幅情報を示す信号を出力する。つまり、O/E変換部1は、IQ平面上の信号位置を示す信号を出力する。回転部2は、O/E変換部1から受信する信号のIQ平面上の位置を第1象限に回転させて等化部3に出力する。具体的には、第1象限の信号については、そのまま等化部3に出力し、第2象限の信号についてはπ/2だけ時計回り方向に回転させて等化部3に出力し、第3象限の信号についてはπだけ回転させて等化部3に出力し、第4象限の信号については3π/2だけ時計回り方向に回転させて等化部3に出力する。   As shown in FIG. 1B, the optical receiver 200 according to the present embodiment includes an optical / electrical (O / E) conversion unit 1, a rotation unit 2, an equalization unit 3, a rotation unit 4, and a decoding unit. Part 5. The optical / electrical (O / E) converter 1 converts the received optical signal into an electrical signal, and outputs a signal indicating amplitude information of the in-phase component (I) and a signal indicating amplitude information of the quadrature component (Q). To do. That is, the O / E converter 1 outputs a signal indicating the signal position on the IQ plane. The rotation unit 2 rotates the position on the IQ plane of the signal received from the O / E conversion unit 1 to the first quadrant and outputs the result to the equalization unit 3. Specifically, the signal in the first quadrant is output to the equalization unit 3 as it is, the signal in the second quadrant is rotated clockwise by π / 2 and output to the equalization unit 3, and the third The quadrant signal is rotated by π and output to the equalization unit 3, and the fourth quadrant signal is rotated by 3π / 2 in the clockwise direction and output to the equalization unit 3.

図4は、IQ平面であり、信号点50〜53は、第1象限における理想的な信号位置、つまり、基準とする信号位置である。なお、説明を簡単にするため、64QAMではなく、16QAMを用いて説明する。信号点61は、回転部2がO/E変換部1から受信する信号位置である。また、信号点62は、信号点61の次に回転部2がO/E変換部1から受信する信号位置である。さらに、信号点63は、信号点62の次に回転部2がO/E変換部1から受信する信号位置である。また、信号点64は、信号点63の次に回転部2がO/E変換部1から受信する信号位置である。   FIG. 4 is an IQ plane, and signal points 50 to 53 are ideal signal positions in the first quadrant, that is, reference signal positions. In order to simplify the description, description will be made using 16QAM instead of 64QAM. A signal point 61 is a signal position received by the rotation unit 2 from the O / E conversion unit 1. The signal point 62 is a signal position that the rotation unit 2 receives from the O / E conversion unit 1 next to the signal point 61. Further, the signal point 63 is a signal position that the rotation unit 2 receives from the O / E conversion unit 1 next to the signal point 62. The signal point 64 is a signal position that the rotation unit 2 receives from the O / E conversion unit 1 next to the signal point 63.

既に述べた様に、回転部2は、第1象限にある信号点61についてはそのまま等化部32に出力する。一方、回転部2は、第2象限にある信号点62については、π/2だけ時計回り方向に回転させて等化部3に出力する。図5には、信号点62をπ/2だけ時計回り方向に回転させた信号点72を示している。さらに、回転部2は、第3象限にある信号点63については、πだけ回転させて等化部3に出力する。図5には、信号点63をπだけ回転させた信号点73を示している。さらに、回転部2は、第4象限にある信号点64については、3π/2だけ時計回り方向に回転させて等化部3に出力する。図5には、信号点64を3π/2だけ時計回り方向に回転させた信号点74を示している。なお、当然ではあるが、3π/2だけ時計回り方向に回転させることは、π/2だけ反時計周りに回転させることと同じである。   As already described, the rotation unit 2 outputs the signal point 61 in the first quadrant to the equalization unit 32 as it is. On the other hand, the rotation unit 2 rotates the signal point 62 in the second quadrant clockwise by π / 2 and outputs it to the equalization unit 3. FIG. 5 shows a signal point 72 obtained by rotating the signal point 62 clockwise by π / 2. Further, the rotation unit 2 rotates the signal point 63 in the third quadrant by π and outputs it to the equalization unit 3. FIG. 5 shows a signal point 73 obtained by rotating the signal point 63 by π. Further, the rotation unit 2 rotates the signal point 64 in the fourth quadrant clockwise by 3π / 2 and outputs it to the equalization unit 3. FIG. 5 shows a signal point 74 obtained by rotating the signal point 64 clockwise by 3π / 2. Of course, rotating clockwise by 3π / 2 is the same as rotating counterclockwise by π / 2.

等化部3は、第1象限において従来の等化処理を実行する。具体的には、等化情報に基づき図5の信号点61を補正し、補正後の位置と、第1象限の基準位置50〜53のいずれか最も近い信号位置との差を誤差とし、この誤差に基づき等化情報を更新する。その後、更新した等化情報に基づき、信号点61の次に受信した信号点62に対応する図5の信号点72を補正し、補正後の位置と、第1象限の基準位置50〜53のいずれか最も近い信号位置との差を誤差とし、この誤差に基づき等化情報を更新する。その後、信号点73及び74についても、そのときの等化情報に基づき補正し、補正後の位置と、第1象限の基準位置50〜53のいずれか最も近い信号位置との差を誤差とし、この誤差に基づき等化情報を更新する。更新後の等化情報は、次に受信する信号点を第1象限に回転させた信号点の補正に使用する。なお、等化情報の更新には、例えば、DD−LMSといった、公知のアルゴリズムを使用することができる。等化部3は、等化後のIQ平面上の信号位置を示す情報を回転部4に出力する。   The equalization unit 3 executes a conventional equalization process in the first quadrant. Specifically, the signal point 61 in FIG. 5 is corrected based on the equalization information, and the difference between the corrected position and the signal position closest to any of the reference positions 50 to 53 in the first quadrant is defined as an error. The equalization information is updated based on the error. Thereafter, based on the updated equalization information, the signal point 72 of FIG. 5 corresponding to the signal point 62 received next to the signal point 61 is corrected, and the corrected position and the reference positions 50 to 53 of the first quadrant are corrected. The difference from any one of the closest signal positions is regarded as an error, and the equalization information is updated based on this error. Thereafter, the signal points 73 and 74 are also corrected based on the equalization information at that time, and the difference between the corrected position and the signal position closest to any of the reference positions 50 to 53 in the first quadrant is regarded as an error. The equalization information is updated based on this error. The updated equalization information is used to correct a signal point obtained by rotating the next received signal point to the first quadrant. For updating the equalization information, for example, a known algorithm such as DD-LMS can be used. The equalization unit 3 outputs information indicating the signal position on the IQ plane after equalization to the rotation unit 4.

回転部4は、等化部3での等化後のIQ平面上の信号位置を、回転部2において回転させたのと同じ量だけ逆方向に回転させる。なお、各信号について、回転部2における回転量については、回転部2から回転部4に通知される。例えば、図5の信号点61を補正した信号は、信号点61の回転部2における回転量が0であるため、そのままとする。一方、図5の信号点72を補正した信号は、元の信号点62の回転部2における回転量が、時計回り方向においてπ/2であるため、π/2だけ反時計回り方向に回転させる。当然ではあるが、これは、3π/2だけ時計回り方向に回転させることと同じである。同様に、図5の信号点73及び74の等化後の信号位置についても、それぞれ、反時計回り方向にπ及び3π/2だけ回転させる。回転部4は、回転後の各信号のIQ平面上の位置を示す信号を復号部5へと出力し、復号部5は、回転後の各信号のIQ平面上の位置に基づき各信号のデータを決定する。具体的には、変調で使用する信号の基準位置の内、回転後のIQ平面上の位置に最も近い位置に対応するデータ値に復号する。   The rotation unit 4 rotates the signal position on the IQ plane after equalization by the equalization unit 3 in the reverse direction by the same amount as that rotated by the rotation unit 2. For each signal, the rotation amount in the rotation unit 2 is notified from the rotation unit 2 to the rotation unit 4. For example, the signal obtained by correcting the signal point 61 in FIG. 5 is left as it is because the rotation amount of the signal point 61 in the rotating unit 2 is zero. On the other hand, the signal obtained by correcting the signal point 72 in FIG. 5 is rotated counterclockwise by π / 2 since the rotation amount of the original signal point 62 in the rotating unit 2 is π / 2 in the clockwise direction. . Of course, this is the same as rotating clockwise by 3π / 2. Similarly, the signal positions after equalization of the signal points 73 and 74 in FIG. 5 are also rotated counterclockwise by π and 3π / 2, respectively. The rotation unit 4 outputs a signal indicating the position of each signal after rotation on the IQ plane to the decoding unit 5, and the decoding unit 5 stores the data of each signal based on the position of each signal after rotation on the IQ plane. To decide. Specifically, it is decoded into a data value corresponding to the position closest to the position on the IQ plane after rotation, among the reference positions of the signals used for modulation.

この様に、本実施形態では、受信信号を第1象限の位置に回転させた後に、第1象限の基準信号に基づき等化処理を行う。この構成により、誤差が点対称ではなくなり、従来からのアルゴリズムを使用して信号の等化を行うことが可能になる。なお、上記実施形態においては、各信号を第1象限の位置に回転させたが、回転させる先の象限は、第1象限から第4象限のいずれであっても良い。   As described above, in this embodiment, after the received signal is rotated to the position of the first quadrant, equalization processing is performed based on the reference signal of the first quadrant. With this configuration, the error is not point-symmetric, and signal equalization can be performed using a conventional algorithm. In the above embodiment, each signal is rotated to the position of the first quadrant, but the destination quadrant may be any one of the first quadrant to the fourth quadrant.

Claims (3)

光変調された光信号を受信する光受信装置であって、
前記光変調された光信号を受信し、前記光信号の位相及び振幅に対応する複素平面上の信号位置を示す電気信号を出力する変換手段と、
前記電気信号が示す前記複素平面上の信号位置を0、π/2、π又は3π/2だけ回転させて、前記複素平面の4つの象限の内の1つの象限である基準象限内の信号位置に移動させる第1の回転手段と、
前記基準象限における基準位置に基づき、前記第1の回転手段による回転後の前記信号位置の等化処理を行う等化手段と、
前記等化手段による等化後の信号位置を、前記第1の回転手段が与えた回転量だけ前記第1の回転手段とは逆方向に回転させる第2の回転手段と、
前記第2の回転手段による回転後の信号位置に基づき前記電気信号を復号する復号手段と、
を備えていることを特徴とする光受信装置。
An optical receiver that receives an optical signal that is optically modulated,
Conversion means for receiving the optically modulated optical signal and outputting an electrical signal indicating a signal position on a complex plane corresponding to the phase and amplitude of the optical signal;
The signal position on the complex plane indicated by the electrical signal is rotated by 0, π / 2, π, or 3π / 2, and the signal position in the reference quadrant that is one quadrant of the four quadrants of the complex plane. First rotating means to be moved to
Equalization means for performing equalization processing of the signal position after rotation by the first rotation means based on a reference position in the reference quadrant;
Second rotation means for rotating the signal position after equalization by the equalization means by the amount of rotation given by the first rotation means in a direction opposite to the first rotation means;
Decoding means for decoding the electrical signal based on the signal position after rotation by the second rotation means;
An optical receiver characterized by comprising:
前記光信号は、複素平面の4つの象限の内の1つの象限の信号位置に対応する光信号を生成し、前記生成した信号を直交光変調することで生成したものである、
ことを特徴とする請求項1に記載の光受信装置。
The optical signal is generated by generating an optical signal corresponding to a signal position in one quadrant of four quadrants of a complex plane, and performing orthogonal optical modulation on the generated signal.
The optical receiver according to claim 1.
前記等化手段は、線形アルゴリズムを使用して信号位置の等化を行うことを特徴とする請求項1又は2に記載の光受信装置。   The optical receiver according to claim 1, wherein the equalization unit performs signal position equalization using a linear algorithm.
JP2012251468A 2012-11-15 2012-11-15 Optical receiver Expired - Fee Related JP5960581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012251468A JP5960581B2 (en) 2012-11-15 2012-11-15 Optical receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012251468A JP5960581B2 (en) 2012-11-15 2012-11-15 Optical receiver

Publications (2)

Publication Number Publication Date
JP2014099804A JP2014099804A (en) 2014-05-29
JP5960581B2 true JP5960581B2 (en) 2016-08-02

Family

ID=50941462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012251468A Expired - Fee Related JP5960581B2 (en) 2012-11-15 2012-11-15 Optical receiver

Country Status (1)

Country Link
JP (1) JP5960581B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029949A1 (en) * 2013-08-27 2015-03-05 日産化学工業株式会社 Agent for dispersing electrically conductive carbon material, and dispersion of electrically conductive carbon material
US9806739B1 (en) * 2016-08-04 2017-10-31 Mitsubishi Electric Research Laboratories, Inc. Optical signal transmitter and optical communication system using constant modulus formats, and method for generating modulation codes

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3504470B2 (en) * 1997-09-18 2004-03-08 日本放送協会 AFC circuit, carrier regeneration circuit and receiving device
JPH11355371A (en) * 1998-06-04 1999-12-24 Toshiba Corp Frequency recovery circuit and frequency recovery method
JPH11355372A (en) * 1998-06-04 1999-12-24 Toshiba Corp Frequency recovery circuit and frequency recovery method
JP5298194B2 (en) * 2008-07-31 2013-09-25 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Optical signal modulation system
US8693886B2 (en) * 2010-01-07 2014-04-08 Hitachi, Ltd. Optical transmission system
US8774322B2 (en) * 2010-10-11 2014-07-08 Infinera Corporation Carrier phase estimation filter length optimization

Also Published As

Publication number Publication date
JP2014099804A (en) 2014-05-29

Similar Documents

Publication Publication Date Title
US8983309B2 (en) Constrained continuous phase modulation and demodulation in an optical communications system
JP6065618B2 (en) Adaptive equalizer tap coefficient correction method and optical receiver
JP6002557B2 (en) Optical multilevel signal pre-equalization circuit, optical multilevel signal pre-equalization transmitter, and polarization multiplexed optical pre-equalization transmitter
CN103684600B (en) The updating device of equalizer coefficients and method and receiver and optical communication system
TWI687060B (en) Mitigating optical modulator impairment for coherent optical communication systems
WO2018042838A1 (en) Optical transmission distortion compensation device, optical transmission distortion compensation method, and communication device
JP5704077B2 (en) Phase deviation / carrier frequency deviation compensation apparatus and phase deviation / carrier frequency deviation compensation method
US9025651B1 (en) Simplified polarization mode dispersion equalization
EP3164952A1 (en) Method for generating code for coherent optical communications
JP7091025B2 (en) Signal transmitter, carrier phase restorer and method
JP6120945B2 (en) Optical transmission apparatus and optical transmission method
WO2017059783A1 (en) Method and apparatus for residual phase noise compensation
Jia et al. Performance comparison of spectrum-narrowing equalizations with maximum likelihood sequence estimation and soft-decision output
JP2008167126A (en) Optical digital transmission system and method
WO2016056220A1 (en) Optical transmitter, optical communication system, and optical communication method
JP6107807B2 (en) Optical transmitter, optical communication system, and optical communication method
JP5960581B2 (en) Optical receiver
WO2016121341A1 (en) Optical transmitter, optical communication system, and optical communication method
JP2017092739A (en) Transmitter, receiver, transmission system and modulation method
JP2012227908A (en) Phase estimation method and phase estimation device
JP5478336B2 (en) Optical transmission method, optical transmission system, optical transmitter, optical receiver
JP2020025190A (en) Communication system, optical transmitting device and optical receiving device
Kikuchi et al. FPGA prototyping of single-polarization 112-Gb/s transceiver for optical multilevel signaling with intensity and delay detection
JP4843650B2 (en) Optical transmission equipment
JP6026069B1 (en) Optical receiving apparatus and receiving method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160623

R150 Certificate of patent or registration of utility model

Ref document number: 5960581

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees