JP5958450B2 - Low-alloy high-strength seamless steel pipe with excellent resistance to sulfide stress corrosion cracking and its manufacturing method - Google Patents

Low-alloy high-strength seamless steel pipe with excellent resistance to sulfide stress corrosion cracking and its manufacturing method Download PDF

Info

Publication number
JP5958450B2
JP5958450B2 JP2013242665A JP2013242665A JP5958450B2 JP 5958450 B2 JP5958450 B2 JP 5958450B2 JP 2013242665 A JP2013242665 A JP 2013242665A JP 2013242665 A JP2013242665 A JP 2013242665A JP 5958450 B2 JP5958450 B2 JP 5958450B2
Authority
JP
Japan
Prior art keywords
less
steel pipe
seamless steel
strength
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013242665A
Other languages
Japanese (ja)
Other versions
JP2014129594A (en
Inventor
江口 健一郎
健一郎 江口
石黒 康英
康英 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013242665A priority Critical patent/JP5958450B2/en
Publication of JP2014129594A publication Critical patent/JP2014129594A/en
Application granted granted Critical
Publication of JP5958450B2 publication Critical patent/JP5958450B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、油井用として好適な低合金高強度継目無鋼管に係り、とくに硫化水素を含むサワー環境下における耐硫化物応力腐食割れ性(耐SSC性)の改善に関する。なお、ここでいう「高強度」とは、110ksi級の強度、すなわち降伏強さが758MPa以上862MPa以下の強度を有する場合をいうものとする。   The present invention relates to a low alloy high-strength seamless steel pipe suitable for use in oil wells, and more particularly to improvement of resistance to sulfide stress corrosion cracking (SSC resistance) in a sour environment containing hydrogen sulfide. Here, “high strength” refers to a case where the strength is 110 ksi class, that is, the yield strength is 758 MPa or more and 862 MPa or less.

近年、原油価格の高騰や、近い将来に予想される石油資源の枯渇という観点から、従来、省みられなかったような深度が深い油田や、硫化水素等を含む、いわゆるサワー環境下にある厳しい腐食環境の油田やガス田等の開発が盛んになっている。このような環境下で使用される油井用鋼管には、高強度で、かつ優れた耐食性(耐サワー性)を兼ね備えた材質を有することが要求される。   In recent years, from the viewpoint of soaring crude oil prices and the depletion of petroleum resources expected in the near future, the so-called sour environment including deep oil fields and hydrogen sulfide that have not been excluded in the past The development of oil fields and gas fields in corrosive environments has become active. The oil well steel pipe used in such an environment is required to have a material having high strength and excellent corrosion resistance (sour resistance).

このような要求に対して、例えば、特許文献1には、耐硫化物応力割れ性に優れた高強度継目無鋼管の製造方法が記載されている。特許文献1に記載された技術は、C:0.20%超〜0.50%、Si:0.1〜1.5%、Mn:0.1〜1.5%、Cr:0.1〜1.5%、Mo:0.1〜1.5%、Nb:0.005〜0.50%、Ti:0.005〜0.50%、B:0.0001〜0.01%、Al:0.005〜0.50%、V:0.5%以下、Zr:0.5%以下、Ca:0.01%以下を含有する組成のビレットを、熱間で穿孔し、ついで、断面圧縮率が40%以上で、仕上り温度:800〜1050℃の仕上圧延を施し、その後、850〜1100℃の温度域の温度T(℃)で時間t(h)の再加熱を行って、(T+273)(21+logt)が23500〜26000となるようにしてから直接焼入れを行い、Ac1変態点以下で焼戻する高強度継目無鋼管の製造方法である。特許文献1に記載された技術によれば、省プロセスでありながら、従来と同等以上の性能を確保できるとしている。特許文献1に記載された技術では、仕上げ圧延と直接焼入れ処理の間で再結晶処理としての再加熱処理を行うことにより、結晶粒の微細化が可能となり、高強度であっても、良好な靭性と耐硫化物応力割れ性が得られるとしている。   In response to such a demand, for example, Patent Document 1 describes a method for producing a high-strength seamless steel pipe excellent in resistance to sulfide stress cracking. The technology described in Patent Document 1 includes C: more than 0.20% to 0.50%, Si: 0.1 to 1.5%, Mn: 0.1 to 1.5%, Cr: 0.1 to 1.5%, Mo: 0.1 to 1.5%, Nb: 0.005 Billet having a composition containing -0.50%, Ti: 0.005-0.50%, B: 0.0001-0.01%, Al: 0.005-0.50%, V: 0.5% or less, Zr: 0.5% or less, Ca: 0.01% or less, Drilling is performed hot, and then finish rolling is performed at a cross-section compression ratio of 40% or more and a finishing temperature of 800 to 1050 ° C., and then time t (h) at a temperature T (° C.) in a temperature range of 850 to 1100 ° C. ) Is reheated so that (T + 273) (21 + logt) becomes 23500 to 26000 and then directly quenched and tempered below the Ac1 transformation point. According to the technique described in Patent Document 1, it is said that the performance equal to or higher than the conventional one can be ensured while being a process-saving. In the technique described in Patent Document 1, by performing a reheating process as a recrystallization process between the finish rolling and the direct quenching process, the crystal grains can be refined, and even if the strength is high, It is said that toughness and resistance to sulfide stress cracking can be obtained.

また、特許文献2には、耐硫化物割れ性に優れた高強度油井用鋼材の製造方法が記載されている。特許文献2に記載された技術は、C:0.10〜0.25%、Si:0.5%以下、Mn:0.5%以下、Mo:0.8〜2.5%、Al:0.005〜0.1%、Ti:0.005〜0.1%でNの3.4倍以上、Nb:0.01〜0.1%、N:0.01%以下、B:0.0005〜0.0050%を含有する鋼を素材とし、該素材を1150℃以上に加熱したのち、熱間加工を施し、Ar3点+50℃以上の温度で仕上加工を完了したのち、ただちにAr3点以上の温度から急冷する焼入れ処理を行って、660〜720℃の温度で焼戻する高強度油井用鋼材の製造方法である。これにより、降伏強度110ksi以上の高強度と優れた耐SSC性を両立させることができるとしている。   Patent Document 2 describes a method for producing a steel material for high-strength oil wells excellent in sulfide cracking resistance. The technique described in Patent Document 2 is as follows: C: 0.10 to 0.25%, Si: 0.5% or less, Mn: 0.5% or less, Mo: 0.8 to 2.5%, Al: 0.005 to 0.1%, Ti: 0.005 to 0.1% 3.4 times or more of N, Nb: 0.01 to 0.1%, N: 0.01% or less, B: 0.0005 to 0.0050% steel, the material is heated to 1150 ° C or higher, and then hot-worked. This is a method for producing high-strength oil well steels in which after finishing is completed at a temperature of Ar3 point + 50 ° C or higher, quenching is performed immediately after the temperature of Ar3 point or higher is quenched and tempered at a temperature of 660 to 720 ° C. . As a result, it is possible to achieve both high strength with yield strength of 110 ksi or more and excellent SSC resistance.

また、特許文献3には、耐硫化物応力腐食割れ性に優れた油井用鋼材の製造方法が記載されている。特許文献3に記載された技術は、C:0.15〜0.30%、Si:0.05〜1.0%、Mn:0.10〜1.0%、Cr:0.1〜1.5%、Mo:0.1〜1.0%、Al:0.003〜0.08%、N:0.008%以下、B:0.0005〜0.010%、Ca+O:0.008%以下を含み、さらにTi、Nb、Zr、Vのうちの1種または2種以上を含有する鋼材を用いて熱間加工により製管後、冷却することなくそのまま直接焼入れ、若しくはAc3変態点以上の温度に保持した後焼入れし、ついでAc1変態点以下で焼戻する耐硫化物応力腐食割れ性に優れた油井用鋼材の製造方法である。これにより、製造プロセスを簡略化し、安価に耐SSC性に優れた高強度の油井用鋼管を安定して製造できるとしている。   Patent Document 3 describes a method for producing a steel material for oil wells that is excellent in resistance to sulfide stress corrosion cracking. The technology described in Patent Document 3 is as follows: C: 0.15-0.30%, Si: 0.05-1.0%, Mn: 0.10-1.0%, Cr: 0.1-1.5%, Mo: 0.1-1.0%, Al: 0.003-0.08 %, N: 0.008% or less, B: 0.0005-0.010%, Ca + O: 0.008% or less, and further hot working using steel materials containing one or more of Ti, Nb, Zr, V Of steel for oil wells with excellent resistance to sulfide stress corrosion cracking by directly quenching without cooling or by quenching after holding at a temperature above the Ac3 transformation point and then tempering below the Ac1 transformation point. It is a manufacturing method. As a result, the manufacturing process is simplified, and high-strength steel well pipes with excellent SSC resistance can be stably manufactured at low cost.

また、特許文献4には、C:0.15〜0.35%、Si:0.1〜1.5%、Mn:0.1〜2.5%、P:0.025%以下、S:0.004%以下、sol.Al:0.001〜0.1%、Ca:0.0005〜0.005%を含有し、Ca系非金属介在物の組成が、CaSとCaOとの合計が50質量%以上であり、CaとAlとの複合酸化物が50質量%未満であり、かつ鋼の硬さがHRCで21〜30の範囲内で、鋼の硬さおよびCaOとCaSの合計量X(質量%)が、特定の関係を満足する耐硫化物応力割れ性(耐SSC性)に優れた油井管用鋼が記載されている。特許文献4に記載された技術では、耐SSC性に害のあるCaとAlとの複合酸化物を低減して無害のCaSとCaOへの反応を促進することにより、耐SSC性が向上した油井用鋼となるとしている。   Patent Document 4 includes C: 0.15-0.35%, Si: 0.1-1.5%, Mn: 0.1-2.5%, P: 0.025% or less, S: 0.004% or less, sol.Al: 0.001-0.1%, Ca: 0.0005 to 0.005%, the composition of Ca-based non-metallic inclusions, the sum of CaS and CaO is 50% by mass or more, the complex oxide of Ca and Al is less than 50% by mass, And the hardness of the steel is within the range of 21 to 30 in HRC, and the hardness of the steel and the total amount X (mass%) of CaO and CaS satisfy the specified relationship. ) Is a well-known oil well pipe steel. In the technique described in Patent Document 4, an oil well that has improved SSC resistance by reducing complex oxides of Ca and Al that are harmful to SSC resistance and promoting the reaction to harmless CaS and CaO. It will be used for steel.

また、特許文献5には、C:0.15〜0.35%、Si:0.1〜1.5%、Mn:0.1〜2.5%、P:0.03%以下、S:0.005%以下、sol.Al:0.001〜0.1%以下、Cr:0.1〜1.5%、Mo:0〜1.0%、N:0.0070%以下、V:0〜0.15%、B:0〜0.0030%、Ti:0〜A%、ここでA=3.4×N(%)、さらにNb:0.005〜0.012%を含む組成のビレットに、熱間で穿孔、圧延を行い、最終圧延温度900〜1100℃の条件で製管して継目無鋼管とし、Ar3点以上の温度域に保持したまま焼入れし、焼戻しをする、強度バラツキが小さく、オーステナイト粒度がASTM規格No.6以上の微細組織を有する継目無鋼管の製造方法が記載されている。特許文献5に記載された技術では、鋼の組成および最終圧延温度を調整することにより、微細組織が得られ、強度ばらつきが小さくなるとしている。   Moreover, in patent document 5, C: 0.15-0.35%, Si: 0.1-1.5%, Mn: 0.1-2.5%, P: 0.03% or less, S: 0.005% or less, sol.Al:0.001-0.1% or less , Cr: 0.1 to 1.5%, Mo: 0 to 1.0%, N: 0.0070% or less, V: 0 to 0.15%, B: 0 to 0.0030%, Ti: 0 to A%, where A = 3.4 × N ( %), And billets with a composition containing Nb: 0.005 to 0.012% are hot pierced and rolled to form seamless steel pipes under conditions of a final rolling temperature of 900 to 1100 ° C. It describes a method for producing a seamless steel pipe that is quenched and tempered while being held in a zone, has a small variation in strength, and has a microstructure with an austenite grain size of ASTM standard No. 6 or higher. In the technique described in Patent Document 5, a microstructure is obtained by adjusting the steel composition and the final rolling temperature, and the strength variation is reduced.

特開平08−311551号公報JP 08-311551 A 特開2000−313919号公報JP 2000-313919 A 特開2001−172739号公報JP 2001-1772739 特開2002−60893号公報Japanese Patent Laid-Open No. 2002-60893 特開2000−219914号公報Japanese Unexamined Patent Publication No. 2000-219914

しかしながら、耐SSC性に及ぼす各種要因は極めて複雑であり、110ksi級の高強度鋼管において安定して、耐SSC性を確保するための条件は明確になっていないのが現状である。例えば、特許文献1、2に記載された技術では、優れた耐SSC性を安定して確保できていないという問題がある。また、特許文献1に記載された技術では、低温域での圧下量が多くなりすぎ、管表面に疵が発生しやすいという問題や、大きな加工量を確保することを必要とし、厚肉鋼管の製造が難しくなるという問題がある。また、特許文献2に記載された技術では、圧延後直接焼入れするため、造管時に生じる温度むらに起因した、鋼管の曲がりあるいは鋼管各部の特性ばらつきが大きくなるという問題がある。   However, various factors affecting the SSC resistance are extremely complicated, and the conditions for ensuring the SSC resistance stably in a 110 ksi class high-strength steel pipe are not clear at present. For example, the techniques described in Patent Documents 1 and 2 have a problem that excellent SSC resistance cannot be secured stably. Moreover, in the technique described in patent document 1, the amount of reduction in a low temperature region becomes too much, and the problem that wrinkles are likely to occur on the surface of the pipe, and a large amount of processing must be ensured. There is a problem that manufacturing becomes difficult. Moreover, since the technique described in Patent Document 2 is directly quenched after rolling, there is a problem that bending of the steel pipe or variation in characteristics of each part of the steel pipe due to temperature unevenness generated during pipe making becomes large.

また、特許文献3に記載された技術では、安定して降伏強さ110ksi以上の強度を安定して確保できないうえ、耐SSC性向上に有利な形状を有する介在物を形成するための具体的な条件が明確になっていないという問題があり、安定して優れた耐SSC性を確保できていないという問題もある。
また、特許文献4に記載された技術では、耐SSC性向上に有利な介在物を形成するための具体的な条件が明確になっておらず、また、特許文献5に記載された技術では、圧延後直接焼入れするため、造管時に生じる温度むらに起因した、鋼管の曲りあるいは鋼管各部の特性のばらつきが大きくなるという問題がある。
In addition, the technique described in Patent Document 3 cannot stably secure a yield strength of 110 ksi or more, and can be used to form an inclusion having an advantageous shape for improving SSC resistance. There is a problem that the conditions are not clear, and there is also a problem that stable and excellent SSC resistance cannot be secured.
Moreover, in the technique described in Patent Document 4, specific conditions for forming inclusions advantageous for improving SSC resistance are not clarified. In the technique described in Patent Document 5, Since quenching is performed directly after rolling, there is a problem that the steel pipe bends or the characteristics of each part of the steel pipe vary greatly due to temperature unevenness that occurs during pipe making.

本発明は、かかる従来技術の問題を解決し、油井用として好適な、降伏強さ:110ksi級の高強度を有し、さらにサワー環境下における耐硫化物応力腐食割れ性(耐SSC性)に優れた、低合金高強度継目無鋼管およびその製造方法を提供することを目的とする。なお、ここでいう「耐硫化物応力腐食割れ性に優れた」とは、NACE TM0177 Method Aの規定に準拠した、HSが飽和した0.5%酢酸+5.0%食塩水溶液(液温:24℃)中での定荷重試験を実施し、降伏強さの90%の負荷応力で負荷時間:720時間で、割れが生じない場合をいうものとする。 The present invention solves such problems of the prior art, has a high yield strength of 110 ksi, which is suitable for oil wells, and further has resistance to sulfide stress corrosion cracking (SSC resistance) in a sour environment. An object of the present invention is to provide an excellent, low-alloy high-strength seamless steel pipe and a method for producing the same. As used herein, “excellent in resistance to sulfide stress corrosion cracking” refers to a 0.5% acetic acid + 5.0% saline solution saturated with H 2 S (liquid temperature: 24) in accordance with the provisions of NACE TM0177 Method A. A constant load test is performed in ℃), and the load stress is 90% of the yield strength. The load time is 720 hours and no cracking occurs.

本発明者らは、上記した目的を達成するため、低合金継目無鋼管の強度と耐硫化物応力腐食割れ性(耐SSC性)に及ぼす各種要因について鋭意研究した。その結果、油井用の継目無鋼管として、低合金系で、所望の高強度と優れた耐硫化物応力腐食割れ性とを両立させるには、適正量のMo、Cr、V、Nb、Ti、Bを必須含有するとしたうえで、さらに、低温加熱して穿孔したのち、所定条件を満足する低温圧延を施し、組織を微細化し、さらに1回以上の再加熱焼入れ処理および焼戻処理を施すことにより、圧延時に疵や曲がりが発生せず、優れた耐硫化物応力腐食割れ性と所望の高強度とを兼備する継目無鋼管が得られることを見出した。   In order to achieve the above-mentioned object, the present inventors diligently studied various factors affecting the strength and sulfide stress corrosion cracking resistance (SSC resistance) of a low alloy seamless steel pipe. As a result, as a seamless steel pipe for oil wells, an appropriate amount of Mo, Cr, V, Nb, Ti, in order to achieve both desired high strength and excellent sulfide stress corrosion cracking resistance in a low alloy system. In addition to the essential inclusion of B, after low-temperature heating and drilling, low-temperature rolling that satisfies the prescribed conditions is performed, the structure is refined, and one or more reheating quenching and tempering processes are performed. Thus, it was found that a seamless steel pipe having excellent resistance to sulfide stress corrosion cracking and desired high strength is obtained without causing wrinkles or bending during rolling.

本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次のとおりである。
(1)鋼素材を、加熱し、穿孔圧延を施して中空素材としたのち、該中空素材に延伸圧延を施して継目無鋼管とするにあたり、前記鋼素材を、質量%で、C:0.15〜0.50%、Si:0.1〜1.0%、Mn:0.3〜1.0%、P:0.015%以下、S:0.005%以下、Al:0.01〜0.10%、N:0.01%以下、Cr:0.8〜1.7%、Mo:0.2〜1.1%、V:0.01〜0.12%、Nb:0.01〜0.08%、Ti:0.005〜0.03%、B:0.0005〜0.0030%を含み、残部Feおよび不可避的不純物からなる組成を有する鋼素材とし、前記加熱を、加熱温度:1200℃未満とする加熱とし、前記穿孔圧延および前記延伸圧延を含め、次式
断面減縮率(%)=(圧延前の断面積−圧延後の断面積)/(圧延前の断面積)×100
で定義される断面減縮率が、1000℃以上の温度域で40〜60%、1000℃未満の温度域で10〜40%である圧延とし、前記延伸圧延終了後、300℃以下の温度まで冷却したのち、Ac3変態点〜1000℃の温度に再加熱し、急冷する焼入れ処理を施し、さらにAc1変態点以下の温度に加熱し焼戻しする焼戻処理を施し、前記継目無鋼管を、焼戻マルテンサイト相を主相とし、主相と、体積率で5%未満(0%を含む)の第二相からなる組織を有し、前記焼戻マルテンサイト相の下部組織が、隣接する領域と5°以上の方位差を有する領域で、該領域の大きさが7μm以下である領域の割合が組織全量に対する面積率で50%以上を占める下部組織であり、降伏強さYSが758〜862MPaの高強度を有する高強度継目無鋼管とすることを特徴とする耐硫化物応力腐食割れ性に優れた油井用低合金高強度継目無鋼管の製造方法。
The present invention has been completed based on such findings and further studies. That is, the gist of the present invention is as follows.
(1) After heating and punching and rolling a steel material to make a hollow material, the steel material is made into a seamless steel pipe by drawing and rolling the hollow material. 0.50%, Si: 0.1-1.0%, Mn: 0.3-1.0%, P: 0.015% or less, S: 0.005% or less, Al: 0.01-0.10%, N: 0.01% or less, Cr: 0.8-1.7%, Mo : 0.2-1.1%, V: 0.01-0.12%, Nb: 0.01-0.08%, Ti: 0.005-0.03%, B: 0.0005-0.0030%, and a steel material having a composition comprising the balance Fe and inevitable impurities The heating is performed at a heating temperature of less than 1200 ° C., and includes the piercing rolling and the stretching rolling, and the following formula: cross-sectional reduction ratio (%) = (cross-sectional area before rolling−cross-sectional area after rolling) / ( Cross-sectional area before rolling) x 100
The cross-sectional reduction rate defined by is 40 to 60% in a temperature range of 1000 ° C or higher, and 10 to 40% in a temperature range of less than 1000 ° C, and cooled to a temperature of 300 ° C or lower after the end of the stretch rolling. After the, reheated to a temperature of Ac3 transformation point to 1000 ° C., subjected to a hardening treatment by quenching and facilities tempering process for tempering heated further to a temperature below Ac1 transformation point, the seamless steel pipe, tempering The martensite phase is a main phase, and has a structure composed of a main phase and a second phase of less than 5% (including 0%) by volume ratio, and the substructure of the tempered martensite phase is an adjacent region. In the region having an orientation difference of 5 ° or more, the proportion of the region whose size is 7 μm or less is a substructure occupying 50% or more in terms of the area ratio with respect to the total amount of the structure, excellent oil resistance to sulfide stress corrosion cracking, characterized by a high strength seamless steel pipe having a high strength Manufacturing method of use low alloy high strength seamless steel pipe.

(2)(1)において、前記組成に加えてさらに、質量%で、Cu:1.0%以下、Ni:1.0%以下のうちから選ばれた1種または2種を含有することを特徴とする油井用低合金高強度継目無鋼管の製造方法。
(3)(1)または(2)において、前記組成に加えてさらに、質量%で、W:2.0%以下を含有することを特徴とする油井用低合金高強度継目無鋼管の製造方法。
(2) In (1), in addition to the above composition, the oil well further comprises one or two selected from Cu: 1.0% or less and Ni: 1.0% or less by mass% For manufacturing low-alloy high-strength seamless steel pipes.
(3) In (1) or (2), in addition to the said composition, the manufacturing method of the low alloy high intensity | strength seamless steel pipe for oil wells characterized by containing W: 2.0% or less by the mass% further.

(4)(1)ないし(3)のいずれかにおいて、前記組成に加えてさらに、質量%で、Ca:0.001〜0.005%を含有することを特徴とする油井用低合金高強度継目無鋼管の製造方法。
(5)(1)ないし(4)のいずれかにおいて、前記焼入れ処理を、2回以上繰返すことを特徴とする油井用低合金高強度継目無鋼管の製造方法。
(4) In any one of (1) to (3), in addition to the above-described composition, the low-alloy high-strength seamless steel pipe for oil wells further containing Ca: 0.001 to 0.005% by mass%. Production method.
(5) In any one of (1) to (4), the quenching treatment is repeated twice or more, and the method for producing a low alloy high strength seamless steel pipe for oil wells.

本発明によれば、降伏強さ:110ksi級の高強度と、さらに硫化水素を含む厳しい腐食環境下における優れた耐硫化物応力腐食割れ性とを兼備する高強度継目無鋼管を容易に製造でき、産業上格段の効果を奏する。   According to the present invention, it is possible to easily produce a high-strength seamless steel pipe having a high yield strength of 110 ksi class and excellent resistance to sulfide stress corrosion cracking in a severe corrosive environment containing hydrogen sulfide. It has a remarkable industrial effect.

本発明では、鋼素材を、加熱し、穿孔圧延を施して中空素材としたのち、該中空素材に延伸圧延を施して継目無鋼管とする。
まず、使用する鋼素材の組成限定理由について、説明する。以下、とくに断わらないかぎり質量%は単に%で記す。
C:0.15〜0.50%
Cは、鋼の強度を増加させる作用を有し所望の高強度を確保するために重要な元素である。また、Cは、焼入れ性を向上させる元素であり、焼戻マルテンサイト相を主相とする組織の形成に寄与する。このような効果を得るためには、0.15%以上の含有を必要とする。一方、0.50%を超える含有は、焼戻時に、水素のトラップサイトとして作用する炭化物を多量に析出させ、鋼中への過剰な拡散性水素の侵入を阻止できなくなるとともに、焼入れ時の割れを抑制できなくなる。このため、Cは0.15〜0.50%に限定した。なお、好ましくは0.20〜0.30%である。
In the present invention, a steel material is heated and subjected to piercing and rolling to form a hollow material, and then the hollow material is stretched and rolled to obtain a seamless steel pipe.
First, the reasons for limiting the composition of the steel material used will be described. Hereinafter, unless otherwise specified, mass% is simply expressed as%.
C: 0.15-0.50%
C has an effect of increasing the strength of steel and is an important element for ensuring a desired high strength. C is an element that improves hardenability and contributes to formation of a structure having a tempered martensite phase as a main phase. In order to obtain such an effect, the content of 0.15% or more is required. On the other hand, if the content exceeds 0.50%, a large amount of carbides acting as hydrogen trap sites will be precipitated during tempering, making it impossible to prevent excessive diffusible hydrogen from penetrating into the steel and suppressing cracking during quenching. become unable. For this reason, C was limited to 0.15-0.50%. In addition, Preferably it is 0.20 to 0.30%.

Si:0.1〜1.0%
Siは、脱酸剤として作用するとともに、鋼中に固溶して鋼の強度を増加させ、焼戻時の急激な軟化を抑制する作用を有する元素である。このような効果を得るためには、0.1%以上の含有を必要とする。一方、1.0%を超える含有は、粗大な酸化物系介在物を形成し、強い水素トラップサイトとして作用するとともに、有効元素の固溶量低下を招く。このため、Siは0.1〜1.0%の範囲に限定した。なお、好ましくは0.20〜0.30%である。
Si: 0.1-1.0%
Si is an element that acts as a deoxidizer and has a function of increasing the strength of the steel by dissolving in steel and suppressing rapid softening during tempering. In order to obtain such an effect, the content of 0.1% or more is required. On the other hand, a content exceeding 1.0% forms coarse oxide inclusions, acts as a strong hydrogen trap site, and lowers the solid solution amount of the effective element. For this reason, Si was limited to the range of 0.1 to 1.0%. In addition, Preferably it is 0.20 to 0.30%.

Mn:0.3〜1.0%
Mnは、焼入れ性の向上を介して、鋼の強度を増加させるとともに、Sと結合しMnSとしてSを固定して、Sによる粒界脆化を防止する作用を有する元素であり、本発明では0.3%以上の含有を必要とする。一方、1.0%を超える含有は、粒界に析出するセメンタイトが粗大化し耐硫化物応力腐食割れ性を低下させる。このため、Mnは0.3〜1.0%の範囲に限定した。なお、好ましくは0.4〜0.8%である。
Mn: 0.3-1.0%
Mn is an element that has the effect of increasing the strength of steel through the improvement of hardenability and binding to S and fixing S as MnS to prevent grain boundary embrittlement due to S. It needs to contain 0.3% or more. On the other hand, if the content exceeds 1.0%, cementite precipitated at the grain boundaries becomes coarse and the resistance to sulfide stress corrosion cracking is reduced. For this reason, Mn was limited to the range of 0.3 to 1.0%. In addition, Preferably it is 0.4 to 0.8%.

P:0.015%以下
Pは、固溶状態では粒界等に偏析し、粒界脆化割れ等を引き起こす傾向を示し、本発明ではできるだけ低減することが望ましいが、0.015%までは許容できる。このようなことから、Pは0.015%以下に限定した。なお、好ましくは0.013%以下である。
S:0.005%以下
Sは、鋼中ではほとんどが硫化物系介在物として存在し、延性、靭性や、耐硫化物応力腐食割れ性等の耐食性を低下する。一部は固溶状態で存在する場合があるが、その場合には粒界等に偏析し、粒界脆化割れ等を引き起こす傾向を示す。このため、本発明ではできるだけ低減することが望ましいが、過剰な低減は精錬コストを高騰させる。このようなことから、本発明では、Sは、その悪影響が許容できる0.005%以下に限定した。
P: 0.015% or less
P tends to segregate at grain boundaries and the like in the solid solution state to cause grain boundary embrittlement cracks and the like. In the present invention, P is desirably reduced as much as possible, but up to 0.015% is acceptable. Therefore, P is limited to 0.015% or less. In addition, Preferably it is 0.013% or less.
S: 0.005% or less
S is mostly present as sulfide inclusions in steel, and lowers corrosion resistance such as ductility, toughness, and resistance to sulfide stress corrosion cracking. Some of them may exist in a solid solution state, but in that case, they segregate at grain boundaries and tend to cause grain boundary embrittlement cracks. For this reason, although it is desirable to reduce as much as possible in this invention, excessive reduction raises refining cost. For this reason, in the present invention, S is limited to 0.005% or less where the adverse effect is acceptable.

Al:0.01〜0.1%
Alは、脱酸剤として作用するとともに、Nと結合しAlNを形成してオーステナイト結晶粒の微細化に寄与する。このような効果を得るために、Alは0.01%以上の含有を必要とする。一方、0.1%を超えて含有すると、酸化物系介在物が増加し靭性が低下する。このため、Alは0.01〜0.1%の範囲に限定した。なお、好ましくは0.02〜0.07%である。
Al: 0.01 to 0.1%
Al acts as a deoxidizer and combines with N to form AlN and contribute to the refinement of austenite crystal grains. In order to acquire such an effect, Al needs to contain 0.01% or more. On the other hand, if the content exceeds 0.1%, oxide inclusions increase and toughness decreases. For this reason, Al was limited to the range of 0.01 to 0.1%. In addition, Preferably it is 0.02 to 0.07%.

N:0.01%以下
Nは、Ti、Nb、Al等の窒化物形成元素と結合しMN型の析出物を形成する。しかし、これらの析出物は粗大な析出物となり、耐SSC性を低下させる。このため、Nはできるだけ低減することが好ましく、Nは0.01%以下に限定した。なお、少量のMN型析出物は、鋼素材等の加熱時に、結晶粒の粗大化を抑制する効果を有するため、Nは0.003%程度以上含有することが好ましい。
N: 0.01% or less
N combines with nitride-forming elements such as Ti, Nb, and Al to form MN-type precipitates. However, these precipitates become coarse precipitates and reduce the SSC resistance. For this reason, it is preferable to reduce N as much as possible, and N was limited to 0.01% or less. Note that a small amount of MN-type precipitate has an effect of suppressing coarsening of crystal grains when heating a steel material or the like, and therefore N is preferably contained in an amount of about 0.003% or more.

Cr:0.8〜1.7%
Crは、焼入れ性の増加を介して、鋼の強度の増加に寄与するとともに、耐食性を向上させる元素である。また、Crは、焼戻時にCと結合し、MC系、MC系、M23C系等の炭化物を形成し、とくにMC系炭化物は焼戻軟化抵抗の傾きを緩やかにし、焼戻温度の変動による強度変化を少なくして、強度調整を容易にする。このような効果を得るためには、0.8%以上の含有を必要とする。一方、1.7%を超えて含有すると、多量のMC系炭化物、M23C系炭化物を形成し、水素のトラップサイトとして作用し耐硫化物応力腐食割れ性が低下する。このため、Crは0.8〜1.7%の範囲に限定した。なお、好ましくは0.9〜1.5%である。
Cr: 0.8-1.7%
Cr is an element that contributes to an increase in the strength of steel through an increase in hardenability and improves the corrosion resistance. In addition, Cr combines with C during tempering to form carbides such as M 3 C, M 7 C 3 and M 23 C 6 systems, and especially M 3 C carbides tend to have a temper softening resistance gradient. The strength is adjusted easily by reducing the strength change due to fluctuations in the tempering temperature. In order to acquire such an effect, 0.8% or more needs to be contained. On the other hand, if the content exceeds 1.7%, a large amount of M 7 C 3 carbides and M 23 C 6 carbides are formed, acting as hydrogen trap sites, and reducing the resistance to sulfide stress corrosion cracking. For this reason, Cr was limited to the range of 0.8 to 1.7%. In addition, Preferably it is 0.9 to 1.5%.

Mo:0.20〜1.1%
Moは、炭化物を形成し析出硬化により強度の増加に寄与するとともに、固溶して、旧オーステナイト粒界に偏析して更なる耐硫化物応力腐食割れ性の向上に寄与する。このような効果を得るためには、0.20%以上の含有を必要とする。一方、1.1%を超える含有は、針状のMC型析出物を形成し耐硫化物応力腐食割れ性を低下させる。このため、Moは0.20〜1.1%の範囲に限定した。なお、好ましくは0.6〜1.1%である。
Mo: 0.20 to 1.1%
Mo forms carbides and contributes to an increase in strength by precipitation hardening, and also forms a solid solution, segregates at the prior austenite grain boundaries, and contributes to further improvement in resistance to sulfide stress corrosion cracking. In order to obtain such an effect, the content of 0.20% or more is required. On the other hand, the content exceeding 1.1% forms acicular M 2 C type precipitates and reduces the resistance to sulfide stress corrosion cracking. For this reason, Mo was limited to the range of 0.20 to 1.1%. In addition, Preferably it is 0.6 to 1.1%.

V:0.01〜0.12%
Vは、炭化物あるいは窒化物を形成し、鋼の強化に寄与する元素である。このような効果を得るためには、0.01%以上の含有を必要とする。一方、0.12%を超えて含有しても、効果が飽和し、含有量に見合う効果が期待できなくなり経済的に不利となる。このため、Vは0.01〜0.12%の範囲に限定した。なお、好ましくは0.02〜0.08%である。
V: 0.01 to 0.12%
V is an element that forms carbide or nitride and contributes to strengthening of steel. In order to acquire such an effect, 0.01% or more of content is required. On the other hand, if the content exceeds 0.12%, the effect is saturated, and an effect commensurate with the content cannot be expected, which is economically disadvantageous. For this reason, V was limited to the range of 0.01 to 0.12%. In addition, Preferably it is 0.02 to 0.08%.

Nb:0.01〜0.08%
Nbは、オーステナイト(γ)温度域での再結晶を遅延させ、γ粒の微細化に寄与し、マルテンサイトの下部組織(例えばパケット、ブロック、ラス)の微細化に極めて有効に作用するとともに、炭化物を形成し鋼を強化する作用を有する元素である。このような効果を得るためには、0.01%以上の含有を必要とする。一方、0.08%を超える含有は、粗大な析出物(NbC、NbN)の析出を促進し、耐硫化物応力腐食割れ性の低下を招く。このため、Nbは0.01〜0.08%の範囲に限定した。なお、好ましくは0.02〜0.06%である。ここで、パケットとは、平行に並んだ同じ晶癖面を持つラスの集団から成る領域と定義され、ブロックは、平行でかつ同じ方位のラスの集団から成る。
Nb: 0.01-0.08%
Nb delays recrystallization in the austenite (γ) temperature range, contributes to the refinement of γ grains, and acts extremely effectively on the refinement of the martensite substructure (eg, packet, block, lath), It is an element that has the effect of strengthening steel by forming carbides. In order to acquire such an effect, 0.01% or more of content is required. On the other hand, the content exceeding 0.08% promotes the precipitation of coarse precipitates (NbC, NbN) and leads to a decrease in resistance to sulfide stress corrosion cracking. For this reason, Nb was limited to the range of 0.01 to 0.08%. In addition, Preferably it is 0.02 to 0.06%. Here, a packet is defined as a region composed of a group of laths having the same crystal habit plane arranged in parallel, and a block is composed of a group of laths parallel and in the same orientation.

Ti:0.005〜0.03%
Tiは、炭化物あるいは窒化物を形成し、鋼の強化に寄与する元素である。このような効果を得るためには、0.005%以上含有することを必要とする。一方、0.03%を超える含有は、鋳造時に粗大なTiNの形成が促進され、その後の加熱でも固溶しないため、靭性や耐硫化物応力腐食割れ性の低下を招く。このため、Tiは0.005〜0.03%の範囲に限定した。なお、好ましくは0.01〜0.02%である。
Ti: 0.005-0.03%
Ti is an element that forms carbides or nitrides and contributes to the strengthening of steel. In order to acquire such an effect, it needs to contain 0.005% or more. On the other hand, if the content exceeds 0.03%, the formation of coarse TiN is promoted during casting, and since it does not dissolve in the subsequent heating, the toughness and resistance to sulfide stress corrosion cracking are reduced. For this reason, Ti was limited to the range of 0.005 to 0.03%. In addition, Preferably it is 0.01 to 0.02%.

B:0.0005〜0.003%
Bは、微量の含有で焼入れ性向上に寄与する元素であり、本発明では0.0005%以上の含有を必要とする。一方、0.003%を超えて多量に含有しても、効果が飽和するかあるいはFe−B硼化物の形成により、逆に所望の効果が期待できなくなり、経済的に不利となる。なお、0.003%を超えて含有すると、MoB、FeB等の粗大な硼化物の形成を促進し、熱延時に割れを発生しやすくする。このため、Bは0.0005〜0.003%の範囲に限定した。なお、好ましくは0.001〜0.003%である。
B: 0.0005-0.003%
B is an element that contributes to improving the hardenability when contained in a very small amount. In the present invention, B is required to be contained in an amount of 0.0005% or more. On the other hand, even if contained in a large amount exceeding 0.003%, the effect is saturated or the formation of Fe-B boride makes it impossible to expect the desired effect, which is economically disadvantageous. Incidentally, when the content exceeds 0.003%, to promote the formation of Mo 2 B, Fe 2 coarse borides such as B, and easily generate cracks during hot rolling. For this reason, B was limited to the range of 0.0005 to 0.003%. In addition, Preferably it is 0.001 to 0.003%.

以上の成分が基本であるが、基本の組成に加えてさらに、必要に応じて、Cu:1.0%以下、Ni:1.0%以下のうちから選ばれた1種または2種、および/または、W:2.0%以下、および/または、Ca:0.001〜0.005%を選択して含有してもよい。
Cu:1.0%以下、Ni:1.0%以下のうちから選ばれた1種または2種
Cu、Niはいずれも、鋼の強度を増加させるとともに、靭性、耐食性を向上させる作用を有する元素であり、必要に応じて選択して含有できる。
The above components are basic, but in addition to the basic composition, if necessary, one or two selected from Cu: 1.0% or less, Ni: 1.0% or less, and / or W : 2.0% or less, and / or Ca: 0.001 to 0.005% may be selected and contained.
One or two selected from Cu: 1.0% or less, Ni: 1.0% or less
Both Cu and Ni are elements that have the effect of increasing the strength of steel and improving toughness and corrosion resistance, and can be selected and contained as necessary.

Cuは、鋼の強度を増加させるとともに、靭性、耐食性を向上させる作用を有する元素であり、必要に応じて含有できる。とくに、厳しい耐硫化物応力腐食割れ性が要求される場合には、極めて重要な元素となる。含有した場合、緻密な腐食生成物が形成され、さらに割れの起点となるピットの生成・成長が抑制されて、耐硫化物応力腐食割れ性が顕著に向上するため、本発明では0.03%以上含有することが望ましい。一方、1.0%を超えて含有しても効果が飽和するうえ、コストの高騰を招く。このため、含有する場合には、Cuは1.0%以下に限定することが好ましい。なお、さらに好ましくは、0.03〜0.10%である。   Cu is an element having an action of increasing the strength of steel and improving toughness and corrosion resistance, and can be contained as required. In particular, when severe sulfide stress corrosion cracking resistance is required, it is an extremely important element. When it is contained, a dense corrosion product is formed, and the formation and growth of pits that are the starting point of cracking is suppressed, and the resistance to sulfide stress corrosion cracking is remarkably improved. Therefore, the present invention contains 0.03% or more. It is desirable to do. On the other hand, if the content exceeds 1.0%, the effect is saturated and the cost is increased. For this reason, when it contains, it is preferable to limit Cu to 1.0% or less. In addition, More preferably, it is 0.03 to 0.10%.

Niは、Cuと同様に、鋼の強度を増加させるとともに、靭性、耐食性を向上させる作用を有する元素であり、必要に応じて含有できる。このような効果を得るためには、0.03%以上含有することが望ましいが、1.0%を超えて含有しても効果が飽和するうえ、コストの高騰を招く。このため、含有する場合には、Niは1.0%以下に限定することが好ましい。なお、さらに好ましくは、0.03〜0.25%である。   Ni, like Cu, is an element having an effect of increasing the strength of steel and improving toughness and corrosion resistance, and can be contained as necessary. In order to acquire such an effect, it is desirable to contain 0.03% or more, but even if it exceeds 1.0%, the effect is saturated and the cost is increased. For this reason, when it contains, it is preferable to limit Ni to 1.0% or less. More preferably, it is 0.03 to 0.25%.

W:2.0%以下
Wは、炭化物を形成し鋼の強化に寄与するとともに、固溶して、旧オーステナイト粒界に偏析して耐硫化物応力腐食割れ性の向上に寄与する。このような効果を得るためには、0.03%以上含有することが望ましいが、2.0%を超える含有は、耐硫化物応力腐食割れ性を低下させる。このため、含有する場合には、Wは2.0%以下に限定することが好ましい。なお、より好ましくは0.05〜0.50%である。
W: 2.0% or less
W forms carbides and contributes to strengthening of the steel, and also dissolves and segregates at the prior austenite grain boundaries, thereby contributing to improvement of resistance to sulfide stress corrosion cracking. In order to acquire such an effect, it is desirable to contain 0.03% or more, but inclusion exceeding 2.0% reduces the resistance to sulfide stress corrosion cracking. For this reason, when contained, W is preferably limited to 2.0% or less. In addition, More preferably, it is 0.05 to 0.50%.

Ca:0.001〜0.005%
Caは、展伸した硫化物系介在物を粒状の介在物とする、いわゆる介在物の形態を制御する作用を有し、この介在物の形態制御を介して、延性、靭性や耐硫化物応力腐食割れ性を向上させる効果を有する元素であり、必要に応じて含有できる。このような効果は、0.001%以上の含有で顕著となるが、0.005%を超える含有は、非金属介在物が増加し、かえって延性、靭性や耐硫化物応力腐食割れ性が低下する。このため、含有する場合には、Caは0.001〜0.005%の範囲に限定することが好ましい。
Ca: 0.001 to 0.005%
Ca has the action of controlling the form of so-called inclusions, with the expanded sulfide inclusions as granular inclusions, and through this form control of the inclusions, ductility, toughness and resistance to sulfide stress It is an element having the effect of improving the corrosion cracking property and can be contained as required. Such an effect becomes remarkable when the content is 0.001% or more. However, when the content exceeds 0.005%, nonmetallic inclusions increase, and on the contrary, ductility, toughness and resistance to sulfide stress corrosion cracking decrease. For this reason, when it contains, it is preferable to limit Ca to 0.001 to 0.005% of range.

上記した成分以外の残部は、Feおよび不可避的不純物である。
上記した組成を有する鋼素材を出発素材とする。
出発素材である鋼素材の製造方法は、常用の方法がいずれも適用でき、とくに限定する必要はない。上記した組成を有する溶鋼を、転炉、電気炉、真空溶解炉等の通常公知の溶製方法で溶製し、通常公知の連続鋳造法でビレット等の鋳片とする。なお、鋳片をさら加熱し、該鋳片に圧延等の熱間加工を施し、鋼片としてもよい。なお、連続鋳造法に代えて、造塊−分塊法で鋼素材としてもなんら問題はない。
The balance other than the above components is Fe and inevitable impurities.
A steel material having the above composition is used as a starting material.
As a manufacturing method of the steel material as a starting material, any conventional method can be applied, and there is no particular limitation. Molten steel having the above composition is melted by a generally known melting method such as a converter, electric furnace, vacuum melting furnace or the like, and is made into a cast piece such as a billet by a generally known continuous casting method. The slab may be further heated, and the slab may be subjected to hot working such as rolling to form a steel slab. In addition, it replaces with a continuous casting method, and there is no problem even if it is a steel raw material with an ingot-making-bundling method.

得られた鋳片(鋼素材)を、加熱温度:1200℃未満、好ましくは1100℃以上に加熱して、穿孔圧延を施し、中空素材とする。加熱温度が1200℃以上と高温になると、その後の圧延、熱処理によっても微細な組織を得ることができず、所望の特性を確保することができなくなる。このため、本発明では、鋼素材の加熱温度は1200℃未満、好ましくは1100℃以上に限定した。なお、穿孔圧延方法は、とくに限定する必要はなく、通常公知のマンネスマン−ピアサ方式の穿孔方法が適用できる。   The obtained slab (steel material) is heated to a heating temperature of less than 1200 ° C., preferably 1100 ° C. or more, and subjected to piercing and rolling to obtain a hollow material. When the heating temperature is as high as 1200 ° C. or higher, a fine structure cannot be obtained by subsequent rolling and heat treatment, and desired characteristics cannot be ensured. For this reason, in the present invention, the heating temperature of the steel material is limited to less than 1200 ° C., preferably 1100 ° C. or more. The piercing and rolling method is not particularly limited, and a generally known Mannesmann-Piercer piercing method can be applied.

得られた中空素材は、追加の加熱を行うことなくそのまま、延伸圧延を施されて、所定寸法の継目無鋼管となる。なお、延伸圧延は、通常公知の方法がいずれも適用できる。
本発明では、穿孔圧延、延伸圧延を含め、次式
断面減縮率(%)=(圧延前の断面積−圧延後の断面積)/(圧延前の断面積)×100
で定義される断面減縮率が、1000℃以上の温度域で40〜60%、かつ1000℃未満の温度域で10〜40%となる圧延とする。
The obtained hollow material is stretched and rolled as it is without additional heating, and becomes a seamless steel pipe having a predetermined size. In addition, any known method can be applied to stretching and rolling.
In the present invention, including piercing and rolling, the following formula: cross-sectional reduction ratio (%) = (cross-sectional area before rolling−cross-sectional area after rolling) / (cross-sectional area before rolling) × 100
The rolling reduction ratio is defined as 40 to 60% in a temperature range of 1000 ° C or higher and 10 to 40% in a temperature range lower than 1000 ° C.

1000℃以上の温度域での断面減縮率が、40%未満では、微細な組織を得ることができない。一方、1000℃以上の温度域での断面減縮率を60%を超えて大きくしても、効果が飽和する。また、1000℃未満の温度域での断面減縮率が、10%未満では、微細な組織を得ることができない。一方、1000℃未満の温度域での断面減縮率が、40%を超えると、鋼管に疵や曲がりが生ずる。このため、穿孔圧延、延伸圧延を含めた断面減縮率を、1000℃以上の温度域で40〜60%、1000℃未満の温度域で10〜40%に限定した。延伸圧延終了後は、300℃以下の温度まで冷却する。冷却停止温度が、300℃を上回ると、圧延後の組織をマルテンサイトとすることができなくなり、再加熱し焼入する時にオーステナイトの核生成サイトが減少し、微細な組織を確保できなくなる。このため、冷却停止温度は300℃以下に限定した。なお、圧延後の冷却方法はとくに限定する必要はないが、空冷とすることが好ましい。   If the cross-sectional reduction ratio in the temperature range of 1000 ° C. or higher is less than 40%, a fine structure cannot be obtained. On the other hand, even if the cross-sectional reduction ratio in the temperature range of 1000 ° C. or higher is increased beyond 60%, the effect is saturated. Moreover, if the cross-sectional reduction ratio in the temperature range below 1000 ° C. is less than 10%, a fine structure cannot be obtained. On the other hand, if the cross-sectional reduction ratio in the temperature range below 1000 ° C. exceeds 40%, the steel pipe is wrinkled or bent. For this reason, the cross-sectional reduction ratio including piercing and rolling was limited to 40 to 60% in the temperature range of 1000 ° C. or higher, and 10 to 40% in the temperature range of less than 1000 ° C. After the drawing and rolling, it is cooled to a temperature of 300 ° C. or lower. When the cooling stop temperature exceeds 300 ° C., the structure after rolling cannot be made martensite, and austenite nucleation sites are reduced when reheating and quenching, and a fine structure cannot be secured. For this reason, the cooling stop temperature is limited to 300 ° C. or less. The cooling method after rolling is not particularly limited, but is preferably air cooling.

本発明では、300℃以下に冷却された後、再加熱し焼入れする焼入れ処理を施す。
焼入れ処理は、Ac3変態点〜1000℃の温度に再加熱し、急冷する処理とする。これにより、微細なγ相から変態した微細な下部組織を有するマルテンサイト相を主相とする組織とすることができる。焼入れ加熱温度が、Ac3変態点未満では、オーステナイト単相域に加熱することができず、その後の冷却で十分なマルテンサイト組織とすることができないため、所望の高強度を確保できなくなる。焼入れ温度を1000℃を超えて高温とすると、組織の粗大化を招き、靭性および耐硫化物応力腐食割れ性が低下する。このため、焼入れ処理の加熱温度はAc3変態点以上1000℃以下に限定する。なお、加熱温度は好ましくは840〜1000℃である。
In the present invention, after being cooled to 300 ° C. or lower, a quenching process is performed in which reheating and quenching are performed.
The quenching process is a process of reheating to a temperature of Ac3 transformation point to 1000 ° C. and rapidly cooling. Thereby, it can be set as the structure | tissue which has the martensite phase which has the fine lower structure transformed from the fine (gamma) phase as a main phase. If the quenching heating temperature is less than the Ac3 transformation point, the austenite single-phase region cannot be heated, and a sufficient martensite structure cannot be obtained by subsequent cooling, so that a desired high strength cannot be ensured. If the quenching temperature is higher than 1000 ° C., the structure becomes coarse, and the toughness and the resistance to sulfide stress corrosion cracking decrease. For this reason, the heating temperature of the quenching process is limited to the Ac3 transformation point or higher and 1000 ° C or lower. The heating temperature is preferably 840 to 1000 ° C.

なお、焼入れ処理における加熱温度での保持時間は、5min以上であれば十分であり、60minを超えて長時間となると、生産性が低下する。このため、保持時間は5〜60minとすることが好ましい。また、加熱後の冷却(急冷)は、水冷とすることが所望のマルテンサイト組織を得るという観点から好ましい。
なお、焼入れ処理は1回以上繰返すことが好ましい。焼入れ処理を繰返し施すことにより、組織が微細化し、所望の高強度、高靭性、さらには優れた耐硫化物応力腐食割れ性を兼備させることができる。また、焼入れ処理は連続して繰返しても、あるいは焼入れ処理Qと焼戻処理Tを繰返して行うQTQT処理としてもよい。
The holding time at the heating temperature in the quenching process is sufficient if it is 5 min or more, and if it exceeds 60 min for a long time, the productivity decreases. For this reason, the holding time is preferably 5 to 60 minutes. In addition, cooling (rapid cooling) after heating is preferably water cooling from the viewpoint of obtaining a desired martensite structure.
The quenching process is preferably repeated once or more. By repeatedly performing the quenching treatment, the structure is refined, and desired high strength, high toughness and excellent resistance to sulfide stress corrosion cracking can be provided. Further, the quenching process may be repeated continuously or may be QTQT process in which the quenching process Q and the tempering process T are repeated.

焼入れ処理後、さらに焼戻処理を施す。焼戻処理は、Ac1変態点以下の温度に加熱し、冷却(好ましくは空冷以上の冷却速度で冷却)する処理とする。本発明では焼戻処理は、過剰な転位を減少させ組織の安定化を図り、所望の高強度と、更なる優れた耐硫化物応力腐食割れ性とを兼備させるために行う。焼戻処理の加熱温度がAc1変態点を超えると、オーステナイトが生成し、冷却時にマルテンサイト、ベイナイトに変態し、焼入れままのマルテンサイト、ベイナイトとなるため、強度が低下する。このようなことから、焼戻処理の加熱温度は、Ac1変態点以下の温度とする。なお、好ましくは600〜720℃である。また、焼戻処理は、上記した温度範囲内で10min以上保持したのち、好ましくは空冷以上の冷却速度で、好ましくは室温まで冷却する処理とすることが好ましい。なお、焼戻温度での保持時間が、10min未満では、所望の組織の均一化が達成できない。なお、好ましくは、30min以上である。焼戻保持時間が長すぎると、強度が低下するうえ、生産性が低下する。   A tempering process is further performed after the quenching process. The tempering process is a process of heating to a temperature below the Ac1 transformation point and cooling (preferably cooling at a cooling rate equal to or higher than air cooling). In the present invention, the tempering treatment is performed in order to reduce excessive dislocations, stabilize the structure, and combine desired high strength with further excellent resistance to sulfide stress corrosion cracking. When the heating temperature in the tempering treatment exceeds the Ac1 transformation point, austenite is generated and transformed into martensite and bainite at the time of cooling, resulting in as-quenched martensite and bainite, resulting in a decrease in strength. For this reason, the heating temperature for the tempering treatment is set to a temperature equal to or lower than the Ac1 transformation point. In addition, Preferably it is 600-720 degreeC. In addition, the tempering treatment is preferably a treatment in which, after holding for 10 minutes or more within the above temperature range, cooling at a cooling rate of preferably air cooling or more, preferably to room temperature. Note that if the holding time at the tempering temperature is less than 10 minutes, the desired structure cannot be uniformized. In addition, Preferably, it is 30 minutes or more. If the tempering holding time is too long, strength is lowered and productivity is lowered.

上記した製造方法で得られる本発明継目無鋼管は、焼戻マルテンサイト相を主相とし、主相と、体積率で5%未満(0%を含む)の第二相からなる組織を有する。
本発明では、多量の合金元素を含有することなく、比較的低い合金元素含有量で、110ksi級の高強度を確保するために、鋼管組織を、マルテンサイト相組織とするが、所望の靭性、延性さらには耐硫化物応力腐食割れ性の確保の観点から、これらマルテンサイト相を焼戻した焼戻マルテンサイト相を主相とする組織とする。ここでいう「主相」とは、焼戻マルテンサイト相単相、あるいは、焼戻マルテンサイト相に加えて、特性に影響しない範囲である、体積%で5%未満の第二相を含む組織とする。第二相が、5%以上となると、強度、さらには靭性、延性等の特性が低下する。なお、第二相としては、ベイナイト、パーライト、フェライトあるいはそれらの混合相等が例示できる。したがって、「焼戻マルテンサイト相を主相とする組織」とは、体積%で95%以上の焼戻マルテンサイト相を含む組織を意味する。
The seamless steel pipe of the present invention obtained by the above-described production method has a structure comprising a tempered martensite phase as a main phase and a main phase and a second phase of less than 5% (including 0%) in volume ratio.
In the present invention, in order to ensure a high strength of 110 ksi class with a relatively low alloy element content without containing a large amount of alloy elements, the steel pipe structure has a martensite phase structure, but the desired toughness, From the viewpoint of ensuring ductility and resistance to sulfide stress corrosion cracking, a structure having a tempered martensite phase obtained by tempering these martensite phases as a main phase is adopted. The term “main phase” as used herein refers to a structure containing a tempered martensite phase single phase or a tempered martensite phase and a second phase of less than 5% by volume that does not affect the properties. And When the second phase is 5% or more, properties such as strength, toughness and ductility are deteriorated. Examples of the second phase include bainite, pearlite, ferrite, or a mixed phase thereof. Therefore, “a structure having a tempered martensite phase as a main phase” means a structure containing 95% or more of a tempered martensite phase by volume%.

なお、上記した製造方法で得られる本発明継目無鋼管では、旧オーステナイト(γ)粒が粒度番号で10以上で、かつ焼戻マルテンサイト相の下部組織が微細な細粒組織を有する。なお、旧γ粒の粒度番号は、JIS G 0551の規定に準拠して測定した値を用いるものとする。また、焼戻マルテンサイト相の下部組織については、電子後方散乱回折法(Electron Back Scatter Diffraction EBSD)により、測定した結晶方位分布を用いて、隣接する領域との方位差が5°以上である領域のそれぞれの大きさを求める。大きさは面積が同一となる円の直径(円相当径)で評価し、円相当径が7μm以下である領域の組織全量に対する面積率を算出する。そして、この領域の面積率が50%未満では、γ相から変態で生成するマルテンサイト相の下部組織が粗大化し、所望の耐硫化物応力腐食割れ性を確保できなくなる。このようなことから、本発明継面無鋼管では、焼戻マルテンサイト相を、その下部組織が、大きさ:7μm以下の、隣接する領域との方位差が5°以上である領域を面積率で50%以上有する組織とする。なお、好ましくは、面積率で60%以上である。   In the seamless steel pipe of the present invention obtained by the manufacturing method described above, the prior austenite (γ) grains have a grain size number of 10 or more, and the substructure of the tempered martensite phase has a fine grain structure. In addition, the value measured based on the prescription | regulation of JIS G 0551 shall be used for the particle size number of old γ grain. In addition, for the substructure of the tempered martensite phase, a region where the orientation difference from the adjacent region is 5 ° or more using the crystal orientation distribution measured by Electron Back Scatter Diffraction EBSD Find the size of each. The size is evaluated by the diameter of a circle having the same area (equivalent circle diameter), and the area ratio with respect to the total amount of tissue in a region having an equivalent circle diameter of 7 μm or less is calculated. If the area ratio of this region is less than 50%, the substructure of the martensite phase generated by transformation from the γ phase becomes coarse, and the desired resistance to sulfide stress corrosion cracking cannot be ensured. For this reason, in the seamless steel pipe of the present invention, the area ratio of the tempered martensite phase is the area where the substructure is 7 μm or less and the orientation difference between adjacent areas is 5 ° or more. The organization has 50% or more. The area ratio is preferably 60% or more.

以下、実施例に基づいてさらに本発明について説明する。   Hereinafter, the present invention will be further described based on examples.

表1に示す組成の溶鋼を転炉で溶製し、連続鋳造法で鋳片(ビレット)とした。これら鋳片を鋼素材として、マンネスマン方式の穿孔圧延機を用いて穿孔圧延して中空素材とし、引き続き、プラグミル方式の製造工程を用いて延伸圧延を施して、表2に示す寸法の継目無鋼管としたのち、室温まで空冷した。ついで、造管まま継目無鋼管に、表2に示す焼入れ加熱温度まで再加熱し水冷する焼入れ処理Qと、引続き、表2に示す条件の焼戻処理Tを施した。   Molten steel having the composition shown in Table 1 was melted in a converter and made into a slab (billet) by a continuous casting method. These slabs are made into steel materials and pierced and rolled into a hollow material using a Mannesmann type piercing and rolling machine, and subsequently drawn and rolled using a plug mill type manufacturing process to produce seamless steel pipes having the dimensions shown in Table 2. Then, it was air cooled to room temperature. Subsequently, the seamless steel pipe was subjected to a quenching treatment Q in which the steel pipe was reheated to the quenching heating temperature shown in Table 2 and cooled with water, and subsequently a tempering treatment T under the conditions shown in Table 2.

得られた鋼管から、試験片を採取し、組織観察試験、引張試験、腐食試験を実施した。試験方法は次のとおりとした。
(1)組織観察試験
得られた鋼管から、組織観察用試験片を採取し、管長手方向に直交する断面(C断面)を研磨、腐食(腐食液:ナイタール液)して、光学顕微鏡(倍率:1000倍)および走査型電子顕微鏡(倍率:2000倍)で組織を観察し、撮像して、画像解析装置を用い、組織の種類およびその分率を測定した。
Test pieces were collected from the obtained steel pipes and subjected to a structure observation test, a tensile test, and a corrosion test. The test method was as follows.
(1) Microstructure observation test A specimen for microstructural observation was collected from the obtained steel pipe, and the cross section (C cross section) perpendicular to the longitudinal direction of the pipe was polished and corroded (corrosion liquid: nital liquid). : 1000 times) and a scanning electron microscope (magnification: 2000 times), the tissue was observed, imaged, and the type of tissue and its fraction were measured using an image analyzer.

なお、旧γ粒界の現出は、ピクラール腐食液を用いて腐食し、得られた組織を光学顕微鏡(倍率:400倍)で各3視野観察し、JIS G 0551の規定に準拠して、切断法を用いて旧γ粒の粒度番号を求めた。採取した組織観察用試験片について、電界放射型電子銃を装備した超型電子顕微鏡SEMに放置されたEBSD装置を用いて、下部組織の結晶方位を測定し、隣接する領域との方位差が5°以上である領域を区画し、その面積を算出し、面積が等しくなる円相当直径を求めた。そして、隣接する領域との方位差が5°以上である領域の大きさ(円相当径)が7μm以下である領域の組織全量に対する面積率を算出した。   In addition, the appearance of the former γ grain boundary is corroded using a picral corrosion solution, and the obtained structure is observed with 3 optical fields each with an optical microscope (magnification: 400 times), in accordance with the provisions of JIS G 0551, Using the cutting method, the particle size number of the old γ grains was determined. Using the EBSD device left in the super-electron microscope SEM equipped with a field emission electron gun, the crystal orientation of the substructure was measured for the collected tissue observation specimen, and the difference in orientation from the adjacent region was 5 A region that is equal to or greater than 0 ° was sectioned, the area was calculated, and the equivalent circle diameter with the same area was obtained. And the area ratio with respect to the whole structure | tissue quantity of the area | region whose magnitude | size (circle equivalent diameter) whose area | region difference with an adjacent area | region is 5 degrees or more is 7 micrometers or less was computed.

(2)引張試験
得られた鋼管から、管軸方向が引張方向となるように丸棒引張試験片(平行部6mmφ×G.L.20mm)を採取し、引張試験を実施し、降伏強さYS、引張強さTSを求めた。なお、降伏強さは0.7%伸びでの強度とした。
(3)腐食試験
得られた鋼管から、腐食試験片を10本採取し、NACE TM0177 Method Aの規定に準拠した、HSが飽和した0.5%酢酸+5.0%食塩水溶液(液温:24℃)中での定荷重試験を実施し、降伏強さの90%の負荷応力で、720時間、負荷したのち、試験片の割れの有無を観察し、耐硫化物応力腐食割れ性を評価した。なお、割れ観察は、倍率:10倍の投影機を使用した。耐硫化物応力腐食割れ性の評価は、割れ発生率(=(割れが発生した試験片本数)/(全試験片数)×100(%))で行った。
(2) Tensile test From the obtained steel pipe, a round bar tensile test piece (parallel part 6mmφ × GL20mm) was taken so that the tube axis direction would be the tensile direction, and the tensile test was conducted, yield strength YS, tensile strength Sought TS. Yield strength was 0.7% elongation.
(3) Corrosion test Ten corrosion test specimens were collected from the obtained steel pipe, and H 2 S saturated 0.5% acetic acid + 5.0% saline solution (liquid temperature: 24) in accordance with the regulations of NACE TM0177 Method A. )), And after 720 hours of loading at 90% of the yield strength, the specimen was observed for cracking to evaluate its resistance to sulfide stress corrosion cracking. . For the observation of cracks, a projector with a magnification of 10 times was used. The sulfide stress corrosion cracking resistance was evaluated by the crack generation rate (= (number of test pieces in which cracks occurred) / (total number of test pieces) × 100 (%)).

(4)疵の検査
得られた鋼管について、API 5CTの規定に準拠して、非破壊検査を実施し、疵(キズ)の有無を確認した。
得られた結果を表3に示す。
(4) Inspection of defects The obtained steel pipe was subjected to nondestructive inspection in accordance with the provisions of API 5CT to confirm the presence or absence of defects.
The obtained results are shown in Table 3.

本発明例はいずれも、所望の高強度(降伏強さ:758MPa以上)を有するとともに、割れ発生率が0%であり、所望の高強度と優れた耐硫化物応力腐食割れ性とを兼備する継目無鋼管となっている。一方、本発明の範囲を外れる比較例は、所望の組織を確保できず、所望の高強度、所望の優れた耐硫化物応力腐食割れ性を兼備することができていない。   Each of the examples of the present invention has a desired high strength (yield strength: 758 MPa or more) and a crack generation rate of 0%, which combines the desired high strength and excellent resistance to sulfide stress corrosion cracking. It is a seamless steel pipe. On the other hand, the comparative example which does not fall within the scope of the present invention cannot secure a desired structure and does not have desired high strength and desired excellent resistance to sulfide stress corrosion cracking.

Claims (5)

鋼素材を、加熱し、穿孔圧延を施して中空素材としたのち、該中空素材に延伸圧延を施して、継目無鋼管とするにあたり、前記鋼素材を、質量%で、
C:0.15〜0.50%、 Si:0.1〜1.0%、
Mn:0.3〜1.0%、 P :0.015%以下、
S :0.005%以下、 Al:0.01〜0.10%、
N :0.01%以下、 Cr:0.8〜1.7%、
Mo:0.2〜1.1%、 V :0.01〜0.12%、
Nb:0.01〜0.08%、 Ti:0.005〜0.03%、
B :0.0005〜0.0030%
を含み、残部Feおよび不可避的不純物からなる組成を有する鋼素材とし、
前記加熱を、加熱温度:1200℃未満とする加熱とし、
前記穿孔圧延および前記延伸圧延を、下記式で定義される断面減縮率が、1000℃以上の温度域で40〜60%、1000℃未満の温度域で10〜40%である圧延とし、
前記延伸圧延終了後、300℃以下の温度まで冷却したのち、Ac3変態点〜1000℃の温度に再加熱し、急冷する焼入れ処理を施し、さらにAc1変態点以下の温度に加熱し焼戻しする焼戻処理を施し、
前記継目無鋼管を、焼戻マルテンサイト相を主相とし、主相と、体積率で5%未満(0%を含む)の第二相からなる組織を有し、前記焼戻マルテンサイト相の下部組織が、隣接する領域と5°以上の方位差を有する領域で、該領域の大きさが7μm以下である領域の割合が組織全量に対する面積率で50%以上を占める下部組織であり、降伏強さYSが758〜862MPaの高強度を有する高強度継目無鋼管とすることを特徴とする耐硫化物応力腐食割れ性に優れた油井用低合金高強度継目無鋼管の製造方法。

断面減縮率(%)=(圧延前の断面積−圧延後の断面積)/(圧延前の断面積)×100
The steel material is heated and subjected to piercing and rolling to form a hollow material, and then the hollow material is stretch-rolled to obtain a seamless steel pipe.
C: 0.15-0.50%, Si: 0.1-1.0%,
Mn: 0.3 to 1.0%, P: 0.015% or less,
S: 0.005% or less, Al: 0.01-0.10%,
N: 0.01% or less, Cr: 0.8-1.7%,
Mo: 0.2-1.1%, V: 0.01-0.12%,
Nb: 0.01-0.08%, Ti: 0.005-0.03%,
B: 0.0005-0.0030%
And a steel material having a composition consisting of the balance Fe and inevitable impurities,
The heating is heating to a heating temperature of less than 1200 ° C,
The piercing rolling and the stretching rolling, the cross-sectional reduction rate defined by the following formula is 40 to 60% in a temperature range of 1000 ° C. or more, 10 to 40% in a temperature range of less than 1000 ° C.,
After the drawing and rolling, the steel is cooled to a temperature of 300 ° C. or lower, reheated to a temperature of Ac3 transformation point to 1000 ° C., subjected to quenching quenching, and further tempered by heating to a temperature of the Ac1 transformation point or lower. Processing,
The seamless steel pipe has a structure comprising a tempered martensite phase as a main phase, a main phase, and a second phase having a volume ratio of less than 5% (including 0%), and the tempered martensite phase The substructure is a substructure that has an orientation difference of 5 ° or more with the adjacent area, and the ratio of the area whose size is 7 μm or less accounts for 50% or more of the area ratio to the total amount of the structure. A method for producing a low-alloy, high-strength seamless steel pipe for oil wells excellent in sulfide stress corrosion cracking resistance, characterized in that the strength YS is a high-strength seamless steel pipe having a high strength of 758 to 862 MPa.
Section reduction ratio (%) = (Cross sectional area before rolling−Cross sectional area after rolling) / (Cross sectional area before rolling) × 100
前記組成に加えてさらに、質量%で、Cu:1.0%以下、Ni:1.0%以下のうちから選ばれた1種または2種を含有することを特徴とする請求項1に記載の油井用低合金高強度継目無鋼管の製造方法。   The low for oil wells according to claim 1, further comprising one or two selected from Cu: 1.0% or less and Ni: 1.0% or less in mass% in addition to the composition. Manufacturing method of alloy high-strength seamless steel pipe. 前記組成に加えてさらに、質量%で、W:2.0%以下を含有することを特徴とする請求項1または2に記載の油井用低合金高強度継目無鋼管の製造方法。   The method for producing a low-alloy, high-strength seamless steel pipe for oil wells according to claim 1 or 2, further comprising W: 2.0% or less by mass% in addition to the composition. 前記組成に加えてさらに、質量%で、Ca:0.001〜0.005%を含有することを特徴とする請求項1ないし3のいずれかに記載の油井用低合金高強度継目無鋼管の製造方法。   The method for producing a low-alloy high-strength seamless steel pipe for oil wells according to any one of claims 1 to 3, further comprising Ca: 0.001 to 0.005% by mass% in addition to the composition. 前記焼入れ処理を、2回以上繰返すことを特徴とする請求項1ないし4のいずれかに記載の油井用低合金高強度継目無鋼管の製造方法 The method for producing a low-alloy high-strength seamless steel pipe for oil wells according to any one of claims 1 to 4, wherein the quenching treatment is repeated twice or more .
JP2013242665A 2012-11-27 2013-11-25 Low-alloy high-strength seamless steel pipe with excellent resistance to sulfide stress corrosion cracking and its manufacturing method Active JP5958450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013242665A JP5958450B2 (en) 2012-11-27 2013-11-25 Low-alloy high-strength seamless steel pipe with excellent resistance to sulfide stress corrosion cracking and its manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012258123 2012-11-27
JP2012258123 2012-11-27
JP2013242665A JP5958450B2 (en) 2012-11-27 2013-11-25 Low-alloy high-strength seamless steel pipe with excellent resistance to sulfide stress corrosion cracking and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2014129594A JP2014129594A (en) 2014-07-10
JP5958450B2 true JP5958450B2 (en) 2016-08-02

Family

ID=51408211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013242665A Active JP5958450B2 (en) 2012-11-27 2013-11-25 Low-alloy high-strength seamless steel pipe with excellent resistance to sulfide stress corrosion cracking and its manufacturing method

Country Status (1)

Country Link
JP (1) JP5958450B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106282825A (en) * 2016-08-25 2017-01-04 浙江天马轴承有限公司 A kind of high-speed bearing steel and preparation method thereof
EP4060070A4 (en) * 2019-12-26 2022-12-14 JFE Steel Corporation High-strength seamless steel pipe and method for manufacturing same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2017002975A (en) 2014-09-08 2017-06-19 Jfe Steel Corp High strength seamless steel pipe for use in oil wells and manufacturing method thereof.
CN104388835A (en) * 2014-10-17 2015-03-04 邯郸新兴特种管材有限公司 Steel tube for high-density crude oil exploitation and manufacturing process thereof
AU2015361346B2 (en) * 2014-12-12 2019-02-28 Nippon Steel Corporation Low-alloy steel for oil well pipe and method for manufacturing low-alloy steel oil well pipe
MX2017008360A (en) * 2014-12-24 2017-10-24 Jfe Steel Corp High-strength seamless steel pipe for oil wells, and production method for high-strength seamless steel pipe for oil wells.
US10844453B2 (en) 2014-12-24 2020-11-24 Jfe Steel Corporation High-strength seamless steel pipe for oil country tubular goods and method of producing the same
JP6596954B2 (en) * 2015-06-12 2019-10-30 日本製鉄株式会社 Seamless steel pipe and manufacturing method thereof
BR112018069480B1 (en) * 2016-02-29 2021-10-05 Jfe Steel Corporation THICK WALL-SEAM STEEL PIPE WITH HIGH RESISTANCE OF LOW ALLOY FOR PETROLEUM PIPE PRODUCTS
MX2018010366A (en) * 2016-02-29 2018-12-06 Jfe Steel Corp Low-alloy, high-strength seamless steel pipe for oil well.
MX2018010363A (en) * 2016-02-29 2018-12-06 Jfe Steel Corp Low-alloy, high-strength seamless steel pipe for oil well.
US11313005B2 (en) * 2016-05-20 2022-04-26 Nippon Steel Corporation Seamless steel pipe and method for producing the seamless steel pipe
ES2846779T3 (en) * 2016-07-13 2021-07-29 Vallourec Deutschland Gmbh Micro-alloyed steel and method of producing such steel
AR114712A1 (en) * 2018-03-27 2020-10-07 Nippon Steel & Sumitomo Metal Corp STEEL MATERIAL SUITABLE FOR USE IN AGRI ENVIRONMENT
CN112176252A (en) * 2020-09-21 2021-01-05 江阴方圆环锻法兰有限公司 Forging for wind power gear ring and forging method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02254122A (en) * 1989-03-28 1990-10-12 Sumitomo Metal Ind Ltd Manufacture of high strength seamless steel pipe for oil well use
JPH0741856A (en) * 1993-07-28 1995-02-10 Nkk Corp Production of high strength steel pipe excellent in sulfide stress corrosion cracking resistance
JPH07197125A (en) * 1994-01-10 1995-08-01 Nkk Corp Production of high strength steel pipe having excellent sulfide stress corrosion crack resistance
JP3755163B2 (en) * 1995-05-15 2006-03-15 住友金属工業株式会社 Manufacturing method of high-strength seamless steel pipe with excellent resistance to sulfide stress cracking
JP4464867B2 (en) * 2005-05-11 2010-05-19 新日本製鐵株式会社 High tensile strength steel material having a tensile strength of 700 MPa or more that has both weldability and toughness, and a method for producing the same
JP5728836B2 (en) * 2009-06-24 2015-06-03 Jfeスチール株式会社 Manufacturing method of high strength seamless steel pipe for oil wells with excellent resistance to sulfide stress cracking

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106282825A (en) * 2016-08-25 2017-01-04 浙江天马轴承有限公司 A kind of high-speed bearing steel and preparation method thereof
EP4060070A4 (en) * 2019-12-26 2022-12-14 JFE Steel Corporation High-strength seamless steel pipe and method for manufacturing same

Also Published As

Publication number Publication date
JP2014129594A (en) 2014-07-10

Similar Documents

Publication Publication Date Title
JP5958450B2 (en) Low-alloy high-strength seamless steel pipe with excellent resistance to sulfide stress corrosion cracking and its manufacturing method
JP6677310B2 (en) Steel materials and steel pipes for oil wells
JP6064955B2 (en) Manufacturing method of high strength seamless steel pipe for oil wells with excellent resistance to sulfide stress cracking
JP5776398B2 (en) Low yield ratio high strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same
JP6107437B2 (en) Manufacturing method of low-alloy high-strength seamless steel pipe for oil wells with excellent resistance to sulfide stress corrosion cracking
US9708681B2 (en) High-strength seamless steel pipe for oil well use having excellent resistance to sulfide stress cracking
JP5679114B2 (en) Low yield ratio high strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same
JP5880787B2 (en) Steel tube for low alloy oil well and manufacturing method thereof
JP5266791B2 (en) High strength steel plate of X100 grade or more excellent in SR resistance and deformation performance and method for producing the same
JP5644982B1 (en) ERW welded steel pipe
KR20120062006A (en) Steel plate having low yield ratio, high strength and high uniform elongation and method for producing same
WO2017149570A1 (en) Low-alloy, high-strength seamless steel pipe for oil well
JP5834534B2 (en) High strength low yield ratio steel with high uniform elongation characteristics, manufacturing method thereof, and high strength low yield ratio welded steel pipe
WO2017149571A1 (en) Low-alloy, high-strength seamless steel pipe for oil well
US20150368737A1 (en) Hot-rolled steel sheet for high strength linepipe having tensile strength of 540 mpa or more
JP6519024B2 (en) Method of manufacturing low yield ratio high strength hot rolled steel sheet excellent in low temperature toughness
JP6131890B2 (en) Manufacturing method and selection method of low-alloy high-strength seamless steel pipe for oil well with excellent resistance to sulfide stress corrosion cracking
JP2016033236A (en) High strength hot rolled steel sheet excellent in strength-uniform elongation balance and production method thereof
JP6468302B2 (en) Material for steel pipe for high strength oil well and method for producing steel pipe for high strength oil well using the material
JP2018100436A (en) Method for producing low yield ratio high strength hot rolled steel sheet excellent in low temperature toughness
JP6152929B1 (en) Low alloy high strength seamless steel pipe for oil wells
JP6152928B1 (en) Low alloy high strength seamless steel pipe for oil wells
JP2018059149A (en) Low alloy high strength seamless steel pipe for oil well

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160425

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160606

R150 Certificate of patent or registration of utility model

Ref document number: 5958450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250