JP5952519B1 - 磁気抵抗効果素子 - Google Patents

磁気抵抗効果素子 Download PDF

Info

Publication number
JP5952519B1
JP5952519B1 JP2016522821A JP2016522821A JP5952519B1 JP 5952519 B1 JP5952519 B1 JP 5952519B1 JP 2016522821 A JP2016522821 A JP 2016522821A JP 2016522821 A JP2016522821 A JP 2016522821A JP 5952519 B1 JP5952519 B1 JP 5952519B1
Authority
JP
Japan
Prior art keywords
layer
mtj element
mtj
substrate
cofeb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016522821A
Other languages
English (en)
Other versions
JPWO2016189772A1 (ja
Inventor
拓哉 清野
拓哉 清野
和正 西村
和正 西村
寿和 入澤
寿和 入澤
沙季 四分一
沙季 四分一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Canon Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Anelva Corp filed Critical Canon Anelva Corp
Priority claimed from PCT/JP2016/000158 external-priority patent/WO2016189772A1/ja
Application granted granted Critical
Publication of JP5952519B1 publication Critical patent/JP5952519B1/ja
Publication of JPWO2016189772A1 publication Critical patent/JPWO2016189772A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Thin Magnetic Films (AREA)

Abstract

本発明に係る磁気抵抗効果素子は、バリア層、バリア層の一方の表面に形成されたリファレンス層、バリア層の他方の表面に形成されたフリー層、およびリファレンス層のバリア層とは逆側に配置されたピン層を有し、ピン層は、Ni/Co/Pt/Co/Ru/Co/Pt/Co/Niの順番で積層された構造を備える。

Description

本発明は、磁気抵抗効果素子に係り、特にMRAMに用いられる垂直TMR素子に好適な磁気抵抗効果素子に関する。
磁場によって電気抵抗が変化する磁気抵抗効果素子として、TMR(Tunnel Magneto Resistance)効果を利用して情報の記憶や磁気の検出を行うTMR素子(MTJ(Magnetic Tunnel Junction)素子ともいう)が知られている。近年、MRAM(Magnetoresistive Random Access Memory)等へのMTJ素子の利用が期待されている。
非特許文献1には、垂直磁化MTJ素子が開示されている。垂直磁化MTJ素子は、フリー層(磁化自由層)、トンネルバリア層、およびリファレンス層(磁化固定層)が積層された構造を含み、フリー層およびリファレンス層の磁化方向はそれぞれ積層方向と平行である。
TMR素子を用いたMRAMデバイスの特性の向上のためには、MR比(磁気抵抗比)を高くすることが重要である。特許文献1に記載のCoFeB/MgO/CoFeBから構成される積層構造は100%を超える高いMR比を示すことが知られている。
図10に、非特許文献1に記載された技術を用いたMTJ素子の例を示す。図10に示したMTJ素子1000はボトムピン構造の垂直磁化MTJ素子(p−MTJ素子)である。MTJ素子1000は、基板1001上に下部電極1002と、Ta層(シード層)1003とを備える。MTJ素子1000は、Ta層1003の上に、Co/Pt積層体1004、Co層1005、Ru層1006、Co層1007、Pt層1008、Co/Pt積層体1009、およびTa層(スペーサー層)1010を備える。MTJ素子1000は、さらにTa層1010の上に、リファレンス層としてCoFeB層1011、MgO層(バリア層)1012、フリー層(磁化自由層)としてのCoFeB層1013、キャップ層1014、および上部電極1015を備える。MTJ素子1000のCo/Pt積層体1004は、Co層とPt層とを交互に所定の数(N回)繰り返し積層したものである。また、MTJ素子1000の積層体1009は、Co層とPt層とを交互に所定の数(M回)繰り返し積層したものである。
図11に特許文献1に記載された技術を用いた垂直磁化MTJ素子(p−MTJ素子)の例を示す。図11に示したMTJ素子2000は、MTJ素子1000のCo/Pt積層体1004をCo層とNi層の積層体2005に変更している。MTJ素子2000は、さらにPt層1008をNi層2009に変更し、Co/Pt積層体1009をCo層とNi層の積層体2010に変更している。
特開2007−142364号公報
D. C. Worledge et al., "Spin torque switching of perpendicular Ta|CoFeB|MgO-based magnetic tunnel junctions", Appl. Phys. Lett. 98, 2011, 022501
しかしながら、非特許文献1および図10に記載のTMR素子は、素子内に多く含まれるPtおよびPdが成膜工程後のエッチング工程で削られ、素子の壁面に付着する。これは、素子回路のダンピング定数を低下させる原因となり、歩留まりを下げるおそれがある。
一方、特許文献1のMTJ素子2000は、PtやPdを含まないため、MTJ素子1000のような歩留まりの低下するおそれはない。しかしながら、アニーリング処理中にNiがRu界面のCo層内に拡散するため、交換結合磁界を下げるおそれがある。
本発明は、上述の問題点を解決するためになされたものであって、高いMR比を有し、かつ強い交換結合磁界を有する磁気抵抗効果素子を提供することを目的とする。
本発明の磁気抵抗効果素子は、バリア層と、前記バリア層の一方の表面に形成されたリファレンス層と、前記バリア層の他方の表面に形成されたフリー層と、前記リファレンス層の前記バリア層とは逆側に配置されたピン層と、を有し、前記ピン層は、Pt,Co,Ru,Co,Ptの順番で積層された層、およびNiを含む層を備えることを特徴とする。
本発明に係る磁気抵抗効果素子によれば、高いMR比を有し、かつ強い交換結合磁界を有する磁気抵抗効果素子を実現することができる。また、後工程の歩留まりがよく、Ptの使用量が少ないため材料コストを抑えることができる。或いは、本発明に係る磁気抵抗効果素子によれば、交換結合磁界が強いピン層を形成することで磁化固定層の磁化反転が起こり難い磁気抵抗効果素子を実現することができる。
本発明の第1実施形態に係るMTJ素子の構成を示す模式図である。 本発明の一実施形態に係るMTJ素子の成膜処理を行う基板処理システムの概略構成図である。 図1のMTJ素子の製造方法を示すフローチャートである。 図1のMTJ素子のMR比を示す図である。 磁気測定に用いた垂直MTJ素子向け垂直磁化膜の構造を示す模式図である。 磁気測定に用いた垂直MTJ素子向け垂直磁化膜の構造を示す模式図である。 MTJ素子の磁気測定結果である。 MTJ素子の磁気測定結果である。 本発明の第2実施形態に係るMTJ素子の構成を示す模式図である。 図8のMTJ素子の製造方法を示すフローチャートである。 従来のMTJ素子の構成を示す模式図である。 従来のMTJ素子の構成を示す模式図である。
以下、図面を参照して、本発明の実施の形態を説明するが、本発明は本実施形態に限定されるものではない。なお、以下で説明する図面で、同じ機能を有するものは同一符号を付け、その繰り返しの説明は省略することもある。
(第1実施形態)
図1は、本実施形態に係る成膜方法を行う例示的なMTJ(Magnetic Tunnel Junction:磁気抵抗効果素子)素子4000の構成を示す模式図である。MTJ素子は、例えばMRAM(Magnetic Random Access Memory)、磁気センサ等に用いられる。
MTJ素子4000は、ボトムピン構造の垂直磁化型MTJ素子(p−MTJ素子)である。MTJ素子4000は、基板4001上に下部電極4002と、Ta層(シード層)4003とを備える。MTJ素子4000は、Ta層4003の上に、NiCr(シード層)4004、Co/Ni積層体4005、Co/Pt層4006、Co層4007、Ru層4008、Co層4009、Pt層4010、Co/Ni積層体4011、およびTa層(スペーサー層)4012を備える。MTJ素子4000は、さらにTa層4012の上に、リファレンス層としてCoFeB層4013、バリア層としてのMgO層4014、フリー層(磁化自由層)としてのCoFeB層4015、キャップ層4016、および上部電極4017を備える。MTJ素子4000のCo/Ni積層体4005は、Co層とNi層とを交互に所定の数(N回)繰り返し積層したものである。また、Co/Ni積層体4011は、Co層とNi層とを交互に所定の数(M回)繰り返し積層したものである。
CoFeB層4013はMgO層4014の一方の表面に形成されており、MgO層4014の他方の表面にCoFeB層4015が形成されている。ここで、Co/Ni積層体4005からCo/Ni積層体4011までの積層構造をSAF構造のピン層(以下、ピン層とする)という。ピン層は反強磁性層であり、CoFeB層4013のMgO層4014とは逆側に配置されている。詳しくは、ピン層は、CoFeB層4013のバリア層4014が配置されている側の反対側に配置され、CoFeB層4013よりも下層に配置されている。ピン層は、リファレンス層の磁化反転を抑える大きな交換結合磁界を有する。
MTJ素子4000のピン層は、Co層4007、Ru層4008、およびCo層4009の3層の積層構造部分がCo/Pt層4006のPt層とPt層4010とで挟まれる積層構造を有している。すなわちピン層は、Pt(4006)/Co(4007)/Ru(4008)/Co(4009)/Pt(4010)の順番で積層された構造を備えている。Ru4008両端のCo層(4007,4009)のさらに外側をPt層(4006,4010)とすることによって、アニーリング処理中のCo層(4007,4009)内へのNiの拡散を防ぎ、交換結合磁界の低下を抑えることができる。Ru4008を挟むCo層(4007,4009)を外側から挟むPt層を拡散防止層という。なお、拡散防止層が拡散を防ぐNiは、Co/Ni積層体4005,4011内に含まれているNiである。すなわち、より具体的には、MTJ素子4000のピン層は、Ni/Co/Pt(4006)/Co(4007)/Ru(4008)/Co(4009)/Pt(4010)/Co/Niの順番で積層された構造を備えている。
なお、MTJ素子4000としてはここに示した構成に限られず、SAF構造の上下をPt層で挟む構成であれば、垂直磁化型素子の機能を損なわない範囲で層の増減、各層の構成材料の変更、上下の積層順の逆転等の任意の変更を行った構成であっても本発明の効果を奏することができる。例えば、NiCr(シード層)4004は他のNiを含まない他の層に置き換えうる。
図2は、MTJ素子4000の成膜処理を行う基板処理システム1の概略構成図である。基板処理システム1はクラスタ型の真空処理装置であり、複数の基板処理チャンバ2と、ロードロックチャンバ4と、基板冷却装置100と、昇温装置200とを備えている。複数の基板処理チャンバ2は基板Sに対して同一の処理を行うものであってもよく、または異なる処理を行うものであってもよい。
複数の基板処理チャンバ2と、ロードロックチャンバ4と、基板冷却装置100と、昇温装置200とは搬送チャンバ3を介して接続されており、それぞれの接続部分には開閉可能なゲートバルブが設けられている。搬送チャンバ3に設けられた搬送ロボット7で各基板処理チャンバ2、ロードロックチャンバ4、基板冷却装置100および昇温装置200の間で所定の処理順にしたがって基板Sが搬送される。ロードロックチャンバ4の外側には、基板Sを供給するためのオートローダ5が設けられている。
図3は、本実施形態に係る垂直磁化MTJ素子4000の製造方法を示すフローチャートである。ここでは図2に示すクラスタ型の基板処理システム1を用いて本実施形態に係る成膜方法の説明を行う。なお、本実施形態に係る成膜方法に用いる装置は、インライン型の基板処理システムを用いてもよい。
まず、基板処理システム1のロードロックチャンバ4に基板Sを搬入する(ステップS101)。次に、所定の基板処理チャンバ2に基板Sを移動し、下層成膜工程を行う(ステップS102)。下層成膜工程では、エッチング法によって基板上に付着した不純物等を除去し、その後に下部電極4002、Ta層(シード層)4003、NiCr層(シード層)4004を順に成膜する。
次に、所定の基板処理チャンバ2に基板Sを移動し、Co/Ni積層体4005(垂直磁化層1)を成膜する第1工程を行う(ステップS103)。次に、Co/Pt積層体4006を成膜する第2工程を行う(ステップS104)。次に、Co層4007を成膜する第3工程を行う(ステップS105)。次に、Ru層4008を成膜する第4工程を行う(ステップS106)。次に、Co層4009を成膜する第5工程を行う(ステップS107)。次に、Pt層4010を成膜する第6工程を行う(ステップS108)。次に、Co/Ni積層体4011を成膜する第7工程を行う(ステップS109)。
その後、所定の基板処理チャンバ2に基板Sを順次移動し、Ta層4012よりも上の層を順次成膜する上層成膜工程(ステップS110)を行う。上層成膜工程中でMgO層4014は、MgOターゲットを用いた高周波(RF)スパッタリング法によって成膜されている。別の方法として、Mgターゲットを用いたスパッタリング法によってフリー層としてのCoFeB層4013の上に成膜したMg層を酸化処理してもよい。成膜処理と酸化処理とは同じ基板処理チャンバ2内で行われてもよく、異なる基板処理チャンバ2内で行われてもよい。
なお、成膜工程(ステップS102〜S110)で成膜される複数の膜のうち、2以上の膜が同じ基板処理チャンバ2内で成膜されてもよく、全ての膜が異なる基板処理チャンバ2内で成膜されてもよい。本実施形態の成膜工程(ステップS102〜S110)で成膜される各層はスパッタリング法によって成膜されるが、その他任意の成膜方法によって成膜されてもよい。
最後に、ロードロックチャンバ4内の搬送位置(基板搬出位置)に基板Sを移動する(ステップS112)。その後、基板Sは、基板処理システム1の下流の工程に送られ、基板処理システム1とは別の装置でアニーリング工程(ステップS113)が行われる。アニーリング工程は、アモルファス状態のCoFeB層(4013,4015)を結晶化させ、所望の磁気特性を得るために行うアニーリング処理である。なお、基板処理システム1のチャンバ構成を変更することによって、アニーリング工程(ステップS113)を基板処理システム1内で行うこともできる。
図4は、本実施形態に係る成膜方法を用いて製造されたMTJ素子2000、3000のRA(面積抵抗)に対するMR比を示す図である。本実施形態に係る成膜方法を用いて製造されたMTJ素子、および従来の成膜方法を用いて製造されたMTJ素子のそれぞれについて、RAおよびMR比の測定を行った。従来の成膜方法と本発明の成膜方法とは、図3のフローチャートにしたがって製造されたものである。
図4の横軸はRA(Ω・μm2)であり、縦軸はMR比(%)である。RAが低いほど、またMR比が高いほど、MTJ素子の素子特性が良好であるといえる。図4において、色抜き丸(○)は図10に示すMTJ素子構造で従来の成膜方法で作製したMTJ素子1000の測定結果である。黒塗りの三角形(▲)は図11に示すMTJ素子構造で従来の成膜方法で作製したMTJ素子の測定結果である。黒塗りの四角形(◆)は本実施形態に係る成膜方法で作製したMTJ素子4000の測定結果である。
図4によれば、本実施形態に係る成膜方法で成膜を行うと、拡散防止層の有無によらず、同等のMR比が得られることがわかる。
図5A、図5BにVSM(Vibrating Sample Magnetometer)測定に用いた垂直磁化型のMTJ素子向け垂直磁化膜5000と6000(以下、測定用MTJ素子5000,6000とする)の例を示す。図5Aに示すように、測定用MTJ素子5000は、図11に示すMTJ素子2000からTa層(スペーサー層)2011、リファレンス層としてのCoFeB層2012、MgO層(バリア層)2013、フリー層(磁化自由層)としてのCoFeB層2014、キャップ層2015、および上部電極2016を除き、Co/Ni積層体5010(垂直磁化層2)の上にRu層(Cap層)5011を形成し、熱処理工程まで施したものである。なお、測定用MTJ素子5000の下部電極5002からCo/Ni積層体5010までの構造は、MTJ素子2000の下部電極2002からCo/Ni積層体2010と同様である。
図5Bに示すように、垂直磁化型MTJ素子6000は、本実施形態のMTJ素子に対応し、図1に示すMTJ素子4000からTa層(スペーサー層)4012、リファレンス層としてのCoFeB層4013、MgO層(バリア層)4014、フリー層(磁化自由層)としてのCoFeB層4015、キャップ層4016、および上部電極4017を除き、Co/Ni積層体4011(垂直磁化層2)の上にRu層(Cap層)6012を形成し、熱処理工程まで施したものである。なお、測定用MTJ素子6000の下部電極6002からCo/Ni積層体6011までの構造は、MTJ素子4000の下部電極4002からCo/Ni積層体4011と同様である。
図6は測定用MTJ素子5000と6000の垂直磁化曲線(M-H loop)の測定結果である。垂直磁化曲線の測定には、VSMを用いた。横軸はMTJ素子にかける磁界の強度を示しており、縦軸はMTJ素子内の各層の磁化を示している。
図6において、破線は拡散防止層であるPt層が無い測定用MTJ素子5000の測定結果であり、実線は拡散防止層であるPt層が有るMTJ素子6000の測定結果である。いずれの測定結果に係るMTJ素子も図3のフローチャートにしたがって製造されたものである。図6に示すように、MTJ素子6000の測定結果(実線)は、測定用MTJ素子5000の測定結果(破線)よりも大きな交換結合磁界(Hex)が得られている。
図7は、測定用MTJ素子5000、6000において、Co/Ni積層回数と交換結合磁界(Hex)の関係を示す図である。Co/Ni積層回数を変化させた、垂直MTJ素子構造5000,6000のそれぞれにおいて、拡散防止層の有無でVSM測定結果から交換結合磁界(Hex)を算出した。図7の横軸は、Co/Ni積層回数を示し、縦軸は交換結合磁界(Hex)を示す。それぞれのCo/Ni積層回数においても、拡散防止層がない測定用MTJ素子5000よりも、拡散防止層を有するMTJ素子6000の方が交換結合磁界(Hex)が大きい。
本実施形態の磁気抵抗効果素子は、従来と同等の高いMR比を有するとともに、交換結合磁界が大きい。したがって、本実施形態の磁気抵抗効果素子は、外部磁界による磁化固定層の意図しない磁化反転の発生を防ぐことができる。また、Ptの使用量が図10に示す従来の磁気抵抗効果素子よりも少ないので、後工程後に素子回路のダンピング定数が低下を抑えられるため歩留まりがよい。また、Ptの使用量が図10に示す従来の磁気抵抗効果素子よりも少ないため、材料コストを抑えることができる。さらに本発明の垂直磁化MTJ素子の製造方法によれば、上述の磁気抵抗効果素子を製造できる。
(第2実施形態)
第1実施形態に係るMTJ素子4000は、トンネルバリア層4014の下にリファレンス層4013を有する構造(ボトムピン構造)であるが、トンネルバリア層の上にリファレンス層を有する構造(トップピン構造)にも、本発明を適用することができる。図8にトップピン構造の垂直磁化型MTJ素子(p−MTJ素子)の例としてMTJ素子9000を示す。
図8のMTJ素子9000は、基板9001上に、下部電極9002、Ta層(シード層)9003、フリー層(磁化自由層)としてのCoFeB層9004、MgO層(バリア層)9005、リファレンス層としてCoFeB層9006、Ta層(スペーサー層)9007、NiCr(シード層)9008、Co/Ni積層体9009、Co/Pt層9010、Co層9011、Ru層9012、Co層9013、Pt層9014、Co/Ni積層体9015、キャップ層9016、および上部電極層9017を順番に積層させたものである。Co/Ni積層体9009は、Co層とNi層とを交互に所定の数(M回)繰り返し積層したものである。また、Co/Ni積層体9015は、Co層とNi層とを交互に所定の数(N回)繰り返し積層したものである。
Co/Ni積層体9009からCo/Ni積層体9015までの積層構造をSAF構造のピン層(以下、ピン層とする)という。ピン層は反強磁性層であり、CoFeB層9006のMgO層9005とは逆側に配置されている。詳しくは、ピン層は、CoFeB層9006のバリア層9005が配置されている側の反対側に配置され、CoFeB層9006よりも上層に配置されている。Ru層9012を挟むCo層(9011,9013)のさらに外側をPt層(9010,9014)とすることによって、NiがRu界面のCo層(9011,9013)へ拡散するのを防ぎ、交換結合磁界の低下を抑える効果がある。Ru9012を挟むCo層(9011,9013)を外側から挟むPt層を拡散防止層という。なお、MTJ素子9000は、ここに示した構成に限られず、SAF構造の上下をPt層で挟む構成であれば、垂直磁化型素子の機能を損なわない範囲で層の増減、各層の構成材料の変更、上下の積層順の逆転等の任意の変更を行った構成であっても本発明の効果を奏することができる。
図9は、本実施形態に係るMTJ素子9000の製造方法を示すフローチャートである。ここでは図2に示すクラスタ型の基板処理システム1を用いて本実施形態に係る成膜方法の説明を行う。なお、本実施形態に係る成膜方法に用いる装置は、インライン型の基板処理システムを用いてもよい。
まず、基板処理システム1のロードロックチャンバ4に基板Sを搬入する(ステップS201)。次に、Co/Ni積層体9009よりも基板側を順次成膜する下層成膜工程を行う(ステップS202)。下層成膜工程では、エッチング法によって基板上に付着した不純物等を除去し、その後に下部電極9002、Ta層(シード層)9003、CoFeB層(フリー層)9004、MgO層(バリア層)9005、CoFeB層(リファレンス層)9006、Ta層(スペーサ層)9007、およびNiCr層(シード層)9008を順に成膜する。下層成膜工程中でMgO層9005は、MgOターゲットを用いた高周波(RF)スパッタリング法によって成膜されている。別の方法として、Mgターゲットを用いたスパッタリング法によってフリー層としてのCoFeB層9004の上に成膜したMg層を酸化処理してもよい。
次に、Co/Ni積層体9009(垂直磁化層1)を成膜する第1工程を行う(ステップS203)。次に、Co/Pt層9010を成膜する第2工程を行う(ステップS204)。次に、Co層9011を成膜する第3工程を行う(ステップS205)。次に、Ru層9012を成膜する第4工程を行う(ステップS206)。次に、Co層9013を成膜する第5工程を行う(ステップS207)。次に、Pt層9014を成膜する第6工程を行う(ステップS208)。次に、Co/Ni積層体9015を成膜する第7工程を行う(ステップS209)。その後、所定の基板処理チャンバ2に基板Sを順次移動し、Co/Ni積層体9015よりも上の層を順次成膜する上層成膜工程(ステップS210)を行う。上層成膜工程(ステップS210)ではCap層9016と上部電極層9017とが成膜される。
なお、成膜工程(ステップS202〜S210)で成膜される複数の膜のうち、2以上の膜が同じ基板処理チャンバ2内で成膜されてもよく、全ての膜が異なる基板処理チャンバ2内で成膜されてもよい。本実施形態の成膜工程(ステップS202〜S210)で成膜される各層はスパッタリング法によって成膜されるが、その他任意の成膜方法によって成膜されてもよい。
最後に、ロードロックチャンバ4内の搬送位置(基板搬出位置)に基板Sを移動する(ステップS212)。その後、基板Sは、基板処理システム1の下流の工程に送られ、基板処理システム1とは別の装置でアニーリング工程(ステップS213)が行われる。アニーリング工程は、アモルファス状態のCoFeB層(9004,9006)を結晶化させるアニーリング処理である。なお、基板処理システム1のチャンバ構成を変更することによって、アニーリング工程(ステップS213)を基板処理システム1内で行うこともできる。
第2実施形態のトップピン構造のMTJ素子9000は第1実施形態と原理的に同じであるため、RA(面積抵抗)とMR比とは、拡散防止層の有無の影響は無い。
本実施形態のMTJ素子9000は、上述のMTJ素子4000と同様に高いMR比と大きな交換結合磁界を有する。したがって、外部磁界によるリファレンス層の意図しない磁化反転の発生を防ぐことができる。また、後工程の歩留まりがよく、Ptの使用量が少ないため材料コストを抑えることができる。さらに本発明の垂直磁化MTJ素子の製造方法によれば、上述の磁気抵抗効果素子を製造できる。

Claims (1)

  1. バリア層と、
    前記バリア層の一方の表面に形成されたリファレンス層と、
    前記バリア層の他方の表面に形成されたフリー層と、
    前記リファレンス層の前記バリア層とは逆側に配置されたピン層と、を有し、
    前記ピン層は、Pt,Co,Ru,Co,Ptの順番で積層された層、およびNiを含む層を備え、Ni,Co,Pt,Co,Ru,Co,Pt,Co,Niの順番で積層された構造を備えることを特徴とする磁気抵抗効果素子。
JP2016522821A 2015-05-22 2016-01-14 磁気抵抗効果素子 Active JP5952519B1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015104341 2015-05-22
JP2015104341 2015-05-22
PCT/JP2016/000158 WO2016189772A1 (ja) 2015-05-22 2016-01-14 磁気抵抗効果素子

Publications (2)

Publication Number Publication Date
JP5952519B1 true JP5952519B1 (ja) 2016-07-13
JPWO2016189772A1 JPWO2016189772A1 (ja) 2017-06-22

Family

ID=56375150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016522821A Active JP5952519B1 (ja) 2015-05-22 2016-01-14 磁気抵抗効果素子

Country Status (1)

Country Link
JP (1) JP5952519B1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013187409A (ja) * 2012-03-08 2013-09-19 Renesas Electronics Corp 磁気メモリセル、磁気メモリセルの製造方法
JP2014072392A (ja) * 2012-09-28 2014-04-21 Sony Corp 記憶素子、記憶装置、磁気ヘッド

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013187409A (ja) * 2012-03-08 2013-09-19 Renesas Electronics Corp 磁気メモリセル、磁気メモリセルの製造方法
JP2014072392A (ja) * 2012-09-28 2014-04-21 Sony Corp 記憶素子、記憶装置、磁気ヘッド

Also Published As

Publication number Publication date
JPWO2016189772A1 (ja) 2017-06-22

Similar Documents

Publication Publication Date Title
US11309489B2 (en) Magnetic tunnel junction with low defect rate after high temperature anneal for magnetic device applications
WO2016189772A1 (ja) 磁気抵抗効果素子
US10868235B2 (en) Minimal thickness synthetic antiferromagnetic (SAF) structure with perpendicular magnetic anisotropy for STT-MRAM
TWI616007B (zh) 對磁場具有改良響應的自旋閥磁阻元件
EP2987190B1 (en) Magnetic tunnel junction comprising a fully compensated synthetic antiferromagnet for spintronics applications
CN108182958B (zh) 用于多层磁性材料的改良式晶种层
US10937951B2 (en) Magnetoresistance effect element
US20130032911A1 (en) Magnetic memory device and fabrication method thereof
EP1633007A2 (en) Magnetoresistance effect device and method of production of the same
EP2873079A1 (en) Engineered magnetic layer with improved perpendicular anisotropy using glassing agents for spintronic applications
JP6591568B2 (ja) 磁気抵抗効果素子の製造方法
CN105280809B (zh) 一种磁隧道结及其制备方法
JP5689932B2 (ja) トンネル磁気抵抗素子の製造方法
US11222676B2 (en) Narrow etched gaps or features in multi-period thin-film structures
JP5952519B1 (ja) 磁気抵抗効果素子
JP4774092B2 (ja) 磁気抵抗効果素子およびそれを用いたmram
TW202027308A (zh) 磁阻裝置及其方法
JP4725775B2 (ja) 磁気抵抗効果素子、及び磁気抵抗効果素子の製造方法
EP3721486A1 (en) Narrow etched gaps or features in multi-period thin-film structures

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160413

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160413

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20160413

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20160527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160609

R150 Certificate of patent or registration of utility model

Ref document number: 5952519

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250