JP5956368B2 - Corrosion potential sensor - Google Patents

Corrosion potential sensor Download PDF

Info

Publication number
JP5956368B2
JP5956368B2 JP2013045290A JP2013045290A JP5956368B2 JP 5956368 B2 JP5956368 B2 JP 5956368B2 JP 2013045290 A JP2013045290 A JP 2013045290A JP 2013045290 A JP2013045290 A JP 2013045290A JP 5956368 B2 JP5956368 B2 JP 5956368B2
Authority
JP
Japan
Prior art keywords
corrosion potential
potential sensor
core wire
metal casing
forming member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013045290A
Other languages
Japanese (ja)
Other versions
JP2014173928A (en
Inventor
正彦 橘
正彦 橘
石田 一成
一成 石田
和田 陽一
陽一 和田
亮介 清水
亮介 清水
太田 信之
信之 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2013045290A priority Critical patent/JP5956368B2/en
Publication of JP2014173928A publication Critical patent/JP2014173928A/en
Application granted granted Critical
Publication of JP5956368B2 publication Critical patent/JP5956368B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

本発明は、金属製の構造材の腐食電位を測定するための腐食電位センサに係り、特に、原子力発電プラントに適用するのに好適な腐食電位センサに関する。   The present invention relates to a corrosion potential sensor for measuring a corrosion potential of a metal structural material, and more particularly to a corrosion potential sensor suitable for application to a nuclear power plant.

原子力発電プラントにおいて、ステンレス鋼およびニッケル基合金等は構造材と呼ばれ、原子炉機器および配管等の構造部材に用いられる。これらの構造材は、特定の条件下で応力腐食割れ(SCC:Stress Corrosion Cracking)の感受性を示す。そこで、原子力発電プラントの健全性を維持するために、SCCの防止策が適用されている。また、近年では、原子力発電プラントの設備利用率の向上および長寿命化のような経済性向上の観点からも、SCCの防止策が適用されている。SCC防止策には、材料の耐食性向上、応力の改善、あるいは腐食環境の緩和を目的とした技術がある。   In nuclear power plants, stainless steel, nickel-base alloys, and the like are called structural materials and used for structural members such as nuclear reactor equipment and piping. These structural materials exhibit susceptibility to stress corrosion cracking (SCC) under certain conditions. Therefore, SCC prevention measures are applied in order to maintain the soundness of the nuclear power plant. In recent years, SCC prevention measures have also been applied from the viewpoint of improving the utilization factor of nuclear power plants and improving the economic efficiency such as extending the service life. SCC prevention measures include techniques aimed at improving the corrosion resistance of materials, improving stress, or mitigating corrosive environments.

沸騰水型原子力発電プラントでは、SCC防止策の1つとして、沸騰水型原子力発電プラントの構造部材に接触する原子炉冷却材(以下、炉水と記載する)の腐食環境を改善する水素注入が、広く用いられている。特許文献1には、水素注入の一例が記載されている。原子炉内の炉水は、炉水の放射線分解により生成されて構造部材の腐食の原因となる酸素および過酸化水素を含んでいる。酸素および過酸化水素が腐食環境を形成している。水素注入は、給水配管等を介して炉水に水素を注入し、炉水に含まれている酸素および過酸化水素を注入された水素と反応させて水に戻す技術である。その反応により炉水中の酸素および過酸化水素の濃度が低下する結果、炉水に接触する構造部材の腐食電位(ECP:Electrochemical Corrosion Potential)が低下し、構造部材のSCCが緩和される。   In boiling water nuclear power plants, hydrogen injection that improves the corrosive environment of reactor coolant (hereinafter referred to as reactor water) in contact with structural members of boiling water nuclear power plants is one of the SCC prevention measures. Widely used. Patent Document 1 describes an example of hydrogen injection. The reactor water in the nuclear reactor contains oxygen and hydrogen peroxide that are generated by radiolysis of the reactor water and cause corrosion of structural members. Oxygen and hydrogen peroxide form a corrosive environment. Hydrogen injection is a technique in which hydrogen is injected into the reactor water via a water supply pipe or the like, and oxygen and hydrogen peroxide contained in the reactor water are reacted with the injected hydrogen and returned to the water. As a result of the reduction in the concentration of oxygen and hydrogen peroxide in the reactor water due to the reaction, the corrosion potential (ECP: Electrochemical Corrosion Potential) of the structural member in contact with the reactor water is reduced, and the SCC of the structural member is relaxed.

水素注入を実施した際における腐食電位の低下をさらに促進させる技術として、例えば、特許文献2に記載された白金族貴金属元素を炉水に注入する技術(貴金属注入技術)が知られている。貴金属注入技術は水素注入技術と併用され、白金族貴金属元素が有する水素の電気化学反応への触媒作用を利用して、水素注入による腐食電位の低減幅をさらに大きくする。   As a technique for further promoting the reduction of the corrosion potential when hydrogen injection is performed, for example, a technique (noble metal injection technique) for injecting a platinum group noble metal element described in Patent Document 2 into reactor water is known. The noble metal injection technique is used in combination with the hydrogen injection technique and further increases the reduction range of the corrosion potential due to hydrogen injection by utilizing the catalytic action of the platinum group noble metal element on the electrochemical reaction of hydrogen.

これらの炉水の腐食環境を低減させるSCC防止策を実施するためには、構造部材の腐食電位を測定する必要がある。そこで、原子炉内あるいは原子炉に接続された配管に腐食電位センサを設置し、腐食電位センサを用いた構造部材の腐食電位を測定することが行われている。腐食電位センサは、使用条件下で腐食電位測定の基準となる一定の電位(基準電位)を発生する。このため、腐食電位センサは、基準電極、参照電極、または照合電極と呼ばれている。沸騰水型原子力発電プラントの構造部材が接触する炉水の温度、炉水に含まれる酸素および過酸化水素のそれぞれの濃度、および流れている炉水の流速の条件下で有する電位と、腐食電位センサの有する基準電位との電位差を、電位差計を用いて測定することによって、その構造部材の腐食電位を知ることができる。   In order to implement the SCC prevention measures for reducing the corrosive environment of these reactor waters, it is necessary to measure the corrosion potential of the structural members. Therefore, a corrosion potential sensor is installed in a reactor or a pipe connected to the reactor, and the corrosion potential of a structural member using the corrosion potential sensor is measured. The corrosion potential sensor generates a constant potential (reference potential) that serves as a reference for measuring the corrosion potential under use conditions. For this reason, the corrosion potential sensor is called a reference electrode, a reference electrode, or a reference electrode. Potential and corrosion potential under the conditions of the temperature of the reactor water in contact with the structural members of the boiling water nuclear power plant, the concentrations of oxygen and hydrogen peroxide contained in the reactor water, and the flow rate of the flowing reactor water By measuring the potential difference from the reference potential of the sensor using a potentiometer, the corrosion potential of the structural member can be known.

従来の腐食電位センサの種々の構成例が特許文献3、特許文献4および非特許文献1に記載されている。   Various configuration examples of conventional corrosion potential sensors are described in Patent Document 3, Patent Document 4, and Non-Patent Document 1.

さらに、特許文献5には、腐食電位センサの筐体の内部に健全性診断専用の電極を配し、健全性診断専用の電極をポテンショスタットとインピーダンスアナライザを介して接地された測定対象配管に接続することが開示されている。腐食電位センサの金属筐体と接地された測定対象配管は、溶接によって接合されており、相互に電気的に接続された状態にある。したがって、インピーダンスアナライザにより、健全性診断専用の電極と接地された測定対象配管との間のインピーダンスを測定することで、健全性診断専用の電極と腐食電位センサの金属筐体との間のインピーダンスを測定し、これにより腐食電位センサの金属筐体内部への湿分の浸入を検知でき、腐食電位を連続的に測定しながら、腐食電位センサの健全性を診断している。   Furthermore, in Patent Document 5, an electrode dedicated to soundness diagnosis is arranged inside the casing of the corrosion potential sensor, and the electrode dedicated to soundness diagnosis is connected to a measurement target pipe grounded via a potentiostat and an impedance analyzer. Is disclosed. The metal casing of the corrosion potential sensor and the measurement target pipe that is grounded are joined by welding and are electrically connected to each other. Therefore, the impedance analyzer measures the impedance between the electrode dedicated for health diagnosis and the pipe to be measured that is grounded, so that the impedance between the electrode dedicated for health diagnosis and the metal casing of the corrosion potential sensor is obtained. Measurements can be made to detect the ingress of moisture into the metal casing of the corrosion potential sensor, and the health of the corrosion potential sensor is diagnosed while continuously measuring the corrosion potential.

特許文献6には、湿分の浸入を検出するために、電解質(湿分)に接触したときに電位差を生じる異なる金属を用い、発生した電位差をpHアナライザー(電圧測定装置)により検出する電気化学センサが開示されている。電気化学センサは、半電池(センサ感知電極)、参照電池、亜鉛線および銀線を有し、亜鉛線が半電池に接続された導体に接続され、亜鉛線の近傍に配置された銀線および参照電池(センサ照合電極)がその導体に接続された同軸ケーブルに接続されている。亜鉛線および銀線は異なる電位差を生じる。センサが破損してセンサ内に湿分が浸入したとき、亜鉛線と銀線の間に生じる電位差を電圧測定装置で測定することにより、湿分の浸入による電気化学センサの破損を検出する。   In Patent Document 6, in order to detect the intrusion of moisture, different metals that generate a potential difference when in contact with an electrolyte (humidity) are used, and the generated potential difference is detected by a pH analyzer (voltage measuring device). A sensor is disclosed. The electrochemical sensor has a half-cell (sensor sensing electrode), a reference battery, a zinc wire and a silver wire, and the zinc wire is connected to a conductor connected to the half-cell, and the silver wire arranged in the vicinity of the zinc wire and A reference battery (sensor verification electrode) is connected to a coaxial cable connected to the conductor. Zinc wires and silver wires produce different potential differences. When the sensor breaks and moisture enters the sensor, the potential difference generated between the zinc wire and the silver wire is measured with a voltage measuring device to detect the breakage of the electrochemical sensor due to the moisture penetration.

特許第2687780号Japanese Patent No. 2687780 特開平4−223299号公報JP-A-4-223299 特開2000−65785号公報JP 2000-65785 A 特開2009−42111号公報JP 2009-42111 A 特開2012−37364号公報JP 2012-37364 A 特開平4−213052号公報Japanese Patent Laid-Open No. 4-213052

Proceedings of International Symposium on Plant Aging and Life Prediction of Corrodible Structures, May 15-18, 1995, Sapporo Japan, p413 JSCE-NACE (1995)Proceedings of International Symposium on Plant Aging and Life Prediction of Corrodible Structures, May 15-18, 1995, Sapporo Japan, p413 JSCE-NACE (1995)

発明者らは、腐食電位センサの不具合の発生について検討を行った。この検討内容について説明する。図6に、沸騰水型原子力発電プラントにおいて原子炉内の炉水への水素注入を実施したときの、原子炉に供給する給水の水素濃度に対する、サンプリング系によりサンプリングした炉水の溶存酸素濃度の変化、およびプラント構造材の腐食電位変化の測定結果を示す。給水の水素濃度が上昇すると、炉水の溶存酸素濃度が低下し、それに追従して構造部材の腐食電位が低下することが解る。したがって、腐食電位を精度良く測定するためには、腐食電位センサが不可欠であり、腐食電位センサが原子力発電プラントの運転条件で使用可能であることが求められる。   The inventors examined the occurrence of defects in the corrosion potential sensor. The contents of this examination will be described. FIG. 6 shows the dissolved oxygen concentration of the reactor water sampled by the sampling system with respect to the hydrogen concentration of the feed water supplied to the reactor when hydrogen is injected into the reactor water in the boiling water nuclear power plant. The measurement result of a change and the corrosion potential change of a plant structural material is shown. It can be seen that when the hydrogen concentration of the feed water increases, the dissolved oxygen concentration of the reactor water decreases, and the corrosion potential of the structural member decreases accordingly. Therefore, in order to accurately measure the corrosion potential, the corrosion potential sensor is indispensable, and the corrosion potential sensor is required to be usable under the operating conditions of the nuclear power plant.

原子力発電プラントにおいて、構成部材の腐食電位を測定する場合に、測定に供している期間中の腐食電位センサの健全性を確認する必要がある。例えば、腐食電位センサを設置してから1運転サイクル(国により13カ月、18カ月、または24カ月等に規定されている)に渡って連続して測定するとき、どの時点まで腐食電位センサの機能が健全であったかを診断して、測定された腐食電位データの妥当性を評価したい場合がある。しかしながら、原子力発電プラントにおいて、腐食電位センサを原子炉内および原子炉に近い部位の配管に設置するときは、腐食電位センサの筐体を溶接によって配管に固定する。また、原子力発電プラントの運転中では、そのような腐食電位センサの設置部位に接近できない。このため、一度設置した腐食電位センサを、腐食電位測定の供用期間中に健全であるか否かを診断する目的で取り外すことはできない。   When measuring the corrosion potential of components in a nuclear power plant, it is necessary to check the soundness of the corrosion potential sensor during the period of measurement. For example, when a corrosion potential sensor is installed and continuously measured over one operating cycle (13 months, 18 months, 24 months, etc. depending on the country) In some cases, it may be desirable to assess whether the corrosion potential data measured is appropriate. However, in a nuclear power plant, when a corrosion potential sensor is installed in a pipe in a nuclear reactor or in a part close to the nuclear reactor, the casing of the corrosion potential sensor is fixed to the pipe by welding. In addition, during operation of the nuclear power plant, it is impossible to approach the site where such a corrosion potential sensor is installed. For this reason, once installed, the corrosion potential sensor cannot be removed for the purpose of diagnosing whether it is healthy during the service period of the corrosion potential measurement.

そこで、腐食電位センサの健全性を診断するためには、炉水の水質を変化させ、腐食電位センサと配管の間の電位差が水質の変化に対応して変動するか否かを確認することになる。腐食電位センサの電位は、腐食電位センサが健全であれば一定の基準電位を示すので、水質を変化させたときに配管と電極の間の電位差(配管の腐食電位に対応)が変動した場合には、腐食電位センサが健全であると判定できる。しかしながら、原子力発電プラントの運転中に腐食電位センサの健全性を確認するために、炉水の水質を頻繁に変化させることは好ましくない。   Therefore, in order to diagnose the soundness of the corrosion potential sensor, the water quality of the reactor water is changed, and it is confirmed whether or not the potential difference between the corrosion potential sensor and the piping fluctuates in response to the change in the water quality. Become. The potential of the corrosion potential sensor shows a certain reference potential if the corrosion potential sensor is healthy. Therefore, when the potential difference between the pipe and the electrode (corresponding to the corrosion potential of the pipe) changes when the water quality is changed. Can determine that the corrosion potential sensor is healthy. However, it is not preferable to frequently change the water quality of the reactor water in order to confirm the soundness of the corrosion potential sensor during operation of the nuclear power plant.

原子力発電プラントの運転期間中に腐食電位センサの正常性を検知する最も簡単な方法は、測定対象である構造材に対し腐食電位センサが一定電位を保つこと、すなわち接地レベルに対する腐食電位センサの発生電位が0Vになっていないことを確認することである。   The simplest way to detect the normality of a corrosion potential sensor during the operation of a nuclear power plant is to keep the corrosion potential sensor at a constant potential relative to the structural material being measured, that is, to generate a corrosion potential sensor for the ground level. It is to confirm that the potential is not 0V.

図7は、原子力発電プラントにおける腐食電位センサの使用形態を表す模式図である。図7は炉水を保持搬送する金属製構造材である金属配管の腐食電位を、腐食電位センサを用いて測定する場合を示す。腐食電位センサ1の円筒形の金属筐体4が溶接によってT字型配管6に接合されている。円筒形の絶縁体2によって腐食電位センサ1の金属筐体4から電気的に絶縁された腐食電位測定用電極3を有する電位検知部が炉水に接している。腐食電位センサ1の内部は炉水に対し密閉されている。腐食電位測定用電極3の腐食電位センサ1内部に面する側には、溶接によってPt製芯線9が取り付けられており、Pt製芯線9を、円筒状の絶縁体2内部、円筒形の金属筐体4内部、及び鉱物絶縁ケーブル8内を通じて、気相部の芯線10に導出している。芯線10は、リード線12a、12bと電位差計13を介して炉水を搬送する本管である接地された金属配管14と接続されている。   FIG. 7 is a schematic diagram showing a usage pattern of a corrosion potential sensor in a nuclear power plant. FIG. 7 shows a case where the corrosion potential of a metal pipe, which is a metal structural material that holds and conveys reactor water, is measured using a corrosion potential sensor. A cylindrical metal casing 4 of the corrosion potential sensor 1 is joined to a T-shaped pipe 6 by welding. A potential detecting unit having a corrosion potential measuring electrode 3 electrically insulated from the metal casing 4 of the corrosion potential sensor 1 by a cylindrical insulator 2 is in contact with the reactor water. The inside of the corrosion potential sensor 1 is sealed against the reactor water. A Pt core wire 9 is attached by welding to the side of the corrosion potential measuring electrode 3 facing the inside of the corrosion potential sensor 1, and the Pt core wire 9 is connected to the inside of the cylindrical insulator 2 and a cylindrical metal housing. It is led out to the core wire 10 in the gas phase part through the inside of the body 4 and the mineral insulated cable 8. The core wire 10 is connected to a grounded metal pipe 14, which is a main pipe that conveys reactor water, via lead wires 12 a and 12 b and a potentiometer 13.

図7に示す構成によって腐食電位を測定する場合において、腐食電位センサ1の破損の結果センサ内に浸水が生じた場合には、Pt製芯線9と金属筐体4が同種金属の場合には電位差計13の指示値が0Vとなる。腐食電位は、腐食電位センサ1とT字型配管6または金属配管14との間の電位差を測定することで評価する。腐食電位センサ1は、溶接によってT字型配管6に取り付けられるため、腐食電位センサ1の金属筐体4とT字型配管6および金属配管14は電気的に接続されている。金属配管14は接地されているため、結果的に腐食電位センサ1の金属筐体4が接地されることになる。   In the case where the corrosion potential is measured by the configuration shown in FIG. 7, if the corrosion potential sensor 1 is damaged and water is immersed in the sensor, the potential difference is different in the case where the Pt core wire 9 and the metal housing 4 are the same type of metal. The total indicated value of 13 becomes 0V. The corrosion potential is evaluated by measuring a potential difference between the corrosion potential sensor 1 and the T-shaped pipe 6 or the metal pipe 14. Since the corrosion potential sensor 1 is attached to the T-shaped pipe 6 by welding, the metal casing 4, the T-shaped pipe 6 and the metal pipe 14 of the corrosion potential sensor 1 are electrically connected. Since the metal pipe 14 is grounded, as a result, the metal casing 4 of the corrosion potential sensor 1 is grounded.

腐食電位センサ1が健全な場合は、腐食電位測定用電極3とT字型配管6との間の経路Aにおける電位差が、電位差計13によって測定される。ところが、腐食電位センサ1の絶縁体2とセンサの金属筐体4の溶接部に不具合が発生し、金属筐体4内に炉水(湿分)が浸入した場合には、上記経路Aとは異なる経路で電位差が測定されることがある。浸入した炉水が液体水となり、Pt製芯線9と金属筐体4とがその液体水を介して接触した場合に、腐食電位センサ1内部のPt製芯線9と腐食電位センサ1の金属筐体4とが導通状態になり、経路Bを通じて電位差が測定される。このため、腐食電位センサ1の電位検知部3の電位が出力されなくなる。この場合、電位差計13の指示値は経路Aの電位差を示しておらず、経路Bで生じている電位差から誤った腐食電位を算出してしまうことになる。   When the corrosion potential sensor 1 is healthy, the potential difference in the path A between the corrosion potential measurement electrode 3 and the T-shaped pipe 6 is measured by the potentiometer 13. However, when a defect occurs in the welded portion of the insulator 2 of the corrosion potential sensor 1 and the metal casing 4 of the sensor, and the reactor water (moisture) enters the metal casing 4, the above path A is Potential differences may be measured in different paths. When the infiltrated reactor water becomes liquid water and the Pt core wire 9 and the metal casing 4 come into contact with each other through the liquid water, the Pt core wire 9 inside the corrosion potential sensor 1 and the metal casing of the corrosion potential sensor 1 are used. 4 becomes conductive, and the potential difference is measured through the path B. For this reason, the potential of the potential detector 3 of the corrosion potential sensor 1 is not output. In this case, the indicated value of the potentiometer 13 does not indicate the potential difference of the path A, and an erroneous corrosion potential is calculated from the potential difference generated in the path B.

通常、腐食電位センサ1の芯線および金属筐体は、同種の貴金属または不働態金属で製作される。このため、腐食電位センサ1が破損し浸水した炉水に接触した場合に、例えばPt製芯線9とPt製の金属筐体4が電気的に導通した状態となるため、電位差計13の指示値が0Vとなる。したがって、電位差計13の指示値が0Vでない状態が継続することを確認することによって、腐食電位センサ1が健全性を有していると判断できる。   Usually, the core wire and the metal casing of the corrosion potential sensor 1 are made of the same kind of noble metal or passive metal. Therefore, when the corrosion potential sensor 1 is damaged and comes into contact with the flooded reactor water, for example, the Pt core wire 9 and the Pt metal casing 4 are in an electrically conductive state. Becomes 0V. Therefore, it can be determined that the corrosion potential sensor 1 has soundness by confirming that the state in which the indicated value of the potentiometer 13 is not 0 V continues.

しかしながら、腐食電位センサ1の破損が、ピンホールと呼ばれる微小な孔が生じる破損であった場合は、ピンホールから僅かずつ炉水が水蒸気の状態で浸入し、浸水が急激には起こらないため、破損後すぐには0Vを指示しない。腐食電位センサ1の内部は外部より低気圧のため浸入後は水蒸気として存在し、飽和蒸気圧を超え、Pt製芯線9および金属筐体4の間隙を満たす程度に水滴化したときに初めてPt製芯線9と金属筐体4が導通する。この場合、導通するまでの時間は長期に渡り、数週〜数ヶ月かけて0Vに漸近することがある。そのような微小な孔による故障時には、どの時点まで健全な状態の腐食電位センサで得られたデータであるかを明確化するのは困難である。   However, when the damage of the corrosion potential sensor 1 is a damage in which a minute hole called a pinhole is generated, the furnace water infiltrates little by little from the pinhole in the state of water vapor, and the inundation does not occur suddenly. Do not indicate 0V immediately after breakage. Since the inside of the corrosion potential sensor 1 is low pressure from the outside, it exists as water vapor after entering, exceeds the saturated vapor pressure, and is made of Pt for the first time when water droplets are formed to fill the gap between the Pt core wire 9 and the metal housing 4. The core wire 9 and the metal housing 4 are electrically connected. In this case, it takes a long time to conduct, and may gradually approach 0V over several weeks to several months. In the case of a failure due to such a minute hole, it is difficult to clarify to what point the data is obtained by the corrosion potential sensor in a healthy state.

そこで、一つの方法として、腐食電位センサの腐食電位を測定する信号線と金属材料の間に電圧を印加して抵抗を測定し、適切な電気絶縁性が維持されているかを判断することによって、腐食電位センサの機能の正常性を判断することが行われる。しかし、抵抗測定のためには腐食電位センサにV単位の直流電圧を印加することが必要であり、直流電圧印加によって電位差計の指示値が腐食電位を指示しなくなるため、腐食電位の測定中に健全性を診断することが困難である。また、V単位の直流電圧印加によって、腐食電位センサの電位発生部に組み込まれている電極が分極されるため、診断後の腐食電位センサの指示電位に悪影響を及ぼす可能性を排除できないという課題がある。   Therefore, as one method, by applying a voltage between the signal line for measuring the corrosion potential of the corrosion potential sensor and the metal material, measuring the resistance, and determining whether appropriate electrical insulation is maintained, The normality of the function of the corrosion potential sensor is determined. However, in order to measure resistance, it is necessary to apply a DC voltage in units of V to the corrosion potential sensor, and the indication value of the potentiometer does not indicate the corrosion potential due to the DC voltage application. It is difficult to diagnose health. In addition, since the electrode incorporated in the potential generating portion of the corrosion potential sensor is polarized by applying a DC voltage in V units, there is a problem that the possibility of adversely affecting the indication potential of the corrosion potential sensor after diagnosis cannot be excluded. is there.

別の方法として、腐食電位センサの金属筐体内に、浸水を検知する診断専用の第2電極を装荷して、第2電極と金属材料との間に微弱な交流電圧を印加することでインピーダンス応答を測定し、適切な電気絶縁性が維持されていることを確認することによって、腐食電位センサの健全性を診断することが行われる。特許文献5に記載された腐食電位センサでは、腐食電位センサの金属筐体内部に健全性診断専用の電極を配し、ポテンショスタットに接続されたインピーダンスアナライザを使用して、腐食電位測定用の芯線と健全性診断専用の電極との間にmV単位の微弱な交流電圧を印加し、湿分の浸入によるインピーダンス応答の変化を監視することで、腐食電位センサの破損を検出している。この手法では、腐食電位センサの指示値への影響なしに、腐食電位測定中に連続して腐食電位センサの健全性を評価できる。   As another method, a second electrode dedicated for diagnosis for detecting inundation is loaded in the metal casing of the corrosion potential sensor, and an impedance response is applied by applying a weak AC voltage between the second electrode and the metal material. The soundness of the corrosion potential sensor is diagnosed by measuring and confirming that proper electrical insulation is maintained. In the corrosion potential sensor described in Patent Document 5, an electrode dedicated to soundness diagnosis is arranged inside the metal casing of the corrosion potential sensor, and an impedance analyzer connected to a potentiostat is used to measure the corrosion potential core wire. A weak alternating voltage in mV units is applied between the electrodes dedicated to soundness diagnosis and the change in impedance response due to the ingress of moisture is monitored to detect damage to the corrosion potential sensor. In this method, the health of the corrosion potential sensor can be continuously evaluated during the measurement of the corrosion potential without affecting the indicated value of the corrosion potential sensor.

しかしながら、特許文献5に記載された電気化学センサを腐食電位センサとして用いた場合には、健全性診断専用電極の信号を腐食電位センサ外部に取り出すための芯線を、腐食電位測定用の芯線とは別個に設ける必要があり、腐食電位センサの構造が複雑化する。さらに、腐食電位測定用の電位差計の他に、診断専用のポテンショスタット、およびインピーダンスアナライザが必要になるため、測定系、被測定系ともに複雑化、高額化する課題がある。   However, when the electrochemical sensor described in Patent Document 5 is used as a corrosion potential sensor, the core wire for taking out the signal of the electrode for soundness diagnosis outside the corrosion potential sensor is the core wire for measuring the corrosion potential. It is necessary to provide them separately, which complicates the structure of the corrosion potential sensor. Furthermore, in addition to the potentiometer for measuring the corrosion potential, a potentiostat dedicated to diagnosis and an impedance analyzer are required. Therefore, both the measurement system and the system to be measured are complicated and expensive.

特許文献6に記載された電気化学センサでは、半電池(センサ感知電極)、参照電極、亜鉛線および銀線ならびに電解質供給体を有し、浸水時には電解質を電気化学センサ金属筐体内で溶解させ、亜鉛線と亜鉛線の近傍に配置された銀線の間に生じる電位差を測定して、湿分の浸入による電気化学センサの破損を検出している。   The electrochemical sensor described in Patent Document 6 has a half-cell (sensor sensing electrode), a reference electrode, a zinc wire and a silver wire, and an electrolyte supply body, and when immersed, the electrolyte is dissolved in the electrochemical sensor metal casing, The potential difference generated between the zinc wire and the silver wire arranged in the vicinity of the zinc wire is measured to detect the breakage of the electrochemical sensor due to moisture intrusion.

特許文献6では、腐食電位測定に用いているpHアナライザー(電圧測定装置)を健全性診断に使用できるため、測定系を複雑化させることなく電気化学センサの破損を検出できる。しかし、この電気化学センサを腐食電位センサとして用いた場合には、腐食電位センサの内部に設置された湿分の侵入を検知するための2つの電極(亜鉛電極と銀電極)ならびに電解質供給体を、腐食電位センサの金属筐体内部に組み込む必要があり、被測定系の構造が複雑化する問題が生じる。また、特許文献6の電気化学センサは、電解質供給体を設置しているので、電気化学センサにき裂が発生して炉水が浸入したとき、電気化学センサから外部の炉水に電解質が放出され、炉水の水質に影響を与える可能性があるという課題がある。   In Patent Document 6, since a pH analyzer (voltage measuring device) used for corrosion potential measurement can be used for soundness diagnosis, breakage of an electrochemical sensor can be detected without complicating the measurement system. However, when this electrochemical sensor is used as a corrosion potential sensor, two electrodes (zinc electrode and silver electrode) and an electrolyte supply body for detecting intrusion of moisture installed inside the corrosion potential sensor are used. Therefore, there is a problem that the structure of the system to be measured is complicated because it is necessary to be incorporated in the metal casing of the corrosion potential sensor. Moreover, since the electrochemical sensor of patent document 6 has installed the electrolyte supply body, when a crack generate | occur | produces in an electrochemical sensor and reactor water infiltrates, electrolyte discharge | releases to external reactor water from an electrochemical sensor. However, there is a problem that the water quality of the reactor water may be affected.

そのため、測定系、被測定系ともに簡便な構造を有し、かつ、破損時にも炉水に影響を及ぼさずに、腐食電位センサの供用期間中に健全性を診断する手法が望まれていた。本発明の目的は、測定系、被測定系ともに簡便な構成であって、プラントの運転中において異常の発生を早期に検知でき、且つ構造部材の腐食電位を測定することができる腐食電位センサを提供することにある。   Therefore, there has been a demand for a method for diagnosing the soundness of a corrosion potential sensor during the service period of the corrosion potential sensor without affecting the reactor water even when the measurement system and the system to be measured have a simple structure. An object of the present invention is to provide a corrosion potential sensor that has a simple configuration for both a measurement system and a system to be measured, can detect the occurrence of an abnormality early during operation of the plant, and can measure the corrosion potential of a structural member. It is to provide.

発明者らは、上記した事項を考慮して、原子力発電プラントの運転中において腐食電位センサの健全性を診断でき、且つ構造部材の腐食電位を精度良く測定することができる腐食電位センサについて検討した。その結果、腐食電位センサ破損によって腐食電位センサ内に炉水蒸気が浸入した場合に、毛管凝縮を利用して蒸気圧を低下させて迅速に液体に凝縮させて芯線と金属筐体を電気的導通状態にするために、湿分を凝縮するための間隙構造を形成させる間隙形成部材を、芯線と金属筐体のどちらか一方に電気的に接続させた状態で腐食電位センサ内部に装荷することによって、炉水の浸入による腐食電位センサの異常の発生を早期に検知できることを見出した。ここで一般に毛管凝縮(Capillary Condensation)とは、部材に設けられた微少間隙が毛管現象により蒸気を取入れて液体に凝縮させる現象をいう。   Inventors considered the corrosion potential sensor which can diagnose the soundness of the corrosion potential sensor during operation of the nuclear power plant and can accurately measure the corrosion potential of the structural member in consideration of the above-mentioned matters. . As a result, when furnace water vapor enters the corrosion potential sensor due to corrosion potential sensor breakage, the core pressure and the metal housing are in electrical continuity by reducing the vapor pressure using capillary condensation and quickly condensing it into liquid. To form a gap structure for forming a gap structure for condensing moisture, it is loaded inside the corrosion potential sensor in a state of being electrically connected to either the core wire or the metal casing, It was found that the occurrence of abnormalities in the corrosion potential sensor due to the ingress of reactor water can be detected at an early stage. Here, generally, capillary condensation refers to a phenomenon in which a minute gap provided in a member takes in vapor by capillary action and condenses it into a liquid.

上記した目的を達成するため、本発明の腐食電位センサは、原子力発電プラントの接地された金属製構造部材に設置された金属筺体と、この金属筺体に対して電気的に絶縁された状態で配置された腐食電位検出用電極、および金属筺体内で金属筐体と電気的に接続され、芯線から離れて配置され、かつ芯線との間に間隙構造を構成する導電性の間隙形成部材を備える。   In order to achieve the above-described object, the corrosion potential sensor of the present invention is arranged in a state where it is electrically insulated from a metal casing installed on a grounded metal structural member of a nuclear power plant. And a conductive gap forming member that is electrically connected to the metal housing in the metal housing, is disposed away from the core wire, and forms a gap structure with the core wire.

また、金属筺体内で芯線と電気的に接続され、金属筐体から離れて配置され、かつ金属筐体との間に間隙構造を構成する導電性の間隙形成部材を備える。   In addition, a conductive gap forming member is provided which is electrically connected to the core wire in the metal casing, is disposed away from the metal casing, and forms a gap structure with the metal casing.

上記した目的は、例えば腐食電位センサの破損により炉水が蒸気として浸入した初期の段階であっても急峻な電位変化が観察され、あるいは電位差計の出力が0Vになることを検出することによって達成できる。したがって、芯線と電気的に接続され、かつ金属筐体との間に間隙構造を構成する導電性部材を設置して、電位差を測定することによっても達成できる。   The above-described object is achieved by detecting a steep potential change or detecting that the output of the potentiometer becomes 0 V even at the initial stage when the reactor water enters as steam due to damage to the corrosion potential sensor, for example. it can. Therefore, it can also be achieved by installing a conductive member that is electrically connected to the core wire and that forms a gap structure between the metal case and measures the potential difference.

本発明によれば、原子力発電プラントの炉水を保持搬送する金属製構造材と、炉水に接触するとともに炉水に対し内部が密閉される腐食電位測定用電極と、腐食電位測定用電極に接続された芯線を有し、金属製構造材の腐食電位を測定する腐食電位センサにおいて、芯線または金属筐体との間に間隙を形成する導電性の間隙形成部材を腐食電位センサ内に設け、腐食電位センサ出力の経時変化を監視することによって、腐食電位センサの健全性を確認することにより、いつの時点まで腐食電位センサの機能が健全であったかを診断して、測定された腐食電位データの妥当性を評価できる。   According to the present invention, a metal structural material that holds and conveys reactor water of a nuclear power plant, a corrosion potential measurement electrode that is in contact with the reactor water and that is sealed with respect to the reactor water, and a corrosion potential measurement electrode. In the corrosion potential sensor that has a connected core wire and measures the corrosion potential of a metal structural material, a conductive gap forming member that forms a gap between the core wire or the metal housing is provided in the corrosion potential sensor, By monitoring the corrosion potential sensor output over time and confirming the soundness of the corrosion potential sensor, it is possible to diagnose how long the corrosion potential sensor function was healthy and to validate the measured corrosion potential data. Can evaluate sex.

これにより、原子力発電プラントの運転中において、腐食電位センサの内部への炉水の浸入を伴う故障の有無を連続的に監視することができ、且つ構造部材の腐食電位を正確に測定することができる。   As a result, during operation of the nuclear power plant, it is possible to continuously monitor the presence or absence of a failure accompanying the penetration of reactor water into the corrosion potential sensor, and to accurately measure the corrosion potential of the structural member. it can.

従来型の腐食電位センサの断面構造を示す模式図。The schematic diagram which shows the cross-section of the conventional type corrosion potential sensor. 本発明の腐食電位センサの断面構造を示す模式図。The schematic diagram which shows the cross-section of the corrosion potential sensor of this invention. 腐食電位センサの破損前後の期間における従来型腐食電位センサと本発明の腐食電位センサの電位差計指示値の経時変化を示す模式図。The schematic diagram which shows the time-dependent change of the potentiometer instruction | indication value of the conventional type corrosion potential sensor and the corrosion potential sensor of this invention in the period before and after failure | damage of a corrosion potential sensor. 本発明の実施例1の腐食電位計測装置を示す断面図。Sectional drawing which shows the corrosion potential measuring apparatus of Example 1 of this invention. 本発明の実施例2の腐食電位計測装置を示す断面図。Sectional drawing which shows the corrosion potential measuring apparatus of Example 2 of this invention. 本発明の実施例3の腐食電位計測装置を示す断面図。Sectional drawing which shows the corrosion potential measuring apparatus of Example 3 of this invention. 水素注入時における炉水中の溶存酸素濃度および構造部材の腐食電位と給水中の水素濃度との関係を示す説明図。Explanatory drawing which shows the relationship between the dissolved oxygen concentration in the reactor water at the time of hydrogen injection | pouring, the corrosion potential of a structural member, and the hydrogen concentration in feed water. 原子力発電プラントにおける腐食電位センサの使用形態を表す模式図。The schematic diagram showing the usage condition of the corrosion potential sensor in a nuclear power plant.

以下に本発明を実施例と図面によって説明する。   The present invention will be described below with reference to examples and drawings.

図1Aには、ジルコニア隔膜型腐食電位センサについて、従来の腐食電位センサを適用した場合の腐食電位センサの断面構造の模式図を示す。図1Bには、ジルコニア隔膜型腐食電位センサについて本発明を適用した場合の腐食電位センサの断面構造の模式図を示す。   FIG. 1A is a schematic diagram of a cross-sectional structure of a corrosion potential sensor when a conventional corrosion potential sensor is applied to a zirconia diaphragm type corrosion potential sensor. FIG. 1B shows a schematic diagram of a cross-sectional structure of a corrosion potential sensor when the present invention is applied to a zirconia diaphragm type corrosion potential sensor.

図1Aにおいて、従来のジルコニア隔膜型腐食電位センサは、センサの頭頂部に位置する円筒状のジルコニア(ZrO)からなる絶縁体31の内部に触媒が充填された領域を腐食電位測定用電極とする。金属筐体32に接合された絶縁体31内の空間に白金黒粉末が充填された白金黒電極33からなる腐食電位測定用電極が形成され、白金黒電極33にPt製芯線34が挿入され、Pt製芯線34が、鉱物絶縁ケーブル8内の芯線10を介して外部に導出されている。 Referring to FIG. 1A, a conventional zirconia diaphragm type corrosion potential sensor has a corrosion potential measuring electrode and a region filled with a catalyst in an insulator 31 made of cylindrical zirconia (ZrO 2 ) located at the top of the sensor. To do. A corrosion potential measuring electrode composed of a platinum black electrode 33 filled with platinum black powder is formed in a space in the insulator 31 joined to the metal housing 32, and a Pt core wire 34 is inserted into the platinum black electrode 33. A Pt core wire 34 is led out through the core wire 10 in the mineral insulated cable 8.

一方、図1Bにおいて、本発明のジルコニア隔膜型腐食電位センサ101は、Pt製芯線34、または芯線10、あるいは双方の周囲に金属等の導電性の間隙形成部材11を取り付けた構造を有する点で従来型とは異なる。   On the other hand, in FIG. 1B, the zirconia diaphragm type corrosion potential sensor 101 of the present invention has a structure in which a conductive gap forming member 11 such as metal is attached around the core wire 34 or the core wire 10 or both. It is different from the conventional type.

本発明の腐食電位センサの特徴は、被測定系については既存の腐食電位センサの構成に金属製等の導電性の間隙形成部材11を取付けたのみの簡便な構成であること、および、通常腐食電位測定に用いる電位差計をそのまま健全性確認用途に使用でき、測定系、被測定系ともに簡便な構成で前述した課題を解決できることである。   The feature of the corrosion potential sensor of the present invention is that the system to be measured has a simple structure in which a conductive gap forming member 11 such as a metal is attached to the structure of an existing corrosion potential sensor, and normal corrosion. A potentiometer used for potential measurement can be used for soundness confirmation as it is, and the above-described problems can be solved with a simple configuration in both the measurement system and the system to be measured.

電位計測においては、最もインピーダンス(抵抗)の小さい経路で電位が測定されるため、浸水した場合は、最も抵抗の小さい経路を通じて電位測定回路が形成される。また、使用環境の温度・pH下においてPt製芯線34と同種の金属であるPtを使用した間隙形成部材11を装荷すれば、浸水時に間隙形成部材11がPt製芯線34と同電位を発生するため0Vを出力することとなる。   In the potential measurement, since the potential is measured through the path with the smallest impedance (resistance), the potential measuring circuit is formed through the path with the smallest resistance when submerged. In addition, if the gap forming member 11 using Pt, which is the same kind of metal as the Pt core wire 34, is loaded under the temperature and pH of the use environment, the gap forming member 11 generates the same potential as the Pt core wire 34 during the flooding. Therefore, 0V is output.

このため、腐食電位センサが破損して浸水した時には、間隙形成部材11と腐食電位センサのPt製芯線34との間で電位測定回路が形成され、破損により浸水した場合においてのみ、0Vの電位差が測定系に伝達され、浸水後直ちに急峻な変化が観察されることになる。このため、連続的に電位差計の指示値の時間変化を監視することによって、腐食電位センサの健全性を判断できることになる。   For this reason, when the corrosion potential sensor is damaged and submerged, a potential measurement circuit is formed between the gap forming member 11 and the Pt core wire 34 of the corrosion potential sensor. A steep change is observed immediately after being transmitted to the measurement system. For this reason, the soundness of the corrosion potential sensor can be determined by continuously monitoring the time change of the indication value of the potentiometer.

このため、図2に一例を示すように、腐食電位を測定する場合において、従来型の腐食電位センサを使用した場合には、破損後に週単位や月単位の長期間に渡って電位差計の指示電位が徐々に0Vに近づいてゆくことがあるのに対し、本発明の腐食電位センサを使用した場合には、腐食電位センサが破損して浸水したときに、電位測定回路として間隙形成部材によって積極的に短絡回路を形成することで、急峻な電位変化によって即座に0Vを指示することを電位差計で検知することで、腐食電位センサの機能喪失時期を検知できる。よって、腐食電位センサによって得られた電位差の経時変化に対して、腐食電位センサが正常に機能している期間中に得られた期間を従来よりも厳密に弁別できる。   Therefore, as shown in the example of FIG. 2, when measuring the corrosion potential, if a conventional corrosion potential sensor is used, the potentiometer is instructed over a long period of weeks or months after breakage. Whereas the potential may gradually approach 0V, when the corrosion potential sensor of the present invention is used, when the corrosion potential sensor is damaged and submerged, it is actively used as a potential measurement circuit by a gap forming member. By forming a short circuit, it is possible to detect when the corrosion potential sensor has lost its function by detecting with a potentiometer that it immediately indicates 0 V due to a steep potential change. Therefore, it is possible to discriminate the period obtained during the period when the corrosion potential sensor is functioning normally more strictly than in the past with respect to the change in potential difference obtained by the corrosion potential sensor.

以上の手段を用いることによって、腐食電位を連続的に測定しながら、同時に健全性を診断することが可能となる。   By using the above means, it is possible to simultaneously diagnose the soundness while continuously measuring the corrosion potential.

本発明の好適な一実施例である実施例1の腐食電位センサを、図3を用いて説明する。実施例1は、基準電位を発生する腐食電位センサとしてジルコニア隔膜型腐食電位センサ101を使用する。図3は、実施例1のジルコニア隔膜型腐食電位センサ101の使用状態の断面図を示している。   A corrosion potential sensor according to embodiment 1 which is a preferred embodiment of the present invention will be described with reference to FIG. In the first embodiment, a zirconia diaphragm type corrosion potential sensor 101 is used as a corrosion potential sensor that generates a reference potential. FIG. 3 is a cross-sectional view of the zirconia diaphragm type corrosion potential sensor 101 according to the first embodiment in use.

実施例1のジルコニア隔膜型腐食電位センサ101は、金属筐体32と電気的に接続された鉱物絶縁ケーブル(MIケーブル)8の金属製の外皮8aと電気的に導通した状態であり、かつ、42Alloy製の金属筐体32とPt製芯線34及び芯線10と電気的に絶縁状態で装荷された高Ni合金製の間隙形成部材37が、金属筐体32の内部の鉱物絶縁ケーブル8の外皮8a末端に溶接により接続され、金属筐体32がアダプタ36を介して溶接によってT字型配管6に接続されている。絶縁体31内の空間には白金黒電極33が設けられ、白金黒電極33にPt製芯線34が挿入され、Pt製芯線34が、鉱物絶縁ケーブル8内の芯線10を介して外部に導出されている。芯線10が端栓35と鉱物絶縁ケーブル8を介して外部に導出され、リード線12a、電位差計13、及びリード線12bを介して、T字型配管6に接続されている。すなわち、実施例1においてセンサ筐体は絶縁体31と金属筐体32から構成される。   The zirconia diaphragm-type corrosion potential sensor 101 of Example 1 is in a state of being electrically connected to the metallic outer sheath 8a of the mineral insulated cable (MI cable) 8 electrically connected to the metal housing 32, and A metal alloy 32 made of 42 Alloy, a Pt core wire 34 and a gap forming member 37 made of a high Ni alloy loaded in an electrically insulated state with the core wire 10 are covered with the outer sheath 8a of the mineral insulated cable 8 inside the metal housing 32. The metal casing 32 is connected to the end by welding, and the metal casing 32 is connected to the T-shaped pipe 6 by welding through the adapter 36. A platinum black electrode 33 is provided in the space inside the insulator 31, a Pt core wire 34 is inserted into the platinum black electrode 33, and the Pt core wire 34 is led out to the outside through the core wire 10 in the mineral insulating cable 8. ing. The core wire 10 is led out to the outside through the end plug 35 and the mineral insulated cable 8, and is connected to the T-shaped pipe 6 through the lead wire 12a, the potentiometer 13, and the lead wire 12b. In other words, in the first embodiment, the sensor housing includes the insulator 31 and the metal housing 32.

白金黒電極33から導出されている芯線10を、リード線12a、電位差計13、リード線12bを介してT字型配管6に接続した構成により、炉水と接触した状態にあるT字型配管6の腐食電位を測定する。   The core wire 10 led out from the platinum black electrode 33 is connected to the T-shaped pipe 6 through the lead wire 12a, the potentiometer 13, and the lead wire 12b, so that the T-shaped pipe is in contact with the reactor water. The corrosion potential of 6 is measured.

図3において、経路Aは健全時の電位計測経路、図中経路Bは破損により浸水した場合の最もインピーダンスの小さい電位計測経路を示している。図3に示した構成においては、金属筐体32は、T字型配管6と電気的に導通した状態となっている。すなわち、金属筐体32はT字型配管6を介して接地されている。   In FIG. 3, a path A indicates a potential measurement path in a healthy state, and a path B in the figure indicates a potential measurement path having the smallest impedance when the water is immersed due to breakage. In the configuration shown in FIG. 3, the metal housing 32 is in electrical conduction with the T-shaped pipe 6. That is, the metal housing 32 is grounded via the T-shaped pipe 6.

ジルコニア隔膜型腐食電位センサ101が健全な期間中は、固体電解質である絶縁体31内をO2−が移動するため、センサ内部に保持されたOとの電気化学反応を生じることで電位が規定される。その電位を白金黒電極33が検出し、Pt製芯線34と芯線10を介して、電位が外部に出力される。T字型配管6の内面(炉水と接する側)においては、炉水中に含まれる酸素などの酸化剤濃度と水素濃度に応じた電極電位が発生しているため、白金黒電極33とT字型配管6との間の経路Aでの電位差が測定される。実施例1の腐食電位センサ101は、正常時は間隙形成部材37が芯線10と電気的絶縁状態にあるため、従来のジルコニア隔膜型腐食電位センサと同じ電位を出力する。 During the healthy period of the zirconia diaphragm type corrosion potential sensor 101, since O 2− moves in the insulator 31 which is a solid electrolyte, the potential is generated by causing an electrochemical reaction with O 2 held inside the sensor. It is prescribed. The platinum black electrode 33 detects the potential, and the potential is output to the outside through the Pt core wire 34 and the core wire 10. On the inner surface of the T-shaped pipe 6 (on the side in contact with the reactor water), an electrode potential corresponding to the oxidant concentration such as oxygen and hydrogen concentration contained in the reactor water is generated. The potential difference in the path A to the mold pipe 6 is measured. The corrosion potential sensor 101 of the first embodiment outputs the same potential as the conventional zirconia diaphragm type corrosion potential sensor because the gap forming member 37 is electrically insulated from the core wire 10 in the normal state.

一方、絶縁体31、或いは絶縁体31と42Alloy製の金属筐体32とのロウ付け接合部が破損し、金属筐体32内部に炉水蒸気が浸入した場合には、間隙形成部材37と芯線10との間隙に、炉水蒸気が毛管凝縮により液化し、液化した炉水を介して芯線10と間隙形成部材37と金属筐体32が電位測定回路として短絡回路を形成した状態になる。   On the other hand, when the brazing joint between the insulator 31 or the insulator 31 and the metal casing 32 made of Alloy 28 is damaged and furnace water vapor enters the inside of the metal casing 32, the gap forming member 37 and the core wire 10 In the gap, the furnace water vapor is liquefied by capillary condensation, and the core wire 10, the gap forming member 37, and the metal housing 32 form a short circuit as a potential measurement circuit through the liquefied furnace water.

導線10も間隙形成部材37と同じNi合金製の場合は、金属筐体32はT字型配管6と電気的に導通しているため、結果として電位差計13には0Vが指示される。間隙形成部材37によって炉水蒸気を早期に液化させ、積極的に短絡回路を形成させることで、破損を初期段階で検知できる。したがって、破損により金属筐体内部に炉水が浸入した場合にのみ、経路Aにおける電位差が測定されなくなり、電位差計13の指示値が0Vになる。すなわち、破損により浸水する前後の期間において、図2に模式的に示したように電位差計指示値の急峻な変化が生じ、破損直後に0Vを指示する。   When the lead wire 10 is also made of the same Ni alloy as the gap forming member 37, the metal casing 32 is electrically connected to the T-shaped pipe 6, and as a result, the potentiometer 13 is instructed to be 0V. Breakage can be detected at an initial stage by quickly liquefying the furnace water vapor by the gap forming member 37 and actively forming a short circuit. Accordingly, only when the reactor water enters the inside of the metal casing due to breakage, the potential difference in the path A is not measured, and the indicated value of the potentiometer 13 becomes 0V. That is, in the period before and after being flooded due to breakage, a steep change of the potentiometer indicated value occurs as schematically shown in FIG. 2, and 0V is indicated immediately after the breakage.

実施例1では、上記の様に間隙形成部材37を金属筐体32、あるいは金属筐体32と電気的接続状態にあるセンサ内構造物に接触させて設置し、浸水時のみ金属筐体32と芯線10が間隙形成部材37と炉水を介して接触する構造とし、間隙形成部材37と芯線10との間隙に炉水の蒸気が毛管凝縮される構成とすることで0Vを指示させ、急峻な電位変化と絶対値が0Vとなることを連続的に監視することによって、破損による浸水を早期に検知可能な腐食電位センサを提供できる。   In the first embodiment, the gap forming member 37 is placed in contact with the metal casing 32 or the sensor internal structure in electrical connection with the metal casing 32 as described above. The core wire 10 is in contact with the gap forming member 37 through the reactor water, and the vapor of the reactor water is capillary condensed in the gap between the gap forming member 37 and the core wire 10 so that 0V is indicated and the steepness is steep. By continuously monitoring the potential change and the absolute value of 0 V, it is possible to provide a corrosion potential sensor that can detect inundation due to breakage at an early stage.

本実施例の応用例として、金属筐体内面と芯線との間に蒸気を凝縮させる間隙を形成する間隙形成部材を設置し、筐体に浸入した蒸気を間隙で毛管凝縮させ金属筐体と芯線とを電気的に短絡する短絡経路を形成させてもよい。   As an application example of the present embodiment, a gap forming member that forms a gap for condensing steam between the inner surface of the metal housing and the core wire is installed, and the vapor that has entered the housing is capillary condensed in the gap to form the metal housing and the core wire. You may form the short circuit path | route which electrically short-circuits.

本発明の実施例2の腐食電位計測装置を、図4を用いて説明する。実施例2は、基準電位を発生する腐食電位センサとして、銀/塩化銀電極21を内包した銀/塩化銀型腐食電位センサ201を使用した場合を示す。   A corrosion potential measuring apparatus according to Example 2 of the present invention will be described with reference to FIG. Example 2 shows a case where a silver / silver chloride type corrosion potential sensor 201 including a silver / silver chloride electrode 21 is used as a corrosion potential sensor that generates a reference potential.

銀/塩化銀電極21が発生する電極電位を伝達する芯線10の外周に、蒸気浸入時に芯線10と42Alloy製の金属筐体間を電気的に導通状態とする高Ni合金製の間隙形成部材22を一体に形成する。さらに間隙形成部材22と金属筐体25との間隙に、高純度アルミナ製の多孔質絶縁材24を間隙形成部材22と金属筐体25の双方に接触させて設けた腐食電位センサを示す。   A gap forming member 22 made of a high Ni alloy that electrically connects between the core wire 10 and a metal housing made of 42 Alloy on the outer periphery of the core wire 10 that transmits the electrode potential generated by the silver / silver chloride electrode 21 when vapor enters. Are integrally formed. Further, a corrosion potential sensor in which a porous insulating material 24 made of high-purity alumina is provided in contact with both the gap forming member 22 and the metal casing 25 in the gap between the gap forming member 22 and the metal casing 25 is shown.

銀/塩化銀型腐食電位センサ201は、高純度サファイヤ製の絶縁体23と金属筐体25がロウ付けによって結合され、金属筐体25が金属製のアダプタ28を介して腐食電位測定用のT字型配管6に接続され、絶縁体23内の水室に銀/塩化銀電極21が装荷され、高純度サファイヤ製の蓋26が絶縁体23に固定される。   In the silver / silver chloride type corrosion potential sensor 201, an insulator 23 made of high-purity sapphire and a metal housing 25 are coupled by brazing, and the metal housing 25 is connected to a T for measuring corrosion potential via a metal adapter 28. The silver / silver chloride electrode 21 is loaded in the water chamber in the insulator 23, and the lid 26 made of high-purity sapphire is fixed to the insulator 23.

また、銀/塩化銀電極21が芯線10に接続され、芯線10が内部スリーブ27を介して間隙形成部材22に接合され、間隙形成部材22と金属筐体25との間隙に多孔質絶縁材24を装填する。芯線10が鉱物絶縁ケーブル8を介して外部に導出され、リード線12a、電位差計13、及びリード線12bを介してT字型配管6に接続されている。   Further, the silver / silver chloride electrode 21 is connected to the core wire 10, the core wire 10 is joined to the gap forming member 22 via the internal sleeve 27, and the porous insulating material 24 is inserted into the gap between the gap forming member 22 and the metal housing 25. Is loaded. The core wire 10 is led out to the outside through the mineral insulated cable 8, and is connected to the T-shaped pipe 6 through the lead wire 12a, the potentiometer 13, and the lead wire 12b.

以上の構成によって、腐食電位センサが健全な期間中は、銀/塩化銀電極21の発生する電位が、経路Aを経由して電位差計13によって測定される。間隙形成部材22は芯線10と電気的に接続されており、かつ金属筐体25と電気的に絶縁されているので、従来の銀/塩化銀型腐食電位センサと同電位を出力する。   With the above configuration, during the period when the corrosion potential sensor is healthy, the potential generated by the silver / silver chloride electrode 21 is measured by the potentiometer 13 via the path A. Since the gap forming member 22 is electrically connected to the core wire 10 and electrically insulated from the metal casing 25, the gap forming member 22 outputs the same potential as that of a conventional silver / silver chloride corrosion potential sensor.

一方、絶縁体23、或いは絶縁体23と金属筐体25とのロウ付け接合部が破損し、金属筐体25内部に炉水蒸気が浸入した場合は、芯線10と金属筐体25が、間隙形成部材22と金属筐体25の間隙に装填された多孔質絶縁材24において液化した炉水を介して経路Bで短絡回路を形成する。多孔質絶縁材24は短絡回路を形成するためには、内部の空隙が端面間で連通している必要があるため、所定値以上の空隙率を持つものを用いる。   On the other hand, if the brazing joint between the insulator 23 or the insulator 23 and the metal casing 25 is damaged and furnace water vapor enters the metal casing 25, the core wire 10 and the metal casing 25 form a gap. A short circuit is formed in the path B through the reactor water liquefied in the porous insulating material 24 loaded in the gap between the member 22 and the metal housing 25. In order to form a short circuit, the porous insulating material 24 needs to have a void ratio equal to or higher than a predetermined value because internal voids need to be communicated between end faces.

以上のように、破損により腐食電位センサの内部に炉水が浸入した場合のみ、電位計で測定される出力が急激に0Vに変化する。その他の構成は、実施例1と同一であるので省略する。   As described above, only when reactor water enters the inside of the corrosion potential sensor due to breakage, the output measured by the electrometer rapidly changes to 0V. The other configurations are the same as those in the first embodiment, and are omitted.

本発明の実施例3のPt型腐食電位計測装置を、図5を用いて説明する。   A Pt-type corrosion potential measuring apparatus according to Example 3 of the present invention will be described with reference to FIG.

実施例3は、円筒形の絶縁体2の末端にPt電極43を具備し、絶縁体42の他端が、アダプタ5を介してT字型配管6に溶接によって取り付けられた金属筐体4の端部に固定され、金属筐体4の他端部に端栓7を介して溶接によって鉱物絶縁ケーブル8の外皮8aが接合され、Pt電極43に接続されたPt製芯線9が絶縁体42の内部を経由して鉱物絶縁ケーブル8の芯線10に接続されている。さらに、金属筐体4の内壁に接触させてPt製の間隙形成部材41を装荷し、Pt製芯線9と間隙形成部材41との間隙を含むセンサ内の領域に、高純度アルミナ製の細粒状絶縁材40を充填した構造を有する。   In the third embodiment, a Pt electrode 43 is provided at the end of the cylindrical insulator 2, and the other end of the insulator 42 is attached to the T-shaped pipe 6 via the adapter 5 by welding. The outer sheath 8a of the mineral insulated cable 8 is joined to the other end of the metal casing 4 by welding through the end plug 7 by welding, and the Pt core wire 9 connected to the Pt electrode 43 is connected to the Pt electrode 43. It is connected to the core wire 10 of the mineral insulated cable 8 via the inside. Further, a gap forming member 41 made of Pt is loaded in contact with the inner wall of the metal casing 4, and fine particles made of high-purity alumina are formed in an area in the sensor including the gap between the Pt core wire 9 and the gap forming member 41. It has a structure filled with an insulating material 40.

実施例3のPt型腐食電位センサ301は、電位を発生・検知する主要部であるPt電極43を、円筒形の形状を有する高純度サファイヤ製の絶縁体42の末端部にロウ付けによって結合し、絶縁体42の他端を円筒形の形状を有する熱膨張率の低いNi−Fe合金である42Alloy製の金属筐体4にロウ付けによって結合する。   In the Pt-type corrosion potential sensor 301 of Example 3, a Pt electrode 43 that is a main part for generating and detecting a potential is coupled to a terminal portion of a high-purity sapphire insulator 42 having a cylindrical shape by brazing. The other end of the insulator 42 is joined by brazing to a metal housing 4 made of 42 Alloy which is a Ni-Fe alloy having a cylindrical shape and a low thermal expansion coefficient.

さらに、内壁面にPt製の間隙形成部材41を備えた金属筐体4の他端にステンレス鋼製の円筒形の端栓7を溶接により接合し、Pt製芯線9とPt製の間隙形成部材41との間隙を含む領域に、高純度アルミナ製の細粒状絶縁材40を充填し、金属筐体4をステンレス鋼製のアダプタ5を介して溶接によってステンレス鋼製のT字型配管6に接合する。   Further, a cylindrical end plug 7 made of stainless steel is joined to the other end of the metal casing 4 having the Pt gap forming member 41 on the inner wall surface by welding, and the Pt core wire 9 and the Pt gap forming member are joined. The region including the gap 41 is filled with fine granular insulating material 40 made of high-purity alumina, and the metal casing 4 is joined to the stainless steel T-shaped pipe 6 by welding via the stainless steel adapter 5. To do.

さらに、端栓7の内部に鉱物絶縁ケーブル8の外皮8aを接合し、Pt製芯線9の一端を溶接によってPt電極43に接続し、Pt製芯線9の他端を鉱物絶縁ケーブルの外皮8aから絶縁した芯線10に溶接によって接合し、芯線10が系外に導出された構造を有する。Pt型腐食電位センサ301から導出されている鉱物絶縁ケーブル8の芯線10と、T字型配管6を、リード線12a、電位差計13およびリード線12bを介して接続して、電位差計13を用いて、T字型配管6の腐食電位を測定する。   Further, the outer sheath 8a of the mineral insulated cable 8 is joined to the inside of the end plug 7, one end of the Pt core wire 9 is connected to the Pt electrode 43 by welding, and the other end of the Pt core wire 9 is connected to the outer sheath 8a of the mineral insulated cable. It has a structure in which the insulated core wire 10 is joined by welding and the core wire 10 is led out of the system. The core wire 10 of the mineral insulated cable 8 led out from the Pt-type corrosion potential sensor 301 and the T-shaped pipe 6 are connected via a lead wire 12a, a potentiometer 13 and a lead wire 12b, and the potentiometer 13 is used. Then, the corrosion potential of the T-shaped pipe 6 is measured.

以上の構成によって、腐食電位センサが健全な期間中は、Pt電極43の発生する電位が、経路Aを経由して電位差計13によって測定される。間隙形成部材41はPt製芯線9と電気的に絶縁されており、かつ金属筐体25と電気的に接続されているので、経路Aを通じてPt電極3とT字型配管6との電位差が測定されるため、従来のPt型腐食電位センサと同電位を出力する。   With the above configuration, while the corrosion potential sensor is healthy, the potential generated by the Pt electrode 43 is measured by the potentiometer 13 via the path A. Since the gap forming member 41 is electrically insulated from the Pt core wire 9 and is electrically connected to the metal casing 25, the potential difference between the Pt electrode 3 and the T-shaped pipe 6 is measured through the path A. Therefore, the same potential as that of the conventional Pt type corrosion potential sensor is output.

一方、Pt型腐食電位センサ101の内部に浸水した場合には、高純度アルミナ製の細粒状絶縁材40の粒同士の間隙に炉水が凝縮することにより、経路Bの電位測定回路を通じて、Pt芯線9とPt製間隙形成部材41との電位差が測定される。したがって、電位差計の指示値を連続的に監視し、配管に対する腐食電位センサの電位が急峻に変化し、0Vに漸近することを検知することにより、破損による浸水を検知できる腐食電位センサを提供できる。その他の構成は、実施例1、実施例2と同一であるので省略する。   On the other hand, when water is immersed in the Pt-type corrosion potential sensor 101, the reactor water condenses in the gap between the grains of the fine granular insulating material 40 made of high-purity alumina, so that the Pt-type corrosion potential sensor 101 passes through the potential measurement circuit of the path B. The potential difference between the core wire 9 and the Pt gap forming member 41 is measured. Therefore, it is possible to provide a corrosion potential sensor capable of detecting inundation due to breakage by continuously monitoring the indicated value of the potentiometer and detecting that the potential of the corrosion potential sensor with respect to the piping changes steeply and approaches 0V. . Other configurations are the same as those in the first embodiment and the second embodiment, and thus are omitted.

23、31、42 絶縁体
4、25、32 金属筐体
6 T字型配管
8 鉱物絶縁ケーブル
9、34 Pt製芯線
10、10a、10b 芯線
22、37、41 間隙形成部材
12a、12b リード線
13 電位差計
14 金属配管
21 銀/塩化銀電極
24 多孔質絶縁材
33 白金黒電極
40 細粒状絶縁材
43 Pt電極
101 ジルコニア隔膜型腐食電位センサ
201 銀/塩化銀型腐食電位センサ
301 Pt型腐食電位センサ
23, 31, 42 Insulator 4, 25, 32 Metal housing 6 T-shaped pipe 8 Mineral insulated cable 9, 34 Pt core wire 10, 10a, 10b Core wire 22, 37, 41 Gap forming member 12a, 12b Lead wire 13 Potentiometer 14 Metal piping 21 Silver / silver chloride electrode 24 Porous insulating material 33 Platinum black electrode 40 Fine granular insulating material 43 Pt electrode 101 Zirconia diaphragm type corrosion potential sensor 201 Silver / silver chloride type corrosion potential sensor 301 Pt type corrosion potential sensor

Claims (11)

原子力発電プラントの炉水を保持搬送する金属製構造材と、前記炉水に接触するとともに該炉水に対し筐体により密閉された腐食電位測定用電極と、該腐食電位測定用電極に接続され出力信号を伝送する芯線を有し、前記金属製構造材の腐食電位を測定する腐食電位センサにおいて、
前記筐体の一部に金属筐体を設け、該金属筐体内面と前記芯線との間に蒸気を凝縮させる間隙を形成する間隙形成部材を設置し、前記筐体に浸入した蒸気を前記間隙で毛管凝縮させ前記金属筐体と前記芯線とを電気的に短絡する短絡経路を形成させ、該腐食電位センサの出力電位によって前記腐食電位センサの健全性を監視することを特徴とする腐食電位センサ。
A metal structural material for holding and transporting reactor water of a nuclear power plant, a corrosion potential measuring electrode that is in contact with the reactor water and sealed with a casing against the reactor water, and connected to the corrosion potential measuring electrode In a corrosion potential sensor that has a core wire that transmits an output signal and measures the corrosion potential of the metal structural material,
A metal casing is provided in a part of the casing, a gap forming member that forms a gap for condensing steam between the inner surface of the metal casing and the core wire is installed, and the vapor that has entered the casing is removed from the gap. A corrosion potential sensor characterized by forming a short-circuit path for electrically short-circuiting the metal casing and the core wire by condensing the metal casing and monitoring the soundness of the corrosion potential sensor by the output potential of the corrosion potential sensor .
請求項1に記載された腐食電位センサにおいて、前記筐体は前記金属筐体に接合されると共に前記腐食電位測定用電極に接合された絶縁体を有し、前記芯線は前記金属筐体と前記絶縁体の内部に配置され、前記間隙形成部材を前記金属筐体又は前記芯線のいずれか一方に電気的に接続したことを特徴とする腐食電位センサ。   2. The corrosion potential sensor according to claim 1, wherein the casing includes an insulator bonded to the metal casing and bonded to the corrosion potential measuring electrode, and the core wire includes the metal casing and the metal casing. A corrosion potential sensor, which is disposed inside an insulator and electrically connects the gap forming member to either the metal casing or the core wire. 請求項2に記載された腐食電位センサにおいて、前記芯線を導電性外皮を持つ鉱物絶縁ケーブルを介して前記筐体外部に配設し、前記間隙形成部材を、前記金属筐体の内部で前記鉱物絶縁ケーブルの前記導電性外皮を介して前記金属筐体に接続して設置したことを特徴とする腐食電位センサ。 3. The corrosion potential sensor according to claim 2, wherein the core wire is disposed outside the casing through a mineral insulated cable having a conductive outer sheath, and the gap forming member is disposed inside the metal casing within the mineral. ECP sensor, characterized in that installed by connecting to the metal casing through the conductive outer skin of the insulated cable. 請求項2に記載された腐食電位センサにおいて、前記筐体は前記金属筐体と、該金属筐体に接合されると共に前記腐食電位測定用電極に接合された絶縁体を有し、前記芯線は前記金属筐体と前記絶縁体の内部に配置され、前記間隙形成部材を前記芯線と一体に接続して設置したことを特徴とする腐食電位センサ。   The corrosion potential sensor according to claim 2, wherein the casing includes the metal casing and an insulator bonded to the metal casing and bonded to the corrosion potential measuring electrode. A corrosion potential sensor, wherein the corrosion potential sensor is disposed inside the metal casing and the insulator, and the gap forming member is installed integrally with the core wire. 請求項4に記載された腐食電位センサにおいて、前記間隙形成部材と前記金属筐体によって形成された間隙に多孔質絶縁材を設置したことを特徴とする腐食電位センサ。   5. The corrosion potential sensor according to claim 4, wherein a porous insulating material is installed in a gap formed by the gap forming member and the metal casing. 請求項1または2に記載された腐食電位センサにおいて、前記腐食電位センサの内部であって、かつ前記間隙形成部材によって形成させた間隙部を含む領域に細粒状絶縁材を充填したことを特徴とする腐食電位センサ。   3. The corrosion potential sensor according to claim 1 or 2, wherein a region inside the corrosion potential sensor and including a gap portion formed by the gap forming member is filled with a fine-grained insulating material. Corrosion potential sensor. 請求項1乃至6のいずれかに記載された腐食電位センサにおいて、前記間隙形成部材は、ステンレス鋼、高Ni合金、Ptのうち少なくとも一つを含むことを特徴とする腐食電位センサ。   The corrosion potential sensor according to any one of claims 1 to 6, wherein the gap forming member includes at least one of stainless steel, high Ni alloy, and Pt. 請求項7に記載された腐食電位センサにおいて、前記間隙形成部材と対向する前記芯線または金属筐体の材料として、前記ステンレス鋼、高Ni合金、Ptのいずれかを前記間隙形成部材と同種材料として使用することを特徴とする腐食電位センサ。   8. The corrosion potential sensor according to claim 7, wherein any one of the stainless steel, high Ni alloy, and Pt is used as the same material as the gap forming member as the material of the core wire or the metal casing facing the gap forming member. Corrosion potential sensor characterized by use. 請求項5に記載された腐食電位センサにおいて、前記多孔質絶縁材は、アルミナ、ジルコニア、チタニアのうち少なくとも一つを含むことを特徴とする腐食電位センサ。   6. The corrosion potential sensor according to claim 5, wherein the porous insulating material includes at least one of alumina, zirconia, and titania. 請求項6に記載された腐食電位センサにおいて、前記細粒状絶縁材は、アルミナ、ジルコニア、チタニアのうち少なくとも一つを含むことを特徴とする腐食電位センサ。   The corrosion potential sensor according to claim 6, wherein the fine granular insulating material includes at least one of alumina, zirconia, and titania. 請求項1乃至10のいずれかに記載された腐食電位センサを、芯線を介して、電位差計と、前記金属製構造材に接続したことを特徴とする腐食電位測定装置。   11. A corrosion potential measuring apparatus comprising: the corrosion potential sensor according to claim 1 connected to a potentiometer and the metal structural member via a core wire.
JP2013045290A 2013-03-07 2013-03-07 Corrosion potential sensor Active JP5956368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013045290A JP5956368B2 (en) 2013-03-07 2013-03-07 Corrosion potential sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013045290A JP5956368B2 (en) 2013-03-07 2013-03-07 Corrosion potential sensor

Publications (2)

Publication Number Publication Date
JP2014173928A JP2014173928A (en) 2014-09-22
JP5956368B2 true JP5956368B2 (en) 2016-07-27

Family

ID=51695290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013045290A Active JP5956368B2 (en) 2013-03-07 2013-03-07 Corrosion potential sensor

Country Status (1)

Country Link
JP (1) JP5956368B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108318549B (en) * 2018-03-08 2023-09-26 西南石油大学 Capacitive corrosion on-line monitoring device and method
CN109827894B (en) * 2019-02-28 2021-11-02 国网天津市电力公司电力科学研究院 High-voltage cable lead sealing water inlet corrosion detection method and device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3736131B2 (en) * 1998-08-25 2006-01-18 株式会社日立製作所 Sensor and plant operation method using the same
JP2000146891A (en) * 1998-11-12 2000-05-26 Agency Of Ind Science & Technol Sensor
JP5002606B2 (en) * 2009-01-30 2012-08-15 日立Geニュークリア・エナジー株式会社 Corrosion potential sensor
JP5662054B2 (en) * 2010-04-27 2015-01-28 日立Geニュークリア・エナジー株式会社 Corrosion potential sensor
JP5281618B2 (en) * 2010-08-06 2013-09-04 日立Geニュークリア・エナジー株式会社 Corrosion potential measurement method and apparatus

Also Published As

Publication number Publication date
JP2014173928A (en) 2014-09-22

Similar Documents

Publication Publication Date Title
JP5898595B2 (en) Corrosion potential sensor
KR100306332B1 (en) Stress Corrosion Monitoring System of Vessel Penetrating Members and Degradation Evaluation Method of Penetrating Members
JP5281618B2 (en) Corrosion potential measurement method and apparatus
US8111078B1 (en) Oxidizing power sensor for corrosion monitoring
JP2006349535A (en) Composite sensor module and sensor device
US3858114A (en) Method and apparatus for the testing of protective linings
JP2010164416A (en) Corrosion meter and corrosion measuring system
JP5956368B2 (en) Corrosion potential sensor
JPS60168039A (en) Sensor for corrosive impurity
US3831085A (en) Reactor vessel lining testing method and apparatus
JP2015114251A (en) Dissolved hydrogen concentration measuring method, dissolved hydrogen concentration measuring apparatus, and nuclear power plant operation method
JP2008202972A (en) Waste disposal container corrosion monitoring device and monitoring method
EP3862465A1 (en) Copper/copper sulphate gel permanent reference electrode for the measurement of the true potential and current density of buried metal structures
JP5358554B2 (en) Corrosion potential sensor and corrosion potential sensor installation structure
JP2004170421A (en) Zircalloy tipped ecp sensor electrode
JPS5838746B2 (en) Measuring device and reference electrode for measuring the amount of dissolved oxygen in liquid
JP3886686B2 (en) Corrosion potential measuring device
US20240167936A1 (en) Corrosion rate measuring probe
JP5574788B2 (en) Conductive liquid leak detection line
JP5662054B2 (en) Corrosion potential sensor
KR20060046932A (en) External reference electrode for a pressurized, high temperature aqueous environments
RU2143107C1 (en) Gear testing degree of local corrosion of metal structures
JP5986363B2 (en) Corrosion potential sensor and installation structure of corrosion potential sensor
JP6106061B2 (en) Corrosion potential sensor
JP2000147184A (en) Water quality sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160616

R150 Certificate of patent or registration of utility model

Ref document number: 5956368

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150